白血球及び薬剤除去方法は、赤血球を含む血液製剤に不活化薬剤を添加し、不活化した後の血液製剤を、上流側に白血球除去媒体、下流側に薬剤除去媒体を含む白血球及び薬剤除去フィルター1の入口2aに導入するとともに出口2bから排出することにより、白血球及び薬剤除去フィルター1の上流側で白血球を除去し、下流側で残余の不活化薬剤を除去する工程を備える。
赤血球を含む血液製剤に不活化薬剤を添加し、不活化した後の前記血液製剤を、上流側に白血球除去媒体、下流側に薬剤除去媒体を含む単一フィルターの入口に導入するとともに出口から排出することにより、前記フィルターの上流側で白血球を除去し、下流側で残余の不活化薬剤を除去する工程を備える白血球及び薬剤除去方法。
【背景技術】
【0002】
近年、輸血分野においては、血液製剤中に含まれる病原体及び白血球の増殖能を輸血前に失活(不活化)させる技術が、欧州を中心に普及している。このような不活化技術は、大別して薬剤(不活化薬剤)投与、光照射、またはこれらの組み合わせによって達成される。
【0003】
病原体とは、例えば、ウイルス、細菌、原虫、寄生虫などのDNAやRNAを有するものである。病原体の不活化によって、HBV、HCV、HIV、HAV、HEV、HTLV、WNV、CMVなどのウイルスによる感染症、細菌による感染症、バベシア症、シャーガス病、マラリアなどの原虫による感染症といった輸血に伴う感染症を防止することができる。仮に、血液製剤に未知の病原体種あるいは検出困難な希薄な濃度レベルの病原体が含まれていた場合でも、不活化によって、感染症のリスクを抑えることができる。また、白血球の不活化によって、輸血投与された人体(受血者)中でドナーのリンパ球が拒絶反応を起こし異常増殖することで起こる輸血後移植片対宿主病(GVHD)等の重篤な輸血副作用を抑えることができる。
【0004】
病原体及び白血球に対する不活化技術としては、血漿製剤の場合、S/D法(Octapharma社)、UVC照射(Macopharma社)、メチレンブルーと可視光照射の組み合わせ(Macopharma社)、アモトサレンとUVA照射の組み合わせ(Cerus社)、リボフラビンとUVB照射の組み合わせ(Termo BCT社)によるものがある。
【0005】
また、血小板製剤の場合は、アモトサレンとUVA照射の組み合わせ(Cerus社)によるものが欧州を中心に利用されている。更に、赤血球製剤の場合は、エチレンイミン多量体(Inactine,VITEX社)、アクリジン誘導体(CERUS社)、リボフラビンとUVB照射の組み合わせ(Termo BCT社)、ジメチルメチレンブルー(米赤十字社)等によるものがある。このような病原体の不活化技術自体は開発が進んでいる。
【0006】
上記血液製剤の不活化技術においては、残存する遊離薬剤除去が必要である。これは遊離薬剤が、不活化機序に伴う副作用を受血者に及ぼすためである。不活化機序には主として二通りある。一つは有機溶剤と界面活性剤を血液製剤に添加し、病原体細胞のリン脂質膜を溶解させる不活化機序である。もう一つはDNAの末端塩基を標的とする化学結合性薬剤を血液製剤に添加し、病原体DNA末端塩基に不可逆的な結合を形成することで病原体の転写、複製を阻止する不活化機序である。いずれも不活化後の残分薬剤が血液製剤中に残存したまま輸血に提供された場合、受血者の健常な血球細胞膜や体細胞膜に損傷や抗体産生を引き起こし、発がん性、変異原性を示す等の副作用が知られているため、薬剤除去が必要である。
【0007】
血液製剤中に含まれる薬剤除去技術として、従来、例えば特許文献1に代表されるように、血液の入口と出口を有する容器内に多孔質吸着剤ビーズや多孔質繊維等を充填し、粒径や繊維径、比表面積等の物性を制御する技術が検討されてきた。例えば上記多孔質吸着剤ビーズや多孔質繊維をマトリクス媒体に一部含有させ、血液製剤と長時間接触させて薬剤除去するバッチ式除去技術や、血液製剤をワンパスフロー式で流入させて薬剤除去するフロー式除去技術が確立されてきた。
【0008】
一方、輸血分野においては、白血球を除去した血液製剤を輸血する方法が広く普及している。これは、血液製剤中に含まれる白血球のうち、顆粒球上のヒト白血球抗原(HLA)がドナーと受血者の間で一致しない場合や、その他のドナー顆粒球抗原の侵入が原因となり、受血者体内で抗体産生、補体活性等の免疫反応が起こり、発熱、嘔吐、悪寒、アレルギー反応、顆粒球減少、輸血関連急性肺障害(TRALI)、呼吸困難、血圧低下、アナフィラキシーショック等の副作用が引き起こされるおそれがあるためである。これらの輸血副作用を低減し、より安全な輸血を行うためには、輸血製剤単位中の残存白血球数が10
4〜10
6以下になるまで除去する必要があることが知られている。これは、標準的な400ml全血製剤中に約2.0×10
9個の白血球が存在する場合、少なくとも−3.3log
10以上の白血球除去率が必要であることを意味する。
【0009】
血液製剤に含まれる白血球の除去技術として、従来、例えば特許文献2に代表されるように、血液の入口と出口を有する容器内に不織布を収納し、その繊維直径、嵩密度、嵩高、表面構造等の物性を制御し、あるいは組み合わせることで、より簡便に、効率よく白血球除去可能なろ過技術が確立されてきた。
【0010】
以上の従来技術1、2によれば、不活化処理後の血液製剤から薬剤及び白血球を両方とも除去しようとする場合、薬剤除去、白血球除去を別々に実施するしか手段がないが、以下のように、白血球と薬剤を同時に除去するフィルターの検討も進められてきた。
【0011】
例えば、特許文献3のように、白血球を吸着するヘパリンリガンドが結合された賽の目入り織布フィルター要素と、不活化薬剤を吸着する活性炭含有フィルター要素とを共に備えたフィルターに対し、血液製剤をワンパスフローさせることによって、血液製剤から白血球と薬剤とを同時に除去する技術が開示されている。
【0012】
また、特許文献4のように、白血球除去可能な不織布繊維と、不活化薬剤除去可能な活性炭繊維とを備えたフィルターに、予め赤血球を除去した血液製剤をワンパスフローさせることで、赤血球を除去した血液製剤から白血球と不活化薬剤とを同時に除去する技術も開示されている。
【発明を実施するための形態】
【0026】
以下、図面を参照しつつ本発明に係る白血球及び薬剤除去フィルターの好適な実施形態について詳細に説明する。
[実施形態]
(白血球及び薬剤除去フィルター)
【0027】
まず、
図1を参照して、実施形態に係る白血球及び薬剤除去フィルター1について説明する。白血球及び薬剤除去フィルター1は、赤血球を含む血液製剤中の不活化対象物を不活化した後の血液製剤から白血球及び不活化薬剤を同時に除去するカラムである。特に、本実施形態に係る白血球及び薬剤除去フィルター1は、単一フィルターとして単体で利用され、赤血球を含む血液製剤から、白血球及び不活化薬剤を同時に、溶血を抑えながらしかも短時間で高率に除去することを目的とする。ここでいう血液製剤とは、赤血球を含む各種血液製剤、例えば全血、赤血球製剤等である。また、血液製剤中の不活化対象物とは、例えば白血球や病原体などであり、薬剤とは、例えば、病原体不活化薬剤である。
【0028】
ここで、「病原体不活化」とは、白血球、あるいはウイルス、細菌、原虫、寄生虫などの病原体に対し、それらが複製または増殖する能力を奪うことである。また、「病原体不活化薬剤」とは、血液製剤中に混入している白血球、あるいはウイルス、細菌、原虫、寄生虫などの病原体を不活化する機能を持つ薬剤である。また、不活化薬剤を用いて行う不活化のための処理(白血球及び病原体不活化処理)とは、病原体不活化薬剤を血液製剤中に添加し、必要に応じて一定時間光を照射する処理方法である。不活化薬剤は、光増感作用により一重項酸素、ヒドロキシラジカル、過酸化水素等の反応性の高い化合物を発生させ、白血球や病原体のDNA、あるいはRNAに障害を与えたり、DNA、あるいはRNAの塩基間に共有結合を生成させ、白血球や病原体の自己複製に関する挙動やウイルスタンパク発現を妨げることで白血球や病原体を不活化する。病原体不活化薬剤としては、アクリジン誘導体、チアジン誘導体、フェノチアジン誘導体、ピリジン誘導体、ポルフィリン誘導体、クマリン誘導体、ピリミジン誘導体、リボフラビン、ソラレン誘導体、エチレンイミン多量体等が挙げられる。
【0029】
白血球及び薬剤除去フィルター1は、入口2aと出口2bとを有するカラム(容器)2と、カラム2内に収容された白血球除去に適した不織繊維構造体3bと、薬剤除去に適した繊維状活性炭4と、を備えている。不織繊維構造体3bは、白血球除去媒体の一例であり、繊維状活性炭4は薬剤を吸着除去可能な薬剤除去媒体の一例である。不織繊維構造体3bは繊維状活性炭4よりも上流に配置されている。また、カラム2の入口2aには、血液製剤を導入するための血液回路が接続される入口接続部5aが設けられている。同様に出口2bには、血液製剤を排出するための血液回路が接続される出口接続部5bが設けられている。
【0030】
また、本実施形態では、カラム2の内部で入口2aに隣接する部分、即ち血液製剤の流れに対して最上流に、微小凝集塊の除去を目的として、平均繊維径4μm以上、100μm以下の不織繊維構造体3aが設けられている。不織繊維構造体3aを設けることで好適な態様を実現できるが、不織繊維構造体3aは必須では無く、省略することも可能である。
【0031】
なお、上記の微小凝集塊とは、例えば、血液製剤の保存中に生じるフィブリンやタンパク質を含む血球凝集物(アグリゲート)や脂質、タンパク塊等である。不織繊維構造体3aを設けることにより、血液製剤が不織繊維構造体3bと接触する前に微小凝集塊の除去が完了するため、その後の白血球除去段階、及び薬剤除去段階で良好な流れ性を確保できる。この不織繊維構造体3aの材質や厚み等については、白血球及び薬剤除去フィルター1の目的を達成できる範囲で、適宜に決定でき、特に限定は無い。
【0032】
また、本実施形態として、カラム2の出口2b側、即ち血液製剤の流れに対して最下流に、メッシュ3cが設けられている。メッシュ3cを設けることで好適な態様を実現できるが、メッシュ3cは必須では無く、省略することも可能である。
【0033】
メッシュ3cを設けることで、血液製剤処理中に活性炭繊維が脱落した場合、これを捕捉して血液製剤への混入を回避できる。また、ろ過中の血液製剤をより均一流とし、片流れを防止する効果もある。上記メッシュ3cの材質、繊維径、孔径、厚み等については、白血球及び薬剤除去フィルター1の目的を達成できる範囲で、適宜に決定でき、特に限定は無い。
【0034】
白血球及び薬剤除去フィルター1のように血液製剤を流入させ、フロー式でろ材と接触させるデバイスは、インラインカラムという。インラインカラムを用いる方法は、長時間に渡り血液製剤とろ材とを接触させるバッチ式のような振とう装置が不要である。また、短時間で白血球及び薬剤除去が完了するため、経済的、かつ作業が効率的であり好ましい。バッチ式は、活性炭と赤血球の接触時間の増加により赤血球表面が損傷を受け、溶血が引き起こされる傾向があるため、特に赤血球を含む血液製剤には適さない。
【0035】
白血球及び薬剤除去フィルター1は、フィルター内で不織繊維構造体(白血球除去媒体)3bを繊維状活性炭(薬剤除去媒体)4よりも上流に配置することにより、最初に白血球除去を完了し、次に薬剤除去を完了する段階を踏むため、繊維状活性炭4における目詰まりが回避でき、血液製剤の良好な流れ性を確保できる。
【0036】
また、繊維状活性炭4の比表面積を900m
2/g以上、3000m
2/g以下とすることで、十分な薬剤除去能が得られる。また白血球及び薬剤除去フィルター1の通気圧損を500Pa以上、2000Pa以下とすることで、十分な白血球除去率が得られ、かつ赤血球とろ材間の物理的摩擦を抑えられるので、溶血を抑制する上で有利である。
【0037】
ここで、比表面積とは、多孔質体の多孔度の指標であり、多孔質体の細孔表面積を含めた表面積を多孔質体の単位重量当たりに換算した量である。比表面積は、気体分子の吸着量による気体吸着法や水銀圧入法などにより、細孔分布を測定し求めることができる。繊維状活性炭4は特にミクロ孔(8Å〜20Å)、またはメソ孔(20Å〜500Å)に分布のピークがみられるものであり、活性炭表面の細孔は特に、低分子薬剤の吸着に優れた性能を発揮する。
【0038】
また、通気圧損とは、フィルターの抵抗値を表す指標であり、ろ過後血液製剤の溶血度や白血球除去率が所定の目的を達成するかを簡便に選別するのに適した指標である。本実施形態でいう通気圧損とは、白血球及び薬剤除去フィルター1に一定線速の気体を流したときにフィルター部分で発生する入口圧と出口圧の差を測定することで求められる。通気圧損の詳細な測定方法は、以下に示す通りである。
【0039】
白血球及び薬剤除去フィルター1のカラム2の入口2aから膜流量計により通気線速を0.73m/分に調整した気体を流入させ、カラム2の出口2bから上記空気を自由に排出させる。その後流量が十分安定したときの入口圧と出口圧の差を、圧力トランスデューサで測定することにより、通気圧損(Pa)を求めた。
【0040】
ここでいう通気線速とは、フィルター内(例えば、カラム2内)に一定流速の気体を流したとき、単位時間に単位断面積を通過する気体の体積である。フィルター断面積をS(m
2)、フィルター容器入口側から流入する気体流速をv(L/分)とするとき、通気線速はv×10
−3÷S(m/分)で表される。
(繊維状活性炭)
【0041】
繊維状活性炭4は、カラム2内に収納され、薬剤除去が可能であり、特に、赤血球の溶血を低減可能な材料であれば足りる。例えば、石油ピッチ、石炭ピッチ、石炭コークス、タール泥炭、亜炭などの鉱物系原料及びフェノール樹脂、セルロース樹脂、レーヨン、アクリル樹脂、塩化ビニリデン樹脂、ポリアクリロニトリル系繊維、ポリビニルアルコール系繊維などの樹脂素材である活性炭原料を溶融紡糸、成形加工したのち、不融化処理を施し、炭化後、高温で水蒸気を含むガスと反応させて賦活することで形成する。または、不融化、炭化した前駆体繊維を、賦活した後成形加工し、繊維状活性炭4を形成することもできる。比表面積は900m
2/g以上、3000m
2/g以下であることが望ましい。比表面積が900m
2/g未満の場合、薬剤を除去できるものの、その除去率が低下するおそれがある。
【0042】
繊維状活性炭4の平均繊維径は10μm以上、100μm以下であると好適である。平均繊維径が10μm未満である場合は、機械的強度が不十分であるため、ろ過工程において血球が通過する際、繊維状活性炭4が流体の圧力により変形し、血球を通過する空隙が過小となることで血球の目詰まりや圧上昇を引き起こす傾向があり、溶血の抑制効果が下がる傾向がある。逆に、平均繊維径が100μmより大きい場合は、薬剤除去に必要な比表面積が得られないため薬剤除去率が低下する傾向がある。つまり、繊維状活性炭4の平均繊維径を10μm以上、100μm以下とすると、溶血の抑制と薬剤除去率との両面で優位性がある。
【0043】
本実施形態の繊維状活性炭4の形状は、特に限定されるものではないが、チョップ状、フェルト状、撚糸状、織布状、紙状等が挙げられる。いずれも、適正な比表面積の繊維状活性炭4を、適正な通気圧損となるように均一にカラム内に充填することによれば、それ以外の形状の材料であっても使用できる。繊維状活性炭4の目付の均一性、空隙の均一性、寸法を維持する機械的強度等の観点から、フェルト状、織布状がより好ましい。
【0044】
フェルト状活性炭の製造法としては、鉱物系、天然樹脂系、あるいは合成樹脂系原料より紡糸を行いフェルト用の繊維を形成し、続いて不融化、炭素化、賦活処理、繊維にクリンプを生成する工程の中で、不融化前、あるいは不融化後にフェルト加工する方法が知られている。(例えば特開平3−130447号)。また、繊維形成能を有する天然樹脂、あるいは合成樹脂由来の繊維を不融化、炭化、賦活処理し、活性炭繊維を製造した後にフェルト加工する方法も知られている(例えば特許第4153529号)。一般的なフェルト加工工程は、繊維の調合工程、紡毛機で薄いラップ状とする工程、ラップを数層重ねて熱、蒸気を当てながら圧縮し、水、酸、あるいは弱アルカリ性溶液を含ませ、熱、圧力、振動などを加えて縮絨を行う工程、続いて毛剪、熱プレスすることにより繊維を互いに交絡密着させ、厚みや硬さを均一に加工する工程を含む。フェルト状活性炭はほつれにくく、成形しやすく、形状維持しやすい特長を有する。
【0045】
織布状活性炭の製造法としては、鉱物系原料、あるいは樹脂系原料より紡糸し線維化した後、織布状に加工し、これを炭化、賦活する方法が知られている(例えばポリアクリロニトリル系に関しては特開昭62−133124号、フェノール樹脂系に関しては特開昭60−35509号、特許第4153529号、ポリビニルアルコール系に関しては特開昭53−114925号、特開昭59−187624号、特開昭61−47827号、特開2003−64535号)。一般的な織布加工工程は、天然繊維あるいは化学繊維を精紡して単糸を製造する工程、合糸、撚糸、糸蒸し等の紡績工程、経糸と緯糸を組み合わせる織布工程等を含む。織布状活性炭は、平織り形状であることから厚みや硬さが均一であり、形状維持しやすい特長を有する。
【0046】
また、最適な実施形態として、繊維状活性炭4は、ヒドロキシエチルメタクリレート系重合体をはじめとした生体親和性の高い親水化材で被覆されていることが特に好ましい。このような親水化材は、血液に対して影響がないものであれば、特に限定なくいかなるものでも使用できる。例えば、ポリ(2−ヒドロキシエチルメタクリレート)(PHEMA)、ポリ(N−イソプロピルアクリルアミド)、ポリ(N,N−ジメチルアクリルアミド)、ポリ(ビニルアルコール)、ポリ(N−ビニル−2−ピロリドン)(PVP)等が挙げられる。この中でも特に汎用性が高く、生産コストが抑えられるPHEMA、PVP等の合成高分子を素材とする親水化ポリマーが好ましい。
【0047】
繊維状活性炭4の表面を上記親水化材で被覆することにより、赤血球と繊維状活性炭4との間の疎水的な付着力や物理的摩擦が減少し、溶血を抑えられるので好ましい。また、繊維状活性炭4の血液製剤に対する濡れ性が向上し、良好な流れ性を確保できるため、短時間で薬剤除去を実施でき好ましい。また、濡れ性の向上により片流れを抑制できるため、繊維状活性炭4の薬剤除去能を十分発揮できる点でも好ましい。
【0048】
繊維状活性炭4の表面を上記親水化材で被覆した後、更に湿熱滅菌または放射線滅菌を行うとより一層好ましい。これにより、繊維状活性炭4の表面に架橋が起こり、白血球及び薬剤除去フィルター1の生産工程において、繊維状活性炭4の表面から粉塵が発生することが抑制できる。また、白血球及び薬剤除去フィルター1の使用時には、血液製剤へ脱落繊維が混入することを抑制できる。
(不織繊維構造体)
【0049】
本実施形態に係る不織繊維構造体3bの具体例としては、メルトブロー不織布やフラッシュ不織布あるいはスパンボンド不織布、スパンレース不織布、湿式不織布、乾式不織布、等の不織布の他、紙、織布、メッシュ等の織物が挙げられる。また繊維素材の例としては、ポリアミド、ポリエステル、ポリアクリロニトリル、ポリウレタン、ポリビニルホルマール、ポリビニルアセタール、ポリトリフルオロクロルエチレン、ポリ(メタ)アクリレート、ポリスルホン、ポリスチレン、ポリエチレン、ポリプロピレン、セルロース、セルロールアセテート、麻、綿、絹、ガラス、炭素等があり、いずれも適する。
【0050】
また、最適な実施形態として、白血球を除去可能な不織繊維構造体3bの平均繊維径は0.7μm以上、2.2μm以下であれば好適である。平均繊維径が0.7μm未満である場合は、血球が通過する際、不織繊維構造体3bが流体の圧力により変形し、血球が通過する空隙が過小となることにより、目詰まりや圧上昇を引き起こす傾向があり、溶血の抑制効果が下がる可能性がある。逆に、平均繊維径が2.2μmより大きい場合は、血球が通過する空隙の大きさが過大になり、白血球と接触する表面積が減少するため、白血球除去能が低下する傾向がある。つまり、不織繊維構造体3bの平均繊維径を0.7μm以上、2.2μm以下とすると、溶血の抑制と白血球除去能向上との両面で優位性がある。
【0051】
また、最適な実施形態として、不織繊維構造体3bは親水化材で被覆されていると好適である。これによれば、赤血球と不織繊維構造体3bとの間の疎水的な付着力や物理的摩擦が減少し、溶血を抑えられるので好ましい。また、不織繊維構造体3bの血液製剤に対する濡れ性が向上し、良好な流れ性を確保できるため、短時間で白血球除去を実施でき好ましい。また、濡れ性の向上により片流れを抑制できるため、不織繊維構造体3bの白血球除去能を十分発揮できる点でも好ましい。
【0052】
不織繊維構造体3a、3b、メッシュ3c、及び繊維状活性炭4は、白血球及び薬剤除去フィルター1のカラム2内に収納される以前に、あらかじめ決められた範囲の寸法となるように組み合わせた形に予備形成されていても良い。
(カラム)
【0053】
本実施形態において、白血球及び薬剤除去フィルター1にろ材を収容するためのカラム2の材質は、硬質性樹脂や可撓性樹脂のいずれでも良く、硬質性樹脂の場合、素材はフェノール樹脂、アクリル樹脂、エポキシ樹脂、ホルムアルデヒド樹脂、尿素樹脂、ケイ素樹脂、ABS樹脂、ナイロン、ポリウレタン、ポリカーボネート、塩化ビニル、ポリエチレン、ポリプロピレン、ポリエステル、スチレン−ブタジエン共重合体等が挙げられる。可撓性樹脂の場合、可撓性の合成樹脂製のシート状または円筒状成型物から形成されるのが好ましく、素材は軟質ポリ塩化ビニル、ポリウレタン、エチレン−酢酸ビニル共重合体、ポリエチレンやポリプロピレンのようなポリオレフィン、スチレン−ブタジエン−スチレン共重合体の水添物、スチレン−イソプレン−スチレン共重合体またはその水添物等の熱可塑性エラストマー、及び熱可塑性エラストマーとポリオレフィン、エチレン−エチルアクリレート等の軟化剤との混合物等が好適な材料として挙げられる。好ましくはポリカーボネート、ポリエチレン、ポリプロピレン、軟質塩化ビニル、ポリウレタン、エチレン−酢酸ビニル共重合体、ポリオレフィン、及びこれらを主成分とする熱可塑性エラストマーであり、更に好ましくはポリカーボネート、軟質塩化ビニル、ポリオレフィンである。
【0054】
また、カラム形状は、血液製剤の入口2aと出口2bとを有する形状であれば特に限定は無いが、円柱、多角柱形の硬質容器または可撓性容器などは好適である。ろ材との密着を防止して血液流路を確保するために、カラム内面を凹凸状に形成しても良い。特に可撓性容器の場合、血液の入口2a側からのろ過圧力及びろ過後血液が落差で回収される場合、陰圧によりろ材が血液の出口2b側の容器に押し付けられて密着し、血流が阻害される可能性が高いので、血液出口側の内面を凹凸状にすることは効果的である。本実施形態のカラム成型方法については、フィルター内部で不織繊維構造体3b、繊維状活性炭4を密封の上、形状を保持でき、本実施形態が意図する通気圧損範囲内のフィルターが得られる限りにおいて、特に限定は無い。
【0055】
以上のような構成を有する本実施形態の白血球及び薬剤除去フィルター1によれば、比較的高濃度の白血球や不活化薬剤を有する血液製剤であっても、薬剤を少なくとも85%以上除去でき、血液製剤単位あたりの残存白血球数を1×10
6以下に低減できる。更に、回収される血液製剤の溶血を抑制することもできる。
【0056】
また、白血球及び薬剤除去フィルター1は、実質的に問題となるような形状変形を起こし得ない材料から成り、実使用時において適切な形状及び通気圧損を保持し、十分な白血球及び薬剤除去性能を維持できる。
(白血球及び薬剤除去システム)
【0057】
次に、実施形態に係る白血球及び薬剤除去フィルター1を備えて構成される実施形態の白血球及び薬剤除去システム100について、
図2を参照して説明する。
図2は、白血球及び薬剤除去システム100の構成図である。
【0058】
白血球及び薬剤除去システム100は、白血球及び薬剤除去フィルター1と、血液製剤を貯留する血液製剤バック(血液製剤貯留手段)11と、不活化薬剤を供給する薬剤供給部12と、不活化用バック13と、白血球と薬剤とを除去完了した後の血液製剤を回収する処理液回収バック(血液製剤回収手段)14と、配管L1〜L5と、クランプC1〜C4と、を備える。
【0059】
ここで、血液製剤とは、赤血球を含む各種血液製剤であり、例えば、全血、濃厚赤血球製剤等である。薬剤供給部12は、不活化用バック13に血液チューブなどの配管L1によって接続され、配管L1を通じて不活化用バック13に薬剤を供給する。血液製剤バック11は配管L2に接続され、配管L2は処理開始時に配管L1にSCD接続される。不活化用バック13は、血液製剤バック11及び薬剤供給部12から配管L1、L2を介して血液製剤及び薬剤を受け入れ、不活化処理を行う。
【0060】
不活化用バック13と白血球及び薬剤除去フィルター1の入口接続部5aとは、配管L3によって互いに接続され、処理液回収バック14と白血球及び薬剤除去フィルター1の出口接続部5bとは、配管L4によって互いに接続されている。白血球及び薬剤除去フィルター1には、配管L3を通じ、白血球と不活化薬剤を含む血液製剤が供給される。不織繊維構造体3b及び繊維状活性炭4を備えた白血球及び薬剤除去フィルター1では、血液製剤中に含まれる白血球及び薬剤を除去する。白血球及び薬剤を除去された血液製剤は、配管L4を通じて処理液回収バック14に回収される。
【0061】
また、配管L3、L4は分岐して白血球及び薬剤除去フィルター1をバイパスする配管L5からなるバイパス経路を形成している。配管L5は、処理液回収バック14の空気抜きに用いられる。クランプC1は、配管L1の不活化用バック13がSCD接続される場所よりも不活化用バック13側に備えられている。また、クランプC2、C3、C4は、それぞれ配管L3、L5、L4に備えられている。
(白血球及び薬剤除去方法)
【0062】
続いて、白血球及び薬剤除去システム100を用いた白血球及び薬剤除去方法について説明する。
(1)まず、クランプC1、C2、C3、C4がすべて閉じていることを確認する。
(2)血液製剤バック11に接続する配管L2を配管L1にSCD接続する。
(3)クランプC1を開けて配管L1を開通させ、薬剤供給部12から配管L1を通じて薬剤を不活化用バック13に供給するとともに、血液製剤バック11から配管L2,L1を通じて血液製剤を落差によって不活化用バック13に導入する。
(4)クランプC1を閉じ、配管L1をクランプC1より不活化用バック13側でシールして切り、血液製剤バック11及び薬剤供給部12側の配管L1を捨てる。
(5)不活化用バック13中で薬剤及び血液製剤を混和し、必要に応じて所定時間UV照射し、インキュベート(静置)する。インキュベート中に不活化が起こる。
(6)インキュベート完了後、不活化用バック13中で再度血液製剤を混和し、クランプC2、C4を開けて、不活化用バック13から、血液製剤を、配管L3を通じて白血球及び薬剤除去フィルター1に送り出し、白血球及び薬剤除去フィルター1をろ過する。白血球及び薬剤除去フィルター1でろ過された血液製剤は、配管L4を通じて処理液回収バック14に回収される(白血球及び薬剤除去工程)。
(7)クランプC3を開けて、配管L5を開通させる。
(8)処理液回収バック14の空気を、空になった不活化用バック13に配管L5を通して逃がす。
(9)クランプC2、C3、C4を閉じる。
(10)シールして、処理液回収バック14を取り出す。
【0063】
上記の操作により、赤血球製剤に不活化薬剤を添加し、不活化した後の血液製剤を、上流側に白血球除去媒体、下流側に薬剤除去媒体を含む白血球及び薬剤除去フィルター(単一フィルター)1の入口2aに導入するとともに出口2bから排出することにより、白血球及び薬剤除去フィルター1の上流側で白血球を除去し、下流側で残余の不活化薬剤を除去する工程を備える白血球及び薬剤除去方法を実現できる。
【0064】
以上、各実施形態を参照しつつ本発明を説明したが、本発明は、上記実施形態に限定されるものではなく、つまり、このシステムは、システムの構築例に過ぎず、バッグや回路の構築方法、配置、及びシステムの使用条件、方法、手順を限定するものではない。
【実施例】
【0065】
以下、実施例により本発明を更に詳細に説明するが、本発明は以下の実施例によって限定されるものではない。
(実施例1)
(白血球及び薬剤除去フィルターの作成)
【0066】
平均繊維径1.2μm、目付40g/m
2のポリエチレンテレフタレート(PET)製不織布(不織繊維構造体)3bを10枚、平均繊維径14.5μm、目付90g/m
2のフェルト状活性炭(繊維状活性炭)4を4枚、合計14枚をこの順に積層した。この積層ろ材を72×72mm
2の正方形に切断して硬質容器のカラム2に充填し、有効ろ過面積67×67mm
2となるように超音波溶着法を用いて溶着することで、白血球及び薬剤除去フィルター1を作成した。
(白血球及び薬剤除去回路の作成)
【0067】
上記の白血球及び薬剤除去フィルター1を、不活化用バック13と処理液回収バック14との間に配置し、不活化用バック13に接続した導管を白血球及び薬剤除去フィルター1の入口接続部5aへ、処理液回収バック14に接続した導管を白血球及び薬剤除去フィルター1の出口接続部5bへそれぞれ接続した。また、それぞれの導管として、内径3.0mm、外径4.2mmのポリ塩化ビニル製のチューブを使用した。
(繊維状活性炭の比表面積測定)
【0068】
(株)島津製作所製自動比表面積測定装置Tristar3000の測定セルに、上記繊維状活性炭4を必要量入れて密栓し、(株)島津製作所製サンプル脱ガス装置VacPrep061を用いて100ミリTorr以下で60分間脱ガスを行い、吸着ガス:窒素ガス、吸着温度:液体窒素温度にて、気体吸着法により比表面積を測定した結果、900m
2/gであった。
(通気圧損値の評価)
【0069】
白血球及び薬剤除去フィルター1のカラム2の入口2aから、膜流量計により通気線速を0.73m/分に調整した気体を流入させ、カラム2の出口2bから上記気体を自由に排出させた。その後流量が安定してからフィルター部分の入口圧と出口圧の差を圧力トランスデューサで測定したところ、通気圧損は500Paであった。
(重力落差による薬剤ろ過方法)
【0070】
上記白血球及び薬剤除去方法、及びシステムを用いた薬剤ろ過方法は以下の通りである。生理食塩水にメチレンブルーを溶解させ1μMに調製した溶液を、白血球及び薬剤除去フィルター1に適した量調整し、不活化用バック13に封入した。次に、上記白血球及び薬剤除去フィルター1のカラム2の入口2aから重力落差によって流入させ、出口2bより排出させることにより白血球薬剤ろ過を実施した。
(薬剤除去率の測定方法)
【0071】
ろ過前後の上記メチレンブルー溶液を石英セルに入れ、JASCO社製紫外可視分光光度計V−570にセットし644nmの吸光度測定を行った。濃度既知のメチレンブルー溶液より得られた検量線で濃度換算を行い、薬剤除去率を以下の式により計算した。
薬剤除去率(%)=(ろ過後のメチレンブルー濃度mM)/(ろ過前のメチレンブルー濃度mM)×100
(重力落差によるヒト血ろ過方法)
【0072】
上記白血球及び薬剤除去方法、及びシステムを用いたヒト血ろ過方法は以下の通りである。健常人より採血したヒト全血を白血球及び薬剤除去フィルター1に適した量、不活化用バック13に封入した。次に、不活化用バック13に封入したヒト全血を、上記白血球及び薬剤除去フィルター1のカラム2の入口2aから重力落差によって流入させ、出口2bより排出させることにより実施した。
(ヒト全血採取方法)
【0073】
上記ヒト全血は、全血100mlに対し、抗凝固剤としてCPD14mlを添加する割合で健常人より採血し得られた。採血後の全血は室温22℃で保管し、採血から4時間以内に使用した。
(白血球除去能の評価方法)
【0074】
白血球除去能の指標として、白血球除去率を測定した。ろ過前後のヒト全血中白血球濃度を、日本ベクトンディッキンソン社製LeucoCOUNTキット、及びフローサイトメーターFACSCantoIIを用いて測定し、以下の式から白血球除去率を算出した。
白血球除去率=log
10{ろ過後ヒト全血中白血球濃度(/ml)÷ろ過前ヒト全血中白血球濃度(/ml)}
(溶血の評価方法)
【0075】
血液製剤の溶血の指標として、上清ヘモグロビン(Hb)濃度を以下のように測定した。ろ過後のヒト全血を採血管に入れ、KUBOTA社製テーブルトップ遠心機5100を用いて3000rpm(1700×g)、15分間遠心分離することにより、上清を回収した。次に、ヘモキュー社製マイクロキュベットの先端部分に接触させ、上清を吸い上げた。このマイクロキュベットを、ヘモキュー社製遊離/低濃度ヘモグロビン測定装置にセットし、上清Hb濃度を測定した。ここで、上清Hb濃度が0.02g/dLを超えないことが好ましい。
(流れ性の評価方法)
【0076】
白血球及び薬剤除去フィルター1に対するヒト血の流れ性の指標として、ろ過処理に要した時間を以下のように測定した。ろ過開始時点は、全血が落差により不活化用バック13から白血球及び薬剤除去フィルター1のカラム2の入口2aに向かって鉛直下方に移動し始めた時点とし、SEIKO社製ストップウォッチS056により計測を開始した。ろ過終了時点は、入口2a側の容器とろ材の間に充填された血液がなくなった時点として、ストップウォッチ計測を終了した。
【0077】
実施例1の評価結果より、繊維状活性炭の比表面積を900m
2/g、白血球及び薬剤除去フィルター1の通気圧損を500Paとすることにより、薬剤除去率は88%、白血球除去率は−3.5log
10、処理時間は11.2分、上清Hb濃度は0.00g/dLとなった。
(実施例2)
【0078】
白血球及び薬剤除去フィルター1において、実施例1と同じPET製不織布3bを22枚、平均繊維径及び目付が実施例1と同じでミクロ孔の開孔度合が異なるフェルト状活性炭4を4枚、合計26枚をこの順に積層したこと以外は、実施例1と同じ方法で白血球及び薬剤除去フィルター1を作成し、評価を行った。実施例1と同じ方法で測定した繊維状活性炭の比表面積は1800m
2/g、白血球及び薬剤除去フィルター1の通気圧損は1200Paであった。
【0079】
実施例2の評価結果より、繊維状活性炭の比表面積を1800m
2/g、白血球及び薬剤除去フィルター1の通気圧損を1200Paとすることにより、薬剤除去率は99.5%以上、白血球除去率は−4.2log
10、処理時間は16.1分、上清Hb濃度は0.01g/dLとなった。
(実施例3)
【0080】
白血球及び薬剤除去フィルター1において、実施例1と同じPET製不織布3bを32枚、平均繊維径及び目付が実施例1と同じでミクロ孔の開孔度合が異なるフェルト状活性炭4を4枚、合計36枚をこの順に積層したこと以外は、実施例1と同じ方法で白血球及び薬剤除去フィルター1を作成し、評価を行った。実施例1と同じ方法で測定した繊維状活性炭の比表面積は3000m
2/g、白血球及び薬剤除去フィルター1の通気圧損は2000Paであった。
【0081】
実施例3の評価結果より、繊維状活性炭の比表面積を3000m
2/g、白血球及び薬剤除去フィルター1の通気圧損を2000Paとすることにより、薬剤除去率は99.5%以上、白血球除去率は−4.8log
10、処理時間は23.6分、上清Hb濃度は0.01g/dLとなった。
(実施例4)
【0082】
白血球及び薬剤除去フィルター1において、実施例1と同じPET製不織布3bを10枚、平均繊維径及び目付が実施例1と同じでミクロ孔の開孔度合が異なるフェルト状活性炭4を4枚、合計14枚をこの順に積層したこと以外は、実施例1と同じ方法で白血球及び薬剤除去フィルター1を作成し、評価を行った。実施例1と同じ方法で測定した繊維状活性炭の比表面積は750m
2/g、白血球及び薬剤除去フィルター1の通気圧損は500Paであった。
【0083】
実施例4の評価結果より、繊維状活性炭の比表面積を750m
2/g、白血球及び薬剤除去フィルター1の通気圧損を500Paとすることにより、薬剤除去率は85%、白血球除去率は−3.5log
10、処理時間は12.0分、上清Hb濃度は0.00g/dLとなった。
(実施例5)
【0084】
白血球及び薬剤除去フィルター1において、実施例1と同じPET製不織布3bを8枚、平均繊維径及び目付が実施例1と同じでミクロ孔の開孔度合が異なるフェルト状活性炭4を4枚、合計12枚をこの順に積層したこと以外は、実施例1と同じ方法で白血球及び薬剤除去フィルター1を作成し、評価を行った。実施例1と同じ方法で測定した繊維状活性炭の比表面積は900m
2/g、白血球及び薬剤除去フィルター1の通気圧損は400Paであった。
【0085】
実施例5の評価結果より、繊維状活性炭の比表面積を900m
2/g、白血球及び薬剤除去フィルター1の通気圧損を400Paとすることにより、薬剤除去率は87%、白血球除去率は−3.3log
10、処理時間8.4分、上清Hb濃度は0.00g/dLとなった。
(実施例6)
【0086】
白血球及び薬剤除去フィルター1において、実施例1と同じPET製不織布3bを36枚、平均繊維径及び目付が実施例1と同じでミクロ孔の開孔度合が異なるフェルト状活性炭4を4枚、合計40枚をこの順に積層したこと以外は、実施例1と同じ方法で白血球及び薬剤除去フィルター1を作成し、評価を行った。実施例1と同じ方法で測定した繊維状活性炭の比表面積は3000m
2/g、白血球及び薬剤除去フィルター1の通気圧損は2250Paであった。
【0087】
実施例6の評価結果より、繊維状活性炭の比表面積を3000m
2/g、白血球及び薬剤除去フィルター1の通気圧損を2250Paとすることにより、薬剤除去率は99.5%以上、白血球除去率は−5.0log
10、処理時間は28.2分、上清Hb濃度は0.02g/dLとなった。
(比較例1)
【0088】
白血球及び薬剤除去フィルター1において、平均繊維径及び目付が実施例1と同じでミクロ孔の開孔度合が異なるフェルト状活性炭4を4枚、実施例1と同じPET製不織布3bを22枚、合計26枚をこの順に積層したこと以外は、実施例1と同じ方法で白血球及び薬剤除去フィルター1を作成し、評価を行った。実施例1と同じ方法で測定した繊維状活性炭の比表面積は1800m
2/g、白血球及び薬剤除去フィルター1の通気圧損は1200Paであった。
【0089】
比較例1の評価結果より、繊維状活性炭の比表面積を1800m
2/g、白血球及び薬剤除去フィルター1の通気圧損を1200Paとすることにより、薬剤除去率は99.5%以上、白血球除去率は−3.9log
10、上清Hb濃度は0.13g/dLとなった。処理時間60分経過しても、ストップフローによりろ過が終了しなかったため途中で中止した。
【0090】
白血球及び薬剤除去率、上清Hbの評価結果を表1に示す。
【表1】