特表-20009166IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人静岡大学の特許一覧
再表2020-9166ポリオキソメタレート化合物及びその製造方法、ポリオキソメタレート化合物の焼成体、並びに、反応触媒
<>
  • 再表WO2020009166-ポリオキソメタレート化合物及びその製造方法、ポリオキソメタレート化合物の焼成体、並びに、反応触媒 図000007
  • 再表WO2020009166-ポリオキソメタレート化合物及びその製造方法、ポリオキソメタレート化合物の焼成体、並びに、反応触媒 図000008
  • 再表WO2020009166-ポリオキソメタレート化合物及びその製造方法、ポリオキソメタレート化合物の焼成体、並びに、反応触媒 図000009
  • 再表WO2020009166-ポリオキソメタレート化合物及びその製造方法、ポリオキソメタレート化合物の焼成体、並びに、反応触媒 図000010
  • 再表WO2020009166-ポリオキソメタレート化合物及びその製造方法、ポリオキソメタレート化合物の焼成体、並びに、反応触媒 図000011
  • 再表WO2020009166-ポリオキソメタレート化合物及びその製造方法、ポリオキソメタレート化合物の焼成体、並びに、反応触媒 図000012
  • 再表WO2020009166-ポリオキソメタレート化合物及びその製造方法、ポリオキソメタレート化合物の焼成体、並びに、反応触媒 図000013
  • 再表WO2020009166-ポリオキソメタレート化合物及びその製造方法、ポリオキソメタレート化合物の焼成体、並びに、反応触媒 図000014
  • 再表WO2020009166-ポリオキソメタレート化合物及びその製造方法、ポリオキソメタレート化合物の焼成体、並びに、反応触媒 図000015
  • 再表WO2020009166-ポリオキソメタレート化合物及びその製造方法、ポリオキソメタレート化合物の焼成体、並びに、反応触媒 図000016
< >
(19)【発行国】日本国特許庁(JP)
【公報種別】再公表特許(A1)
(11)【国際公開番号】WO/0
(43)【国際公開日】2020年1月9日
【発行日】2021年7月8日
(54)【発明の名称】ポリオキソメタレート化合物及びその製造方法、ポリオキソメタレート化合物の焼成体、並びに、反応触媒
(51)【国際特許分類】
   B01J 31/34 20060101AFI20210611BHJP
   B01J 35/02 20060101ALI20210611BHJP
   B01J 37/04 20060101ALI20210611BHJP
   B01J 27/185 20060101ALI20210611BHJP
   C01B 25/16 20060101ALI20210611BHJP
   C01G 41/00 20060101ALI20210611BHJP
   C01B 35/12 20060101ALI20210611BHJP
【FI】
   B01J31/34 M
   B01J35/02 J
   B01J37/04 102
   B01J27/185 M
   C01B25/16
   C01G41/00 B
   C01B35/12 D
【審査請求】未請求
【予備審査請求】未請求
【全頁数】29
【出願番号】特願2020-529038(P2020-529038)
(21)【国際出願番号】PCT/0/0
(22)【国際出願日】2019年7月3日
(31)【優先権主張番号】特願2018-127351(P2018-127351)
(32)【優先日】2018年7月4日
(33)【優先権主張国】JP
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT
(71)【出願人】
【識別番号】304023318
【氏名又は名称】国立大学法人静岡大学
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100124800
【弁理士】
【氏名又は名称】諏澤 勇司
(74)【代理人】
【識別番号】100140578
【弁理士】
【氏名又は名称】沖田 英樹
(72)【発明者】
【氏名】加藤 知香
【テーマコード(参考)】
4G048
4G169
【Fターム(参考)】
4G048AA01
4G048AA03
4G048AA04
4G048AA08
4G048AA10
4G048AB02
4G048AB08
4G048AC08
4G048AE05
4G048AE06
4G169AA02
4G169AA08
4G169BA04B
4G169BA27A
4G169BA27B
4G169BA28A
4G169BA48A
4G169BB07A
4G169BB07B
4G169BB14B
4G169BC06B
4G169BC16B
4G169BC23B
4G169BC60B
4G169BC72A
4G169BC75A
4G169BC75B
4G169BD03B
4G169BD07B
4G169BE01A
4G169BE14A
4G169BE15A
4G169BE16B
4G169BE36A
4G169BE38A
4G169BE38B
4G169BE44A
4G169BE44B
4G169CA03
4G169CB02
4G169CC32
4G169CC33
4G169DA05
4G169DA08
4G169EC27
4G169EC28
4G169FA01
4G169FB30
4G169FC07
4G169FC08
4G169HA02
4G169HB02
4G169HB06
4G169HC01
4G169HE09
(57)【要約】
金属置換ポリオキソメタレートを有するポリオキソメタレート化合物が開示される。金属置換ポリオキソメタレートが、欠損サイトを有するポリオキソメタレートと、欠損サイトに導入された置換金属原子と、有機配位子とを有する。置換金属原子が2価の白金又はパラジウムである。有機配位子が、置換金属原子に配位結合した2個の窒素原子を含む脂肪族ヘテロ環を有する、二座配位子であってもよい。1個の欠損サイトに1個の置換金属原子が導入されている。
【特許請求の範囲】
【請求項1】
金属置換ポリオキソメタレート及びその対イオンを有するポリオキソメタレート化合物であって、
前記金属置換ポリオキソメタレートが、
1個以上の欠損サイトを有するポリオキソメタレートと、
前記欠損サイトに導入された置換金属原子と、
前記置換金属原子に配位結合した有機配位子と、
を有し、
前記置換金属原子が2価の白金又はパラジウムであり、
前記有機配位子が、前記置換金属原子に配位結合した2個の窒素原子を含む脂肪族ヘテロ環を有する、二座配位子であり、
1個以上の前記欠損サイトのそれぞれに1個の前記置換金属原子が導入されている、
ポリオキソメタレート化合物。
【請求項2】
1個以上の欠損サイトを有するポリオキソメタレートと中心金属及び有機配位子を有する金属錯体とを含有する反応液中で、前記ポリオキソメタレートと前記金属錯体とを反応させて、金属置換ポリオキソメタレートを生成させる工程を備え、
前記金属置換ポリオキソメタレートが、
前記ポリオキソメタレートと、
前記欠損サイトに導入された前記中心金属である置換金属原子と、
前記置換金属原子に配位結合した前記有機配位子と、
を有し、
前記中心金属及び前記置換金属原子が2価の白金又はパラジウムであり、
前記有機配位子が、1個の前記中心金属又は1個の前記置換金属原子に配位結合した2個の窒素原子を含む脂肪族ヘテロ環を有する、二座配位子であり、
前記金属置換ポリオキソメタレートにおいて、1個以上の前記欠損サイトのそれぞれに1個の前記置換金属原子が導入されている、
請求項1に記載のポリオキソメタレート化合物を製造する方法。
【請求項3】
前記有機配位子がN,N’−ジメチルピペラジンである、請求項2に記載の方法。
【請求項4】
金属置換ポリオキソメタレート及びその対イオンを有するポリオキソメタレート化合物であって、
前記金属置換ポリオキソメタレートが、
1個以上の欠損サイトを有するポリオキソメタレートと、
前記欠損サイトに導入された第1の置換金属原子と、
前記第1の置換金属原子に配位結合した第1の有機配位子と、
前記欠損サイトに導入された第2の置換金属原子と、
前記第2の置換金属原子に配位結合した第2の有機配位子と、
を有し、
前記第1の置換金属原子が2価の白金原子で、前記第2の置換金属原子が2価のパラジウムである、又は、前記第1の置換金属原子が2価のパラジウムで、前記第2の置換金属原子が2価の白金であり、
1個以上の前記欠損サイトのそれぞれに1個の前記第1の置換金属原子及び1個の前記第2の置換金属原子が導入されている、
ポリオキソメタレート化合物。
【請求項5】
第1の置換金属原子を有する金属置換ポリオキソメタレート及びその対イオンを有する単核型のポリオキソメタレート化合物と中心金属を有する金属錯体とを含有する反応液中で、前記単核型のポリオキソメタレート化合物と前記金属錯体とを反応させて、前記第1の置換金属原子、及び前記中心金属である第2の置換金属原子を有する二核型のポリオキソメタレート化合物を生成させる工程を備え、
前記単核型のポリオキソメタレート化合物の金属置換ポリオキソメタレートが、
1個以上の欠損サイトを有するポリオキソメタレートと、
前記欠損サイトに導入された前記第1の置換金属原子と、
前記第1の置換金属原子に配位結合した第1の有機配位子と、
を有し、
前記金属錯体が、
前記中心金属と、
前記中心金属に配位結合した第2の有機配位子と、
を有し、
前記第1の置換金属原子が2価の白金で、前記中心金属及び前記第2の置換金属原子が2価のパラジウムである、又は、前記第1の置換金属原子がパラジウムで、前記中心金属及び前記第2の置換金属原子が2価の白金であり、
前記単核型のポリオキソメタレート化合物において、1個以上の前記欠損サイトのそれぞれに1個の前記第1の置換金属原子が導入されており、
前記二核型のポリオキソメタレート化合物において、1個以上の前記欠損サイトのそれぞれに1個の前記第1の置換金属原子及び1個の前記第2の置換金属原子が導入されている、
請求項4に記載のポリオキソメタレート化合物を製造する方法。
【請求項6】
前記第1の有機配位子が、1個の前記第1の置換金属原子に配位結合した、2個のアンモニア、2個の炭素数1〜3のアルキルアミン、又は1個のエチレンジアミンである、請求項5に記載の方法。
【請求項7】
1個以上の欠損サイトを有するポリオキソメタレートと中心金属及び有機配位子を有する金属錯体とを含有する反応液中で、前記ポリオキソメタレートと前記金属錯体とを反応させて、金属置換ポリオキソメタレートを生成させる工程を備え、
前記金属置換ポリオキソメタレートが、
前記ポリオキソメタレートと、
前記欠損サイトに導入された前記中心金属である置換金属原子と、
前記置換金属原子に配位結合した前記有機配位子と、
を有し、
前記中心金属及び前記置換金属原子が2価の白金又はパラジウムであり、
前記有機配位子が、1個の前記中心金属又は1個の前記置換金属原子に配位結合した、2個のアンモニア、2個の炭素数1〜3のアルキルアミン、又は1個のエチレンジアミンであり、
前記金属置換ポリオキソメタレートにおいて、1個以上の前記欠損サイトのそれぞれに1個の前記置換金属原子が導入されており、
25℃以下の前記反応液中で前記金属置換ポリオキソメタレートを生成させる、
ポリオキソメタレート化合物を製造する方法。
【請求項8】
金属置換ポリオキソメタレート及びその対イオンを有するポリオキソメタレート化合物を含有する、反応触媒であって、
前記金属置換ポリオキソメタレートが、
1個以上の欠損サイトを有するポリオキソメタレートと、
前記欠損サイトに導入された置換金属原子と、
該置換金属原子に配位結合した有機配位子と、
を有し、
前記置換金属原子が2価の白金又はパラジウムであり、
1個以上の前記欠損サイトのそれぞれに1個の前記置換金属原子が導入されている、
反応触媒。
【請求項9】
請求項1又は4に記載のポリオキソメタレート化合物を含有する、反応触媒。
【請求項10】
金属置換ポリオキソメタレート及びその対イオンを有するポリオキソメタレート化合物の焼成体であって、
前記金属置換ポリオキソメタレートが、
1個以上の欠損サイトを有するポリオキソメタレートと、
前記欠損サイトに導入された置換金属原子と、
該置換金属原子に配位結合した有機配位子と、
を有し、
前記置換金属原子が2価の白金又はパラジウムであり、
1個以上の前記欠損サイトのそれぞれに1個の前記置換金属原子が導入されている、
ポリオキソメタレート化合物の焼成体。
【請求項11】
請求項1又は4に記載のポリオキソメタレート化合物の焼成体。
【請求項12】
当該焼成体が、前記置換金属原子、及び前記ポリオキソメタレートに由来する遷移金属原子を含み、前記置換金属原子と前記遷移金属原子とのモル比が1:11である、請求項10又は11に記載の焼成体。
【請求項13】
請求項10〜12のいずれか一項に記載のポリオキソメタレート化合物の焼成体を含有する、反応触媒。
【請求項14】
水から水素を発生させるための光触媒、水素化反応触媒、排ガス浄化用触媒、又は燃料電池用電極触媒である、請求項8、9又は13に記載の反応触媒。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ポリオキソメタレート化合物及びその製造方法、ポリオキソメタレート化合物の焼成体、並びに、反応触媒に関する。
【背景技術】
【0002】
ポリオキソメタレート化合物は、金属原子に酸素原子が配位結合して形成された四面体等の多数の基本単位から構成されるポリオキソメタレートイオンを含む、金属酸化物である。特に、ヘテロ原子を含むポリオキソメタレートイオンの基本単位の一部を欠損させ、生じた欠損サイトに種々の置換構造を導入することで、種々の機能が付与された金属置換ポリオキソメタレート化合物を得ることができる。例えば、ヘテロ原子としてリン原子を含み、欠損サイトに2価の白金(Pt(II))を含む化学種が導入された白金種配位ポリオオキソメタレートが、可視光照射により水から水素を発生させる光反応における光増感剤及び助触媒として機能することが報告されている(非特許文献1)。
【先行技術文献】
【非特許文献】
【0003】
【非特許文献1】Dalton Trans.,41,10021(2012)
【発明の概要】
【発明が解決しようとする課題】
【0004】
可視光照射により水から水素を発生させるための光触媒等の各種化学反応に用いられる反応触媒は、高い触媒活性を有することが望ましい。
【課題を解決するための手段】
【0005】
本発明の一側面は、金属置換ポリオキソメタレート及びその対イオンを有するポリオキソメタレート化合物に関する。本発明の別の一側面は、ポリオキソメタレート化合物を製造する方法に関する。本発明の一側面に係る方法は、1個以上の欠損サイトを有するポリオキソメタレートと中心金属及び有機配位子を有する金属錯体とを含有する反応液中でポリオキソメタレートと金属錯体とを反応させて、金属置換ポリオキソメタレートを生成させる工程を備える。
【0006】
金属置換ポリオキソメタレートが、1個以上の欠損サイトを有するポリオキソメタレートと、欠損サイトに導入された置換金属原子と、置換金属原子に配位結合した有機配位子とを有する。置換金属原子は2価の白金又はパラジウムである。有機配位子が、置換金属原子に配位結合した2個の窒素原子を含む脂肪族ヘテロ環を有する、二座配位子であってもよい。金属置換ポリオキソメタレートにおいて、1個以上の欠損サイトのそれぞれに1個の置換金属原子が導入されている。
【0007】
有機配位子が、1個の中心金属又は1個の置換金属原子に配位結合した、2個のアンモニア、2個の炭素数1〜3のアルキルアミン、又は1個のエチレンジアミンであってもよい。この場合、25℃以下の反応液中で金属置換ポリオキソメタレートを生成させてもよい。
【0008】
別の一側面に係るポリオキソメタレート化合物において、金属置換ポリオキソメタレートが、1個以上の欠損サイトを有するポリオキソメタレートと、欠損サイトに導入された第1の置換金属原子と、第1の置換金属原子に配位結合した第1の有機配位子と、欠損サイトに導入された第2の置換金属原子と、第2の置換金属原子に配位結合した第2の有機配位子とを有する。第1の置換金属原子が2価の白金原子で、第2の置換金属原子が2価のパラジウムである、又は、第1の置換金属原子が2価のパラジウムで、第2の置換金属原子が2価の白金である。1個以上の欠損サイトのそれぞれに1個の第1の置換金属原子及び1個の第2の置換金属原子が導入されている。このような二核型のポリオキソメタレート化合物は、例えば、第1の置換金属原子を有する金属置換ポリオキソメタレート及びその対イオンを有する単核型のポリオキソメタレート化合物と、中心金属を有する金属錯体とを含有する反応液中で、単核型のポリオキソメタレート化合物と金属錯体とを反応させて、第1の置換金属原子、及び中心金属である第2の置換金属原子を有する二核型のポリオキソメタレート化合物を生成させる工程を備える方法により、製造することができる。
【0009】
本発明の更に別の一側面は、上述のポリオキソメタレート化合物のいずれかを含有する反応触媒に関する。この反応触媒は、例えば水から水素を発生させるための光触媒、水素化反応触媒、排ガス浄化用触媒、又は燃料電池用電極触媒として高い触媒活性を発現することができる。
【発明の効果】
【0010】
水から水素を発生させるための光触媒等の化学反応に用いられる反応触媒として高い活性を有する、ポリオキソメタレート化合物及びその焼成体が提供される。本発明に係る反応触媒は、高い触媒活性を高温で長期間にわたって維持できる点でも優れている。
【図面の簡単な説明】
【0011】
図1】単核型のポリオキソメタレート化合物の一実施形態を示す模式図である。
図2】ポリオキソメタレートの欠損サイトに導入された置換金属原子及びこれに配位結合した有機配位子の一実施形態を示す模式図である。
図3】二核型のポリオキソメタレート化合物の一実施形態を示す模式図である。
図4】Cs-P-1Pt-NH331P NMRスペクトルである。
図5】Cs-P-1Pt-NH3の比率と反応時間との関係を示すグラフである。
図6】TMA-P-1Pt-ppz及びK7[PW11O39]・13H2Oの赤外吸収スペクトルである。
図7】TMA-P-1Pt-ppzの31P NMRスペクトルである。
図8】50±2℃で24時間静置後のCs-P-1Pt-NH3及びTMA-P-1Pt-ppzの31P NMRスペクトルである。
図9】TMA-P-1Pt(NH3)-1Pd(bpy)の31P NMRスペクトルである。
図10】ポリオキソメタレート化合物の焼成体の触媒回転数と光照射時間との関係を示すグラフである。
【発明を実施するための形態】
【0012】
以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
【0013】
本明細書では、以下の略号が用いられる。
Me2ppz:N,N'-dimethylpiperazine
bpy:2,2'-bipyridine
phen:1,10-phenanthroline
TMA:tetramethylammonium
Cs-P-1Pt-NH3:Cs5[α-PW11O39{cis-PtII(NH3)2}]、又はその水和物
Cs-P-2Pt-NH3:Cs3[α-PW11O39{cis-PtII(NH3)2}2]、又はその水和物
TMA-P-1Pt-ppz:[(CH3)4N]4H[α-PW11O39{cis-PtII(Me2ppz)}]、又はその水和物
TMA-P-1Pt(NH3)-1Pd(bpy):[(CH3)4N]3[α-PW11O39{PtII(NH3)2}{PdII(bpy)}]、又はその水和物
Cs-P-1Pt(NH3)-1Pd(bpy):Cs3[α-PW11O39{PtII(NH3)2}{PdII(bpy)}]、又はその水和物
Cs-P-2Pd-bpy:Cs3[α-PW11O39{PdII(bpy)}2]・10H2O
TMA-Al-2Pt-NH3:[(CH3)4N]4H[α-AlW11O39{cis-PtII(NH3)2}2}]・11H2O
TMA-B-2Pt-NH3:[(CH3)4N]4H[α-BW11O39{cis-PtII(NH3)2}2}]・9H2O
Cs-Ge-2Pt-bpy:Cs4[α-GeW11O39{cis-PtII(bpy)}2]・10H2O
Cs-Ge-2Pt-phen:Cs3.5H0.5[α-GeW11O39{cis-PtII(phen)}2]・3H2O
TMA-P-2Pt-NH3:[(CH3)4N]3[α-PW11O39{cis-PtII(NH3)2}2]・10H2O
TMA-Si-2Pt-NH3:[(CH3)4N]4[α-SiW11O39{cis-PtII(NH3)2}2]・13H2O
TMA-Ge-2Pt-NH3:[(CH3)4N]4[α-GeW11O39{cis-PtII(NH3)2}2]・11H2O
【0014】
<ポリオキソメタレート化合物>
一実施形態に係るポリオキソメタレート化合物は、金属置換ポリオキソメタレート及びその対イオンを有する。
【0015】
金属置換ポリオキソメタレートがアニオンであることから、対イオンは一般にカチオンである。対イオンは、特に制限されないが、例えば、Cs、K、Na及びLiのような金属カチオン、アンモニウム及びテトラメチルアンモニウムのようなアルキルアンモニウム、プロトン(H)、又はこれらの組み合わせであってもよい。
【0016】
金属置換ポリオキソメタレートは、欠損サイトを有するポリオキソメタレートと、欠損サイトに導入された置換金属原子及びこれに配位結合した有機配位子とを有する。置換金属原子は、通常、2価の白金(Pt(II))又はパラジウム(Pd(II))である。
【0017】
ポリオキソメタレートは、一般に、遷移金属原子のオキソ酸が縮合して形成されたアニオンであり、遷移金属原子とは異なる元素であるヘテロ原子を含んでいてもよい。ヘテロ原子を含むポリオキソメタレートは、例えば、ヘテロ原子と、複数の遷移金属原子と、ヘテロ原子又は遷移金属原子に結合した複数の酸素原子と、を含む。このポリオキソメタレートにおいて、一般に、複数の遷移金属原子が、酸素原子を介してヘテロ原子に結合している。1分子のポリオキソメタレート化合物に含まれるヘテロ原子は、通常、1個である。ポリオキソメタレート化合物は、水和物を形成していてもよい。
【0018】
ポリオキソメタレートは、例えば、ケギン(Keggin)型、ドーソン(Dawson)型、アンダーソン(Anderson)型、又はウォー(Waugh)型であることができるが、本実施形態においてポリオキソメタレートは最も典型的にはケギン型である。1個の欠損サイトを有するケギン型のポリオキソメタレートを有する金属置換ポリオキソメタレートは、例えば、式(1):
[XM1139{M(L}]n− ・・・(1)
で表すことができる。式中、Xはヘテロ原子を示し、Mは遷移金属原子を示し、Mは置換金属原子を示し、Lは置換金属原子Mに配位結合した有機配位子を示す。nは1〜10の整数を示す。Mがタングステン原子(W)である場合、nは通常3、4又は5である。例えば、Xがリン原子である場合、nは5であり、nはXがケイ素原子又はゲルマニウム原子である場合、nは6であり、Xがホウ素原子又はアルミニウム原子である場合、nは7である。pは1又は2であり、1個の置換金属原子Mに配位結合した有機配位子Lの数に相当する。一般に、有機配位子Lが単座配位子であるとき、pは2であり、有機配位子Lが二座配位子であるとき、pは1である。ここでの二座配位子は、キレート配位子も含む用語として用いられる。
【0019】
ヘテロ原子は、例えば、リン原子(P)、ケイ素原子(Si)、ゲルマニウム原子(Ge)、アルミニウム原子(Al)及びホウ素原子(B)から選択することができる。
【0020】
遷移金属原子としては、タングステン原子(W)、及びモリブデン原子(Mo)が挙げられる。これらの中でも、遷移金属原子がタングステン原子であるとき、ポリオキソメタレート化合物及びその焼成体が、反応触媒としてより一層高い光触媒としての活性を発揮し易い傾向がある。
【0021】
図1は、ポリオキソメタレート化合物を構成する金属置換ポリオキソメタレートの一実施形態を示す模式図である。図1に示す金属置換ポリオキソメタレート21は、1個の欠損サイト10を有するポリオキソメタレート3と、欠損サイト10に導入された置換金属原子Mと、置換金属原子Mに配位結合した有機配位子Lとを有している。置換金属原子Mは、2価の白金又はパラジウムである。図1の実施形態のように、1個の欠損サイトに1個の置換金属原子が導入されている金属置換ポリオキソメタレート、及びこれを有するポリオキソメタレート化合物のことを、本明細書では「単核型」ということがある。
【0022】
ポリオキソメタレート3は、ヘテロ原子及び酸素原子によって形成された1個の基本単位3Aと、基本単位3Aの周囲に配置され、遷移金属原子及び酸素原子によって形成された11個の基本単位3Bとから構成される、1個の欠損サイト10を有するケギン型のポリオキソメタレートである。基本単位3Aは、XO(Xはヘテロ原子を示す。)で表される酸化物であり、四面体の構造を有する。基本単位3Bは、MO(Mは遷移金属原子を示す。)で表される金属酸化物であり、八面体の構造を有する。
【0023】
有機配位子Lは、1個の置換金属原子Mに配位結合した2個の窒素原子を含む脂肪族ヘテロ環を有する、二座配位子であってもよい。有機配位子Lとしての二座配位子が有する脂肪族ヘテロ環が、2個の窒素原子と、これら2個の窒素原子の間に連続的に配置された2個又は3個の炭素原子とを、環を構成する原子として含んでいてもよい。そのような脂肪族ヘテロ環を有する有機配位子の例としては、下記式(L1)、(L2)、(L3)又は(L4)で表される化合物が挙げられる。これら式中、R及びRはそれぞれ独立に、水素原子、又は炭素数1〜3のアルキル基(例えばメチル基)を示す。
【0024】
【化1】
【0025】
図2は、ポリオキソメタレートの欠損サイトに導入された置換金属原子及びこれに配位結合した有機配位子の一実施形態を示す模式図である。図2は、ポリオキソメタレートの遷移金属原子がタングステンで、置換金属原子が白金で、有機配位子がN,N’−ジメチルピペラジンであるときに推定される構造の一例であり、本発明はこれに限定されない。図2の場合、置換金属原子としての1個の白金原子が、欠損サイトに隣接する基本単位3Bの酸素原子と結合している。有機配位子としてのN,N’−ジメチルピペラジン中の2個の窒素原子が1個の白金原子に配位結合している。有機配位子が嵩高い脂肪族ヘテロ環を有していることにより、欠損サイトに2個目の置換金属原子が導入され難く、これがポリオキソメタレート化合物の熱安定性向上に寄与すると考えられる。
【0026】
有機配位子Lは、2個のアンモニア(NH)、2個の炭素数1〜3のアルキルアミン、又は1個のエチレンジアミンであってもよい。炭素数1〜3のアルキルアミンは、例えば、メチルアミン、エチルアミン又はn−プロピルアミンであってもよい。
【0027】
有機配位子がこれらのような比較的嵩高くない化合物であっても、例えば後述するように金属置換ポリオキソメタレートを生成するための反応温度を制御することにより、分解、又は欠損サイトに2個目の置換金属原子が導入されることを抑制して、単核型の金属置換ポリオキソメタレートを高い収率で得ることができる。加えて、有機配位子がこれらの化合物である単核型の金属置換ポリオキソメタレートの欠損サイトに2個目の置換金属原子を更に導入することにより、1個の欠損サイトに2種の置換金属原子が導入された金属置換ポリオキソメタレートを有するポリオキソメタレート化合物を容易に得ることができる。このような、1個の欠損サイトに2個の置換金属原子が導入されている金属置換ポリオキソメタレート、及びこれを有するポリオキソメタレート化合物のことを、本明細書では「二核型」ということがある。
【0028】
二核型の金属置換ポリオキソメタレートは、例えば、式(2):
[XM1139{M(L}{{M(L}]n− ・・・(2)
で表される。式(2)中、X、M及びpは式(1)と同様に定義される。Xがリン原子である場合、nは3であり、Xがケイ素原子又はゲルマニウム原子である場合、nは4であり、Xがホウ素原子又はアルミニウム原子である場合、nは5である。M及びLは、それぞれ第1の置換金属原子及び第1の有機配位子であり、これらは単核型の金属置換ポリオキソメタレートでは単に「置換金属原子」及び「有機配位子」と称されていたものである。Mは第2の置換金属原子を示し、Lは第2の有機配位子を示し、qは1又は2である。第2の有機配位子Lが単座配位子であるとき、qは2であり、第2の有機配位子Lが二座配位子であるとき、qは1である。ここでの二座配位子も、キレート配位子を含む用語として用いられる。
【0029】
図3は、二核型のポリオキソメタレート化合物を構成する金属置換ポリオキソメタレートの一実施形態を示す模式図である。図3に示す金属置換ポリオキソメタレート22は、1個の欠損サイト10を有するポリオキソメタレート3と、欠損サイト10に導入された第1の置換金属原子M及び第1の置換金属原子Mに配位結合した第1の有機配位子Lと、欠損サイト10に導入された第2の置換原子M及び第2の置換金属原子Mに配位結合した第2の有機配位子Lとを有する。金属置換ポリオキソメタレート22のポリオキソメタレート3は、図1のポリオキソメタレート3と同様の構成を有する。
【0030】
第1の置換金属原子Mが2価の白金であるとき、第2の置換金属原子Mは2価のパラジウムである。第1の置換金属原子Mが2価のパラジウムであるとき、第2の置換金属原子Mは白金である。このように2種の置換金属原子の組み合わせを欠損サイトに導入することにより、特異的により一層高い触媒活性を発揮するポリオキソメタレート化合物及びその焼成体を得ることができる。
【0031】
図3の第1の有機配位子Lは、図1の有機配位子Lと同様の化合物であることができる。第1の有機配位子Lが2個のアンモニア(NH)、2個の炭素数1〜3のアルキルアミン、又は1個のエチレンジアミンであると、第2の置換金属原子Mを特に容易に導入することができる。
【0032】
第2の有機配位子Lは、第1の有機配位子Lと同様の化合物であってもよいし、第2の置換金属原子Mに配位結合することが可能なその他の任意の単座配位子又は二座配位子であってもよい。例えば、第2の有機配位子Lが2個のアンモニア(NH)、2個の炭素数1〜3のアルキルアミン、又は1個のエチレンジアミンであってもよいし、2,2’−ビピリジンのような含窒素複素芳香族化合物であってもよい。
【0033】
ポリオキソメタレートは、2個以上の欠損サイトを有し得る。ポリオキソメタレートが2個以上の欠損サイトを有する場合、各欠損サイトに1個の置換金属原子、又は異なる2種の置換金属原子(第1の置換金属原子及び第2の置換金属原子)が導入される。ポリオキソメタレートが、2個又は3個の欠損サイトを有していてもよい。
【0034】
<ポリオキソメタレート化合物を製造する方法>
単核型のポリオキソメタレート化合物は、例えば1個以上の欠損サイトを有するポリオキソメタレートと中心金属及び有機配位子を有する金属錯体とを含有する反応液中で、ポリオキソメタレートと金属錯体とを反応させて、金属置換ポリオキソメタレートを生成させる工程を含む方法により、製造することができる。金属置換ポリオキソメタレートの対イオンは、反応終了後、対イオンを含む化合物(塩)を反応液に加えることにより、導入することができる。反応液は、通常、反応溶媒としての水を更に含む。
【0035】
有機配位子が2個のアンモニア、2個の炭素数1〜3のアルキルアミン、又は1個のエチレンジアミンである場合、反応液の温度を25℃以下、又は23℃以下としてもよい。これにより、2個の置換金属原子が導入された二核型の金属置換ポリオキソメタレートの生成等を抑制しながら、高い収率で単核型の金属置換ポリオキソメタレートを得ることができる。反応液の温度の下限は、適度な反応速度を維持するために、10℃以上、15℃以上、又は18℃以上であってもよい。反応中に反応液の温度が一定に維持されてもよいし、変動してもよい。反応時間は、所望の単核型の金属置換ポリオキソメタレートの比率が高くなるように、調整することができる。例えば、反応時間が25〜30時間であってもよい。
【0036】
有機配位子が、2個の窒素原子を含む脂肪族ヘテロ環を有する二座配位子である場合、反応液の温度は、5〜90℃であってもよく、反応時間は0.5〜24時間であってもよい。
【0037】
置換金属原子を導入するための欠損サイトを有するポリオキソメタレートは、通常の方法により合成することができる。
【0038】
単核型のポリオキソメタレート化合物を合成するために用いられる金属錯体は、置換金属原子となる中心金属と、中心金属に配位結合した有機配位子とを有する。中心金属は2価の白金又はパラジウムであり、有機配位子は上述のとおりである。金属錯体は、例えば式:MCl(Lで表される錯体であってもよい。M、L及びpは式(1)と同様に定義される。脂肪族ヘテロ環を有する有機配位子を有する金属錯体の例としては、cis-[PtIICl2(Me2ppz)]が挙げられる。2個のアンモニア、2個の炭素数1〜3のアルキルアミン、又は1個のエチレンジアミンを有機配位子として有する金属錯体の例としては、cis-PtII(NH3)2Cl2が挙げられる。
【0039】
二核型のポリオキソメタレート化合物は、例えば、上記と同様の方法により第1の置換金属原子及び第1の有機配位子を有する金属置換ポリオキソメタレート及びその対イオンを有する単核型のポリオキソメタレート化合物を得る工程と、単核型のポリオキソメタレート化合物と中心金属を有する金属錯体とを含有する反応液中で、単核型のポリオキソメタレート化合物と金属錯体とを反応させて、第1の置換金属原子及び第2の置換金属原子を有する二核型のポリオキソメタレート化合物を生成させる工程とを含む方法により、製造することができる。二核型の金属置換ポリオキソメタレートの対イオンは、反応終了後、対イオンを含む化合物(塩)を反応液に加えることにより、導入することができる。反応液は、通常、反応溶媒としての水を更に含む。
【0040】
二核型のポリオキソメタレート化合物を合成するために用いられる金属錯体は、第2の置換金属原子となる中心金属と、中心金属に配位結合した第2の有機配位子とを有する。中心金属は白金又はパラジウムのうち、第1の置換金属原子とは異なるものが選択される。金属錯体は、例えば式:MCl(Lで表される錯体であってもよい。M、L及びqは式(2)と同様に定義される。金属錯体の例としては、PdII(bpy)Cl2が挙げられる。
【0041】
第2の置換金属原子を導入するための反応液の温度、及び反応時間は、第2の置換金属原子を中心金属として有する金属錯体の反応性等によって、調整すればよい。通常、反応液の温度は5〜90℃、反応時間は1秒〜10分の間で調整される。
【0042】
<ポリオキソメタレート化合物の焼成体>
以上の実施形態に係るポリオキソメタレート化合物を焼成することにより、焼成体が得られる。ポリオキソメタレート化合物の焼成は、空気雰囲気又は不活性ガス雰囲気で行ってもよいし、大気圧、減圧、又は加圧の雰囲気下で行ってもよい。本明細書において、「ポリオキソメタレート化合物を焼成する」とは、ポリオキソメタレート化合物を、何らかの化学的な性質が不可逆的に変化する程度に加熱することを意味する。例えば、ポリオキソメタレート化合物を200℃以上に加熱することは、通常、ポリオキソメタレート化合物を焼成することに該当する。
【0043】
ポリオキソメタレート化合物を、置換金属原子に結合した有機配位子のうち少なくとも一部が脱離するように、焼成することができる。有機配位子が脱離した後のポリオキソメタレート化合物は、反応触媒としてより一層高い活性を発揮することができる。係る観点から、有機配位子が実質的に含まれなくなるまで、ポリオキソメタレート化合物を焼成してもよい。焼成の際、ポリオキソメタレート化合物を200℃以上に加熱することにより、有機配位子を容易に脱離させることができる。同様の観点から、焼成のための加熱温度は、250℃以上であってもよい。加熱温度の上限は、特に制限されないが、1000℃以下、又は550℃以下であってもよい。焼成のための加熱時間は、焼成体の触媒活性が高められるように適宜調整すればよいが、例えば1〜20時間であってもよい。
【0044】
焼成体は、通常、置換金属原子、及びポリオキソメタレートに由来する遷移金属を含み、焼成体における置換金属原子とポリオキソメタレートに由来する遷移金属原子とのモル比が、ポリオキソメタレート化合物における置換金属原子とポリオキソメタレートに由来する遷移金属原子とのモル比と実質的に同じである。例えば、上述の式(1)金属置換ポリオキソメタレートを含むポリオキソメタレート化合物の焼成体において、置換金属原子Mとポリオキソメタレートに由来する遷移金属原子Mとのモル比が、1:11であってもよい。
【0045】
<反応触媒>
一実施形態に係る反応触媒は、以上説明した実施形態に係るオキソメタレート化合物又はその焼成体を含有する。この反応触媒は、例えば可視光照射により光反応を進行させるための光触媒として、高い触媒活性を発現することができる。本明細書において、「光触媒」は、光反応に直接関与する触媒だけでなく、光増感剤も含む用語として使用される。本実施形態に係る反応触媒は、他の光増感剤が存在しない場合であっても、光触媒及び光増感剤として機能して光反応を進行させることができる場合がある。本実施形態に係る反応触媒は、例えば酸化反応若しくは水素化反応の触媒、排ガス浄化用触媒、又は燃料電池用電極触媒としても用いられ得る。
【実施例】
【0046】
以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
【0047】
1.測定方法
1−1.NMRスペクトル
各核種のNMRスペクトルは、日本電子株式会社製のFT NMR装置ECA-600を用いて測定した。
1−2.元素分析
C、H及びNは、サーモエレクトロン社製のFlash FAを用いて定量した。P、Pt及びKは、パーキンエルマー社製のOptima 2100DVを用いて定量した。
1−3.赤外吸収スペクトル
赤外吸収スペクトルは、パーキンエルマー社製のSpectrum 100 FTIRを用いて測定した。
1−4.熱重量−示差熱分析(TG/DTA)
株式会社リガク製の示差熱天秤Thermo plus EVO2 TG-DTA 81205Zを用いて熱重量−示差熱分析を行った。
【0048】
2.白金置換ポリオキソメタレート化合物(単核型)
2−1.Cs-P-1Pt-NH3(Cs5[α-PW11O39{cis-PtII(NH3)2}]・6H2O)
<合成>
cis-ジアンミンジクロロ白金(II)(cis-PtII(NH3)2Cl2;0.0604 g; 0.201 mmol; MW: 300.05)を室温で水150 mLに溶解した。そこに、K7[PW11O39]・10H2O(0.3172 g; 0.101 mmol; MW: 3131.031)を室温で水15.0 mLに溶解した溶液を加え、得られた反応液を20±2 ℃の水浴中で27時間攪拌した。反応液を氷浴に移し、攪拌しながら、塩化セシウム(0.7531g; 4.47 mmol; MW: 168.36)を水3 mLに溶解した溶液を加えた。反応液を氷浴中で更に20分間攪拌してから、エタノール540 mLを加え、反応液を10分間攪拌した。生成した沈殿物をメンブレンフィルターで回収した。回収した沈殿物を吸引乾燥し、次いで凍結乾燥して、Cs-P-1Pt-NH3を含む生成物(黄色粉体、収量0.3547g)を得た。
【0049】
生成物の31P NMRスペクトルをD2O中、H3PO4を標準物質として測定した。図4は生成物の31P NMRスペクトルである。Cs-P-1Pt-NH3に帰属されるシグナルが-11.48 ppmに観測され、-12.81 ppmにCs-P-2Pt-NH3、-10.67 ppmに[α-PW11O39]7-に帰属されるシグナルも僅かに観測された。各シグナルの積分強度から求められた[α-PW11O39]7- : Cs-P-1Pt-NH3 :Cs-P-2Pt-NH3の存在比は0.06:1.00:0.02であった。元素分析の結果、P:Ptのモル比は略1:1であったことから、Cs-P-1Pt-NH3が高純度で得られたことが確認された。また、生成物の赤外吸収スペクトル(KBr)では、1091、1045、952、894、862、807、760、及び730 cm-1に吸収が確認され、これはCs-P-2Pt-NH3(Cs3[α-PW11O39{cis-Pt(NH3)2}2]・8H2O)及びK7[α-PW11O39]・13H2Oの赤外吸収スペクトルとは異なっていた。また、1346 cm-1付近にNH3に由来する吸収も観測された。
【0050】
<反応条件の検討>
反応温度を20℃、反応時間を15時間、18時間、21時間、24時間、27時間、30時間又は33時間として、上記と同様にcis-PtII(NH3)2Cl2とK7[PW11O39]との反応を行った。生成物の31P NMRを測定し、[α-PW11O39]7-のシグナルに対するCs-P-1Pt-NH3のシグナルの積分強度比をCs-P-1Pt-NH3の比率として求めた。図5は、Cs-P-1Pt-NH3の比率と反応時間との関係を示すグラフである。反応温度20℃の場合、反応時間を25〜30時間程度とすることで、特に高い収率で単核体のCs-P-1Pt-NH3が得られることが確認された。
【0051】
反応温度を30℃として同様に反応を行った場合、6時間後の時点で[PW11O39]7- : Cs-P-1Pt-NH3は1.00:0.92であり、27時間後には二核体のCs-P-2Pt-NH3の比率がCs-P-1Pt-NH3の比率よりも高くなった。これらの結果から、反応温度は25℃程度以下とすることが、単核体を高い収率で得るためには適切であるといえる。
【0052】
2−2.TMA-P-1Pt-ppz([(CH3)4N]4H[PW11O39{cis-PtII(Me2ppz)}]・5H2O)
cis-[PtIICl2(Me2ppz)](0.0758 g; 0.2mmol MW : 380.176)を50℃の水35 mLに溶解した。得られた溶液を、K7[PW11O39]・13H2O (0.643 g;0.2 mmol; MW : 3185.08)を室温で水5 mLに溶解した溶液に加えた。得られた反応液を25℃で24時間攪拌した。固体の(CH3)4NBr (1.035g; 9.4 mmol)を加え、反応液を25℃で更に24時間攪拌した。析出した黄色沈殿物をメンブレンフィルターで回収し、エタノールで洗浄した。この時点で、0.437 gの粗生成物が得られた。粗生成物を50℃の水20 mLに溶解し、溶液を冷蔵庫中に一晩静置した。析出した黄色沈殿物をメンブレンフィルターで回収し、回収した沈殿物をエタノールで洗浄して、TMA-P-1Pt-ppzを含む生成物を得た(収量0.1447 g)。下記の元素分析の結果から、単核体のTMA-P-1Pt-ppzがほぼ選択的に得られたことが確認された。
元素分析:
found: C, 7.78; H, 1.89; N, 2.48; P, 0.98; Pt, 5.76; K, <0.1%.
Calculations for [(CH3)4N]4H[PW11O39{Pt(Me2ppz)}]・5H2O = H73C22N6Pt1O44P1W11(MW: 3374.129): C, 7.83; H, 2.18; N, 2.49; P, 0.92; Pt, 5.78; K, 0%.
【0053】
熱重量・示差熱分析(TG/DTA)
生成物(TMA-P-1Pt-ppz)の大気囲気下でのTG/DTA分析の結果、92.5℃未満の温度で5分子の水にほぼ相当する2.90%の重量減少が観測された。更に、273.8℃と374.9℃の2つの発熱ピークを伴って13.03%の重量減少が観測され、これは4分子の[(CH3)4N]+と1分子のMe2ppzに相当すると考えられる。
【0054】
赤外吸収スペクトル(KBr)
図6は、生成物(TMA-P-1Pt-ppz)及びK7[PW11O39]・13H2Oの赤外吸収スペクトルである。(a)はTMA-P-1Pt-NH3、(b)はK7[PW11O39]・13H2Oを示す。TMA-P-1Pt-ppzは、1488 cm-1付近に[(CH3)4N]+とMe2ppzに由来する吸収を示した。
【0055】
NMRスペクトル
図7は、TMA-P-1Pt-ppzの31P NMRスペクトルである。(a)はD2O中での測定データで、(b)はDMSO-d6中での測定データである。その他の核種を含むNMRスペクトルデータを以下に示す。
13C NMR (DMSO-d6, 23.4℃) :δ57.7 ([(CH3)4N]+),50.9 and 51.4 (-CH2CH2- groups in Me2ppz),21.7 ((CH3)2ppz)
31P NMR: (D2O, 21.3℃): δ-12.03
31P NMR: (DMSO-d6, 22.6℃): δ-11.75
195Pt NMR (DMSO-d6, 20.7℃): δ-1326
【0056】
<安定性評価>
10.5 mgのCs-P-1Pt-NH3、及び4.4 μmolのTMA-P-1Pt-ppzを、それぞれ600 μLのD2Oに溶解させた。得られた溶液を50±2℃の環境下に静置した。図8は、50±2℃で1日静置後の各ポリオキソメタレート化合物の31P NMRスペクトルである。(a)のCs-P-1Pt-NH3の場合、[PW11O39]7-及びCs-P-2Pt-NH3のシグナルが現れており、Cs-P-1Pt-NH3の分解が徐々に進行したことが示唆された。一方、(b)のTMA-P-1Pt-ppzの場合、分解はほとんど認められなかった。TMA-P-1Pt-ppzは、50±2℃で7日間静置後も実質的に分解せず、高い熱安定性を有することが確認された。
【0057】
3.白金置換ポリオキソメタレート化合物(二核型)
3−1.TMA-Al-2Pt-NH3([(CH3)4N]4H[α-AlW11O39{cis-PtII(NH3)2}2}]・11H2O)
cis-PtII(NH3)2Cl2(0.120 g; 0.40 mmol)を水140 mLに溶解して得た溶液に、K9[α-AlW11O39]・13H2O(0.665 g;0.20 mmol)を加えた。得られた反応液を60℃で2時間攪拌すると、黄色沈殿物が析出した。沈殿物をメンブレンフィルターで除去し、濾液に固体の(CH3)4NCl(8.772 g: 80 mmol)を加えた。25℃で3日間の攪拌の後、析出した黄色沈殿物をメンブレンフィルターで回収した。得られた粗生成物(0.347 g)を70℃の水10.4 mLに溶解し、エタノールを用いた25℃での蒸気拡散によって精製した。5日放置後、黄色結晶を、メンブレンフィルターで回収し、エタノール10 mLで洗浄した。この結晶化を2回行い、0.1110 gの黄色単結晶を得た。下記の元素分析を含む分析結果から、二核体のTMA-Al-2Pt-NH3が得られたことが確認された。
元素分析:
found: C, 5.37; H, 2.16; N, 3.07; Al, 0.65; Pt, 10.53; K,<0.1%.
Calculations for [(CH3)4N]4H[AlW11O39{cis-Pt(NH3)2}2]・xH2O (x=11) = C16H83N8Pt2O50Al1W11: C, 5.30; H, 2.31; N, 3.09; Al, 0.74; Pt, 10.76; K, 0%.
【0058】
3−2.TMA-B-2Pt-NH3([(CH3)4N]4H[α-BW11O39{cis-PtII(NH3)2}2}]・9H2O)
K8H[α-BW11O39]・16H2O(0.661 g;0.20 mmol)を水40 mLに溶解させた。この溶液を、cis-PtII(NH3)2Cl2(0.121 g; 0.40 mmol)を水150 mLに溶解して得た溶液に加えた。得られた反応液を25℃で10日間攪拌すると、黄色沈殿物が析出した。沈殿物をメンブレンフィルターで除去し、濾液に固体の(CH3)4NCl(3.52 g: 32.1 mmol)を加え、濾液を氷冷しながら2時間の攪拌した。その後、析出した黄色沈殿物をメンブレンフィルターで回収し、少量のエタノールで洗浄した。得られた粗生成物(0.5458 g)を70℃の水25 mLに溶解し、冷蔵庫中に7〜10日放置した。析出した黄色結晶をメンブレンフィルターで回収し、少量のエタノールで洗浄した。この結晶化による精製を2回行い、0.2255 gの生成物の結晶を得た。
下記の元素分析を含む分析結果から、二核体のTMA-Al-2Pt-NH3が得られたことが確認された。
元素分析:
found: C, 5.32; H, 2.02; N, 3.07; B, 0.29; Pt, 10.84; K,<0.1%
Calculations for [(CH3)4N]4H[α-BW11O39{cis-Pt(NH3)2}2]・xH2O (x=9) = C16H79N8Pt2O48B1W11: C, 5.38; H, 2.23; N, 3.13; B, 0.30; Pt, 10.91; K, 0%
【0059】
3−3.Cs-Ge-2Pt-bpy(Cs4[α-GeW11O39{cis-PtII(bpy)}2]・10H2O)
K6Na2[α-GeW11O39]・12H2O(0.3286 g;0.10 mmol)を水200 mLに溶解して得た溶液に、cis-PtII(bpy)2Cl2(0.0844 g; 0.20 mmol)を加えた。得られた反応液を90℃で2時間攪拌した後、固体のCsCl(2.08 g; 12 mmol)を反応液に加え、反応液を25℃で1日攪拌した。析出した黄色沈殿物をメンブレンフィルターで回収し、少量のエタノールで洗浄した。得られた粗生成物(0.3823 g)を80℃の水90 mLに溶解し、溶液を約5℃の冷蔵庫中に9日放置した。析出した黄色沈殿物をメンブレンフィルターで回収し、0.2861 gの生成物を得た。下記の元素分析を含む分析結果から、二核体のCs-Ge-2Pt-bpyが得られたことが確認された。
元素分析:
found: C, 5.91; H, 0.56; N, 1.36; Ge, 1.74; Pt, 9.48; Cs, 12.5; K,<0.1; Na,<0.1%
Calculations for Cs4[GeW11O39{Pt(bpy)}2]・xH2O (x=10) = C20H36Cs4N4Pt2O49Ge1W11: C, 5.81; H, 0.88; N, 1.36; Ge, 1.76; Pt, 9.44; Cs, 12.86; K, 0; Na, 0%
【0060】
3−4.Cs-Ge-2Pt-phen(Cs3.5H0.5[α-GeW11O39{cis-PtII(phen)}2]・3H2O)
K6Na2[α-GeW11O39]・12H2O(0.3290 g;0.10 mmol)を水200 mLに溶解して得た溶液に、cis-PtII(phen)2Cl2(0.0905 g; 0.20 mmol)を加えた。得られた反応液を90℃で8時間攪拌した後、固体のCsCl(2.08 g; 12 mmol)を反応液に加え、反応液を25℃で2日攪拌した。析出した黄色沈殿物をメンブレンフィルターで回収し、少量のエタノールで洗浄した。得られた粗生成物(0.3626 g)を90℃の水90 mLに溶解し、溶液を約5℃の冷蔵庫中に5日放置した。析出した黄色結晶をメンブレンフィルターで回収し、0.2248 gの生成物を得た。下記の元素分析を含む分析結果から、二核体のCs-Ge-2Pt-phenが得られたことが確認された。
元素分析:
found: C, 7.04; H, 0.55; N, 1.35; Ge, 1.75; Pt, 9.53; Cs, 12.0; K,<0.1; Na,<0.1%
Calculations for Cs3.5H0.5[GeW11O39{Pt(phen)}2]・xH2O (x=3) = C24H22.5Cs3.5N4Pt2O42Ge1W11: C, 7.23; H, 0.57; N, 1.40; Ge, 1.82; Pt, 9.78; Cs, 11.66; K, 0; Na, 0%
【0061】
4.白金−パラジウム置換ポリオキソメタレート化合物(二核型)
4−1.TMA-P-1Pt(NH3)-1Pd(bpy)([(CH3)4N]3[α-PW11O39{PtII(NH3)2}{PdII(bpy)}])
0.1826 gのCs-P-1Pt-NH3(MW: 3678.95, 0.050mmol)を蒸留水50 mLに溶解して、淡黄色透明な溶液を得た。この溶液を、0.0163 gのPdII(bpy)Cl2(MW:333.51, 0.049 mmol)を蒸留水50 mLに90℃の湯浴で溶解させて得た淡黄色透明の溶液に、氷浴中で加えた。得られた反応液を3分間攪拌してから、テトラメチルアンモニウムクロリド 3.948 g(MW:109.60, 36 mmol)を加え、白黄色の沈殿物を析出させた。沈殿物をメンブレンフィルターによって回収し、エタノールで洗浄した。洗浄後の沈殿物を吸引乾燥し、続いて凍結乾燥して、TMA-P-1Pt(NH3)-1Pd(bpy)を含む生成物を得た(収量0.0733g)。
【0062】
図9は、生成物の31P NMRスペクトルである。TMA-P-1Pt(NH3)-1Pd(bpy)に由来するシグナルが-12.14 ppmに観測された。また、-11.99 ppmに[PW11O39{Pd(bpy)}2]3-のシグナル、-12.37 ppmに[PW11O39{Pt(NH3)2}2]3-のシグナルが観測された。これらシグナルの積分強度比は、[PW11O39{Pd(bpy)}2]3- : TMA-P-1Pt(NH3)-1Pd(bpy) : [PW11O39{Pt(NH3)2}2]3-= 1.00:8.25:0.22であった。以下に示す元素分析の結果から計算されたTMA-P-1Pt(NH3)-1Pd(bpy)の純度は81%であった。
元素分析
found:P 0.72%; Pt 5.03%; Pd 3.93%
calculated for [(CH3)4N]3[PW11O39{Pt(NH3)2}{Pd(N2C10H8)}]0.81[PW11O39{Pd(N2C10H8)}2]0.18[PW11O39{Pt(NH3)2}2]0.01・2H2O:P0.90%; Pt 4.72%; Pd 3.63% = C23.7H54.34N7O41P1Pd1.17Pt0.83W11(MW 3433.096)
【0063】
3−2.Cs-P-1Pt(NH3)-1Pd(bpy)([Cs3[α-PW11O39{PtII(NH3)2}{PdII(bpy)}])
0.1839 gのCs-P-1Pt-NH3(MW: 3678.95, 0.050mmol)を蒸留水50 mLに溶解して、淡黄色透明な溶液を得た。この溶液を、0.0167 gのPdII(bpy)Cl2(MW:333.51, 0.051 mmol)を蒸留水50 mLに90℃の湯浴で溶解させて得た淡黄色透明の溶液に、氷浴中で加えた。得られた反応液を3分間攪拌してから、塩化セシウム3.800 g(MW:168.36, 22.6 mmol)を加え、白黄色の沈殿物を析出させた。沈殿物をメンブレンフィルターによって回収し、エタノールで洗浄した。洗浄後の沈殿物を吸引乾燥し、続いて凍結乾燥して、Cs-P-1Pt(NH3)-1Pd(bpy)を含む生成物を得た(収量0.1284g)。
【0064】
生成物の31P NMRスペクトルをジメチルスルホキシド(DMSO)-d6中で測定した。得られた31P NMRスペクトルでは、Cs-P-1Pt(NH3)-1Pd(bpy)に由来するシグナルが-12.15 ppmに観測され、-12.00 ppmに[PW11O39{Pd(bpy)2}2]3-のシグナルが観測された。これらシグナルの積分強度比は、[PW11O39{Pd(bpy)}2]3- : Cs-P-1Pt(NH3)-1Pd(bpy) = 1.00:11.98であった。
【0065】
5.光触媒活性
5−1.ポリオキソメタレート化合物
試験1
0.2〜3.0 μmolの白金原子を含む量の各ポリオキソメタレート化合物、2.5 μmolのエオシンY、2.5 μmolのK5SiW11{Al(OH2)}O39]・7H2O、50 mgのTiO2粒子(anatase:rutile = 80:20)、10 mLの水、及び100 mMのトリエタノールアミン(TEA)を混合して、水から水素を生成する光触媒反応のための反応液を調製した。ポリオキソメタレート化合物の量は、表1に示す0.2〜0.6 μmolの白金原子に相当する量に調整した。
反応液に、25 ℃の環境下で、440 nm以上の光を照射し、光触媒反応によって生成した水素の量を定量した。1時間後のH2生成量と、光触媒活性の指標としての触媒回転数(TON、2×(H生成量(mol)/Pt原子量(mol))を測定した。比較のため、上記と同様の方法で合成したパラジウムの二核体であるCs-P-2Pd-bpy、及び市販のplatinum blackについても、同様に光触媒活性を評価した。
【0066】
【表1】
【0067】
表1に示されるように、単核体のポリオキソメタレート化合物であるTMA-P-1Pt-ppz及びCs-P-1Pt-NH3は、二核体のCs-P-2Pt-NH3と比較して顕著に高い触媒回転数を示した。更に、白金−パラジウムの二核体であるTMA-P-1Pt(NH3)-1Pd(bpy)は、より一層顕著に向上した触媒回転数を示した。
【0068】
試験2
TMA-Al-2Pt-NH3、TMA-B-2Pt-NH3、Cs-Ge-2Pt-bpy、及びCs-Ge-2Pt-phenと、これらと同様の方法で合成したTMA-P-2Pt-NH3([(CH3)4N]3[α-PW11O39{cis-PtII(NH3)2}2]・10H2O)、TMA-Si-2Pt-NH3([(CH3)4N]4[α-SiW11O39{cis-PtII(NH3)2}2]・13H2O)、及びTMA-Ge-2Pt-NH3([(CH3)4N]4[α-GeW11O39{cis-PtII(NH3)2}2]・11H2O)の光触媒活性を以下の手順で評価した。TMA-P-1Pt-ppzの光触媒活性も同様に評価し、2核体の光触媒活性と比較した。
【0069】
2.0 μmolの白金原子を含む量の各ポリオキソメタレート化合物、2.5 μmolのエオシンY、10 mLの水、及び100 mMのトリエタノールアミン(TEA)を混合して、水から水素を生成する光触媒反応のための反応液を調製した。反応液に、25 ℃の環境下で400 nm以上の光を照射し、光触媒反応によって生成した水素の量を定量した。1時間の反応によるH2生成量と、光触媒活性の指標としての触媒回転数(TON、2×(H生成量(mol)/Pt原子量(mol))を測定した。測定結果を表2に示す。
【0070】
【表2】
【0071】
表2に示されるように、単核体のポリオキソメタレート化合物であるTMA-P-1Pt-ppzは、各種の二核体のポリオキソメタレート化合物と比較して顕著に高い触媒回転数を示した。
【0072】
4−2.ポリオキソメタレート化合物の焼成体
Cs-P-1Pt-NH3、Cs-P-2Pt-NH3及びCs-P-1Pt(NH3)-1Pd(bpy)を、それぞれるつぼ中で加熱することにより焼成して、これらポリオキソメタレート化合物の焼成体を得た。焼成の条件は以下のとおりである。
Cs-P-1Pt-NH3:300℃,5時間
Cs-P-2Pt-NH3:300℃,5時間
Cs-P-1Pt(NH3)-1Pd(bpy):500℃,5時間
以下、それぞれの焼成体を「Cs-P-1Pt-300(5h)」、「Cs-P-2Pt-300(5h)」及び「Cs-P-1Pt(NH3)-1Pd(bpy)-500(5h)」と略記する。
【0073】
0.6〜3.0 μmolの白金原子を含む量の各ポリオキソメタレート焼成体、200 mgのTiO2粒子(anatase:rutile = 80:20)、20 mLのメタノール水溶液(メタノール:水(体積比) = 20:80)を混合して、水から水素を生成する光触媒反応のための反応液を調製した。ポリオキソメタレート焼成体の量は、表3に示す0.6 μmolの白金原子に相当する量に調整した。
反応液に、25 ℃の環境下で、400 nm以上の光を照射し、光触媒反応によって生成した水素の量を定量した。6時間後のH2生成量と、光触媒活性の指標としての触媒回転数(TON、2×(H生成量(mol)/Pt原子量(mol))を測定した。比較のため、焼成前の白金二核型ポリオキソメタレート化合物Cs-P-2Pt-NH3および市販のplatinum blackについても、同様に光触媒活性を評価した。各焼成体は非常に高い触媒回転数を示した。
【0074】
【表3】
【0075】
Cs-P-1Pt-300(5h)、及びCs-P-2Pt-300(5h)については、光照射時間12時間まで試験を行った。図10は、触媒回転数TONと光照射時間との関係を示すグラフである。長時間の反応において、Cs-P-1Pt-300(5h)は、Cs-P-2Pt-300(5h)と比較して光触媒活性が低下し難い傾向が認められた。
【符号の説明】
【0076】
3…ポリオキソメタレート、3A,3B…基本単位、10…欠損サイト、21…金属置換ポリオキソメタレート(単核型)、22…金属置換ポリオキソメタレート(二核型)、M…(第1の)置換金属原子、M…第2の置換金属原子、L…(第1の)有機配位子、L…第2の有機配位子。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10

【手続補正書】
【提出日】2020年11月5日
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
金属置換ポリオキソメタレート及びその対イオンを有するポリオキソメタレート化合物であって、
前記金属置換ポリオキソメタレートが、
1個以上の欠損サイトを有するポリオキソメタレートと、
前記欠損サイトに導入された置換金属原子と、
前記置換金属原子に配位結合した有機配位子と、
を有し、
前記置換金属原子が2価の白金又はパラジウムであり、
前記有機配位子が、前記置換金属原子に配位結合した2個の窒素原子を含む脂肪族ヘテロ環を有する、二座配位子であり、
1個以上の前記欠損サイトのそれぞれに1個の前記置換金属原子が導入されている、
ポリオキソメタレート化合物。
【請求項2】
1個以上の欠損サイトを有するポリオキソメタレートと中心金属及び有機配位子を有する金属錯体とを含有する反応液中で、前記ポリオキソメタレートと前記金属錯体とを反応させて、金属置換ポリオキソメタレートを生成させる工程を備え、
前記金属置換ポリオキソメタレートが、
前記ポリオキソメタレートと、
前記欠損サイトに導入された前記中心金属である置換金属原子と、
前記置換金属原子に配位結合した前記有機配位子と、
を有し、
前記中心金属及び前記置換金属原子が2価の白金又はパラジウムであり、
前記有機配位子が、1個の前記中心金属又は1個の前記置換金属原子に配位結合した2個の窒素原子を含む脂肪族ヘテロ環を有する、二座配位子であり、
前記金属置換ポリオキソメタレートにおいて、1個以上の前記欠損サイトのそれぞれに1個の前記置換金属原子が導入されている、
請求項1に記載のポリオキソメタレート化合物を製造する方法。
【請求項3】
前記有機配位子がN,N’−ジメチルピペラジンである、請求項2に記載の方法。
【請求項4】
金属置換ポリオキソメタレート及びその対イオンを有するポリオキソメタレート化合物であって、
前記金属置換ポリオキソメタレートが、
1個以上の欠損サイトを有するポリオキソメタレートと、
前記欠損サイトに導入された第1の置換金属原子と、
前記第1の置換金属原子に配位結合した第1の有機配位子と、
前記欠損サイトに導入された第2の置換金属原子と、
前記第2の置換金属原子に配位結合した第2の有機配位子と、
を有し、
前記第1の置換金属原子が2価の白金原子で、前記第2の置換金属原子が2価のパラジウムである、又は、前記第1の置換金属原子が2価のパラジウムで、前記第2の置換金属原子が2価の白金であり、
1個以上の前記欠損サイトのそれぞれに1個の前記第1の置換金属原子及び1個の前記第2の置換金属原子が導入されている、
ポリオキソメタレート化合物。
【請求項5】
第1の置換金属原子を有する金属置換ポリオキソメタレート及びその対イオンを有する単核型のポリオキソメタレート化合物と中心金属を有する金属錯体とを含有する反応液中で、前記単核型のポリオキソメタレート化合物と前記金属錯体とを反応させて、前記第1の置換金属原子、及び前記中心金属である第2の置換金属原子を有する二核型のポリオキソメタレート化合物を生成させる工程を備え、
前記単核型のポリオキソメタレート化合物の金属置換ポリオキソメタレートが、
1個以上の欠損サイトを有するポリオキソメタレートと、
前記欠損サイトに導入された前記第1の置換金属原子と、
前記第1の置換金属原子に配位結合した第1の有機配位子と、
を有し、
前記金属錯体が、
前記中心金属と、
前記中心金属に配位結合した第2の有機配位子と、
を有し、
前記第1の置換金属原子が2価の白金で、前記中心金属及び前記第2の置換金属原子が2価のパラジウムである、又は、前記第1の置換金属原子がパラジウムで、前記中心金属及び前記第2の置換金属原子が2価の白金であり、
前記単核型のポリオキソメタレート化合物において、1個以上の前記欠損サイトのそれぞれに1個の前記第1の置換金属原子が導入されており、
前記二核型のポリオキソメタレート化合物において、1個以上の前記欠損サイトのそれぞれに1個の前記第1の置換金属原子及び1個の前記第2の置換金属原子が導入されている、
請求項4に記載のポリオキソメタレート化合物を製造する方法。
【請求項6】
前記第1の有機配位子が、1個の前記第1の置換金属原子に配位結合した、2個のアンモニア、2個の炭素数1〜3のアルキルアミン、又は1個のエチレンジアミンである、請求項5に記載の方法。
【請求項7】
1個以上の欠損サイトを有するポリオキソメタレートと中心金属及び有機配位子を有する金属錯体とを含有する反応液中で、前記ポリオキソメタレートと前記金属錯体とを反応させて、金属置換ポリオキソメタレートを生成させる工程を備え、
前記金属置換ポリオキソメタレートが、
前記ポリオキソメタレートと、
前記欠損サイトに導入された前記中心金属である置換金属原子と、
前記置換金属原子に配位結合した前記有機配位子と、
を有し、
前記中心金属及び前記置換金属原子が2価の白金又はパラジウムであり、
前記有機配位子が、1個の前記中心金属又は1個の前記置換金属原子に配位結合した、2個のアンモニア、2個の炭素数1〜3のアルキルアミン、又は1個のエチレンジアミンであり、
前記金属置換ポリオキソメタレートにおいて、1個以上の前記欠損サイトのそれぞれに1個の前記置換金属原子が導入されており、
25℃以下の前記反応液中で前記金属置換ポリオキソメタレートを生成させる、
ポリオキソメタレート化合物を製造する方法。
【請求項8】
金属置換ポリオキソメタレート及びその対イオンを有するポリオキソメタレート化合物を含有する、反応触媒であって、
前記金属置換ポリオキソメタレートが、
1個以上の欠損サイトを有するポリオキソメタレートと、
前記欠損サイトに導入された置換金属原子と、
該置換金属原子に配位結合した有機配位子と、
を有し、
前記置換金属原子が2価の白金又はパラジウムであり、
1個以上の前記欠損サイトのそれぞれに1個の前記置換金属原子が導入されている、
反応触媒。
【請求項9】
請求項1又は4に記載のポリオキソメタレート化合物を含有する、反応触媒。
【請求項10】
金属置換ポリオキソメタレート及びその対イオンを有するポリオキソメタレート化合物の焼成体であって、
前記金属置換ポリオキソメタレートが、
1個以上の欠損サイトを有するポリオキソメタレートと、
前記欠損サイトに導入された置換金属原子と、
該置換金属原子に配位結合した有機配位子と、
を有し、
前記置換金属原子が2価の白金又はパラジウムであり、
1個以上の前記欠損サイトのそれぞれに1個の前記置換金属原子が導入されている、
ポリオキソメタレート化合物の焼成体。
【請求項11】
前記有機配位子のうち少なくとも一部が脱離している、請求項10に記載の焼成体。
【請求項12】
請求項1又は4に記載のポリオキソメタレート化合物の焼成体。
【請求項13】
当該焼成体が、前記置換金属原子、及び前記ポリオキソメタレートに由来する遷移金属原子を含み、前記置換金属原子と前記遷移金属原子とのモル比が1:11である、請求項10〜12のいずれか一項に記載の焼成体。
【請求項14】
請求項10〜13のいずれか一項に記載のポリオキソメタレート化合物の焼成体を含有する、反応触媒。
【請求項15】
水から水素を発生させるための光触媒、水素化反応触媒、排ガス浄化用触媒、又は燃料電池用電極触媒である、請求項8、9又は14に記載の反応触媒。
【国際調査報告】