特開2015-121429(P2015-121429A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日東精工株式会社の特許一覧

特開2015-121429回転体回転検出装置および流量信号検出装置
<>
  • 特開2015121429-回転体回転検出装置および流量信号検出装置 図000003
  • 特開2015121429-回転体回転検出装置および流量信号検出装置 図000004
  • 特開2015121429-回転体回転検出装置および流量信号検出装置 図000005
  • 特開2015121429-回転体回転検出装置および流量信号検出装置 図000006
  • 特開2015121429-回転体回転検出装置および流量信号検出装置 図000007
  • 特開2015121429-回転体回転検出装置および流量信号検出装置 図000008
  • 特開2015121429-回転体回転検出装置および流量信号検出装置 図000009
  • 特開2015121429-回転体回転検出装置および流量信号検出装置 図000010
  • 特開2015121429-回転体回転検出装置および流量信号検出装置 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2015-121429(P2015-121429A)
(43)【公開日】2015年7月2日
(54)【発明の名称】回転体回転検出装置および流量信号検出装置
(51)【国際特許分類】
   G01F 1/06 20060101AFI20150605BHJP
   G01F 3/08 20060101ALI20150605BHJP
【FI】
   G01F1/06
   G01F3/08
【審査請求】未請求
【請求項の数】3
【出願形態】OL
【全頁数】13
(21)【出願番号】特願2013-264327(P2013-264327)
(22)【出願日】2013年12月20日
(71)【出願人】
【識別番号】000227467
【氏名又は名称】日東精工株式会社
(74)【代理人】
【識別番号】100137486
【弁理士】
【氏名又は名称】大西 雅直
(72)【発明者】
【氏名】安田 晴夫
【テーマコード(参考)】
2F030
【Fターム(参考)】
2F030CA03
2F030CC01
2F030CE11
(57)【要約】
【課題】液体中に配置される回転体の軽量化を図ってその回転を検出することができる回転体回転検出装置を提供する。
【解決手段】本発明は、ハウジング2に形成される室内の液体中で回転する回転翼30を備える回転体3に適用されるものであって、室外の位置でかつ回転体3の回転翼30の回転を検出する位置に配置される発信側圧電素子40および受信側圧電素子50と、受信側圧電素子50の検出信号から回転検出信号を生成する信号処理部6とを備えることを特徴としている。この構成によれば、発信側圧電素子4から発信される超音波が回転体3の回転翼30を透過または回転翼30に反射することにより減衰するので、これを受信側圧電素子50で検出することにより回転体3の回転の有無を判別し、この判別から回転体3の回転を検出して、回転検出信号kを生成することができる。
【選択図】図1
【特許請求の範囲】
【請求項1】
ハウジングに形成された室内の液体中で回転する回転体に適用されるものであって、室外の位置でかつ回転体の回転を検出する位置に配置される超音波発信部および超音波受信部と、超音波受信部の検出信号から回転検出信号を生成する信号処理部とを備えることを特徴とする回転体回転検出装置。
【請求項2】
前記信号処理部は、超音波発信部を所定時間間隔で発振させる発振指令信号を出力する発振回路と、この発振回路の発振指令信号を受けてから一定時間経過するまで超音波受信部の検出信号を遮断する受信タイミング回路とを備えることを特徴とする請求項1に記載の回転体回転検出装置。
【請求項3】
請求項1または2に記載の回転体回転検出装置を流量計測部に適用すべく、前記回転体回転検出装置により被測液体の圧力を受けて回転または往復移動する流量計測部の回転または往復移動を検出して、被測液体の流量に応じた流量検出信号を生成するように構成することを特徴とする流量信号検出装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液体中で回転する回転体の回転を検出する回転体回転検出装置およびこれを適用して被測液体の圧力を受けて回転または揺動回転するロータや往復移動するピストン等の流量計測部の回転または往復を検出して流量信号を検出する流量信号検出装置に関するものである。
【背景技術】
【0002】
従来、モータ、風力等の動力を受けて回転する回転体を備えた機器は計測機器を含め各種あるが、その機器の目的上、またその回転体の制御上、回転体の回転を検出する必要が生じている。その際、これら機器の回転体が大気中に設置される場合には、レーザー光等を適用した光電センサがその取付け位置を自由に選択できることからこれらを用いた回転検出装置が多用されている。これに対して、回転体が液体中に配置される機器にあって、その回転を検出する必要がある場合、液体中でレーザ光を照射することができず、光電センサの使用が困難となっている。そのため、回転体を流量計測部として被測液体中に配置する流量計にあっては、流量計測部にレーザ光を照射することができないことから、流量計測部の回転の検出に際し、流量計測部の形態、すなわちタービン式流量計にあってはタービン翼、容積式流量計にあってはロータに応じた回転検出装置が各種考えられている。中でも、前述の流量計測部のいずれにも対応可能な回転検出装置として、ロータリピストン流量計(以下流量計という)に適用された流量信号検出装置が特開平9−297045号公報(特許文献1参照)に開示されている。この流量信号検出装置101は、図9に示すように環状凹溝様の計量室100Sが形成された流量計本体102と、計量室100Sの内部に配置される流量計測部をなす筒部103aと底部103bとが備わった筒様のロータ103と、その底部103bの中心位置に埋め込まれた磁石103cと、磁界の変化を非磁性体の遮蔽板102aを介して計量室100Sの外部で検出する磁気抵抗素子等の磁気センサ104と、この磁気センサ104およびその検出値の表示部105を内包する上蓋120とからなっている。この流量信号検出装置101によれば、計量室100Sの内部のロータ103は流入口から流入して流出口から流出する被測液体の圧力を受けて揺動回転(以下、回転という)する。これにともなって、磁石103cも移動するので、磁気センサ104が磁石103cの移動により発生する磁界の変化をロータ103の回転として検出することができる。そのため、この磁気センサ104の検出信号からロータ103の回転にともなう回転検出信号、すなわち流量検出信号を生成することができ、この流量検出信号から被測液体の流量が計測されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平9−297045号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記流量信号検出装置に見られる回転体回転検出装置では、流量計測部、すなわち回転体に磁石が埋め込まれているので、その埋め込み部分の肉厚を十分厚くしておかねばならず、その分回転体の質量が大きくなるばかりか、ハウジングが磁化されてハウジングの壁面等との接触部分に接着力が生じる。これにより、これら接触部分での摩擦抵抗が大きくなり、回転体の回転ロスが大きくなって、この回転体の回転を検出しても、精度の高い回転検出とは言えないという問題が生じている。
【0005】
また、上記流量信号検出装置101を見てみると、前述の回転体の一例であるロータ103が流量計本体102に形成された計量室100Sの各面との摩擦抵抗を増大させても、大きな流量の被測液体が流入する時にはロータ103は前述の摩擦抵抗の影響を受けずに支障なく回転することができる。そのため、被測液体の流量に応じた流量信号が得られ、被測液体を精度よく計測することができる。しかしながら、被測液体の圧力が小さくなる微小な流量、特に点滴のような極微小な流量の被測液体が流入する時には、前述の摩擦抵抗によりロータ103は円滑に回転できない。そのため、ロータ103と計量室100Sの各面との接触部分から被測液体が漏れ、被測液体の流量に応じた流量信号を得ることができず、精度のよい計測ができないというような問題が生じている。
【0006】
また、前述の流量信号検出装置101では、ロータ103が配置された計量室100Sと磁気センサ104が配置された空間とが遮蔽板102aにより遮断され、被測液体が前述の空間内に漏洩しないように構成されている。そのため、ロータ103の底部103bに埋め込まれた磁石103cによる磁界の変化を磁気センサ104により高精度に取り込むためには、遮蔽板102aの板厚を薄くしなければならず、その結果高圧な被測液体の計測には対応できないという問題が生じている。
【0007】
さらに、前記流量信号検出装置101ではロータ103の底部103bに磁石103cが埋め込まれることから、磁石103cに耐腐食性の樹脂コーティング処理を施す必要がある。そのため、この樹脂コーティング処理の経年変化による耐腐食性の劣化も考慮しなければならず、これにより流量信号検出装置101の寿命が短くなってしまうというような問題も生じている。
【0008】
本発明の第1の目的は、回転体回転検出装置が持つ上記に例示される問題を除去して、液体中に配置される回転体の回転を検出することができる回転体回転検出装置を提供することである。
【0009】
また、本発明の第2の目的は流量信号検出装置が持つ上記に例示されるような問題を除去することであり、十分な圧力が得られる大流量の被測液体はもとより、十分な圧力が得られない微小な流量、特に点滴のような極微小な流量の被測液体を精度よく計測するために最適な流量信号検出装置を提供することである。
【課題を解決するための手段】
【0010】
本発明は、上記第1の目的を達成するために、ハウジングに形成された室内の液体中で回転する回転体に適用されるものであって、室外の位置でかつ回転体の回転を検出する位置に配置される超音波発信部および超音波受信部と、超音波受信部の検出信号から回転検出信号を生成する信号処理部とを備えることを特徴としている。この構成によれば、超音波発信部から発信される超音波が回転体を透過または回転体に反射することにより減衰するので、これを超音波受信部で検出することにより回転体の回転の有無を判別し、この判別から回転体の回転を検出することができる。そのため、回転体の回転を検出するに際して回転体に磁石を埋め込む必要がなく、その分の回転体の肉厚を薄くしてその軽量化を図ることができる。また、この回転体の軽量化により、その接触部分での摩擦抵抗が小さくなるばかりか、回転体が磁化されてハウジングの壁面等との接触部分に接着力が生じるようなことがないので、回転体の回転ロスが小さくなり、精度の高い回転検出が可能となる。
【0011】
また、本発明は超音波発信部の発振と同時に生じる励磁共振波等のノイズが電磁波の形でまたはハウジングを伝達することによって超音波受信部で検出される影響を避けて回転体の回転を正確に検出して回転検出信号を生成するため、信号処理部は超音波発信部を所定時間間隔で発振させる発振指令信号を出力する発振回路と、この発振回路の発振指令信号を受けてから一定遮蔽時間経過するまで超音波受信部の検出信号を遮断する受信タイミング回路とにより構成されることが望ましい。
【0012】
さらに、本発明は第2の目的を達成するために、前述のいずれかの回転体回転検出装置を流量計測部に適用すべく、前記回転体回転検出装置により被測液体の圧力を受けて回転または往復移動する流量計測部の回転または往復移動を検出して、被測液体の流量に応じた流量検出信号を生成するように構成することを特徴としている、この構成によれば、流量計測部の回転または往復移動にともなって流量検出信号を生成でき、またこの流量検出信号に基づいて被測液体の流量を正確に計測することができる。
【発明の効果】
【0013】
以上説明した本発明によれば、回転体の軽量化を図って回転ロスを少なくして回転体を回転させ、その回転を精度よく検出することができる回転体回転検出装置を提供することができる。また、本発明によれば前述の回転体回転検出装置を適用して、十分な圧力が得られる流量の被測液体はもとより、十分な圧力が得られない微小な流量、特に点滴のような極微小な流量の被測液体に対しても精度のよい流量信号の検出が可能な流量信号検出装置を提供することができる。
【図面の簡単な説明】
【0014】
図1】本発明の第1の実施形態に係る回転体回転検出装置の概略説明図。
図2図1の信号処理部の各点における波形図。
図3】本発明の第2の実施形態に係る流量信号検出装置(信号処理部を省略)の概略説明図。
図4】本発明の第2の実施形態に係るスライドベーン式流量計を説明する要部断面図。
図5】本発明の第3の実施形態に係る流量信号検出装置(信号処理部を省略)を説明する分解図。
図6図5の流量信号検出装置の内部構造を説明する断面図。
図7】本発明の第4の実施形態に係る流量信号検出装置(信号処理部を省略)の概略説明図。
図8】本発明のその他の実施形態に係る流量検出装置(信号処理部を省略)の概略説明図。
図9】従来例に係る流量信号検出装置を備えた流量計の縦断面図。
【発明を実施するための形態】
【0015】
(第1の実施形態)
以下、本発明の第1の実施形態に係る回転体回転検出装置を図面に基づき説明する。この回転体回転検出装置1は、図1に示すように機器のハウジング2に形成される室内の液体中で回転する回転体3と、ハウジング2の上部に取り付けられる上蓋20とを有している。前記回転体3は、上端から下端に向かって約45°ねじれた複数枚の回転翼30を有し、この回転翼30はハウジングの室内の液体を攪拌でき、または室内の液体が流れている時には回転できるように構成されている。また、前記回転体回転検出装置1は上蓋20の外面に配置される超音波発信部4とハウジング2の外面に配置される超音波受信部5とを有し、これら超音波発信部4および超音波受信部5は前記回転体3の回転翼30の回転を検出する位置(回転体3の回転に伴って当該回転体3の回転翼30に対する超音波の減衰率が変化する位置)に取り付けられている。前記超音波発信部4および超音波受信部5は後記する信号処理部6に接続されており、超音波発信部4から超音波を発信させるとともに、超音波受信部5の検出信号から回転検出信号kを生成するように構成されている。
【0016】
前記超音波発信部4は、振動子の一例をなす円板形状の発信側圧電素子40を有し、この発信側圧電素子40はその両電極間に電圧が印加されると超音波を発信することができる構造となっている。また、前記超音波受信部5は超音波発信部4と同様に円板形状の受信側圧電素子50を有し、この受信側圧電素子50は発信側圧電素子40から発信される超音波により機械的な力を受けると両電極間に電圧を発生させる構造となっている。前記発信側圧電素子40および受信側圧電素子50はそれぞれ発信側ホルダ(図示せず)、受信側ホルダ(図示せず)の端部に収納され、これらホルダを介してそれぞれ前記上蓋20、ハウジング2に取り付けられている。
【0017】
前記発信側圧電素子40と上蓋20との間および受信側圧電素子50とハウジング2との間にはそれぞれグリセリン(図示せず)が注入され、これらの密着度が高められている。これにより、前記発信側圧電素子40から発信される超音波は空気層に遮断されることなく受信側圧電素子50に向かって発信され、またハウジング2の受信側圧電素子取り付け面に到達する超音波は空気層で遮断されることなく受信側圧電素子50に到達する構造が得られている。前記超音波は、その特性上、受信側圧電素子50に到達するまでに透過する媒質の数およびその透過距離に応じて減衰し、透過する媒質の数が多いほど、その透過距離が長いほど減衰量は大きくなる。この特性および回転体の回転翼30の回転に伴って超音波減衰率が変化する構造であることにより、回転体3の回転翼30が発信側圧電素子40と受信側圧電素子50との間を通過するにともなって、この超音波が到達する受信側圧電素子50の検出信号が刻々変化することとなる。
【0018】
前記信号処理部6は、発信側圧電素子40を所定時間間隔で発振させるための発振指令信号として発振指令パルスaを出力する発振回路7と、発振指令パルスaのパルス幅を調整してパルス幅調整パルスbを出力する発信パルス幅調整回路8と、一定の電圧に昇圧する昇圧回路9と、この昇圧回路9により昇圧された電圧を発信側圧電素子40に印加する超音波発信部駆動回路10とを備えている。また、前記信号処理部6は受信側圧電素子50の検出信号を取り込む受信回路11と、この検出信号の高周波成分を通過させて高周波出力信号cを出力するハイパスフィルタ12と、ハイパスフィルタ12の高周波出力信号cを増幅する交流増幅回路13とを備えている。さらに、前記信号処理部6は前記発振回路7から発振指令パルスmを受けて一定遮蔽時間経過するまで交流増幅回路13を停止させるマスク指令信号d、および前記一定遮蔽時間経過後一定受信時間交流増幅回路13を作動させる受信タイミング信号eを出力する受信タイミング回路14と、交流増幅回路13の増幅出力信号fの(+)側のピーク値を順次記憶し、このピーク値および前記パルス幅調整パルスbに基づいてピーク波形gを出力するピークホールド回路17と、前記ピーク波形gを増幅する直流増幅回路15と、増幅されたピーク波形gを滑らかな波形に変換する積分回路16とを備えている。しかも、前記信号処理部6は積分回路16の積分出力信号iが超音波の減衰を示す設定値よりも小さくなる時あるいは前記設定値よりも大きくなる時にそれぞれ判別信号を出力する信号判別回路18と、これら判別信号の切替わる時に、回転検出信号kを出力するパルス出力回路19とを備えている。また、前記受信タイミング回路14は、前記マスク指令信号dあるいは前記受信タイミング信号eを出力する他に、前記パルス幅調整パルスbと同様の信号であるリセット信号qを前記ピークホールド回路17へ出力する構成であるため、ピークホールド回路17のピーク波形gが図2(g)に示すように一旦リセットされる。さらに、前記受信タイミング回路14の一定遮蔽時間は、発信側圧電素子40から発信される超音波が受信側圧電素子50に時間遅れを持って到達することから、発信側圧電素子40の発振と同時に生じる励磁共振波等のノイズが電磁波の形でまたはハウジングを伝達することによって受信側圧電素子に伝搬する影響を避けるために設定される。これにより、図2に示すように回転体の検出波形は、高周波出力信号cから増幅出力信号f、ピーク波形g、積分出力信号iとなり、さらに、判別信号jに基づいて回転検出信号kが出力される。よって、図2(k)に示すように前記発信側圧電素子40および前記受信側圧電素子50との間を前記回転翼30の1枚が通過する度に2つの立ち上がり信号が出力可能となる。
【0019】
上記回転体回転検出装置では、図2(a)に示すように発振回路7から一定周波数の発振指令パルスaが出力されると、発信パルス幅調整回路8を経由して検出対象である回転体3の回転翼30の検出幅に応じたパルス幅を持つパルス幅調整パルスbが図2(b)に示すように超音波発信部駆動回路10に出力される。この超音波発信部駆動回路10は前記パルス幅調整パルスbを受けると、前記昇圧回路9により昇圧された電圧を発信側圧電素子40に印加する。これにより、発信側圧電素子40はパルス幅調整パルスのパルス幅に応じた一定時間超音波を受信側圧電素子50に向かって発信する。そのため、液体中に配置された回転体3の回転翼30がその回転を検出する位置に達してない時には、この超音波は液体中を透過して受信側圧電素子50に到達する。この時、超音波が透過する媒質は液体のみであるので、その減衰量は小さく、受信側圧電素子50の検出信号は大きな値となる。逆に、前記回転体3の回転翼30がその回転を検出する位置に達する時には、この超音波は液体と回転体3とを透過して受信側圧電素子50に到達するので、超音波が透過する媒質は液体と回転体3となり、その減衰量は大きくなって、受信側圧電素子50の検出信号は小さな値となる。この受信側圧電素子50の検出信号は、受信回路11で受信され、ハイパスフィルタ12を経由してその高周波出力信号cのみが図2(c)に示すように交流増幅回路13に出力される。
【0020】
一方、前記発振回路7から発振指令パルスmが出力されると、図2(d)に示すように受信タイミング回路14からマスク指令信号dが出力され、一定遮蔽時間交流増幅回路13は停止するので、前記交流増幅回路13に送られた高周波出力信号は一定遮蔽時間遮断される。この一定遮蔽時間が経過すると、図2(e)に示すように受信タイミング信号eが出力(図ではローレベル出力)されるので、前記交流増幅回路13が作動する。そのため、前記高周波出力信号cは一定増幅時間交流増幅されるとともに、これが図2(f)に示すようにピークホールド回路17に出力され、検出信号の(+)側のピーク値が刻々記憶される。このピーク値は前記一定増幅時間が経過すると、直流増幅回路15を経由して積分回路16に出力される。従って、前述した回転体3の回転翼30がその回転を検出する位置にあるか否かによって変化する検出信号のピーク値が数十個の発振指令パルス分順次保持されるので、図2(i)に示すように回転翼30の回転の有無を示す特性を持つ積分出力信号iが得られる。この積分出力信号iが信号判別回路18において超音波の減衰を示す設定値と比較判別され、図2(j)に示すように前記判別信号jがパルス出力回路19に出力され、このパルス出力回路19から図2(k)に示すように回転検出信号kとして所定の回転検出パルスを生成することができる。
【0021】
その結果、液体中に配置される回転体3の回転翼30の回転を検出するに際して、回転体3の回転翼30に磁石を埋め込む必要がなくなるため、回転体3の回転翼30の肉厚を薄くして回転体3の軽量化を図り、回転体3が接触する部分での摩擦抵抗を軽減でき、回転体3は回転ロスを少なくして円滑に回転することができる。
【0022】
また、前記回転体3の回転翼30の回転を受信側圧電素子50の検出信号から検出しているので、その回転検出に際しては磁石を使用する必要がなく、回転体3が配置されるハウジング2内を密閉するために鋼製の上蓋20を使用できる。また、この上蓋に加えて遮蔽板(図示せず)を使用する場合でも、非磁性体の材料を使用する必要がないばかりか、その厚さを考慮する必要がないので、その厚さを十分厚くして高耐圧設計の回転体回転検出装置を提供できる。しかも、回転体3の回転翼30に磁石を埋め込むための機械加工や、磁石に耐腐食性の樹脂コーティング処理を施す必要がなく、製造安価で長寿命の回転体回転検出装置を提供することができる。
【0023】
なお、回転体回転検出装置1は回転体3の回転翼30の回転検出以外にも適用でき、往復揺動または直線往復移動する物体(図示せず)の往復揺動および直線往復移動の検出にも適用できる。
【0024】
(第2の実施形態)
本発明の第2の実施形態に係る流量信号検出装置を図面に基づき説明する。この流量信号検出装置は、第1の実施形態の回転体回転検出装置1を適用するもので、具体的には図3および図4に示すように回転体回転検出装置1のハウジング2をスライドベーン式流量計の流量計本体2aとし、液体中で回転する回転体3を流量計測部の一例のベーン30aを付設するロータ3aとしたものある。そのため、この流量信号検出装置1aでは流量計本体2aおよびロータ3a並びに超音波発信部40aおよび超音波受信部50aの取り付け位置を除いては、前述の回転体回転検出装置1の構成と同一であるので、この同一部分の説明を省略し、流量計本体2aおよびロータ3a並びに超音波発信部40aおよび超音波受信部50aの取り付け位置について説明する。前記流量計本体2aは、大円弧面2aa、小円弧面2ab並びにこれらを滑らかに繋ぐ流入口側カム曲面2acおよび流出口側カム曲面2adから形成される計量室Saと、この計量室Saの両側に位置する流入口2aeと流出口2afとを有している。また、前記流量計本体2aには計量室Saの上方を覆うように上蓋20aが取り付けられており、ロータ3aの保守作業が可能なように構成されている。前記計量室Saには円柱様のロータ3aが計量室Saの小円弧面2abのほぼ全面にわたって接触または近接して回転するように配置されており、大円弧面2aaと両カム曲面2ac,2adとの間にベーン30aが突出できるスペースが形成されている。前記ロータ3aには、その軸線に沿って4分割する位置でその全長にわたって延びる4個のベーン収納溝3aaが設けられており、ベーン30aを完全に収納するための十分な深さを有している。
【0025】
前記ベーン収納溝3aaには、それぞれ板様のベーン30aが配置されており、これらベーン30aは対向する2枚のベーン30a,30aを一組として、それぞれロータ3aの軸線と交叉する方向に配置された連結ロッド3abにより2個所で連結されている。これら連結ロッド3abとベーン30aとは、ばね(図示せず)によりベーン30aを常時突出する方向に付勢する連結構造となっており、ベーン30aがベーン収納溝3aaに沿って突出または後退可能となっている。この構成により、前記ベーン30aは計量室Saの小円弧面2abに接触する時にはベーン収納溝3aaに完全に収納され、流入口側カム曲面2ac、大円弧面2aaおよび流出口側カム曲面2adに接触する時には、ベーン収納溝3aaから突出する状態が得られる。また、前述の構成により隣接する2枚のベーン30a、30aと大円弧面2aaとロータ3aの4分割円周面とにより囲まれるとじ込み容積が得られるので、この容積から単位吐出量が得られる。
【0026】
前記発信側圧電素子40aおよび受信側圧電素子50aの取り付け位置は、大円弧面に接触するベーン30aの通過を検出する位置で、かつ計量室Saの室外の位置であればよい。これにより、ベーン30aの回転、すなわちロータ3aの回転を検出することができる。
【0027】
この構成による流量信号検出装置1aでは、被測液体が流入口2aeから計量室Saの内部に流入すると、被測液体の圧力がベーン30aに加わって流出口2af側に押し出され、ベーン30aとともにロータ3aが回転する。この時、計量室Saの大円弧面2aaと隣接する2枚のベーン30a,30aとロータ3aの4分割円周面とにより囲まれる容積を単位吐出量としてこの単位吐出量ごとに被測液体が流出口2afから流出する。そのため、ベーン30aの回転、すなわちロータ3aの回転を検出することにより、被測液体の流量に応じて流量検出信号を生成することができる。このベーン30aの回転を検出するに際し、ベーン30aがその通過を検出する位置に達すると、第1の実施形態の回転体回転検出装置1と同様に、発信側圧電素子40aから発信される超音波がベーン30aを透過してその減衰量が大きくなるので、この超音波が到達する受信側圧電素子50aの検出信号から、ベーン30aの回転すなわちロータ3aの回転を検出することができる。これにより、ベーン30aの回転検出に際して、ベーン30aに磁石を埋め込む必要がなく、ベーン30aの肉厚を薄くしてその軽量化を図ることにより、ベーン30aと計量室Saの各面との摩擦抵抗を軽減でき、ベーン30aおよびロータ3aは回転ロスを少なくして円滑に回転できる。これにともなって、ベーン30aと計量室Saの各壁面との接触部分からの被測液体の漏れも少なくなり、小流量から微小な流量の被測液体の計測に際して正確に流量信号を出力することができ、より精度の高い計測を行うことができる。その上、点滴のような極微小な流量の被測液体であっても、その圧力によってもロータ3aは円滑に回転することができるので、小流量から微小な流量の被測液体の計測はもとより極微小な流量の被測液体の計測にも最適な流量信号検出装置を提供することができる。
【0028】
また、前記ベーン30aすなわちロータ3aの回転を受信側圧電素子50aの検出信号から検出しているので、ベーン30aの回転検出に際しては磁石を使用する必要がなく、前述の回転体回転検出装置1の場合と同様に、高耐圧設計の流量信号検出装置を提供できるばかりか、製造安価で長寿命の流量信号検出装置を提供することができる。
【0029】
(第3の実施形態)
本発明の第3の実施形態に係る流量信号検出装置を図面に基づき説明する。この流量信号検出装置1bは、図5および図6に示すように第2の実施形態の流量信号検出装置1aをロータリピストン型流量計に適用するものである。そのため、この流量信号検出装置1bでは流量計本体2bの構造および流量計測部のロータ3bの構造並びに発信側圧電素子40bおよび受信側圧電素子50bの取り付け位置を除いて、第2の実施形態に係る流量信号検出装置1aの構成と同一であるので、この同一部分の説明を省略し、流量計本体2bの構造および流量計測部のロータ3bの構造並びに発信側圧電素子40bおよび受信側圧電素子50bの取り付け位置について説明する。前記流量計本体2bは、円周壁面2baとその中心側に設けられた隔壁2bbの隔壁外周壁面2bcとこれらを繋ぐ底面2bdとにより形成される環状凹溝様の計量室Sbを有している。前記計量室Sbの底面2bdには、被測液体の流入口2beおよび流出口2bfが設けられており、これら流入口2beおよび流出口2bfにそれぞれ流量計本体2bに接続される流入側接続管(図示せず)、流出側接続管(図示せず)が連通している。また、前記流量計本体2bには計量室Sbの上方を遮蔽するように遮蔽板(図示せず)および上蓋20bが取り付けられており、被測液体が計量室Sbの上方から漏洩しない構成となっている。
【0030】
前記計量室Sbの円周壁面2baと隔壁2bbとの間には流入口2beと流出口2bfとを遮断するように仕切り板2bhが配置されており、流入側接続管から流入する被測液体が流入口2be、環状凹溝様の計量室Sb、流出口2bfを順に通過して流出側接続管から流出するように構成されている。また、前記計量室Sbには筒部3baと底部(図示せず)とを持つ円筒様のロータ3bが筒部3baを介して底部3bbを前記底面2bdに対向配置、すなわち遮蔽板側に配置して、筒部外周面3bcの一部を計量室Sbの円周壁面2baに、筒部内周面3bdの一部を隔壁外周壁面2bcに接触または近接させながら計量室Sbの内部で揺動するように配置されている。
【0031】
前記ロータ3bには、その中心位置にロータ軸3beが設けられており、このロータ軸3beは前記隔壁2bbの内部に設けられた環状の案内溝2biに案内されている。また、前記ロータ3bにはその筒部3baと底部とにわたって前記仕切り板2bhを案内する切欠3bfが設けられており、この切欠3bfによりロータ軸3beが前記案内溝2biに沿って回転する際、ロータ3bが仕切り板2bhに食い込まずに、仕切り板2bhを中心に揺動可能となっている。
【0032】
前記発信側圧電素子40bおよび受信側圧電素子50bの取り付け位置は、前記計量室Sb内のロータ3bの通過を検出する位置であればよく、好ましくは平面視前記仕切り板2bhと隔壁2bbの中心とを結ぶ線の延長線上にあって、受信側圧電素子50bの縁部が計量室Sbの円周壁面2baに接触または近接する位置で、しかもその反対側の縁部が隔壁外周壁面2bcからロータ3bの筒部厚さ分またはほぼその厚さ分離れた位置にあればよい。
【0033】
この構成による流量信号検出装置1bでは、被測液体が流入口2beから計量室Sbの内部に流入すると、被測液体の圧力がロータ3bに加わって流出口2bf側に押し出される。これにともなって、ロータ軸3beが案内溝2biに沿って公転するので、ロータ3bが仕切り板2bhを中心に揺動を繰り返す。この時、前記ロータ3bがその通過を検出する位置に達すると、第2の実施形態の流量信号検出装置1aと同様に、発信側圧電素子40bから発信される超音波がロータ3bを透過してその減衰量が大きくなり、受信側圧電素子50bの検出信号は小さくなる。また、前記ロータ3bがその通過を検出する位置から外れる時、すなわちロータ3bの筒部3baが平面視受信側圧電素子50bの縁部と隔壁外周壁面2bcとの間に位置する時には、超音波は被測液体のみを透過するので、その減衰量は小さく、受信側圧電素子50bの検出信号は大きくなる。そのため、この超音波が到達する受信側圧電素子50bの検出信号からロータ3bの通過、すなわち揺動を検出することができ、この流量信号検出装置1bにおいても第2の実施形態の流量信号検出装置1aと同様の効果が得られる。また、この流量信号検出装置1bの場合、受信側圧電素子50bの縁部が平面視計量室Sbの円周壁面2baに接触または近接する位置となっているが、これに限定されるものではない。例えば、受信側圧電素子50bの縁部を平面視計量室Sbの円周壁面2baからロータ3bの筒部3baの厚さ分またはほぼその厚さ分離れた位置にしておけば、ロータ3bが前記仕切り板2bhと隔壁2bbの中心とを結ぶ線の延長線上を通過する際、受信側圧電素子50bは超音波の透過距離の長い筒部3baを検出しない。そのため、超音波はロータ3bの底部による減衰のみでその減衰量は小さく、受信側圧電素子50bの検出信号は大きな値となる。これにより、前記受信側圧電素子50bの縁部が隔壁外周壁面2bcからロータ3bの筒部厚さ分またはほぼその厚さ分離れた位置にある時に加えて、前述の位置にある時にも、受信側圧電素子50bの検出信号は大きな値となり、ロータ3bが1回転する間に、2個のピーク値および2個のボトム値を持つ特性の出力信号を出力できる。そのため、この出力信号から4個の流量検出信号を生成することができ、ロータ1回転あたりの流量の分解能を向上させることができる。
【0034】
(第4の実施形態)
本発明の第4の実施形態に係る流量信号検出装置を図面に基づき説明する。この流量信号検出装置1cは、第2および第3の実施形態の流量信号検出装置1a,1bをルーツ式容積流量計に適用するものある。そのため、この流量信号検出装置1cは、図7に示すように流量計本体2cの構造および流量計測部の回転子3c並びに発信側圧電素子40cおよび受信側圧電素子50cの取り付け位置を除いて、第2および第3の実施形態に係る流量信号検出装置1a,1bの構成と同一であるので、この同一部分の説明を省略し、流量計本体2cの構造および回転子3c並びに発信側圧電素子40cおよび受信側圧電素子50cの取り付け位置について説明する。前記流量計本体2cは、両側に被測液体の流入口2ceと流出口2cfとを持つ断面が長円形状に形成された計量室Scを有している。この計量室Scには、断面形状が滑らかな曲線で形成されるまゆ形状をした2個の回転子3c,3cが配置されており、この2個の回転子3c,3cはパイロットギヤ(図示せず)に規制されてお互い接触しないように回転する構成となっている。
【0035】
前記発信側圧電素子40cおよび受信側圧電素子50cの取り付け位置は、前記計量室Scの内部の回転子3cの通過を検出する位置であればよく、2個の回転子3c,3cが共に通過する位置にしておけば、流量検出信号を合計8個の流量検出信号を生成できるので、さらに好都合である。
【0036】
この構成による流量信号検出装置1cでは、第2および第3の実施形態の流量信号検出装置1a,1bと同様に、受信側圧電素子50cの検出信号により回転子3c,3cの回転を検出することができ、第2および第3の実施形態の流量信号検出装置1a,1bと同様の効果が得られる。
【0037】
本発明の実施形態に係る流量信号検出装置の変形例として、図8に示すように前述の流量信号検出装置1a,1b,1cを往復ピストン式容積流量計に適用する流量信号検出装置1dであってもよい。この流量信号検出装置1dは、流量計測部を往復移動するピストン2djとし、このピストン2djが流量計本体2dに形成される4個のシリンダ室2dkの内部でそれぞれ往復移動するように配置されている。これらピストン2djは、対向する2個のピストン2dj,2djを一組として調整ロッド2dpにより連結されている。この調整ロッド2dpは、カムフォロァ2dnの位置を後退自在に保持する調整部2dqを有し、これらカムフォロア2dnが流量計本体2dの中心で回転するカム2dmを挟むように配置されている。そのため、前記ピストン2djはこのカム2dmとカムフォロア2dnとの作動によりシリンダ室2dkの内部で往復移動するので、このピストン2djの通過を検出できる位置に発信側圧電素子40dと受信側圧電素子50dを配置しておけばよい。また、本発明に係る回転体回転検出装置1はもとより、いずれの流量信号検出装置1a,1b,1c,1dにあっても、この受信側圧電素子50、50a、50b、50c、50dの取り付け位置は流量計測部に反射する超音波を検出する位置であってもよい。
【0038】
なお、本発明の実施形態について説明したが、各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
【符号の説明】
【0039】
1…回転体回転検出装置
1a…流量信号検出装置
2…ハウジング
3…回転体
40…発信側圧電素子
50…受信側圧電素子
6…信号処理部
7…発振回路
14…受信タイミング回路
17…ピークホールド回路
18…信号判別回路
図1
図2
図3
図4
図5
図6
図7
図8
図9