特表-20217679IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ DIC株式会社の特許一覧
再表2020-217679マレイミド、硬化性樹脂組成物、及び、硬化物
<>
  • 再表WO2020217679-マレイミド、硬化性樹脂組成物、及び、硬化物 図000033
  • 再表WO2020217679-マレイミド、硬化性樹脂組成物、及び、硬化物 図000034
  • 再表WO2020217679-マレイミド、硬化性樹脂組成物、及び、硬化物 図000035
  • 再表WO2020217679-マレイミド、硬化性樹脂組成物、及び、硬化物 図000036
  • 再表WO2020217679-マレイミド、硬化性樹脂組成物、及び、硬化物 図000037
  • 再表WO2020217679-マレイミド、硬化性樹脂組成物、及び、硬化物 図000038
  • 再表WO2020217679-マレイミド、硬化性樹脂組成物、及び、硬化物 図000039
  • 再表WO2020217679-マレイミド、硬化性樹脂組成物、及び、硬化物 図000040
  • 再表WO2020217679-マレイミド、硬化性樹脂組成物、及び、硬化物 図000041
  • 再表WO2020217679-マレイミド、硬化性樹脂組成物、及び、硬化物 図000042
< >
(19)【発行国】日本国特許庁(JP)
【公報種別】再公表特許(A1)
(11)【国際公開番号】WO/0
(43)【国際公開日】2020年10月29日
【発行日】2021年5月6日
(54)【発明の名称】マレイミド、硬化性樹脂組成物、及び、硬化物
(51)【国際特許分類】
   C07D 207/452 20060101AFI20210409BHJP
   C08F 22/40 20060101ALI20210409BHJP
【FI】
   C07D207/452CSP
   C08F22/40
【審査請求】有
【予備審査請求】未請求
【全頁数】32
【出願番号】特願2020-537668(P2020-537668)
(21)【国際出願番号】PCT/0/0
(22)【国際出願日】2020年2月20日
(11)【特許番号】特許第6797356号(P6797356)
(45)【特許公報発行日】2020年12月9日
(31)【優先権主張番号】特願2019-86451(P2019-86451)
(32)【優先日】2019年4月26日
(33)【優先権主張国】JP
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ
(71)【出願人】
【識別番号】000002886
【氏名又は名称】DIC株式会社
(74)【代理人】
【識別番号】110000729
【氏名又は名称】特許業務法人 ユニアス国際特許事務所
(72)【発明者】
【氏名】下野 智弘
(72)【発明者】
【氏名】岡本 竜也
【テーマコード(参考)】
4C069
4J100
【Fターム(参考)】
4C069AD08
4C069BB08
4C069BB34
4C069BC12
4J100AM55P
4J100BC43P
4J100BC48P
4J100JA03
4J100JA28
4J100JA38
4J100JA44
4J100JA46
(57)【要約】
その硬化物において優れた耐熱性、及び、誘電特性を兼備した硬化性樹脂組成物、その硬化物、これらの性能を兼備したプリプレグ、回路基板、ビルドアップフィルム、半導体封止材、並びに、半導体装置を提供する。
本発明は、下記一般式(1)で示されるインダン骨格を有することを特徴とする。
【化1】

(式(1)中、Raは、それぞれ独立に、炭素数1〜10のアルキル基、アルキルオキシ基もしくはアルキルチオ基、炭素数6〜10のアリール基、アリールオキシ基もしくはアリールチオ基、炭素数3〜10のシクロアルキル基、ハロゲン原子、ニトロ基、水酸基またはメルカプト基を表し、qは0〜4の整数値を示す。qが2〜4の場合、Raは同一環内で同じであってもよいし異なっていてもよい。Rbはそれぞれ独立に、炭素数1〜10のアルキル基、アルキルオキシ基もしくはアルキルチオ基、炭素数6〜10のアリール基、アリールオキシ基もしくはアリールチオ基、炭素数3〜10のシクロアルキル基、ハロゲン原子、水酸基またはメルカプト基を表し、rは0〜3の整数値を示す。rが2〜3の場合、Rbは同一環内で同じであってもよいし異なっていてもよい。nは平均繰り返し単位数であり、0.95〜10.0の数値を示す。)
【特許請求の範囲】
【請求項1】
下記一般式(1)で示されるインダン骨格を有することを特徴とするマレイミド。
【化1】
(式(1)中、Raは、それぞれ独立に、炭素数1〜10のアルキル基、アルキルオキシ基もしくはアルキルチオ基、炭素数6〜10のアリール基、アリールオキシ基もしくはアリールチオ基、炭素数3〜10のシクロアルキル基、ハロゲン原子、ニトロ基、水酸基またはメルカプト基を表し、qは0〜4の整数値を示す。qが2〜4の場合、Raは同一環内で同じであってもよいし異なっていてもよい。Rbは、それぞれ独立に、炭素数1〜10のアルキル基、アルキルオキシ基もしくはアルキルチオ基、炭素数6〜10のアリール基、アリールオキシ基もしくはアリールチオ基、炭素数3〜10のシクロアルキル基、ハロゲン原子、水酸基またはメルカプト基を表し、rは0〜3の整数値を示す。rが2〜3の場合、Rbは同一環内で同じであってもよいし異なっていてもよい。nは平均繰り返し単位数であり、0.95〜10.0の数値を示す。)
【請求項2】
GPC測定により得られる分子量分布(Mw/Mn)が、1.0〜4.0であることを特徴とする請求項1に記載のマレイミド。
【請求項3】
前記式(1)中のRaが、炭素数1〜4のアルキル基、炭素数3〜6のシクロアルキル基、及び、炭素数6〜10のアリール基からなる群より選択される少なくとも1種であることを特徴とする請求項1又は2に記載のマレイミド。
【請求項4】
前記式(1)中のqが、2〜3であることを特徴とする請求項1〜3のいずれかに記載のマレイミド。
【請求項5】
前記式(1)中のrが0であり、Rbが、水素原子であることを特徴とする請求項1〜4のいずれかに記載のマレイミド。
【請求項6】
前記式(1)中のrが1〜3であり、Rbが、炭素数1〜4のアルキル基、炭素数3〜6のシクロアルキル基、及び、炭素数6〜10のアリール基からなる群より選択される少なくとも1種であることを特徴とする請求項1〜4のいずれかに記載のマレイミド。
【請求項7】
前記マレイミド全量100質量%中、nが0の前記マレイミドを32面積%以下含有することを特徴とする請求項1〜6のいずれかに記載のマレイミド。
【請求項8】
請求項1〜7のいずれかに記載のマレイミドを含有する硬化性樹脂組成物。
【請求項9】
請求項8に記載の硬化性樹脂組成物により得られる硬化物。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、インダン骨格を有するマレイミド、前記マレイミドを含有する硬化性樹脂組成物、前記硬化性樹脂組成物より得られる硬化物に関する。
【背景技術】
【0002】
電子機器用の回路基板の材料として、ガラスクロスに、エポキシ樹脂系やBT(ビスマレイミド−トリアジン)樹脂系などの熱硬化性樹脂を含浸、加熱乾燥して得られるプリプレグ、該プリプレグを加熱硬化した積層板、該積層板と該プリプレグとを組み合わせ、加熱硬化した多層板が広く使用されている。中でも半導体パッケージ基板は薄型化が進み、実装時のパッケージ基板の反りが問題となることから、これを抑制するため、高耐熱性を発現する材料が求められている。
【0003】
また近年、信号の高速化、高周波数化が進み、これらの環境下で十分に低い誘電率を維持しつつ、十分に低い誘電正接を発現する硬化物を与える熱硬化性樹脂組成物の提供が望まれている。
【0004】
特に最近では各種電材用途、とりわけ先端材料用途においては、耐熱性、誘電特性に代表される性能の一層の向上、及びこれらを兼備する材料、組成物が求められている。
【0005】
これらの要求に対し、耐熱性と低誘電率・低誘電正接を兼備する材料としてマレイミド樹脂が注目されている。しかしながら、従来のマレイミド樹脂は高耐熱性を示すものの、その誘電率・誘電正接値が先端材料用途に要求されるレベルには達しておらず、加えて難溶剤溶解性でハンドリング性に劣ることから、耐熱性を維持しつつ、更なる低誘電率・低誘電正接を示し、かつ、溶剤溶解性にも優れる樹脂の開発が強く望まれている。
【0006】
また、従来のマレイミド樹脂を用いた硬化物は、エポキシ樹脂などと比べて、耐脆性に劣り、得られる硬化物に対して、可撓性や柔軟性なども求められている。
【0007】
このような中、高度な誘電特性、及び、耐熱性を兼備したシアン酸エステル系材料として、フェノールノボラック型シアン酸エステル樹脂と、ビスフェノールAシアン酸エステル樹脂と、非ハロゲン系エポキシ樹脂とを配合してなる樹脂組成物が知られている(特許文献1参照)。
【0008】
しかしながら、前記特許文献1記載の樹脂組成物は、硬化物における耐熱性と誘電特性はある程度改善されるものの、耐熱性については、近年要求されている水準には未だ、及ばないものであった。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2004−182850号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
従って、本発明が解決しようとする課題は、マレイミドが、溶剤溶解性、加熱溶融時の流動性、及び、ハンドリング性に優れ、前記マレイミドを使用することで、耐脆性、可撓性、柔軟性、耐熱性、及び、誘電特性に優れた硬化物を提供することにある。
【課題を解決するための手段】
【0011】
そこで、本発明者らは、上記課題を解決するため、鋭意検討した結果、溶剤溶解性、加熱溶融時の流動性、及び、ハンドリング性に優れ、さらに、耐脆性、耐熱性、及び、低誘電率・低誘電正接に寄与できるインダン骨格を有するマレイミド、及び、前記マレイミドを含有する硬化性樹脂組成物より得られる硬化物が、耐脆性、可撓性、柔軟性、耐熱性、及び、誘電特性に優れることを見出し、本発明を完成するに至った。
【0012】
即ち、本発明は、下記一般式(1)で示されるインダン骨格を有することを特徴とする。
【化1】
(式(1)中、Raは、それぞれ独立に、炭素数1〜10のアルキル基、アルキルオキシ基もしくはアルキルチオ基、炭素数6〜10のアリール基、アリールオキシ基もしくはアリールチオ基、炭素数3〜10のシクロアルキル基、ハロゲン原子、ニトロ基、水酸基またはメルカプト基を表し、qは0〜4の整数値を示す。qが2〜4の場合、Raは同一環内で同じであってもよいし異なっていてもよい。Rbは、それぞれ独立に、炭素数1〜10のアルキル基、アルキルオキシ基もしくはアルキルチオ基、炭素数6〜10のアリール基、アリールオキシ基もしくはアリールチオ基、炭素数3〜10のシクロアルキル基、ハロゲン原子、水酸基またはメルカプト基を表し、rは0〜3の整数値を示す。rが2〜3の場合、Rbは同一環内で同じであってもよいし異なっていてもよい。nは平均繰り返し単位数であり、0.95〜10.0の数値を示す。)
【0013】
本発明のマレイミドは、GPC測定により得られる分子量分布(Mw/Mn)が、1.0〜4.0であることが好ましい。
【0014】
本発明のマレイミドは、前記式(1)中のRaが、炭素数1〜4のアルキル基、炭素数3〜6のシクロアルキル基、及び、炭素数6〜10のアリール基からなる群より選択される少なくとも1種であることが好ましい。
【0015】
本発明のマレイミドは、前記式(1)中のqが、2〜3であることが好ましい。
【0016】
本発明のマレイミドは、前記式(1)中のrが0であり、Rbが、水素原子であることが好ましい。
【0017】
本発明のマレイミドは、前記式(1)中のrが1〜3であり、Rbが、炭素数1〜4のアルキル基、炭素数3〜6のシクロアルキル基、及び、炭素数6〜10のアリール基からなる群より選択される少なくとも1種であることが好ましい。
【0018】
本発明のマレイミドは、前記マレイミド全量100質量%中、nが0の前記マレイミドを32面積%以下含有することが好ましい。
【0019】
本発明の硬化性樹脂組成物は、前記マレイミドを含有することが好ましい。
【0020】
本発明の硬化物は、前記硬化剤組成物により得られることが好ましい。
【発明の効果】
【0021】
本発明のマレイミドは、溶剤溶解性、加熱溶融時の流動性、及び、ハンドリング性に優れ、さらに、耐脆性、耐熱性、及び、低誘電率・低誘電正接に寄与できるため、前記マレイミドを含有する硬化性樹脂組成物より得られる硬化物が、耐脆性、可撓性、柔軟性、耐熱性、及び、誘電特性に優れ、有用である。
【発明を実施するための形態】
【0022】
以下、本発明を詳細に説明する。
【0023】
本発明は、下記一般式(1)で示されるインダン骨格を有することを特徴とする。
【化2】
【0024】
上記一般式(1)中、Raは、それぞれ独立に、炭素数1〜10のアルキル基、アルキルオキシ基もしくはアルキルチオ基、炭素数6〜10のアリール基、アリールオキシ基もしくはアリールチオ基、炭素数3〜10のシクロアルキル基、ハロゲン原子、ニトロ基、水酸基またはメルカプト基を表し、qは0〜4の整数値を示す。qが2〜4の場合、Raは同一環内で同じであってもよいし異なっていてもよい。Rbは、それぞれ独立に、炭素数1〜10のアルキル基、アルキルオキシ基もしくはアルキルチオ基、炭素数6〜10のアリール基、アリールオキシ基もしくはアリールチオ基、炭素数3〜10のシクロアルキル基、ハロゲン原子、水酸基またはメルカプト基を表し、rは0〜3の整数値を示す。rが2〜3の場合、Rbは同一環内で同じであってもよいし異なっていてもよい。nは平均繰り返し単位数であり、0.95〜10.0の数値を示す。なお、前記r及び前記qが0の場合は、Ra及びRbは、それぞれ水素原子を指す。
【0025】
前記マレイミドがインダン骨格を有することにより、これまでのマレイミドと比較して、前記マレイミドの構造中に極性官能基の割合が少ないため、前記マレイミドを使用して製造される硬化物は、誘電特性に優れるため、好ましい。また、従来のマレイミド樹脂を使用した硬化物は脆い傾向にあり、耐脆性に劣ることが懸念されるが、前記マレイミドはインダン骨格を有することで、可撓性、及び、柔軟性に優れ、耐脆性の改善も見込まれ、好ましい。
【0026】
また、上記一般式(1)のRaが、炭素数1〜4のアルキル基、炭素数3〜6のシクロアルキル基、炭素数6〜10のアリール基のいずれかであることが好ましく、前記炭素数1〜4のアルキル基等であることで、マレイミド基近傍の平面性の低下、結晶性低下により、溶剤溶解性が向上するとともに、マレイミド基の反応性が損なわれることなく、硬化物を得ることが可能な好ましい態様となる。
【0027】
上記一般式(1)中のqが、2〜3であることが好ましく、2であることがより好ましい。前記qが2の場合、立体障害の影響が小さく、芳香環上の電子密度が向上し、マレイミドの製造(合成)において、好ましい態様となる。
【0028】
上記一般式(1)中のrが0であり、Rbが、水素原子であることが好ましく、また、rが1〜3であり、Rbが、炭素数1〜4のアルキル基、炭素数3〜6のシクロアルキル基、及び、炭素数6〜10のアリール基からなる群より選択される少なくとも1種であることが好ましく、特に前記rが0であって、Rbが、水素原子であることで、マレイミド中のインダン骨格の形成の際に、立体障害が少なくなり、マレイミドの製造(合成)にとって、有利となり、好ましい態様となる。
【0029】
<インダン骨格を有するマレイミドの製造方法>
前記マレイミドの製造方法について、以下に説明する。
【0030】
下記一般式(2)は、Rcはそれぞれ独立に下記一般式(3)及び(4)よりなる群から選択される一価の官能基を示しており、2つのRcの少なくとも一方のRcのオルト位が水素原子で、Rb及びrは、上記と同様のものを示す化合物である。
【0031】
【化3】
【化4】
【化5】
【0032】
下記一般式(5)は、アミノ基のオルト位、パラ位のうち、少なくとも1つは水素原子であって、Ra及びqは、それぞれ前記と同様のものを示すアニリンまたはその誘導体であり、上記一般式(2)の化合物と、下記一般式(5)の化合物を、酸触媒存在下に反応させることにより、下記一般式(6)で示される中間体アミン化合物を得ることができる。なお、下記一般式(6)中のRa、Rb、q、及び、rは上記と同様のものを示す。
【化6】
【化7】
【0033】
上記一般式(6)で表される中間体アミン化合物において、インダン骨格を有する下記一般式(7)を構造中に含むが、上記一般式(5)で表されるアニリンまたはその誘導体中、qは3以下で、かつアミノ基のオルト位とパラ位のうち少なくとも2つが水素原子である場合には、下記一般式(8)で表される構造となる。但し、下記一般式(8)中のRa、Rb、qおよびrは前記と同じであり、mは繰り返し単位数であり、1〜20の整数値を示す。また、下記一般式(8)で示される構造も、上記一般式(6)の構造中に含まれることがある。
【化8】
【化9】
【0034】
前記マレイミドの特徴であるインダン骨格(上記一般式(7)参照)において、平均繰り返し単位数nは、低い融点(低軟化点)で、かつ溶融粘度が低く、ハンドリング性に優れたものとするため、平均繰り返し単位数n(平均値)として、0.95〜10.0であり、好ましくは0.98〜8.0であり、より好ましくは、1.0〜7.0であり、更に好ましくは、1.1〜6.0である。前記マレイミドの構造中に、インダン骨格を有することで、これまでに使用されてきたマレイミドと比較して、溶剤溶解性に優れ、好ましい態様となる。なお、前記nが0.95未満であれば、前記マレイミドの構造中の高融点物質の含有割合が高くなり、溶剤溶解性に劣り、更に、可撓性に寄与する高分子量成分の割合が低くなるため、得られる硬化物の耐脆性が低下し、更に、可撓性や柔軟性も低下する恐れがあり好ましくない。また、前記nが10.0を越えると、溶剤に溶解した際に粘度が高くなり、更に得られる硬化物の耐熱性が劣ることが懸念され、更に、高分子量成分が多くなりすぎ、硬化物を成形する際に、流動性が低下し、ハンドリング性に劣ることが懸念され、好ましくない。また、前記nの値としては、硬化物の高熱変形温度、高ガラス転移温度等の観点から、0.98〜8.0が特に好ましい。
【0035】
本発明において用いる上記一般式(2)で表される化合物(以下、「化合物(a)」)は、特に限定されないが、典型的には、p−及びm−ジイソプロペニルベンゼン、p−及びm−ビス(α−ヒドロキシイソプロピル)ベンゼン、1−(α−ヒドロキシイソプロピル)−3−イソプロペニルベンゼン、1−(α−ヒドロキシイソプロピル)−4−イソプロペニルベンゼンあるいはこれらの混合物を用いる。またこれらの化合物の核アルキル基置換体、例えば、ジイソプロペニルトルエン及びビス(α−ヒドロキシイソプロピル)トルエン等も用いることができ、さらに核ハロゲン置換体、例えば、クロロジイソプロペニルベンゼン及びクロロビス(α−ヒドロキシイソプロピル)ベンゼン等も用いることができる。
【0036】
その他、前記化合物(a)として、例えば、2−クロロ−1,4−ジイソプロペニルベンゼン、2−クロロ−1,4−ビス(α−ヒドロキシイソプロピル)ベンゼン、2−ブロモ−1,4−ジイソプロペニルベンゼン、2−ブロモ−1,4−ビス(α−ヒドロキシイソプロピル)ベンゼン、2−ブロモ−1,3−ジイソプロペニルベンゼン、2−ブロモ−1,3−ビス(α−ヒドロキシイソプロピル)ベンゼン、4−ブロモ−1,3−ジイソプロピルベンゼン、4−ブロモ−1,3−ビス(α−ヒドロキシイソプロピル)ベンゼン、5−ブロモ−1,3−ジイソプロペニルベンゼン、5−ブロモ−1,3−ビス(α−ヒドロキシイソプロピル)ベンゼン、2−メトキシ−1,4−ジイソプロペニルベンゼン、2−メトキシ−1,4−ビス(α−ヒドロキシイソプロピル)ベンゼン、5−エトキシ−1,3−ジイソプロペニルベンゼン、5−エトキシ−1,3−ビス(α−ヒドロキシイソプロピル)ベンゼン、2−フェノキシ−1,4−ジイソプロペニルベンゼン、2−フェノキシ−1,4−ビス(α−ヒドロキシイソプロピル)ベンゼン、2,4−ジイソプロペニルベンゼンチオール、2,4−ビス(α−ヒドロキシイソプロピル)ベンゼンチオール、2,5−ジイソプロペニルベンゼンチオール、2,5−ビス(αヒドロキシイソプロピル)ベンゼンチオール、2−メチルチオ−1,4−ジイソプロペニルベンゼン、2−メチルチオ−1,4−ビス(α−ヒドロキシイソプロピル)ベンゼン、2−フェニルチオ−1,3−ジイソプロペニルベンゼン、2−フェニルチオ−1,3−ビス(α−ヒドロキシイソプロピル)ベンゼン、2−フェニル−1,4−ジイソプロペニルベンゼン、2−フェニル−1,4−ビス(α−ヒドロキシイソプロピル)ベンゼン、2−シクロペンチル−1,4−ジイソプロペニルベンゼン、2−シクロペンチル−1,4−ビス(α−ヒドロキシイソプロピル)ベンゼン、5−ナフチル−1,3−ジイソプロペニルベンゼン、5−ナフチル−1,3−ビス(α−ヒドロキシイソプロピル)ベンゼン、2−メチル−1,4−ジイソプロペニルベンゼン、2−メチル−1,4−ビス(α−ヒドロキシイソプロピル)ベンゼン、5−ブチル−1,3−ジイソプロペニルベンゼン、5−ブチル−1,3−ビス(α−ヒドロキシイソプロピル)ベンゼン、5−シクロヘキシル−1,3−ジイソプロペニルベンゼン、5−シクロヘキシル−1,3−ビス(α−ヒドロキシイソプロピル)ベンゼンなどを例示することができる。
【0037】
なお、前記化合物(a)中に含まれる置換基としては、特に限定はされず、上記例示の化合物を使用できるが、立体障害の大きな置換基の場合、立体障害の小さな置換基に比べて、得られるマレイミド同士のスタッキングが生じにくく、マレイミド同士の結晶化が起こりにくく、つまり、マレイミドの溶剤溶解性が向上し、好ましい態様となる。
【0038】
また上記一般式(5)で表される化合物(以下、「化合物(b)」)としては、典型的にはアニリンの他に、例えば、ジメチルアニリン、ジエチルアニリン、ジイソプロピルアニリン、エチルメチルアニリン、シクロブチルアニリン、シクロペンチルアニリン、シクロヘキシルアニリン、クロロアニリン、ジクロロアニリン、トルイジン、キシリジン、フェニルアニリン、ニトロアニリン、アミノフェノール及びシクロヘキシルアニリン等を用いることができる。また、メトキシアニリン、エトキシアニリン、フェノキシアニリン、ナフトキシアニリン、アミノチオール、メチルチオアニリン、エチルチオアニリン及びフェニルチオアニリンを例示することができる。
【0039】
なお、従来のマレイミド(例えば、N−フェニルマレイミド)のように、ベンゼン環にマレイミド基が直接結合している場合、ベンゼン環とマレイミドの5員環が、同一平面上に並んだ状態が安定なため、スタッキングしやすくなり、高い結晶性が発現してしまう。そのため、溶剤溶解性が劣る原因となる。これに対して、本発明の場合、前記化合物(b)としては、特に限定はされず、上記例示の化合物を使用できるほか、例えば、2,6−ジメチルアニリンのように、置換基として、メチル基を有する場合、メチル基の立体障害からベンゼン環とマレイミドの5員環がねじれた配座をとり、スタッキングしにくくなることから結晶性が低下し、溶剤溶解性が向上し、好ましい態様となる。但し、立体障害が大きすぎると、マレイミドの合成時における反応性を阻害する場合も懸念されるため、例えば、炭素数2〜4のアルキル基を有する化合物(b)を使用することが好ましい。
【0040】
本発明に用いる上記一般式(6)で表される中間体アミン化合物の製造方法においては、前記化合物(a)と前記化合物(b)を、前記化合物(a)に対する前記化合物(b)のモル比(化合物(b)/化合物(a))を、好ましくは0.1〜2.0、より好ましくは0.2〜1.0で仕込み反応(1段階目)させた後、さらに前記化合物(b)を、先に加えた前記化合物(a)に対するモル比で好ましくは0.5〜20.0、より好ましくは0.7〜5.0の量をさらに加え、反応させる(2段階目)ことにより、インダン骨格を有するマレイミドを得ることができる。また、この2段階の反応は反応を完結させるため、あるいはハンドリング性等の点からも好ましい結果を与える。なお、1段階目の反応において、前記化合物(b)を、先に加えた前記化合物(a)に対するモル比(化合物(b)/化合物(a))として、好ましくは0.10〜0.49、より好ましくは、0.20〜0.39にすることにより、広い分子量分布であって、低分子量の高融点物質の含有割合が低くなり、高分子量成分の割合が高くなるため、溶剤溶解性に優れ、更に、可撓性や耐脆性に寄与できる中間体アミン化合物、及び、マレイミドを得ることができ、好ましい。
【0041】
前記反応に用いる酸触媒には、例えば、リン酸、塩酸、硫酸のような無機酸、シュウ酸、ベンゼンスルホン酸、トルエンスルホン酸、メタンスルホン酸、フルオロメタンスルホン酸等の有機酸、活性白土、酸性白土、シリカアルミナ、ゼオライト、強酸性イオン交換樹脂のような固体酸、ヘテロポリ塩酸等を挙げることができるが、反応後、ろ過により簡便に触媒除去が可能な固体酸がハンドリンク性の観点からも好ましく、他の酸を用いるときは、反応後、塩基による中和と水による洗浄を行うことが好ましい。
【0042】
前記酸触媒の配合量は、最初に仕込む原料の前記化合物(a)、及び、前記化合物(b)の総量100質量部に対して、酸触媒を5〜40質量部の範囲で配合されるが、ハンドリング性と経済性の点から、5〜30質量部が好ましい。反応温度は、通常100〜300℃の範囲であればよいが、異性体構造の生成を抑制し、熱分解等の副反応を避けるためには150〜230℃が好ましい。
【0043】
前記反応の時間としては、短時間では反応が完全に進行せず、また長時間にすると生成物の熱分解反応等の副反応が起こることから、前記反応温度条件下で、通常は、のべ2〜24時間の範囲であるが、好ましくは、のべ4〜12時間の範囲であり、低分子量成分の減少、高分子量成分の増加のためには、のべ8〜12時間がより好ましい。
【0044】
前記中間体アミン化合物の製造方法においては、アニリンまたはその誘導体が溶剤を兼ねるため、必ずしも他の溶剤は用いなくても良いが、溶剤を用いることも可能である。例えば、脱水反応を兼ねた反応系の場合、具体的には、α−ヒドロキシプロピル基を有する化合物を原料として反応させる場合には、トルエン、キシレン、又はクロロベンゼン等の共沸脱水可能な溶剤を用いて、脱水反応を完結させた後、溶媒を留去してから、上記反応温度の範囲で反応を行う方法を採用してもよい。
【0045】
本発明で用いられるマレイミドは、上記方法により得られた上記一般式(6)で表される中間体アミン化合物を反応器に仕込み、適当な溶媒に溶解した後、無水マレイン酸、触媒の存在下で反応させ、反応後、水洗等により未反応の無水マレイン酸や他の不純物を除去し、減圧によって溶媒を除くことにより得ることができる。また、反応時に脱水剤を用いてもよい。
【0046】
本発明で用いられるマレイミドは、上記一般式(1)の骨格を有し、インダン骨格を有する上記一般式(7)で表される構造を含むが、qが3以下でかつアミノ基のオルト位とパラ位のうち少なくとも2つが水素原子である場合、上記一般式(8)に対応する構造、すなわち下記一般式(9)で表される構造も、上記一般式(1)で表される構造として含まれる。
【0047】
【化10】
上記一般式(9)中のRa、Rb、q、r及びmは上記と同様のものを示す。
【0048】
前記マレイミドを合成するためのマレイミド化反応で使用される有機溶媒としては、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、シクロヘキサノン、アセトフェノン等のケトン類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、アセトニトリル、スルホラン等の非プロトン性溶媒、ジオキサン、テトラヒドロフラン等の環状エーテル類、酢酸エチル、酢酸ブチル等のエステル類、ベンゼン、トルエン、キシレン等の芳香族系溶媒等が挙げられ、またこれらは単独で用いても混合して用いてもよい。
【0049】
前記マレイミド化反応においては、前記中間体アミン化合物と無水マレイン酸を、中間体アミン化合物のアミノ当量に対する無水マレイン酸の当量比を、1〜1.5の範囲に配合することが好ましく、より好ましくは1.1〜1.2で仕込み、中間体アミン化合物と無水マレイン酸の合計量に対して、0.5〜50の質量比、好ましくは1〜5の質量比の有機溶媒中で反応させることが好ましい態様となる。
【0050】
前記マレイミド化反応で使用される触媒としては、ニッケル、コバルト、ナトリウム、カルシウム、鉄、リチウム、マンガン等の酢酸塩、塩化物、臭化物、硫酸塩、硝酸塩等の無機塩、リン酸、塩酸、硫酸のような無機酸、シュウ酸、ベンゼンスルホン酸、トルエンスルホン酸、メタンスルホン酸、フルオロメタンスルホン酸等の有機酸、活性白土、酸性白土、シリカアルミナ、ゼオライト、強酸性イオン交換樹脂のような固体酸、ヘテロポリ塩酸等を挙げることができるが、特にトルエンスルホン酸が好ましく用いられる。
【0051】
前記マレイミド化反応に用いる脱水剤としては、無水酢酸、無水プロピオン酸、無水酪酸のような低級脂肪族カルボン酸無水物、五酸化リン、酸化カルシウム、酸化バリウム等の酸化物、硫酸等の無機酸、モレキュラーシーブ等の多孔性セラミック等が挙げられるが、好ましくは無水酢酸を用いることができる。
【0052】
前記マレイミド化反応で使用される触媒、脱水剤の使用量の制限は特にないが、通常、中間体アミン化合物のアミノ基1当量に対し、触媒は0.0001〜1.0モル、好ましくは0.01〜0.3モル、脱水剤は1〜3モル、好ましくは1〜1.5モルで使用することができる。
【0053】
前記マレイミド化の反応条件としては、上記中間体アミン化合物と無水マレイン酸を仕込み、10〜100℃、好ましくは30〜50℃の温度範囲で、0.5〜12時間、好ましくは1〜4時間反応させた後、前記触媒を加えて、90〜130℃、好ましくは105〜120℃の温度範囲で、2〜24時間、好ましくは4〜10時間反応させることができ、低分子量成分の減少、高分子量成分の増加のためには、6〜10時間がより好ましい。また反応後、水洗等により未反応の無水マレイン酸や他の不純物を除去し、加熱エージングすることによっても低分子量成分は減少し、高分子量成分は増加する。
【0054】
前記マレイミドは、低誘電率及び低誘電正接に優れる点から、ゲルパーミエーションクロマトグラフィー(GPC)測定から算出される分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))が1.0〜4.0の範囲であることが好ましく、より好ましくは、1.1〜3.8であり、更に好ましくは、1.2〜3.6であり、特に好ましくは、1.3〜3.4である。なお、前記GPC測定から得られるGPCチャートより、分子量分布が広範囲にわたり、高分子量成分が多い場合には、可撓性に寄与する高分子量成分の割合が多くなるため、従来のマレイミドを使用した硬化物と比較して、脆性が抑えられ、可撓性や柔軟性に優れた硬化物を得ることができ、好ましい態様となる。
【0055】
<GPC測定>
以下の条件により、ゲルパーミエーションクロマトグラフィー(GPC)に基づき、マレイミドの分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))、及び、マレイミド中のインダン骨格に寄与する平均繰り返し単位数「n」を数平均分子量(Mn)に基づき、測定・算出した。
測定装置 :東ソー株式会社製「HLC−8320 GPC」
カラム:東ソー株式会社製ガードカラム「HXL−L」+東ソー株式会社製「TSK−GEL G2000HXL」+東ソー株式会社製「TSK−GEL G2000HXL」+東ソー株式会社製「TSK−GEL G3000HXL」+東ソー株式会社製「TSK−GEL G4000HXL」
検出器:RI(示差屈折計)
データ処理:東ソー株式会社製「GPCワークステーション EcoSEC−WorkStation」
測定条件:カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準:前記「GPCワークステーション EcoSEC−WorkStation」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料:合成例で得られたマレイミドの樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
【0056】
本発明のマレイミドは、上記GPC測定に基づき、前記マレイミド全量100面積%中、平均繰り返し単位数nが0の前記マレイミドを、32面積%以下含有することが好ましく、30面積%以下がより好ましく、28面積%以下であることがさらに好ましい。前記nが0のマレイミドの含有割合(面積%)が少ないことにより、結晶性の高い低分子量成分の含有割合が低減され、溶剤への溶解性が向上し、また、長期にわたって溶解状態を維持することが可能となり、好ましい態様となる。なお、前記nが0の前記マレイミドの含有割合を下げるためには、中間体アミン化合物の製造工程において、上述した前記化合物(a)及び前記化合物(b)のモル比(化合物(b)/化合物(a))を小さくすることにより、調製することができる。また、中間体アミン化合物の製造工程における触媒量や反応温度、反応時間によっても、適宜、調製可能である。
【0057】
<硬化性樹脂組成物の調製>
本発明の硬化性樹脂組成物は、前記マレイミドを含有することが好ましい。前記マレイミドが、溶剤溶解性、加熱溶融時の流動性、及び、ハンドリング性に優れ、さらに、耐脆性、耐熱性、及び、低誘電率・低誘電正接に寄与できるため、前記マレイミドを含有する硬化性樹脂組成物より得られる硬化物が、耐脆性、可撓性、柔軟性、耐熱性、及び、誘電特性に優れるため、好ましい態様となる。
【0058】
本発明の硬化性樹脂組成物は、硬化剤や、必要に応じて、硬化促進剤、シランカップリング剤、離型剤、顔料、乳化剤、非ハロゲン系難燃剤、無機充填材等の種々の配合剤を添加することができる。また、本発明の目的を損なわない範囲であれば、前記マレイミド以外に、エポキシ樹脂、フェノール樹脂、活性エステル樹脂、シアネート樹脂等を適宜配合することも可能である。
【0059】
<硬化物>
本発明の硬化物は、前記硬化剤組成物により得られることが好ましい。前記硬化物は、前記硬化性樹脂組成物を硬化反応させて得ることができる。前記硬化性樹脂組成物は、上述した各成分を均一に混合することにより得られ、従来知られている方法と同様の方法で容易に硬化物とすることができる。前記硬化物としては、積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。
【0060】
<耐熱材料および電子材料>
本発明のマレイミドを含有する硬化性樹脂組成物により得られる硬化物が、耐熱性、及び、誘電特性に優れることから、耐熱部材や電子部材に好適に使用可能である。特に、プリプレグ、回路基板、半導体封止材、半導体装置、ビルドアップフィルム、ビルドアップ基板、導電性ペーストを用いた接着剤やレジスト材料などに好適に使用できる。また、繊維強化樹脂のマトリクス樹脂にも好適に使用でき、高耐熱性のプリプレグとして特に適している。また、前記硬化性樹脂組成物に含まれる前記インダン骨格を有するマレイミドは、各種溶剤への優れた溶解性を示すことから塗料化が可能である。こうして得られる耐熱部材や電子部材は、各種用途に好適に使用可能であり、例えば、産業用機械部品、一般機械部品、自動車・鉄道・車両等部品、宇宙・航空関連部品、電子・電気部品、建築材料、容器・包装部材、生活用品、スポーツ・レジャー用品、風力発電用筐体部材等が挙げられるが、これらに限定される物ではない。
【実施例】
【0061】
次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り質量基準である。なお、軟化点、アミン当量、GPC、及び、FD−MSスペクトルは、以下の条件にて測定し、評価を行った。
【0062】
1)軟化点
測定法:JIS K7234(環球法)に準拠して、以下に示す合成例で得られた中間アミン化合物の軟化点(℃)を測定した。
【0063】
2)アミン当量
以下の測定法により、中間体アミン化合物のアミン当量を測定した。
500mL共栓付き三角フラスコに、試料である中間体アミン化合物を約2.5g、ピリジン7.5g、無水酢酸2.5g、トリフェニルホスフィン7.5gを精秤後、冷却管を装着し120℃に設定したオイルバスにて150分加熱還流する。
冷却後、蒸留水5.0mL、プロピレングリコールモノメチルエーテル100mL、テトラヒドロフラン75mLを加え、0.5mol/L水酸化カリウム-エタノール溶液で電位差滴定法により滴定した。同様の方法で空試験を行なって補正した。
アミン当量(g/eq.)=(S×2,000)/(Blank−A)
S:試料の量(g)
A:0.5mol/L水酸化カリウム-エタノール溶液の消費量(mL)
Blank:空試験における0.5mol/L水酸化カリウム-エタノール溶液の消費量(mL)
【0064】
3)GPC測定
以下の測定装置、測定条件を用いて測定し、以下に示す合成例で得られたマレイミドのGPCチャート(図1図10)を得た。前記GPCチャートの結果より、分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))、及び、マレイミド中のインダン骨格に寄与する平均繰り返し単位数「n」を数平均分子量(Mn)に基づき、測定・算出した。具体的にはnが0〜4の化合物について、理論分子量とGPCにおけるそれぞれの実測値分子量とで散布図上にプロット、近似直線を引き、直線上の実測値Mn(1)が示す点より数平均分子量(Mn)を求め、nを算出した。更に、GPC測定に基づき、前記マレイミド全量100面積%中、平均繰り返し単位数nが0の前記マレイミドの含有割合(面積%)を算出した。
測定装置 :東ソー株式会社製「HLC−8320 GPC」
カラム:東ソー株式会社製ガードカラム「HXL−L」+東ソー株式会社製「TSK−GEL G2000HXL」+東ソー株式会社製「TSK−GEL G2000HXL」+東ソー株式会社製「TSK−GEL G3000HXL」+東ソー株式会社製「TSK−GEL G4000HXL」
検出器:RI(示差屈折計)
データ処理:東ソー株式会社製「GPCワークステーション EcoSEC−WorkStation」
測定条件:カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準:前記「GPCワークステーション EcoSEC−WorkStation」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料:合成例で得られたマレイミドの樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
【0065】
4)FD−MSスペクトル
FD−MSスペクトルは、以下の測定装置、測定条件を用いて測定した。
測定装置:JMS−T100GC AccuTOF
測定条件
測定範囲:m/z=4.00〜2000.00
変化率:51.2mA/min
最終電流値:45mA
カソード電圧:−10kV
記録間隔:0.07sec
【0066】
〔合成例1〕マレイミド化合物A−1の合成
(1)中間体アミン化合物の合成
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた1Lフラスコに2,6−ジメチルアニリン48.5g(0.4mol)、α,α’−ジヒドロキシ−1,3−ジイソプロピルベンゼン272.0g(1.4mol)、キシレン280gおよび活性白土70gを仕込み、攪拌しながら120℃まで加熱した。さらに留出水をディーンスターク管で取り除きながら210℃になるまで昇温し、3時間反応させた。その後140℃まで冷却し、2,6−ジメチルアニリン145.4g(1.2mol)を仕込んだ後、220℃まで昇温し、3時間反応させた。反応後、100℃まで空冷し、トルエン300gで希釈して、ろ過により活性白土を除き、減圧下で溶剤及び未反応物等の低分子量物を留去することにより、下記一般式(A−1)で表される中間体アミン化合物364.1gを得た。アミン当量は298であり、軟化点は70℃であった。
【化11】
【0067】
(2)マレイミド化
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた2Lフラスコに無水マレイン酸131.8g(1.3mol)、トルエン700gを仕込み室温で攪拌した。次に反応物(A−1)を364.1gとDMF175gの混合溶液を1時間かけて滴下した。
滴下終了後、室温でさらに2時間反応させた。p−トルエンスルホン酸一水和物37.1gを加え、反応液を加熱し還流下で共沸してくる水とトルエンを冷却・分離した後、トルエンだけを系内に戻して脱水反応を8時間行った。室温まで空冷後、減圧濃縮し褐色溶液を酢酸エチル600gに溶解させイオン交換水150gで3回、2%炭酸水素ナトリウム水溶液150gで3回洗浄し、硫酸ナトリウムを加え乾燥後、減圧濃縮し得られた反応物を80℃で4時間真空乾燥を行い、マレイミド化合物A−1を含有する生成物を413.0g得た。このマレイミド化合物A−1のFD−MSスペクトルにて、M+=560、718、876のピークが確認され、それぞれのピークは、nが0、1、2の場合に相当する。なお、前記マレイミドA−1中のインダン骨格部分における繰り返し単位数nの値(数平均分子量に基づく)をGPCで求めたところ、そのGPCチャートが図1であり、n=1.47であり、分子量分布(Mw/Mn)=1.81であった。また、前記マレイミドA−1全量100面積%中、平均繰り返し単位数nが0の前記マレイミドは、26.5面積%であった。
【化12】
【0068】
〔合成例2〕マレイミド化合物A−2の合成
(1)中間体アミン化合物の合成
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた1Lフラスコに2,6−ジメチルアニリン48.5g(0.4mol)、α,α’−ジヒドロキシ−1,3−ジイソプロピルベンゼン233.2g(1.2mol)、キシレン230gおよび活性白土66gを仕込み、攪拌しながら120℃まで加熱した。さらに留出水をディーンスターク管で取り除きながら210℃になるまで昇温し、3時間反応させた。その後140℃まで冷却し、2,6−ジメチルアニリン145.4g(1.2mol)を仕込んだ後、220℃まで昇温し、3時間反応させた。反応後、100℃まで空冷し、トルエン300gで希釈して、ろ過により活性白土を除き、減圧下で溶剤及び未反応物等の低分子量物を留去することにより、下記一般式(A−2)で表される中間体アミン化合物278.4gを得た。アミン当量は294であり、軟化点は65℃であった。
【化13】
【0069】
(2)マレイミド化
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた2Lフラスコに無水マレイン酸107.9g(1.1mol)、トルエン600gを仕込み室温で攪拌した。次に反応物(A−2)を278.4gとDMF150gの混合溶液を1時間かけて滴下した。
滴下終了後、室温でさらに2時間反応させた。p−トルエンスルホン酸一水和物27.0gを加え、反応液を加熱し還流下で共沸してくる水とトルエンを冷却・分離した後、トルエンだけを系内に戻して脱水反応を8時間行った。室温まで空冷後、減圧濃縮し褐色溶液を酢酸エチル500gに溶解させイオン交換水120gで3回、2%炭酸水素ナトリウム水溶液120gで3回洗浄し、硫酸ナトリウムを加え乾燥後、減圧濃縮し得られた反応物を80℃で4時間真空乾燥を行い、マレイミド化合物A−2を含有する生成物を336.8g得た。このマレイミド化合物A−2のFD−MSスペクトルにて、M+=560、718、876のピークが確認され、それぞれ、nが0、1、2の場合に相当する。なお、前記マレイミドA−2中のインダン骨格部分における繰り返し単位数nの値(数平均分子量に基づく)をGPCで求めたところ、そのGPCチャートが図2であり、n=1.25であり、分子量分布(Mw/Mn)=3.29であった。また、前記マレイミドA−2全量100面積%中、平均繰り返し単位数nが0の前記マレイミドは、33.7面積%であった。
【化14】
【0070】
〔合成例3〕マレイミド化合物A−3の合成
(1)中間体アミン化合物の合成
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた2Lフラスコに2,6−ジメチルアニリン48.5g(0.4mol)、α,α’−ジヒドロキシ−1,3−ジイソプロピルベンゼン388.6g(2.0mol)、キシレン350gおよび活性白土123gを仕込み、攪拌しながら120℃まで加熱した。さらに留出水をディーンスターク管で取り除きながら210℃になるまで昇温し、3時間反応させた。その後140℃まで冷却し、2,6−ジメチルアニリン145.4g(1.2mol)を仕込んだ後、220℃まで昇温し、3時間反応させた。反応後、100℃まで空冷し、トルエン500gで希釈して、ろ過により活性白土を除き、減圧下で溶剤及び未反応物等の低分子量物を留去することにより、下記一般式(A−3)で表される中間体アミン化合物402.1gを得た。アミン当量は306であり、軟化点は65℃であった。
【化15】
【0071】
(2)マレイミド化
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた2Lフラスコに無水マレイン酸152.1g(1.5mol)、トルエン700gを仕込み室温で攪拌した。次に反応物(A−3)を402.1gとDMF200gの混合溶液を1時間かけて滴下した。
滴下終了後、室温でさらに2時間反応させた。p−トルエンスルホン酸一水和物37.5gを加え、反応液を加熱し還流下で共沸してくる水とトルエンを冷却・分離した後、トルエンだけを系内に戻して脱水反応を8時間行った。室温まで空冷後、減圧濃縮し褐色溶液を酢酸エチル800gに溶解させイオン交換水200gで3回、2%炭酸水素ナトリウム水溶液200gで3回洗浄し、硫酸ナトリウムを加え乾燥後、減圧濃縮し得られた反応物を80℃で4時間真空乾燥を行い、マレイミド化合物A−3を含有する生成物を486.9g得た。このマレイミド化合物A−3のFD−MSスペクトルにて、M+=560、718、876のピークが確認され、それぞれ、nが0、1、2の場合に相当する。なお、前記マレイミドA−3中のインダン骨格部分における繰り返し単位数nの値(数平均分子量に基づく)をGPCで求めたところ、そのGPCチャートが図3であり、n=1.96であり、分子量分布(Mw/Mn)=1.52であった。また、前記マレイミドA−3全量100面積%中、平均繰り返し単位数nが0の前記マレイミドは、17.1面積%であった。
【化16】
【0072】
〔合成例4〕マレイミド化合物A−4の合成
(1)中間体アミン化合物の合成
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた2Lフラスコに2,6−ジエチルアニリン59.7g(0.4mol)、α,α’−ジヒドロキシ−1,3−ジイソプロピルベンゼン272.0g(1.4mol)、キシレン350gおよび活性白土94gを仕込み、攪拌しながら120℃まで加熱した。さらに留出水をディーンスターク管で取り除きながら210℃になるまで昇温し、3時間反応させた。その後140℃まで冷却し、2,6−ジエチルアニリン179.1g(1.2mol)を仕込んだ後、220℃まで昇温し、3時間反応させた。反応後、100℃まで空冷し、トルエン500gで希釈して、ろ過により活性白土を除き、減圧下で溶剤及び未反応物等の低分子量物を留去することにより、下記一般式(A−4)で表される中間体アミン化合物342.1gを得た。アミン当量は364であり、軟化点は47℃であった。
【化17】
【0073】
(2)マレイミド化
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた2Lフラスコに無水マレイン酸107.9g(1.1mol)、トルエン600gを仕込み室温で攪拌した。次に反応物(A−4)を342.1gとDMF180gの混合溶液を1時間かけて滴下した。
滴下終了後、室温でさらに2時間反応させた。p−トルエンスルホン酸一水和物26.8gを加え、反応液を加熱し還流下で共沸してくる水とトルエンを冷却・分離した後、トルエンだけを系内に戻して脱水反応を8時間行った。室温まで空冷後、減圧濃縮し褐色溶液を酢酸エチル500gに溶解させイオン交換水200gで3回、2%炭酸水素ナトリウム水溶液200gで3回洗浄し、硫酸ナトリウムを加え乾燥後、減圧濃縮し得られた反応物を80℃で4時間真空乾燥を行い、マレイミド化合物A−4を含有する生成物を388.1g得た。このマレイミド化合物A−4のFD−MSスペクトルにて、M+=616、774、932のピークが確認され、それぞれ、nが0、1、2の場合に相当する。なお、前記マレイミドA−4中のインダン骨格部分における繰り返し単位数nの値(数平均分子量に基づく)をGPCで求めたところ、そのGPCチャートが図4であり、n=1.64であり、分子量分布(Mw/Mn)=1.40であった。また、前記マレイミドA−4全量100面積%中、平均繰り返し単位数nが0の前記マレイミドは、15.8面積%であった。
【化18】
【0074】
〔合成例5〕マレイミド化合物A−5の合成
(1)中間体アミン化合物の合成
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた1Lフラスコに2,6−ジイソプロピルアニリン70.9g(0.4mol)、α,α’−ジヒドロキシ−1,3−ジイソプロピルベンゼン272.0g(1.4mol)、キシレン350gおよび活性白土97gを仕込み、攪拌しながら120℃まで加熱した。さらに留出水をディーンスターク管で取り除きながら210℃になるまで昇温し、3時間反応させた。その後140℃まで冷却し、2,6−ジイソプロピルアニリン212.7g(1.2mol)を仕込んだ後、220℃まで昇温し、3時間反応させた。反応後、100℃まで空冷し、トルエン500gで希釈して、ろ過により活性白土を除き、減圧下で溶剤及び未反応物等の低分子量物を留去することにより、下記一般式(A−5)で表される中間体アミン化合物317.5gを得た。アミン当量は366であり、軟化点は55℃であった。
【化19】
【0075】
(2)マレイミド化
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた2Lフラスコに無水マレイン酸107.9g(1.1mol)、トルエン600gを仕込み室温で攪拌した。次に反応物(A−5)を317.5gとDMF175gの混合溶液を1時間かけて滴下した。
滴下終了後、室温でさらに2時間反応させた。p−トルエンスルホン酸一水和物24.8gを加え、反応液を加熱し還流下で共沸してくる水とトルエンを冷却・分離した後、トルエンだけを系内に戻して脱水反応を8時間行った。室温まで空冷後、減圧濃縮し褐色溶液を酢酸エチル600gに溶解させイオン交換水200gで3回、2%炭酸水素ナトリウム水溶液200gで3回洗浄し、硫酸ナトリウムを加え乾燥後、減圧濃縮し得られた反応物を80℃で4時間真空乾燥を行い、マレイミド化合物A−5を含有する生成物を355.9g得た。このマレイミド化合物A−5のFD−MSスペクトルにて、M+=672、830、988のピークが確認され、それぞれ、nが0、1、2の場合に相当する。なお、前記マレイミドA−5中のインダン骨格部分における繰り返し単位数nの値(数平均分子量に基づく)をGPCで求めたところ、そのGPCチャートが図5であり、n=1.56であり、分子量分布(Mw/Mn)=1.24であった。また、前記マレイミドA−5全量100面積%中、平均繰り返し単位数nが0の前記マレイミドは、20.2面積%であった。
【化20】
【0076】
〔合成例6〕マレイミド化合物A−7の合成(1)中間体アミン化合物の合成
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた1Lフラスコに2,6−ジメチルアニリン48.5g(0.4mol)、α,α’−ジヒドロキシ−1,3−ジイソプロピルベンゼン194.3g(1.0mol)、キシレン204gおよび活性白土53gを仕込み、攪拌しながら120℃まで加熱した。さらに留出水をディーンスターク管で取り除きながら210℃になるまで昇温し、3時間反応させる。その後140℃まで冷却し、2,6−ジメチルアニリン168.4g(1.4mol)を仕込んだ後、220℃まで昇温し、3時間反応させる。反応後、100℃まで空冷し、トルエン300gで希釈してろ過により活性白土を除き、減圧下で溶剤及び未反応物等の低分子量物を留去することにより、下記式(A−7)で表される中間体アミン化合物256.4gを得た。アミン当量は292であり、軟化点は64℃であった。
【化21】
【0077】
(2)マレイミド化
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた2Lフラスコに無水マレイン酸107.9g(1.1mol)、トルエン600gを仕込み室温で攪拌した。次に反応物(A−7)を256.4gとDMF150gの混合溶液を1時間かけて滴下した。
滴下終了後、室温でさらに2時間反応させた。p−トルエンスルホン酸一水和物28.5gを加え、反応液を加熱し還流下で共沸してくる水とトルエンを冷却・分離した後、トルエンだけを系内に戻して脱水反応を8時間行った。室温まで空冷後、減圧濃縮し褐色溶液を酢酸エチル500gに溶解させイオン交換水120gで3回、2%炭酸水素ナトリウム水溶液120gで3回洗浄し、硫酸ナトリウムを加え乾燥後、減圧濃縮し得られた反応物を80℃で4時間真空乾燥を行い、マレイミド化合物A−1を含有する生成物を319.6g得た。このマレイミド化合物A−7のFD−MSスペクトルにて、M+=560、718、876のピークが確認され、それぞれ、nが0、1、2の場合に相当する。なお、前記マレイミドA−7中のインダン骨格部分における繰り返し単位数nの値(数平均分子量に基づく)をGPCで求めたところ、そのGPCチャートが図6であり、n=0.92であり、分子量分布(Mw/Mn)=1.45であった。また、前記マレイミドA−7全量100面積%中、平均繰り返し単位数nが0の前記マレイミドは、38.8面積%であった。
【化22】
【0078】
〔合成例7〕マレイミド化合物A−8の合成
(1)中間体アミン化合物の合成
前記中間体アミン化合物A−1の合成法において、210℃の反応時間を6時間、220℃の反応時間を3時間に変えて同様の操作を行い、下記一般式(A−8)で表される中間体アミン化合物345.2gを得た。アミン当量は348であり、軟化点は71℃であった。
【化23】
【0079】
(2)マレイミド化
前記マレイミド化合物A−1の合成法から中間体をA−8に代えて同様に操作を行い、マレイミド化合物A−8を含有する生成物を407.6g得た。このマレイミド化合物A−8のFD−MSスペクトルにて、M+=560、718、876のピークが確認され、それぞれのピークは、nが0、1、2の場合に相当する。なお、前記マレイミドA−8中のインダン骨格部分における繰り返し単位数nの値(数平均分子量に基づく)をGPCで求めたところ、そのGPCチャートが図7であり、n=2.59であり、分子量分布(Mw/Mn)=1.49であった。また、前記マレイミドA−8全量100面積%中、平均繰り返し単位数nが0の前記マレイミドは、14.9面積%であった。
【化24】
【0080】
〔合成例8〕マレイミド化合物A−9の合成
前記中間体アミン化合物A−1の合成法において、210℃の反応時間を6時間、220℃の反応時間を3時間に変えて同様の操作を行い、合成した中間体アミン化合物(アミン当量は347、軟化点は71℃)に対し、マレイミド化反応における還流下の脱水反応を10時間とする以外は、前記マレイミド化合物A−1の合成法と同様の条件に付すことで、マレイミド化合物A−9を含有する生成物を415.6g得た。このマレイミド化合物A−9のFD−MSスペクトルにて、M+=560、718、876のピークが確認され、それぞれのピークは、nが0、1、2の場合に相当する。なお、前記マレイミドA−9中のインダン骨格部分における繰り返し単位数nの値(数平均分子量に基づく)をGPCで求めたところ、そのGPCチャートが図8であり、n=2.91であり、分子量分布(Mw/Mn)=1.64であった。また、前記マレイミドA−9全量100面積%中、平均繰り返し単位数nが0の前記マレイミドは、14.2面積%であった。
【化25】
【0081】
〔合成例9〕マレイミド化合物A−10の合成
前記中間体アミン化合物A−1の合成法において、210℃の反応時間を9時間、220℃の反応時間を3時間に変えて同様の操作を行い、合成した中間体アミン化合物(アミン当量は342、軟化点は69℃)に対し、マレイミド化反応における還流下の脱水反応を10時間とする以外は、前記マレイミド化合物A−1の合成法と同様の条件に付すことで、マレイミド化合物A−10を含有する生成物を398.7g得た。このマレイミド化合物A−10のFD−MSスペクトルにて、M+=560、718、876のピークが確認され、それぞれのピークは、nが0、1、2の場合に相当する。なお、前記マレイミドA−10中のインダン骨格部分における繰り返し単位数nの値(数平均分子量に基づく)をGPCで求めたところ、そのGPCチャートが図9であり、n=3.68であり、分子量分布(Mw/Mn)=2.09であった。また、前記マレイミドA−10全量100面積%中、平均繰り返し単位数nが0の前記マレイミドは、12.4面積%であった。
【化26】
【0082】
〔合成例10〕マレイミド化合物A−11の合成
前記中間体アミン化合物A−1の合成法において、210℃の反応時間を9時間、220℃の反応時間を3時間に変えて同様の操作を行い、合成した中間体アミン化合物(アミン当量は347、軟化点は70℃)に対し、マレイミド化反応における還流下の脱水反応を12時間とする以外は、前記マレイミド化合物A−1の合成法と同様の条件に付すことで、マレイミド化合物A−11を含有する生成物を422.7g得た。このマレイミド化合物A−11のFD−MSスペクトルにて、M+=560、718、876のピークが確認され、それぞれのピークは、nが0、1、2の場合に相当する。なお、前記マレイミドA−11中のインダン骨格部分における繰り返し単位数nの値(数平均分子量に基づく)をGPCで求めたところ、そのGPCチャートが図10であり、n=4.29であり、分子量分布(Mw/Mn)=3.02であった。また、前記マレイミドA−11全量100面積%中、平均繰り返し単位数nが0の前記マレイミドは、11.0面積%であった。
【化27】
【0083】
〔実施例1〜9、及び、比較例1〜2〕
<マレイミドの溶剤溶解性>
合成例1〜10で得られたマレイミド(A−1)〜(A−5)及び(A−7)〜(A−11)、並びに、比較用の市販のマレイミド(A−6)(4,4'−ジフェニルメタンビスマレイミド、「BMI−1000」大和化成工業株式会社製)のトルエン、メチルエチルケトン(MEK)に対する溶解性の評価を行い、評価結果を表1に示した。
溶剤溶解性の評価方法としては、上記合成例及び比較例で得られた各マレイミドを用いて、不揮発分が10、20、30、40、50、60、及び、70質量%になるようにトルエン溶液、及び、メチルエチルケトン(MEK)溶液を調製した。
具体的には、上記合成例及び比較例で得られた各マレイミドを入れたバイアルを室温(25℃)で60日間放置し、各不揮発分組成における各溶液中において、均一に溶解した場合(不溶物なし)を〇、溶解しなかった場合(不溶物あり)を×と評価(目視)した。なお、不揮発分が20質量%以上の場合に、溶剤に溶解することができれば、実用上、好ましい。
【0084】
【表1】
【0085】
上記表1の評価結果より、実施例1〜9においては、インダン骨格を有するマレイミドを使用したため、トルエン溶液を調製した際には、不揮発分が20質量%であっても溶解することができ、MEK溶液を調製した際には、不揮発分が50質量%であっても溶解することができ、溶剤溶解性に優れることが確認できた。一方、比較例1で使用した市販のマレイミドは、インダン骨格を構造中に有さず、溶剤溶解性に劣ることが確認された。また、比較例2においては、インダン骨格を有するマレイミドを使用したが、インダン骨格部分の平均繰り返し単位数nが所望の範囲に含まれなかったため、溶剤溶解性に劣ることが確認された。
【産業上の利用可能性】
【0086】
本発明のマレイミドは、前記マレイミドを使用し得られる硬化物が、耐熱性、及び、誘電特性に優れることから、耐熱部材や電子部材に好適に使用可能であり、特に、半導体封止材、回路基板、ビルドアップフィルム、ビルドアップ基板等や、接着剤やレジスト材料に好適に使用可能である。また、繊維強化樹脂のマトリクス樹脂にも好適に使用可能であり、高耐熱性のプリプレグとして適している。
【図面の簡単な説明】
【0087】
図1】合成例1で得られたマレイミド化合物(A−1)のGPCチャート図である。
図2】合成例2で得られたマレイミド化合物(A−2)のGPCチャート図である。
図3】合成例3で得られたマレイミド化合物(A−3)のGPCチャート図である。
図4】合成例4で得られたマレイミド化合物(A−4)のGPCチャート図である。
図5】合成例5で得られたマレイミド化合物(A−5)のGPCチャート図である。
図6】合成例6で得られたマレイミド化合物(A−7)のGPCチャート図である。
図7】合成例7で得られたマレイミド化合物(A−8)のGPCチャート図である。
図8】合成例8で得られたマレイミド化合物(A−9)のGPCチャート図である。
図9】合成例9で得られたマレイミド化合物(A−10)のGPCチャート図である。
図10】合成例10で得られたマレイミド化合物(A−11)のGPCチャート図である。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
【国際調査報告】