【課題を解決するための手段】
【0028】
本発明は前記の状況に鑑みて、金属ナノ粒子としての性能を充分に発揮することができる高品質の金属ナノ粒子コロイドおよび金属ナノ粒子を量産レベルで、安価に提供することを目的になされたもので、あわせてその製造方法を提供するものである。
【0029】
以下、課題を解決するためになした本発明についてさらに具体的に説明する。
【0030】
課題を解決するためになされた本発明の例としての第1の発明(以下、発明1という)は、粒子のサイズがナノメーターレベルの金属微粒子すなわち金属ナノ粒子を主成分として含む金属ナノ粒子コロイドの製造方法の発明で、前記金属ナノ粒子コロイドを、減圧雰囲気中あるいは真空中で蒸発等により金属を移動可能状態にしたものを、溶媒に溶解させずに流動状にした膜状界面活性剤の移動体に結合させて金属ナノ粒子を収集することを繰り返して金属ナノ粒子コロイド中の金属ナノ粒子の濃度を高める工程を経て製造することを特徴とする金属ナノ粒子コロイドの製造方法である。
【0031】
発明1を展開してなされた本発明の例としての第2の発明(以下、発明2という)は、発明1に記載の金属ナノ粒子コロイドの製造方法において、前記金属ナノ粒子コロイドが溶媒に希釈されていないポリオキシアルキレンアミンを分散剤および/または溶媒として(すなわち、ポリオキシアルキレンアミンを分散剤としての役割または溶媒としての役割あるいはその両方の役割を持たせて)製造されることを特徴とする金属ナノ粒子コロイドの製造方法である。
【0032】
発明1または2を展開してなされた本発明の例としての第3の発明(以下、発明3という)は、発明1または2に記載の金属ナノ粒子コロイドの製造方法において、前記金属ナノ粒子コロイド中の金属ナノ粒子の粒子サイズが20nm以下で任意のサイズに制御されていることを特徴とする金属ナノ粒子コロイドの製造方法である。
【0033】
発明1〜3を展開してなされた本発明の例としての第4の発明(以下、発明4という)は、発明1〜3のいずれかに記載の金属ナノ粒子コロイドの製造方法において、前記金属ナノ粒子コロイド中の金属ナノ粒子の平均粒子サイズが2〜6nmであることを特徴とする金属ナノ粒子コロイドの製造方法である。
【0034】
発明1〜4を展開してなされた本発明の例としての第5の発明(以下、発明5という)は、発明1〜4のいずれかに記載の金属ナノ粒子コロイドの製造方法において、前記界面活性剤を溶媒に溶解させずに所定の流動状態にする方法として、前記金属ナノ粒子コロイドを作製する真空槽の外壁に前記界面活性剤の流動状態を制御することができる温度の液体をかけて前記界面活性剤の流動状態を制御する方法を用いていることを特徴とする金属ナノ粒子コロイドの製造方法である。
【0035】
発明5を展開してなされた本発明の例としての第6の発明(以下、発明6という)は、発明5に記載の金属ナノ粒子コロイドの製造方法において、前記界面活性剤を溶媒に溶解させずに所定の流動状態にする方法が、前記金属ナノ粒子コロイドを作製する真空槽の外壁に前記界面活性剤が流動化する温度よりも高い温度の液体をかけて前記界面活性剤を暖める方法であることを特徴とする金属ナノ粒子コロイドの製造方法である。
【0036】
発明5または6を展開してなされた本発明の例としての第7の発明(以下、発明7という)は、発明5または6に記載の金属ナノ粒子コロイドの製造方法において、前記真空槽の外壁の少なくとも一部を浸す液だまりを備えた製造装置を用いて前記金属ナノ粒子コロイドを製造することを特徴とする金属ナノ粒子コロイドの製造方法である。
【0037】
二元以上の金属ナノ粒子を有する金属ナノ粒子コロイドを多元金属ナノ粒子コロイドということにして、課題を解決するためになされた本発明の例としての第8の発明(以下、発明8という)は、粒子のサイズがナノメーターレベルの金属微粒子を含む金属ナノ粒子コロイドを用いて製造した多元金属ナノ粒子コロイドの製造方法の発明であって、少なくとも1種類の前記金属ナノ粒子コロイドは化学的還元作用等の化学的製造方法によらずに製造された金属ナノ粒子コロイドであり、前記多元金属ナノ粒子コロイドは前記金属ナノ粒子コロイドを構成する金属の種類が異なる複数種類の金属ナノ粒子コロイドを混合し、熱処理を施す工程を経て製造されたものであることを特徴とする多元金属ナノ粒子コロイドの製造方法である。
【0038】
発明8を展開してなされた本発明の例としての第9の発明(以下、発明9という)は、発明8に記載の多元金属ナノ粒子コロイドの製造方法において、少なくとも1つの前記金属ナノ粒子コロイドは、減圧雰囲気中あるいは真空中で蒸発等により金属を移動可能状態にしたものを移動する界面活性剤に結合させて金属ナノ粒子を収集する工程を経て製造された金属ナノ粒子コロイドであることを特徴とする多元金属ナノ粒子コロイドの製造方法である。
【0039】
発明8または9を展開してなされた本発明の例としての第10の発明(以下、発明10という)は、発明8または9に記載の多元金属ナノ粒子コロイドの製造方法において、少なくとも1種類の前記金属ナノ粒子コロイドは、蒸発等により金属を移動可能状態にしたものを、溶媒に溶解させずに流動状にした膜状界面活性剤の移動体に結合させて金属ナノ粒子を収集することを繰り返して金属ナノ粒子コロイド中の金属ナノ粒子の濃度を高める工程を経て製造された金属ナノ粒子コロイドであることを特徴とする多元金属ナノ粒子コロイドの製造方法である。
【0040】
発明8〜10を展開してなされた本発明の例としての第11の発明(以下、発明11という)は、発明8〜10のいずれかに記載の多元金属ナノ粒子コロイドの製造方法において、少なくとも1種類の前記金属ナノ粒子コロイドが溶媒に希釈されていないポリオキシアルキレンアミンを分散剤および/または溶媒として製造される金属ナノ粒子コロイドであることを特徴とする多元金属ナノ粒子コロイドの製造方法である。
【0041】
発明8〜11を展開してなされた本発明の例としての第12の発明(以下、発明12という)は、発明8〜11のいずれかに記載の多元金属ナノ粒子コロイドの製造方法において、前記多元金属ナノ粒子コロイドをつくるのに用いる金属ナノ粒子コロイド中の金属ナノ粒子の粒子サイズが20nm以下で任意のサイズに制御されていることを特徴とする金属ナノ粒子コロイドの製造方法である。
【0042】
発明8〜12を展開してなされた本発明の例としての第13の発明(以下、発明13という)は、発明8〜12のいずれかに記載の多元金属ナノ粒子コロイドの製造方法において、前記多元金属ナノ粒子コロイドをつくるのに用いる金属ナノ粒子コロイド中の金属ナノ粒子の平均粒子サイズが2〜6nmであることを特徴とする金属ナノ粒子コロイドの製造方法である。
【0043】
発明8〜13を展開してなされた本発明の例としての第14の発明(以下、発明14という)は、発明8〜13のいずれかに記載の多元金属ナノ粒子コロイドの製造方法において、複数種類の金属ナノ粒子コロイドを混合する方法が撹拌羽を用いる混合方法であることを特徴とする多元金属ナノ粒子コロイドの製造方法である。
【0044】
発明8〜14を展開してなされた本発明の例としての第15の発明(以下、発明15という)は、発明8〜14のいずれかに記載の多元金属ナノ粒子コロイドの製造方法において、複数種類の金属ナノ粒子コロイドを混合する方法が超音波を用いることができる混合方法であることを特徴とする多元金属ナノ粒子コロイドの製造方法である。
【0045】
発明8〜15を展開してなされた本発明の例としての第16の発明(以下、発明16という)は、発明8〜15のいずれかに記載の多元金属ナノ粒子コロイドの製造方法において、前記熱処理にヒータによる加熱手段を用いることを特徴とする多元金属ナノ粒子コロイドの製造方法である。
【0046】
発明8〜16を展開してなされた本発明の例としての第17の発明(以下、発明17という)は、発明8〜16のいずれかに記載の多元金属ナノ粒子コロイドの製造方法において、前記熱処理手段としてマイクロ波を用いることを特徴とする多元金属ナノ粒子コロイドの製造方法である。
【0047】
発明8〜17を展開してなされた本発明の例としての第18の発明(以下、発明18という)は、発明8〜17のいずれかに記載の多元金属ナノ粒子コロイドの製造方法において、複数の前記金属ナノ粒子コロイドの界面活性剤が互いに異なることを特徴とする多元金属ナノ粒子コロイドの製造方法である。
【0048】
発明8〜18を展開してなされた本発明の例としての第19の発明(以下、発明19という)は、発明8〜18のいずれかに記載の多元金属ナノ粒子コロイドの製造方法において、前記多元金属ナノ粒子コロイドを作製するのに混合する複数種類の金属ナノ粒子コロイドを構成する金属ナノ粒子の固相反応の活性度が異なる場合、少なくとも2種類の金属ナノ粒子コロイドにおいて、固相反応の活性度の高い金属ナノ粒子コロイドにおけるリガンドの分子量が固相反応の活性度の低い金属ナノ粒子コロイドにおけるリガンドの分子量よりも大きい各界面活性剤を用いることを特徴とする多元金属ナノ粒子コロイドの製造方法である。
【0049】
発明10〜19を展開してなされた本発明の例としての第20の発明(以下、発明20という)は、発明10〜19のいずれかに記載の多元金属ナノ粒子コロイドの製造方法において、前記界面活性剤を溶媒に溶解させずに所定の流動状態にする方法として、前記金属ナノ粒子コロイドを作製する真空槽の外壁に前記界面活性剤の流動状態を制御することができる温度の液体をかけて前記界面活性剤の流動状態を制御する方法を用いていることを特徴とする多元金属ナノ粒子コロイドの製造方法である。
【0050】
発明20を展開してなされた本発明の例としての第21の発明(以下、発明21という)は、発明20に記載の多元金属ナノ粒子コロイドの製造方法において、前記界面活性剤を溶媒に溶解させずに所定の流動状態にする方法が、前記金属ナノ粒子コロイドを作製する真空槽の外壁に前記界面活性剤が流動化する温度よりも高い温度の液体をかけて前記界面活性剤を暖める方法であることを特徴とする多元金属ナノ粒子コロイドの製造方法である。
【0051】
発明20または21を展開してなされた本発明の例としての第22の発明(以下、発明22という)は、発明20または21に記載の多元金属ナノ粒子コロイドの製造方法において、前記真空槽の外壁の少なくとも一部を浸す液だまりを備えた製造装置を用いて前記金属ナノ粒子コロイドを製造することを特徴とする多元金属ナノ粒子コロイドの製造方法である。
【0052】
課題を解決するためになされた本発明の例としての第23の発明(以下、発明23という)は、金属ナノ粒子コロイドの発明で、前記金属ナノ粒子コロイドが、減圧雰囲気中あるいは真空中で蒸発等により金属を移動可能状態にしたものを、溶媒に溶解させずに流動状にした膜状界面活性剤の移動体に結合させて金属ナノ粒子を収集することを繰り返して金属ナノ粒子コロイド中の金属ナノ粒子の濃度を高める工程を経て製造されたことを特徴とする金属ナノ粒子コロイドである。
【0053】
発明23を展開してなされた本発明の例としての第24の発明(以下、発明24という)は、発明23に記載の金属ナノ粒子コロイドにおいて、前記金属ナノ粒子コロイドが溶媒に希釈されていないポリオキシアルキレンアミンを分散剤および/または溶媒としていることを特徴とする金属ナノ粒子コロイドである。
【0054】
発明23または24を展開してなされた本発明の例としての第25の発明(以下、発明25という)は、発明23または24に記載の金属ナノ粒子コロイドにおいて、前記金属ナノ粒子コロイド中の金属ナノ粒子の粒子サイズが20nm以下で任意のサイズに制御されていることを特徴とする金属ナノ粒子コロイドである。
【0055】
発明23〜25を展開してなされた本発明の例としての第26の発明(以下、発明26という)は、発明23〜25のいずれかに記載の金属ナノ粒子コロイドにおいて、前記金属ナノ粒子コロイド中の金属ナノ粒子の平均粒子サイズが2〜6nmであることを特徴とする金属ナノ粒子コロイドである。
【0056】
課題を解決するためになされた本発明の例としての第27の発明(以下、発明27という)は、金属ナノ粒子コロイドを用いて製造された多元金属ナノ粒子コロイドの発明であって、前記多元金属ナノ粒子コロイドは、前記金属ナノ粒子コロイドを構成する金属の種類が異なる複数種類の金属ナノ粒子コロイドを混合し、熱処理を施す工程を経て製造されたものであるとともに、少なくとも1種類の前記金属ナノ粒子コロイドが化学的還元作用等の化学的製造方法によらずに製造された金属ナノ粒子コロイドであることを特徴とする多元金属ナノ粒子コロイドである。
【0057】
発明27を展開してなされた本発明の例としての第28の発明(以下、発明28という)は、発明27に記載の多元金属ナノ粒子コロイドにおいて、少なくとも1種類の前記金属ナノ粒子コロイドは、減圧雰囲気中あるいは真空中で蒸発等により金属を移動可能状態にしたものを移動する界面活性剤に結合させて金属ナノ粒子を収集する工程を経て製造された金属ナノ粒子コロイドであることを特徴とする多元金属ナノ粒子コロイドである。
【0058】
発明27または28を展開してなされた本発明の例としての第29の発明(以下、発明29という)は、発明27または28に記載の多元金属ナノ粒子コロイドにおいて、少なくとも1種類の前記金属ナノ粒子コロイドは、蒸発等により金属を移動可能状態にしたものを、溶媒に溶解させずに流動状にした膜状界面活性剤の移動体に結合させて金属ナノ粒子を収集することを繰り返して金属ナノ粒子コロイド中の金属ナノ粒子の濃度を高める工程を経て製造された金属ナノ粒子コロイドであることを特徴とする多元金属ナノ粒子コロイドである。
【0059】
発明27〜29を展開してなされた本発明の例としての第30の発明(以下、発明30という)は、発明27〜29のいずれかに記載の多元金属ナノ粒子コロイドにおいて、少なくとも1種類の前記金属ナノ粒子コロイドが溶媒に希釈されていないポリオキシアルキレンアミンを分散剤および/また溶媒としている金属ナノ粒子コロイドであることを特徴とする多元金属ナノ粒子コロイドである。
【0060】
発明27〜30を展開してなされた本発明の例としての第31の発明(以下、発明31という)は、発明27〜30のいずれかに記載の多元金属ナノ粒子コロイドにおいて、前記熱処理にヒータによる加熱手段を用いたことを特徴とする多元金属ナノ粒子コロイドである。
【0061】
発明27〜31を展開してなされた本発明の例としての第32の発明(以下、発明32という)は、発明27〜31のいずれかに記載の多元金属ナノ粒子コロイドにおいて、前記熱処理手段としてマイクロ波を用いたことを特徴とする多元金属ナノ粒子コロイドである。
【0062】
発明27〜32を展開してなされた本発明の例としての第33の発明(以下、発明33という)は、発明27〜32のいずれかに記載の多元金属ナノ粒子コロイドにおいて、前記多元金属ナノ粒子コロイドをつくるのに用いる金属ナノ粒子コロイド中の金属ナノ粒子の粒子サイズが20nm以下で任意のサイズに制御されていることを特徴とする多元金属ナノ粒子コロイドである。
【0063】
発明27〜33を展開してなされた本発明の例としての第34の発明(以下、発明34という)は、発明27〜33のいずれかに記載の多元金属ナノ粒子コロイドにおいて、前記多元金属ナノ粒子コロイドをつくるのに用いる金属ナノ粒子コロイド中の金属ナノ粒子の平均粒子サイズが2〜6nmであることを特徴とする多元金属ナノ粒子コロイドである。
【0064】
発明27〜34を展開してなされた本発明の例としての第35の発明(以下、発明35という)は、発明27〜34のいずれかに記載の多元金属ナノ粒子コロイドにおいて、少なくとも一部の前記多元金属ナノ粒子コロイド中の多元金属ナノ粒子が単結晶化した多元金属ナノ粒子であることを特徴とする多元金属ナノ粒子コロイドである。
【0065】
発明27〜35を展開してなされた本発明の例としての第36の発明(以下、発明36という)は、発明27〜35のいずれかに記載の多元金属ナノ粒子コロイドにおいて、少なくとも一部の前記多元金属ナノ粒子コロイド中の多元金属ナノ粒子が合金化した多元金属ナノ粒子であることを特徴とする多元金属ナノ粒子コロイドである。
【0066】
発明27〜36を展開してなされた本発明の例としての第37の発明(以下、発明37という)は、発明27〜36のいずれかに記載の多元金属ナノ粒子コロイドにおいて、少なくとも一部の前記多元金属ナノ粒子コロイド中の多元金属ナノ粒子が異方的に相分離した構造の多元金属ナノ粒子であることを特徴とする多元金属ナノ粒子コロイドである。
【0067】
発明27〜37を展開してなされた本発明の例としての第38の発明(以下、発明38という)は、発明27〜37のいずれかに記載の多元金属ナノ粒子コロイドにおいて、複数の前記金属ナノ粒子コロイドの界面活性剤が互いに異なることを特徴とする多元金属ナノ粒子コロイドである。
【0068】
発明27〜38を展開してなされた本発明の例としての第39の発明(以下、発明39という)は、発明27〜38のいずれかに記載の多元金属ナノ粒子コロイドにおいて、前記多元金属ナノ粒子コロイドを作製するときの複数種類の金属ナノ粒子コロイドを構成する金属ナノ粒子の固相反応の活性度が異なる場合、少なくとも2種類の金属ナノ粒子コロイドにおいて、固相反応の活性度の高い金属ナノ粒子コロイドにおけるリガンドの分子量が固相反応の活性度の低い金属ナノ粒子コロイドにおけるリガンドの分子量よりも大きい各界面活性剤であることを特徴とする多元金属ナノ粒子コロイドである。
【0069】
課題を解決するためになされた本発明の例としての第40の発明(以下、発明40という)は、金属ナノ粒子コロイドを用いて製造する金属ナノ粒子の製造方法の発明で、前記金属ナノ粒子コロイドは、減圧雰囲気中あるいは真空中で蒸発等により金属を移動可能状態にしたものを、溶媒に溶解させずに流動状にした膜状界面活性剤の移動体に結合させて金属ナノ粒子を収集することを繰り返して金属ナノ粒子コロイド中の金属ナノ粒子の濃度を高める工程を経て製造されたものであり、前記金属ナノ粒子はナノ粒子を担持する担体に前記金属ナノ粒子コロイド中の金属ナノ粒子を担持させたものであることを特徴とする金属ナノ粒子の製造方法である。
【0070】
発明40を展開してなされた本発明の例としての第41の発明(以下、発明41という)は、発明40に記載の金属ナノ粒子の製造方法において、前記金属ナノ粒子コロイドを、溶媒に希釈されていないポリオキシアルキレンアミンを分散剤および/または溶媒として製造することを特徴とする金属ナノ粒子の製造方法である。
【0071】
発明40または41を展開してなされた本発明の例としての第42の発明(以下、発明42という)は、発明40または41に記載の金属ナノ粒子の製造方法において、前記金属ナノ粒子コロイド中の金属ナノ粒子の粒子サイズが20nm以下で任意のサイズに制御されていることを特徴とする金属ナノ粒子の製造方法である。
【0072】
発明40〜42を展開してなされた本発明の例としての第43の発明(以下、発明43という)は、発明40〜42のいずれかに記載の金属ナノ粒子の製造方法において、前記金属ナノ粒子コロイド中の金属ナノ粒子の平均粒子サイズが2〜6nmであることを特徴とする金属ナノ粒子の製造方法である。
【0073】
発明40〜43を展開してなされた本発明の例としての第44の発明(以下、発明44という)は、発明40〜43のいずれかに記載の金属ナノ粒子の製造方法において、前記界面活性剤を溶媒に溶解させずに所定の流動状態にする方法として、前記金属ナノ粒子コロイドを作製する真空槽の外壁に前記界面活性剤の流動状態を制御することができる温度の液体をかけて前記界面活性剤の流動状態を制御する方法を用いていることを特徴とする金属ナノ粒子の製造方法である。
【0074】
発明44を展開してなされた本発明の例としての第45の発明(以下、発明45という)は、発明44に記載の金属ナノ粒子の製造方法において、前記界面活性剤を溶媒に溶解させずに所定の流動状態にする方法が、前記金属ナノ粒子コロイドを作製する真空槽の外壁に前記界面活性剤が流動化する温度よりも高い温度の液体をかけて前記界面活性剤を暖める方法であることを特徴とする金属ナノ粒子の製造方法である。
【0075】
発明44または45を展開してなされた本発明の例としての第46の発明(以下、発明46という)は、発明44または45に記載の金属ナノ粒子コロイドの製造方法において、前記真空槽の外壁の少なくとも一部を浸す液だまりを備えた製造装置を用いて前記金属ナノ粒子コロイドを製造することを特徴とする金属ナノ粒子の製造方法である。
【0076】
課題を解決するためになされた本発明の例としての第47の発明(以下、発明47という)は、金属ナノ粒子コロイドを複数種類用いて製造する多元金属ナノ粒子の製造方法であって、少なくとも1種類の前記金属ナノ粒子コロイドは化学的還元作用等の化学的製造方法によらずに製造された金属ナノ粒子コロイドであり、前記多元金属ナノ粒子コロイドは前記金属ナノ粒子コロイドを構成する金属の種類が異なる複数種類の金属ナノ粒子コロイドを混合し、熱処理を施して多元金属ナノ粒子コロイドを製造する工程を経て製造されたものであり、前記ナノ粒子を担持する担体に前記多元金属ナノ粒子コロイド中の前記多元金属ナノ粒子を担持させることを特徴とする多元金属ナノ粒子の製造方法である。
【0077】
発明47を展開してなされた本発明の例としての第48の発明(以下、発明48という)は、発明47に記載の多元金属ナノ粒子の製造方法において、少なくとも1種類の前記金属ナノ粒子コロイドは、減圧雰囲気中あるいは真空中で蒸発等により金属を移動可能状態にしたものを移動する界面活性剤に結合させて金属ナノ粒子を収集する工程を経て製造された金属ナノ粒子コロイドであることを特徴とする多元金属ナノ粒子の製造方法である。
【0078】
発明47または48を展開してなされた本発明の例としての第49の発明(以下、発明49という)は、発明47または48に記載の多元金属ナノ粒子の製造方法において、少なくとも1種類の前記金属ナノ粒子コロイドは、蒸発等により金属を移動可能状態にしたものを、溶媒に溶解させずに流動状にした膜状界面活性剤の移動体に結合させて金属ナノ粒子を収集することを繰り返して金属ナノ粒子コロイド中の金属ナノ粒子の濃度を高める工程を経て製造された金属ナノ粒子コロイドであることを特徴とする多元金属ナノ粒子の製造方法である。
【0079】
発明47〜49を展開してなされた本発明の例としての第50の発明(以下、発明50という)は、発明47〜49のいずれかに記載の多元金属ナノ粒子の製造方法において、少なくとも1種類の前記金属ナノ粒子コロイドを、溶媒に希釈されていないポリオキシアルキレンアミンを分散剤および/または溶媒として製造する金属ナノ粒子コロイドであることを特徴とする多元金属ナノ粒子の製造方法である。
【0080】
発明47〜50を展開してなされた本発明の例としての第51の発明(以下、発明51という)は、発明47〜50のいずれかに記載の多元金属ナノ粒子の製造方法において、
前記多元金属ナノ粒子コロイドをつくるのに用いる金属ナノ粒子コロイド中の金属ナノ粒子の粒子サイズが20nm以下で任意のサイズに制御されていることを特徴とする多元金属ナノ粒子の製造方法である。
【0081】
発明47〜51を展開してなされた本発明の例としての第52の発明(以下、発明52という)は、発明47〜51のいずれかに記載の多元金属ナノ粒子の製造方法において、前記多元金属ナノ粒子コロイドをつくるのに用いる金属ナノ粒子コロイド中の金属ナノ粒子の平均粒子サイズが2〜6nmであることを特徴とする多元金属ナノ粒子の製造方法である。
【0082】
発明47〜52を展開してなされた本発明の例としての第53の発明(以下、発明53という)は、発明47〜52のいずれかに記載の多元金属ナノ粒子の製造方法において、複数種類の金属ナノ粒子コロイドを混合する方法が撹拌羽を用いる混合方法であることを特徴とする多元金属ナノ粒子の製造方法である。
【0083】
発明47〜53を展開してなされた本発明の例としての第54の発明(以下、発明54という)は、発明47〜53のいずれかに記載の多元金属ナノ粒子の製造方法において、複数種類の金属ナノ粒子コロイドを混合する方法が超音波を用いることができる混合方法であることを特徴とする多元金属ナノ粒子の製造方法である。
【0084】
発明47〜54を展開してなされた本発明の例としての第55の発明(以下、発明55という)は、発明47〜54のいずれかに記載の多元金属ナノ粒子の製造方法において、前記熱処理にヒータによる加熱手段を用いることを特徴とする多元金属ナノ粒子の製造方法である。
【0085】
発明47〜55を展開してなされた本発明の例としての第56の発明(以下、発明56という)は、発明47〜55のいずれかに記載の多元金属ナノ粒子の製造方法において、前記熱処理手段としてマイクロ波を用いることを特徴とする多元金属ナノ粒子の製造方法である。
【0086】
発明47〜56を展開してなされた本発明の例としての第57の発明(以下、発明57という)は、発明47〜56のいずれかに記載の多元金属ナノ粒子の製造方法において、複数の前記金属ナノ粒子コロイドの界面活性剤が互いに異なることを特徴とする多元金属ナノ粒子の製造方法である。
【0087】
発明47〜57を展開してなされた本発明の例としての第58の発明(以下、発明58という)は、発明47〜57のいずれかに記載の多元金属ナノ粒子の製造方法において、前記多元金属ナノ粒子コロイドを作製するときの複数種類の金属ナノ粒子コロイドを構成する金属ナノ粒子の固相反応の活性度が異なる場合、少なくとも2種類の金属ナノ粒子コロイドにおいて、固相反応の活性度の高い金属ナノ粒子コロイドにおけるリガンドの分子量が固相反応の活性度の低い金属ナノ粒子コロイドにおけるリガンドの分子量よりも大きい各界面活性剤を用いることを特徴とする多元金属ナノ粒子の製造方法である。
【0088】
発明47〜58を展開してなされた本発明の例としての第59の発明(以下、発明59という)は、発明47〜58のいずれかに記載の多元金属ナノ粒子の製造方法において、前記界面活性剤を溶媒に溶解させずに所定の流動状態にする方法として、前記金属ナノ粒子コロイドを作製する真空槽の外壁に前記界面活性剤の流動状態を制御することができる温度の液体をかけて前記界面活性剤の流動状態を制御する方法を用いていることを特徴とする多元金属ナノ粒子の製造方法である。
【0089】
発明59を展開してなされた本発明の例としての第60の発明(以下、発明60という)は、発明59に記載の多元金属ナノ粒子の製造方法において、前記界面活性剤を溶媒に溶解させずに所定の流動状態にする方法が、前記金属ナノ粒子コロイドを作製する真空槽の外壁に前記界面活性剤が流動化する温度よりも高い温度の液体をかけて前記界面活性剤を暖める方法であることを特徴とする多元金属ナノ粒子の製造方法である。
【0090】
発明59または60を展開してなされた本発明の例としての第61の発明(以下、発明61という)は、発明59または60に記載の多元金属ナノ粒子の製造方法において、前記真空槽の外壁の少なくとも一部を浸す液だまりを備えた製造装置を用いて前記金属ナノ粒子コロイドを製造することを特徴とする多元金属ナノ粒子の製造方法である。
【0091】
課題を解決するためになされた本発明の例としての第62の発明(以下、発明62という)は、金属ナノ粒子コロイドを用いて製造する金属ナノ粒子の発明で、前記金属ナノ粒子コロイドは、減圧雰囲気中あるいは真空中で蒸発等により金属を移動可能状態にしたものを、溶媒に溶解させずに流動状にした膜状界面活性剤の移動体に結合させて金属ナノ粒子を収集することを繰り返して金属ナノ粒子コロイド中の金属ナノ粒子の濃度を高める工程を経て製造されたものであり、前記金属ナノ粒子は、前記ナノ粒子を担持する担体に前記金属ナノ粒子コロイド中の金属ナノ粒子を担持させたものであることを特徴とする金属ナノ粒子前記金属ナノ粒子コロイドは、減圧雰囲気中あるいは真空中で蒸発等により金属を移動可能状態にしたものを、溶媒に溶解させずに流動状にした膜状界面活性剤の移動体に結合させて金属ナノ粒子を収集することを繰り返して金属ナノ粒子コロイド中の金属ナノ粒子の濃度を高める工程を経て製造されたものであり、前記金属ナノ粒子は、前記ナノ粒子を担持する担体に前記金属ナノ粒子コロイド中の金属ナノ粒子を担持させたものであることを特徴とする金属ナノ粒子である。
【0092】
発明62を展開してなされた本発明の例としての第63の発明(以下、発明63という)は、発明62に記載の金属ナノ粒子において、前記金属ナノ粒子コロイドが溶媒に希釈されていないポリオキシアルキレンアミンを分散剤および/または溶媒とすることを特徴とする金属ナノ粒子である。
【0093】
発明62または63を展開してなされた本発明の例としての第64の発明(以下、発明64という)は、発明62または63に記載の金属ナノ粒子において、前記金属ナノ粒子コロイド中の金属ナノ粒子の粒子サイズが20nm以下で任意のサイズに制御されていることを特徴とする金属ナノ粒子である。
【0094】
発明62〜64を展開してなされた本発明の例としての第65の発明(以下、発明65という)は、発明62〜64のいずれかに記載の金属ナノ粒子において、前記金属ナノ粒子コロイド中の金属ナノ粒子の平均粒子サイズが2〜6nmであることを特徴とする金属ナノ粒子である。
【0095】
課題を解決するためになされた本発明の例としての第66の発明(以下、発明66という)は、金属ナノ粒子コロイドを用いて製造された多元金属ナノ粒子の発明で、前記多元金属ナノ粒子コロイドは、前記金属ナノ粒子コロイドを構成する金属の種類が異なる複数種類の金属ナノ粒子コロイドを混合し、熱処理を施して多元金属ナノ粒子コロイドを製造する工程を経て製造されたものであり、前記ナノ粒子を担持する担体に前記多元金属ナノ粒子コロイド中の前記多元金属ナノ粒子を担持させたものであることを特徴とする多元金属ナノ粒子である。
【0096】
発明66を展開してなされた本発明の例としての第67の発明(以下、発明67という)は、発明66に記載の多元金属ナノ粒子において、少なくとも1種類の前記金属ナノ粒子コロイドが、減圧雰囲気中あるいは真空中で蒸発等により金属を移動可能状態にしたものを移動する界面活性剤に結合させて金属ナノ粒子を収集する工程を経て製造された金属ナノ粒子コロイドであることを特徴とする多元金属ナノ粒子である。
【0097】
発明66または67を展開してなされた本発明の例としての第68の発明(以下、発明68という)は、発明66または67に記載の多元金属ナノ粒子において、少なくとも1種類の前記金属ナノ粒子コロイドは、蒸発等により金属を移動可能状態にしたものを、溶媒に溶解させずに流動状にした膜状界面活性剤の移動体に結合させて金属ナノ粒子を収集することを繰り返して金属ナノ粒子コロイド中の金属ナノ粒子の濃度を高める工程を経て製造された金属ナノ粒子コロイドであることを特徴とする多元金属ナノ粒子である。
【0098】
発明66〜68を展開してなされた本発明の例としての第69の発明(以下、発明69という)は、発明66〜68のいずれかに記載の多元金属ナノ粒子において、少なくとも1種類の前記金属ナノ粒子コロイドが溶媒に希釈されていないポリオキシアルキレンアミンを分散剤および/また溶媒としている金属ナノ粒子コロイドであることを特徴とする多元金属ナノ粒子である。
【0099】
発明66〜69を展開してなされた本発明の例としての第70の発明(以下、発明70という)は、発明66〜69のいずれかに記載の多元金属ナノ粒子において、前記熱処理にヒータによる加熱手段を用いたことを特徴とする多元金属ナノ粒子である。
【0100】
発明66〜70を展開してなされた本発明の例としての第71の発明(以下、発明71という)は、発明66〜70のいずれかに記載の多元金属ナノ粒子において、前記熱処理手段としてマイクロ波を用いたことを特徴とする多元金属ナノ粒子である。
【0101】
発明66〜71を展開してなされた本発明の例としての第72の発明(以下、発明72という)は、発明66〜71のいずれかに記載の多元金属ナノ粒子において、前記多元金属ナノ粒子コロイドをつくるのに用いる金属ナノ粒子コロイド中の金属ナノ粒子の粒子サイズが20nm以下で任意のサイズに制御されていることを特徴とする多元金属ナノ粒子である。
【0102】
発明66〜72を展開してなされた本発明の例としての第73の発明(以下、発明73という)は、発明66〜72のいずれかに記載の多元金属ナノ粒子において、前記多元金属ナノ粒子コロイドをつくるのに用いる金属ナノ粒子コロイド中の金属ナノ粒子の平均粒子サイズが2〜6nmであることを特徴とする多元金属ナノ粒子である。
【0103】
発明66〜73を展開してなされた本発明の例としての第74の発明(以下、発明74という)は、発明66〜73のいずれかに記載の多元金属ナノ粒子において、前記多元金属ナノ粒子コロイド中の多元金属ナノ粒子が単結晶化した金属ナノ粒子であることを特徴とする多元金属ナノ粒子である。
【0104】
発明66〜74を展開してなされた本発明の例としての第75の発明(以下、発明75という)は、発明66〜74のいずれかに記載の多元金属ナノ粒子において、前記多元金属ナノ粒子コロイド中の多元金属ナノ粒子が合金化した金属ナノ粒子であることを特徴とする多元金属ナノ粒子である。
【0105】
発明66〜75を展開してなされた本発明の例としての第76の発明(以下、発明76という)は、発明66〜75のいずれかに記載の多元金属ナノ粒子において、前記多元金属ナノ粒子コロイド中の多元金属ナノ粒子が異方的に相分離した構造の金属ナノ粒子コロイドであることを特徴とする多元金属ナノ粒子である。
【0106】
発明66〜76を展開してなされた本発明の例としての第77の発明(以下、発明77という)は、発明66〜76のいずれかに記載の多元金属ナノ粒子において、複数の前記金属ナノ粒子コロイドの界面活性剤が互いに異なることを特徴とする多元金属ナノ粒子である。
【0107】
発明66〜77を展開してなされた本発明の例としての第78の発明(以下、発明78という)は、発明66〜77のいずれかに記載の多元金属ナノ粒子において、前記多元金属ナノ粒子コロイドを作製するときの複数種類の金属ナノ粒子コロイドを構成する金属ナノ粒子の固相反応の活性度が異なる場合、少なくとも2種類の金属ナノ粒子コロイドにおいて、固相反応の活性度の高い金属ナノ粒子コロイドにおけるリガンドの分子量が固相反応の活性度の低い金属ナノ粒子コロイドにおけるリガンドの分子量よりも大きい各界面活性剤であることを特徴とする多元金属ナノ粒子である。
原出願である特願2014―024196においては、課題を解決するのに効果のある請求項として、
特願2014―024196の特許請求の範囲に記載した次の請求項1〜7の7項目
(以下、原出願の請求項という)を提案した。
原出願の請求項1に記載の多元金属ナノ粒子コロイドは、粒子のサイズがナノメーターレベルの2種類以上の金属ナノ粒子を含有する金属ナノ粒子コロイドを多元金属ナノ粒子コロイドということにして、前記多元金属ナノ粒子コロイドは、前記多元金属ナノ粒子コロイドを構成する金属の種類が異なる複数種類の金属ナノ粒子コロイドを混合し、熱処理を施す工程を経て製造されたものであるとともに、少なくとも1種類の前記金属ナノ粒子コロイドが化学的還元作用によらずに製造された金属ナノ粒子コロイドであることを特徴としており、前記化学的還元作用によらずに製造された金属ナノ粒子コロイドは、減圧雰囲気中あるいは真空中において、粒子のサイズがナノメーターレベルの移動可能状態にした金属ナノ粒子を、前記減圧雰囲気中あるいは真空中で、界面活性剤の温度を界面活性剤の融点以上の温度に制御して前記界面活性剤をその溶媒に溶解させずに流動状にし、回転する減圧雰囲気室あるいは真空室の内壁に沿って移動する前記界面活性剤による膜状移動体にした膜状界面活性剤の移動体に結合させて金属ナノ粒子を収集することを繰り返して金属ナノ粒子コロイド中の金属ナノ粒子の濃度を高める工程を経て製造された金属ナノ粒子コロイドであり、前記金属ナノ粒子コロイドが前記膜状界面活性剤の溶剤を含まない界面活性剤と前記金属ナノ粒子から成り、前記溶剤を含まない界面活性剤自体が前記金属ナノ粒子の分散剤および/または溶剤になっていることを特徴とする多元金属ナノ粒子コロイドである。
原出願の請求項2に記載の多元金属ナノ粒子コロイドは、
原出願の請求項1に記載の多元金属ナノ粒子コロイドにおいて、前記多元金属ナノ粒子コロイドを構成する全ての金属ナノ粒子コロイドが前記化学的還元作用によらずに製造された金属ナノ粒子コロイドであることを特徴とする多元金属ナノ粒子コロイドである。
原出願の請求項3に記載の多元金属ナノ粒子コロイドは、
原出願の請求項1または2に記載の多元金属ナノ粒子コロイドにおいて、前記多元金属ナノ粒子コロイドを作製するときの複数種類の金属ナノ粒子コロイドを構成する金属ナノ粒子の固相反応の活性度が異なる場合、少なくとも2種類の金属ナノ粒子コロイドにおいて、固相反応の活性度の高い金属ナノ粒子コロイドにおけるリガンドの分子量が固相反応の活性度の低い金属ナノ粒子コロイドにおけるリガンドの分子量よりも大きい各界面活性剤であることを特徴とする多元金属ナノ粒子コロイドである。
原出願の請求項4に記載の担体は、減圧雰囲気中あるいは真空中において、粒子のサイズがナノメーターレベルの移動可能状態にした金属ナノ粒子を、前記減圧雰囲気中あるいは真空中で、界面活性剤の温度を界面活性剤の融点以上の温度に制御して前記界面活性剤をその溶媒に溶解させずに流動状にし、回転する減圧雰囲気室あるいは真空室の内壁に沿って移動する前記界面活性剤による膜状移動体にした膜状界面活性剤の移動体に結合させて金属ナノ粒子を収集することを繰り返して金属ナノ粒子コロイド中の金属ナノ粒子の濃度を高める工程を経て製造された金属ナノ粒子コロイドであり、前記金属ナノ粒子コロイドが前記膜状界面活性剤の溶剤を含まない界面活性剤と前記金属ナノ粒子から成り、前記溶剤を含まない界面活性剤自体が前記金属ナノ粒子の分散剤および/または溶剤になっていることを特徴とする金属ナノ粒子コロイドに含まれる金属ナノ粒子及び/又は請求項1〜3のいずれか1項に記載の多元金属ナノ粒子コロイドに含まれる多元金属ナノ粒子を担持した状態の担体である。
原出願の請求項5に記載の担体は、
原出願の請求項4に記載の前記担体が酸化物、カーボン、テフロン(登録商標)のうちの少なくとも1つであることを特徴とする担体である。
原出願の請求項6に記載の多元金属ナノ粒子コロイドの製造方法は、粒子のサイズがナノメーターレベルの2種類以上の金属ナノ粒子を含有する金属ナノ粒子コロイドを多元金属ナノ粒子コロイドということにして、前記多元金属ナノ粒子コロイドは、前記多元金属ナノ粒子コロイドを構成する金属の種類が異なる複数種類の金属ナノ粒子コロイドを利用して製造されたものであるとともに、少なくとも1種類の前記金属ナノ粒子コロイドが化学的還元作用によらずに製造された金属ナノ粒子コロイドであることを特徴としており、前記多元金属ナノ粒子コロイドの製造方法は、前記化学的還元作用によらずに製造された金属ナノ粒子コロイドの製造方法として、
減圧雰囲気中あるいは真空中において、
粒子のサイズがナノメーターレベルの移動可能状態の金属ナノ粒子を用意する工程と、
減圧雰囲気室もしくは真空室を回転させる工程と、
界面活性剤の温度を制御して減圧雰囲気室内もしくは真空室内で前記界面活性剤を溶媒に溶解させずに流動状にする工程と、
回転する減圧雰囲気室もしくは真空室の内壁に沿って移動する前記界面活性剤による膜状移動体によって金属ナノ粒子を収集することを繰り返して金属ナノ粒子コロイド中の金属ナノ粒子の濃度を高める工程
を含むことを特徴とする多元金属ナノ粒子コロイドの製造方法である。
原出願の請求項7に記載の多元金属ナノ粒子コロイドの製造方法は、
原出願の請求項6に記載の多元金属ナノ粒子コロイドの製造方法において、常温で固体である界面活性剤を用いる工程を有することを特徴とする多元金属ナノ粒子コロイドの製造方法である。
そして、今回の分割出願においては、課題を解決するのに効果のある請求項として、特許請求の範囲に記載した次の請求項1〜5の5項目を提案した。
請求項1に記載の無機物ナノ粒子コロイドは、減圧雰囲気中あるいは真空中において、粒子のサイズがナノメーターレベルの移動可能状態にした金属以外の無機物ナノ粒子を、前記減圧雰囲気中あるいは真空中で、界面活性剤の温度を制御して前記界面活性剤をその溶媒に溶解させずに流動状にし、回転する減圧雰囲気室あるいは真空室の内壁に沿って移動する前記界面活性剤による膜状移動体にした膜状界面活性剤の移動体に結合させて前記金属以外の無機物ナノ粒子を収集することを繰り返してナノ粒子コロイド中の前記金属以外の無機物ナノ粒子の濃度を高める工程を経て製造された無機物ナノ粒子コロイドであって、前記金属以外の無機物ナノ粒子コロイドが前記膜状界面活性剤の溶剤を含まない界面活性剤と前記金属以外の無機物ナノ粒子から成り、前記溶剤を含まない界面活性剤自体が前記無機物ナノ粒子の分散剤および/または溶剤になっていることを特徴とする無機物ナノ粒子コロイドである。
請求項2に記載の無機物ナノ粒子コロイドは、粒子のサイズがナノメーターレベルの2種類以上の無機物ナノ粒子を含有する無機物ナノ粒子コロイドを多元無機物ナノ粒子コロイドということにして、前記多元無機物ナノ粒子コロイドは、前記多元無機物ナノ粒子コロイドを構成する無機物の種類が異なる複数種類の無機物ナノ粒子コロイドを混合して製造されたものであるとともに、少なくとも1種類の請求項1に記載の無機物ナノ粒子コロイドを含んでいることを特徴とする無機物ナノ粒子コロイドである。
請求項3に記載の無機物ナノ粒子コロイドは、請求項1または2に記載の無機物ナノ粒子コロイドにおいて、前記界面活性剤が常温において固体であることを特徴とする無機物ナノ粒子コロイドである。
請求項4に記載の無機物ナノ粒子は、請求項1〜3のいずれか1項に記載の無機物ナノ粒子コロイドのナノ粒子を担体に担持させたことを特徴とする無機物ナノ粒子である。