【解決手段】被検知ガスをガス成分毎に分離するガス成分分離部10と、ガス成分分離部10の下流に配設し、所望のガス成分の濃度を検出するガス検知部30と、を有するガスサンプリング装置Xであって、ガス成分分離部10の内部を流下する雰囲気ガスの流下方向を、ガス成分を検知しない非検知モード時、および、ガス成分を検知する検知モード時において異ならせるように制御する制御部60を備える。
【発明の概要】
【発明が解決しようとする課題】
【0005】
都市ガスの主成分ガスであるメタンを検知するには、例えば、可燃性ガスの分子量に応じて流動遅延を生じさせてガス成分毎に分離可能なカラム(ガス成分分離部)によって、メタン、エタンおよびプロパンを分離することが行われている。
即ち、都市ガスを当該カラムに流通させた場合、メタン、エタン、プロパンの順でカラム内を流動してカラムの外部に排出される。
【0006】
連続して都市ガスの検知を行う場合は、通常、カラムの内部に残存する可燃性ガスを清浄な空気(雰囲気ガス)によって押し出すパージモードを行った後に、次の検知操作に移行する。
【0007】
プロパンはカラム中での移動速度がメタンやエタンに比べてかなり遅いため、当該パージモードを行う場合は、プロパンがカラムの外部に排出されるまでかなりの時間を要していた。特に、残存する可燃性ガスがカラムから完全排気された状態で行うことを前提にして都市ガス検知を行う場合、パージ時間を短縮するのは難しかった。
【0008】
従って、本発明の目的は、パージモードの時間を短縮できるガスサンプリング装置およびその駆動方法、当該ガスサンプリング装置を利用したガス成分検知方法を提供することにある。
【課題を解決するための手段】
【0009】
上記目的を達成するための本発明に係るガスサンプリング装置は、被検知ガスをガス成分毎に分離するガス成分分離部と、前記ガス成分分離部の下流に配設し、所望のガス成分の濃度を検出するガス検知部と、を有するガスサンプリング装置であって、その第一特徴構成は、前記ガス成分分離部の内部を流下する雰囲気ガスの流下方向を、前記ガス成分を検知しない非検知モード時、および、前記ガス成分を検知する検知モード時において異ならせるように制御する制御部を備えた点にある。
【0010】
制御部は、ガス成分分離部の内部を流下する雰囲気ガスの流下方向を、非検知モード時および検知モード時において異ならせるように、流路を分岐する分岐手段などを制御して流下方向を切り替える。
【0011】
被検知ガスに複数の可燃性ガスが含まれている場合、当該被検知ガスがガス成分分離部を流下すれば、ガス成分毎に分離することができる。通常、ガス成分分離部中における分子量の大きいガス成分の移動速度は、分子量の小さいガス成分に比べて遅くなる。即ち、分子量の小さいガス成分がガス成分分離部より排出されたときに、分子量の大きいガス成分のガス成分分離部の内部における位置を鑑みると、ガス成分分離部の内部を順方向に流動させる場合よりも逆方向に流動させたほうがガス成分分離部の内部から迅速に排出できる場合がある。このような場合、本構成の制御部によって、雰囲気ガスの流下方向を切り替える制御を行えば、分子量の大きいガス成分をガス成分分離部の内部から除去するパージモードの時間を大幅に短縮することができる。
【0012】
本発明に係るガスサンプリング装置の第二特徴構成は、前記非検知モードは、待機モードと、前記ガス成分分離部をクリーニングするパージモードとを有する点にある。
【0013】
本構成によれば、非検知モードを待機モードとパージモードとを有するようにすることで、雰囲気ガスの流下方向は同じであるが、異なる効果を期待できる運用をそれぞれのモードで行うことができる。例えば待機モードを省電力モードとし、パージモードをガス成分分離部のクリーニングモードとするといった運用を行えばよい。
【0014】
本発明に係るガスサンプリング装置の第三特徴構成は、前記制御部は、前記待機モードおよび前記パージモードにおける流量が異なるように制御する点にある。
【0015】
本構成によれば、例えばパージモードにおける流量よりも待機モードにおける流量の方を遅く設定するとよい。この場合、待機モードにおける流量を遅く設定することで、待機モードを省電力モードとすることができるため、ガスサンプリング装置の駆動を省電力で行うことができる。
【0016】
本発明に係るガスサンプリング装置の駆動方法の第一特徴手段は、被検知ガスをガス成分毎に分離するガス成分分離部と、前記ガス成分分離部の下流に配設し、所望のガス成分の濃度を検出するガス検知部と、を有するガスサンプリング装置の駆動方法であって、前記ガス成分分離部の内部を流下する雰囲気ガスの流下方向を、前記ガス成分を検知しない非検知モード時、および、前記ガス成分を検知する検知モード時において異ならせた点にある。
【0017】
被検知ガスに複数の可燃性ガスが含まれている場合、当該被検知ガスがガス成分分離部を流下すれば、ガス成分毎に分離することができる。通常、ガス成分分離部中における分子量の大きいガス成分の移動速度は、分子量の小さいガス成分に比べて遅くなる。即ち、分子量の小さいガス成分がガス成分分離部より排出されたときに、分子量の大きいガス成分のガス成分分離部の内部における位置を鑑みると、ガス成分分離部の内部を順方向に流動させる場合よりも逆方向に流動させたほうがガス成分分離部の内部から迅速に排出できる場合がある。このような場合、本構成のように、雰囲気ガスの流下方向を異ならせるように切り替える制御を行えば、分子量の大きいガス成分をガス成分分離部の内部から除去するパージモードの時間を大幅に短縮することができる。
【0018】
本発明に係るガスサンプリング装置の駆動方法の第二特徴手段は、前記非検知モードは、待機モードと、前記ガス成分分離部をクリーニングするパージモードとを有する点にある。
【0019】
本構成によれば、非検知モードを待機モードとパージモードとを有するようにすることで、雰囲気ガスの流下方向は同じであるが、異なる効果を期待できる運用をそれぞれのモードで行うことができる。例えば待機モードを省電力モードとし、パージモードをガス成分分離部のクリーニングモードとするといった運用を行えばよい。
【0020】
本発明に係るガスサンプリング装置の駆動方法の第三特徴手段は、前記待機モードおよび前記パージモードにおける流量を異ならせた点にある。
【0021】
本構成によれば、例えばパージモードにおける流量よりも待機モードにおける流量の方を遅く設定するとよい。この場合、待機モードにおける流量を遅く設定することで、待機モードを省電力モードとすることができるため、ガスサンプリング装置の駆動を省電力で行うことができる。
【0022】
本発明に係るガス成分検知方法の特徴手段は、被検知ガスをガス成分毎に分離するガス成分分離部における移動速度が異なる複数のガス成分を、所望のガス成分の濃度を検出するガス検知部によって検知するに際し、所定のガス成分を検知した後、当該所定のガス成分の流下方向を逆転させた流下方向に切り替えて他のガス成分を検知する点にある。
【0023】
被検知ガスに複数の可燃性ガスが含まれている場合、当該被検知ガスがガス成分分離部を流下すれば、ガス成分毎に分離することができる。通常、ガス成分分離部中における分子量の大きいガス成分の移動速度は、分子量の小さいガス成分に比べて遅くなる。即ち、分子量の小さいガス成分がガス成分分離部より排出されたときに、分子量の大きいガス成分のガス成分分離部の内部における位置を鑑みると、ガス成分分離部の内部を順方向に流動させる場合よりも逆方向に流動させたほうがガス成分分離部の内部から迅速に排出できる場合がある。このような場合、本構成のように、所定のガス成分(分子量の小さいガス成分)を検知した後、当該所定のガス成分の流下方向を逆転させた流下方向に切り替える制御を行えば、分子量の大きいガス成分(他のガス成分)を検出する時間を大幅に短縮することができる。
【発明を実施するための形態】
【0025】
以下、本発明の実施形態を図面に基づいて説明する。
ガスサンプリング装置は、被検知ガスをサンプリングして当該被検知ガスの濃度を測定する。本実施形態では、エタンを精度よく検知して、サンプリングした被検知ガスに都市ガスが含まれるか否かを判定する態様について説明する。
【0026】
図1に示したように、本発明のガスサンプリング装置Xは、被検知ガスをガス成分毎に分離するガス成分分離部10と、ガス成分分離部10の下流に配設し、所望のガス成分の濃度を検出するガス検知部30と、を有するガスサンプリング装置Xであって、ガス成分分離部10の内部を流下する雰囲気ガスの流下方向を、ガス成分を検知しない非検知モード時、および、ガス成分を検知する検知モード時において異ならせるように制御する制御部60を備える。
【0027】
本実施形態では、被検知ガスの濃度を検出する濃度測定部40と、ガス検知部30および濃度測定部40の間に配設し、ガスを分岐する分岐手段20と、を備える場合について説明する。
【0028】
(ガス成分分離部)
ガス成分分離部10は、可燃性ガスの分子量に応じて流動遅延を生じさせてガス成分毎に分離可能に構成すれば、どのような態様であってもよい。本実施形態では、ガス成分分離部10は、都市ガスのガス成分のうち、メタンとエタンを分離するための分離剤が充填してあるカラムにより構成した場合について説明する。当該分離剤は活性炭が用いられる。当該分離剤は活性炭に限らず、都市ガスのガス成分を分離する場合には、酸化カルシウム(CaO)、二酸化珪素(SiO2)、活性アルミナ、PEG系部材、ユニカーボン部材、多孔質ポリマー等の少なくとも何れかを含有して構成すればよく、例えば酸化カルシウムと酸化珪素の混合粉末とすることも可能である。分離された各ガス成分はタイムラグをもって流動する。
ガス成分分離部10は、1つだけでなく複数設定することも可能であるが、本実施形態では1つのガス成分分離部10を備えた場合について説明する。このように複数のガス成分分離部10を備える場合は、サンプリングしたガスが高濃度であっても、被検知ガスをガス成分毎に確実に分離することができる。
ガス成分分離部10は、分離剤に応じて適切な温度(例えば45℃)に維持して分離を行なうとよい。
【0029】
(分岐手段)
分岐手段20は、ノズルなどで構成されたガス入口部1よりサンプリングしたガス、即ち、雰囲気ガス(1a)、或いは、地中よりサンプリングした被検知ガス(1b)を、ガスサンプリング装置Xの内部を後述する種々のモードに応じた流通態様で流通させるべく、流路50を切り替える手段である。
【0030】
本実施形態では、流路50を分岐する分岐手段20を7つ(第一分岐手段20a〜第七分岐手段20g)備えた場合について説明する。当該分岐手段20は、例えば三方弁を使用することができるが、このような態様に限定されるものではない。これら分岐手段20a〜20gの開閉は、制御部60によって制御する。
【0031】
(ガス検知部)
本実施形態におけるガス検知部30は、ガス成分分離部10により分離されたガス成分を検知可能な半導体式ガス検知素子を使用した場合について説明する。
【0032】
半導体式ガス検知素子は、金属酸化物半導体表面でのガス吸着による熱伝導変化及び電気伝導度変化を電極で検出するように構成され、例えば白金、パラジウム、白金−パラジウム合金等の貴金属線に、酸化インジウム、酸化タングステン、酸化スズ、酸化亜鉛等の金属酸化物を主成分とする金属酸化物半導体を塗布、乾燥後焼結成型してあるガス感応部を備えている。
このように構成された半導体式ガス検知素子は、可燃性ガスのうち分子量が大きいガス成分ほど高感度を示すものとなる。
【0033】
ガス成分検知モードでは、被検知ガスに含まれる所望のガス成分(エタンなど)の濃度を検出する。従って、このモードでは、まず被検知ガスを流下させてガス貯留部2に貯留し、その後、流路を切り替えてガス成分を分離するガス成分分離部10に貯留した被検知ガスを流下させて、他のガスと分離して流動した所望のガス成分がガス検知部30を流下するように各分岐手段20を制御する。
【0034】
(濃度測定部)
濃度測定部40は、被検知ガスの濃度を検出する。本実施形態では、濃度測定部40として接触燃焼式ガス検知素子を使用した場合について説明する。
【0035】
接触燃焼式ガス検知素子は、アルミナ等の金属酸化物焼結体に白金等の貴金属触媒を担持したガス感応部としての燃焼触媒部を、白金等の貴金属線に設けてあり、燃焼触媒部において検知対象となる可燃性ガスを貴金属触媒と接触・燃焼させることで、燃焼の際に生じる温度変化を貴金属線の抵抗値の変化として検出する。可燃性ガスの燃焼熱は可燃性ガスの濃度に比例し、貴金属線の抵抗値は燃焼熱に比例するため、可燃性ガスの燃焼による貴金属線の抵抗の変化値を測定することによって可燃性ガスの濃度を測定することができる。
【0036】
被検知ガス測定モードでは、地中に埋設したガス管付近に含まれる被検知ガスの濃度を検出する。例えば、都市ガス13Aは、可燃性ガスとしてメタン、エタン、プロパンおよびブタンが含まれている。被検知ガス測定モードでは、これら全ての可燃性ガスの濃度を検出する。従って、このモードでは、ガス成分を分離するガス成分分離部10を流下させずに濃度測定部40を流下させるように各分岐手段20を制御する。
【0037】
本実施形態では、濃度測定部40を、ガス検知部30と並列になるように配設し、それぞれ別のポンプPを使用した場合について説明する。即ち、ガス検知部30の下流にはポンプP1を配設し、濃度測定部40の下流にはポンプP2を配設する。尚、ポンプP1、P2は、それぞれガス検知部30、濃度測定部40の下流に限らず、上流に配設してもよい。
【0038】
都市ガスの漏洩を検知する際、例えばサンプリングした被検知ガスをガス貯留部2の内部を流下させて、(i)被検知ガス測定モードにより、地中に埋設したガス管付近に含ま
れる被検知ガスの濃度を濃度測定部40にて検出する。このとき、例えば被検知ガスにメタンが含まれていた場合、地中に埋設したガス管等から漏洩した都市ガス由来のメタンであるか、自然発生したメタンが可燃性ガスとして検出される。(ii)ガス成分検知モードでは、被検知ガスに含まれる所望のガス成分(エタン)の有無をガス検知部30にて検出する。このとき、当該ガス検知部30にてエタンが検出されれば、都市ガスの漏洩が検知されたと確実に判定できる。一方、(ii)ガス成分検知モードにおいてエタンが検出されない場合は、(i)被検知ガス測定モードで検出された可燃性ガスは都市ガスではなく自
然発生したメタンであると判定できる。
【0039】
このように上述したガスサンプリング装置Xでは、都市ガスの漏洩を検知する際、分岐手段20を備え、種類の異なるガス検知素子、即ち、所望のガス成分の濃度を検出するガス検知部30、および、被検知ガスの濃度を検出する濃度測定部40を備えるため、(i)被検知ガス測定モードおよび(ii)ガス成分検知モードを行なうことができる。これにより、地中に埋設したガス管付近に存在する被検知ガスや当該被検知ガスに含まれる所望のガス成分の有無を検知することができる。
特に、本構成では、ガス成分分離部10によりガス成分を分離することで、所望のガス成分(エタン)の濃度を確実に検知できる。即ち、都市ガス漏洩の有無を判断する基準を、都市ガスの副成分ガスであるエタン検知の有無を考慮して、確実に都市ガスの検知識別が行える。
【0040】
(制御部)
制御部60は、ガス成分分離部10の内部を流下する雰囲気ガスの流下方向を、ガス成分を検知しない非検知モード時、および、ガス成分を検知する検知モード時において異ならせるように制御する。
【0041】
当該制御部60は、流路50を分岐する7つの分岐手段20a〜20gと接続されたマイコン等で構成するとよい。制御部60では、非検知モード時或いは検知モード時において、雰囲気ガスの流下方向を切り替える制御を前記分岐手段20a〜20gに対して行う。流下方向を切り替えるタイミングは、例えば電源投入からの経過時間、各モードの開始からの経過時間を基準として行えばよく、また、所定のガス成分の濃度が所定濃度以下となった場合等に行うように設定すればよい。
【0042】
例えばカラム中での移動速度がメタンやエタンに比べてかなり遅いプロパンは、ガス成分分離部10の内部における位置を鑑みると、ガス成分分離部10の内部を順方向に流動させる場合よりも逆方向に流動させたほうがガス成分分離部10の内部から迅速に排出できる場合がある。このような場合、本発明の制御部60によって、雰囲気ガスの流下方向を切り替える制御を行えば、プロパンをガス成分分離部10の内部から除去するパージモードの時間を大幅に短縮することができる。
【0043】
(その他の部材)
ガスサンプリング装置Xの電源は電池を用いるとよいが、これに限られるものではない。電池を用いることによって、ガスサンプリング装置Xを小型化することができる。電池を使用する場合は、できるだけ電力の消費を抑えるのが好ましいため、ポンプを小型化することや、パージモードを加熱しないで行っても加熱して行った場合と同様の効果が認められる態様を採用することが好ましい。
【0044】
第三分岐手段20c或いは第四分岐手段20dと、第五分岐手段20eとの間には、サンプリングしたガスを、ガス成分分離部10に投入する前に一旦貯留するガス貯留部2を備える。本実施形態のガス貯留部2は、20〜30mL程度の容量を有する。サンプリングしたガスをこのガス貯留部2の内部に所定時間(例えば10秒程度)流下させることで、ガス貯留部2の内部は確実にサンプリングしたガスで満たされる。この状態でガス貯留部2の内部のガスをガス成分分離部10に投入すれば、サンプリングしたガスを確実に分離することができる。
【0045】
ガス検知部30および濃度測定部40の下流には、ガス流量を検知する流量検知部3が配設されている。ポンプPを作動することにより、雰囲気ガスおよび被検知ガスは吸引され、ガス成分分離部10、ガス検知部30などを経てガス排気口4から排出される。
【0046】
検知された結果発生した出力信号は、被検知ガスに含まれる都市ガス成分(エタン)を演算部(図外)にて演算し、必要に応じてその演算結果を表示部(図外)にて表示する。また、演算結果が所定値以上の濃度の都市ガスを含むと判定された場合は、警報部(図外)により、アラーム等の手段により使用者に知らせることが可能である。
【0047】
(ガス流下経路について)
上述したガスサンプリング装置Xは、第一分岐手段20a〜第七分岐手段20gの開閉を制御部60により制御して、以下の待機モード、サンプリングモード、パージモード、識別モードとすることができる。尚、各モードは、待機モード、サンプリングモード、識別モード、パージモードの順で繰返し行われる。本実施形態では、各モードの切り替えは手動で行う。
図2に、爆発下限界(LEL)濃度測定時におけるガス流化経路を示す。
【0048】
図2(a)に示した待機モード、サンプリングモード、パージモードでは、雰囲気ガス(1a)は、ガス貯留部2を経由させずに、ガス成分分離部10を逆方向(紙面の右から左方向)に流下させてガス検知部30を流下させる。このとき、ガス入口部1より導入した被検知ガス(1b)は、ガス貯留部2を経由して濃度測定部40を流下する。
【0049】
本発明のガスサンプリング装置Xの駆動方法では、待機モード、サンプリングモード、パージモードは、ガスの流下方向は同じ方向に設定してある。
【0050】
本明細書における「待機モード」とは、電源はオン状態であるが、サンプリング、ガス検知、パージを実質的に行わない状態であり、運転指令の入力を待つモードであり、例えば、雰囲気ガスを低い流下速度で流下させたり、内部回路の一部の電源供給を停止する省電力モードとすることができる。
【0051】
サンプリングモードでは、被検知ガスがガス貯留部2を流下するようにして、ガス貯留部2の内部は確実にサンプリングしたガスが満たされるように各分岐手段20a〜20gを制御する。
【0052】
パージモードでは、ガス成分分離部10の内部に留まっている可燃性ガスを清浄な空気(雰囲気ガス)によって押し出すように、各分岐手段20a〜20gを制御する。即ち、パージモードは、以下に説明する識別モードにおいてガス成分分離部10を流下するガスの方向と反対の方向で空気を流すことにより、ガス成分分離部10の内部に留まっている可燃性ガスを除去する。このパージモードは、都市ガスの漏洩検知が終了した後などに行なうとよい。
【0053】
図2(b)に示した識別モードでは、雰囲気ガスがガス貯留部2を経由するように各分岐手段20a〜20gを制御する。これにより、当該ガス貯留部2の内部に満たされているサンプリングされたガス(被検知ガス)をガス成分分離部10の順方向(紙面の左から右方向)に流下させてガス検知部30を流下させることができる。このとき、ガス入口部1より導入した被検知ガスは、濃度測定部40を流下する。
【0054】
このように本発明のガスサンプリング装置Xの駆動方法は、ガス成分分離部の内部を流下する雰囲気ガスの流下方向を、ガス成分を検知しない非検知モード時(待機モード、サンプリングモード、パージモード)、および、前記ガス成分を検知する検知モード時(識別モード)において異ならせてある。
【0055】
非検知モードにおいて、待機モードにおける流量およびパージモードにおける流量は、同じに設定しても異なる流量で設定してもよい。流量を異ならせる場合は、例えばパージモードにおける流量よりも待機モードにおける流量の方を遅く設定するとよい。この場合、待機モードにおける流量を遅く設定することで、待機モードを省電力モードとすることができるため、ガスサンプリング装置の駆動を省電力で行うことができる。
【0056】
本実施形態では、待機モードにおける流量を100〜200mL/分とし、前記パージモードにおける流量を500〜600mL/分とした場合について説明する。
本構成では、パージモードにおける流量を3〜5倍程度早く設定してあるため、ガス成分分離部の内部に存在するガス成分を迅速に排出することができる。
【0057】
〔別実施の形態1〕
図3に、VOL濃度測定時におけるガス流下経路を示す。
図3(a)に示した待機モード、サンプリングモード、パージモードでは、雰囲気ガスは、ガス貯留部2を経由させずに、ガス成分分離部10を逆方向(紙面の右から左方向)に流下させてガス検知部30を流下させるように各分岐手段20a〜20gを制御する。このとき、ガス入口部1より導入した被検知ガスは、第一分岐手段20a〜第二分岐手段20bの間に設けたオリフィス70およびガス貯留部2を経由して濃度測定部40を流下する。本態様では、雰囲気ガス(1a)および被検知ガス(1b)を合流させて被検知ガスを希釈している。当該オリフィス70は、このような希釈を行う際に流路に抵抗をもたせるために設けてある。
【0058】
図3(b)に示した識別モードでは、雰囲気ガスがガス貯留部2を経由するように各分岐手段20a〜20gを制御する。これにより、当該ガス貯留部2に内部に満たされているサンプリングされたガス(被検知ガス)をガス成分分離部10の順方向(紙面の左から右方向)に流下させてガス検知部30を流下させることができる。このとき、ガス入口部1より導入した被検知ガスは、第一分岐手段20a〜第二分岐手段20bの間に設けたオリフィス70を経由して濃度測定部40を流下する。
【0059】
〔別実施の形態2〕
上述した実施形態では、プロパンを、ガス成分分離部10の内部を逆方向に流動させる際に、ガス成分分離部10の内部から排出したが、プロパンは、必ずガス成分分離部10の内部から排出する必要はない。即ち、ガス成分分離部10の入り口側から内部に侵入したプロパンは、メタンやエタンがガス成分分離部10から排出されるまで、ある程度の距離を移動している。プロパンは、メタンやエタンがガス成分分離部10から排出された時点で逆方向(入り口側)に流動させることとなるが、当該入り口側から排出されるまでに逆方向の流動を停止してプロパンをガス成分分離部10の内部に留まらせる。この状態では、プロパンはガス成分分離部10の入り口側付近に留めることができる。そのため、次の都市ガスの検知において、新たにメタンおよびエタンがガス成分分離部10の内部を流下したとしても、新たなメタンやエタンは、ガス成分分離部10の入り口側付近に留まっているプロパンよりも移動速度が速いため先にガス成分分離部10から排出される。このように、複数回のガス検知を行ったとしても、メタンやエタンがガス成分分離部10から排出されるタイミングでプロパンが排出されないようにガスサンプリング装置Xを駆動してもよい。
【0060】
例えばメタンやエタンのみを測定したい場合に、このようにガスサンプリング装置Xを駆動すればよい。
【0061】
〔別実施の形態3〕
上述した実施形態では、各モードの切り替えは手動で行ったが、このような態様に限らず、各モードの切り替えは自動で行えるように構成してもよい。このような各モードの自動制御は、操作部(図外)を操作することでスタートするように構成すればよい。当該自動制御は、制御部60に内蔵されたプログラムによって制御すればよい。
【0062】
図8に、通常の自動制御を行う場合のフローチャートを示した。これによれば、電源投入(S1)→待機モード(S2)→操作部を操作(S3)→サンプリングモード移行(S4)→所定時間経過(S5)→識別モード移行(S6)→所定時間経過(or識別完了信号出す)(S7)→パージモード移行(S8)→所定時間経過(S9)→待機モード(S2)のように各モードの切り替えが行われる。
【0063】
図9に、連続測定(その1)を行う場合のフローチャートを示した。これによれば、電源投入(S1)→待機モード(S2)→操作部を操作(S3)→サンプリングモード移行(S4)→所定時間経過(S5)→識別モード移行(S6)→所定時間経過(or識別完了信号出す)(S7)→パージモード移行(S8)→所定時間経過(S9)→サンプリングモード移行(S4)→所定時間経過(S5)・・・・・のように各モードの切り替えが行われる。
【0064】
このように連続測定する場合、回数を経るとガス成分分離部10内にプロパンが徐々蓄積され、当該蓄積されたプロパンがガス検知部30の側に移動し、メタン・エタンの検出時にカラムから漏れ出す可能性が考えられる。この状態を避けるために、連続測定モードにおいて、所定回数以上測定した場合は、その後の測定で、制御部60がパージ時間を延ばすよう制御する、或いは、制御部60がパージ時の流量を増加するよう制御して、プロパンの漏れ出しを防ぐようにする(連続測定(その2))。
【0065】
図10に、連続測定(その2)を行う場合のフローチャートを示した。これによれば、電源投入(S1)→待機モード(S2)→操作部を操作(S3)→サンプリングモード移行(S4)→所定時間経過(S5)→識別モード移行(S6)→所定時間経過(or識別完了信号出す)(S7)→所定回数以上の連続測定(S7A)→パージ時間延長(or流量増加)(S7B)→パージモード移行(S8)→所定時間経過(S9)→サンプリングモード移行(S4)→所定時間経過(S5)・・・・・のように各モードの切り替えが行われる。
【0066】
尚、S7A,S7Bは、上述したようにS4およびS10の間で行ってもよいし、S3およびS4の間で行ってもよい。
【実施例】
【0067】
〔実施例1〕
本発明のガスサンプリング装置Xにおいて、検知モード(識別モード)時において都市ガス13Aを検知したときの検知出力のデータを
図4に示す。
【0068】
都市ガス13A(1000ppm:メタン880ppm、エタン60ppm、ブタン40ppm)を150mL/分で流下させたところ、メタンおよびエタンは50秒程度で検知出力が得られたのに対して、プロパンは約900〜1800秒において検知出力が得られた。このように、プロパンは、メタンやエタンに比べてガス成分分離部10を流下する速度が極めて遅いものと認められた。
【0069】
〔実施例2〕
実施例1において、メタンおよびエタンを検知するまで(約60秒)は都市ガス13Aを150mL/分で流下させ、その後、都市ガス13Aの流下速度を580mL/分に増加させたときの検知出力のデータを
図5に示す。
【0070】
この結果、プロパンは約180〜600秒において検知出力が得られたため、流下速度を増大させることで、プロパンがガス成分分離部10を流下する速度も向上するものと認められた。即ち、本実施例では、ガス成分分離部10の内部に残留するプロパンを排出するには、流下速度を580mL/分に増加させてから540秒(600−60)を要するものと認められた。
【0071】
尚、都市ガス13Aを150mL/分で流下させた場合は、100〜200mL/分で流下させた場合と同様の結果が得られ、都市ガス13Aを580mL/分で流下させた場合は、500〜600mL/分で流下させた場合と同様の結果が得られた(結果は示さない)。
【0072】
〔実施例3〕
ガス成分分離部10の内部を流下する雰囲気ガスの流下方向を、検知モードから非検知モードに切り替えたときの検知出力のデータを
図6に示す。
【0073】
即ち、約60秒の検知モード(150mL/分)を行った後、非検知モード(580mL/分)を行った。その結果、非検知モードにおいて、プロパンは約80秒経過時において検知出力のピークが得られ、約190秒経過時まで検知出力が得られた。即ち、本実施例では、ガス成分分離部10の内部に残留するプロパンを排出するには、130秒(190−60)を要するものと認められた。
このようにガス成分分離部10の内部を流下する雰囲気ガスの流下方向を切り替えることで、ガス成分分離部10の内部に残留するプロパンを4.2倍程度(540/130)も迅速にガス成分分離部10の内部から排出することができるものと認められた。即ち、本発明のガスサンプリング装置Xおよびその駆動方法によれば、パージモードの時間を飛躍的に短縮できる。
【0074】
〔実施例4〕
ガス成分分離10の内部を流下する雰囲気ガスの流下方向を、検知モードから非検知モードへの切り替えを繰り返し行ったときの検知出力を測定した。
【0075】
即ち、約60秒の検知モードを行った後、約120秒の非検知モードを行った。この180秒のモード切替サイクルを6回行ったときの結果を
図7に示す。
【0076】
この結果、各サイクルで同様の検知出力結果が得られているため、ガス成分分離部10の内部には残留するプロパンが存在しない状態で次のサイクルに移行できているものと認められた。
【0077】
〔実施例5〕
複数種類の可燃性ガスを含有する被検知ガスのガス成分を検知する場合、本発明のガスサンプリング装置Xを利用したガス成分検知方法とすることができる。即ち、被検知ガスをガス成分毎に分離するガス成分分離部10における移動速度が異なる複数のガス成分を、所望のガス成分の濃度を検出するガス検知部30によって検知するに際し、所定のガス成分を検知した後、当該所定のガス成分の流下方向を逆転させた流下方向に切り替えて他のガス成分を検知する。
【0078】
例えばカラム中での移動速度がメタンやエタンに比べてかなり遅いプロパンは、ガス成分分離部10の内部における位置を鑑みると、ガス成分分離部10の内部を順方向に流動させる場合よりも逆方向に流動させたほうがガス成分分離部10の内部から迅速に排出できる場合がある。このような場合、所定のガス成分(メタンやエタン)を検知した後、当該所定のガス成分の流下方向を逆転させた流下方向に切り替える制御を制御部60によって行えば、他のガス成分(プロパン)を検出する時間を大幅に短縮することができる。
【0079】
即ち、メタンおよびエタンがガス成分分離部10の内部から迅速に排出させた後、直ちに本発明の制御部60によって、雰囲気ガスの流下方向を切り替える制御を行ってプロパンをガス成分分離部10の内部から迅速に排出させることで、メタン、エタン、プロパンを連続的に迅速に検出することができる。
【0080】
上述した態様では、メタン、エタンおよびプロパンを検知する場合について説明を行ったが、本ガスサンプリング装置、その駆動方法およびガス成分検知方法は、上記成分の検出に限定されるものではなく、ガス成分分離部中の移動速度が他のガスと大きく異なるガスを含む被検知ガスのガス成分を検出する場合に有用に用いることができるものである。