【課題を解決するための手段】
【0027】
本発明の一つの主題は、メタン(または天然ガス)と、アンモニアと、場合により空気および/または酸素とを含むガス混合物を白金触媒の上に通す、シアン化水素酸を生産するためのプロセスであり、このプロセスは、一般式(I):R−S−(S)
x−R’に対応する少なくとも一つの硫黄含有化合物を前記ガス混合物に添加することを特徴とし、この式中のRおよびR’は、同一であり、または異なり、1から5個の炭素原子を含有する線状または分岐アルキルまたはアルケニルラジカルを表し、ならびにxは、1から5にわたる数である。
【0028】
本発明の一つの好ましい実施形態によると、メタン(または天然ガス)と、アンモニアと、空気と、場合により酸素とを含むガス混合物を、ロジウムめっき白金網から成る触媒の上に通す。
【0029】
本発明のもう一つの好ましい実施形態によると、メタン(または天然ガス)とアンモニアとを含むガス混合物を、白金で内部をコーティングした焼結アルミナチューブに、約1300℃の温度で通す。
【0030】
ラジカルRおよびR’の非限定的な例として、メチル、エチル、プロピル、アリルおよびプロペニルラジカルを挙げることができる。好ましくは、RまたはR’ラジカルは、メチル、エチルまたはプロピルラジカルである。式(I)の化合物の中で、xが1から3にわたるもの、好ましくはジスルフィド(x=1)およびさらに好ましくはジメチルジスルフィド(DMDS)が好ましい。
【0031】
ジメチルジスルフィド(DMDS)は、広範に入手できる製品であり;特に、Arkemaによって販売されている。
【0032】
本発明のプロセスは、式(I)に対応する硫黄含有化合物のある一定の量の添加を含むことを特徴とする。混合の上流で、原料、メタンもしくは天然ガス、アンモニア、または空気もしくは酸素のうちの少なくとも一つに、硫黄含有化合物を直接添加することができる。ガス流が触媒の上を通過する前に、ミキサーでまたはミキサーの下流で、ガス流の中のメタン/アンモニアまたはメタン/アンモニア/空気および/または酸素ガス混合物に、硫黄含有化合物を直接添加することもできる。本発明のプロセスに従って、これらの添加可能性のうちのたった一つのものを用いることができ、でなければこれらの様々な可能性のうちの幾つかを併用することができ、ことによると硫黄含有化合物をこのプロセスの1つ以上の注入地点で注入する。
【0033】
硫黄含有化合物の添加は、好ましくは、通常の反応過程の間に行うが、触媒の活性化段階(おおよそ24から48時間)の間にこれに添加することもできる。
【0034】
最適な硫黄レベルを維持するために、好ましくは、式(I)の硫黄含有化合物を継続的に添加する。機器設備の30日より長い作動期間にわたって硫黄含有化合物を継続的に添加することができる。
【0035】
ガス混合物に注入される式(I)の硫黄含有化合物の量は、導入されるメタンの容量に対する硫黄の容量によって表して5から500ppm、好ましくは硫黄5から200ppmおよびさらに特に5から100ppm、ならびにさらにいっそう優先的には、メタンの容量に対する硫黄の容量によって表して5から50ppmにわたる。硫黄含有化合物のこれらの量は、本発明のプロセスから得られる生成物のその後の使用にいかなる有害な影響も及ぼさない。
【0036】
プロセスのすべての他の作動パラメータを、式(I)の硫黄含有化合物の添加を伴わないプロセスと比較して、一定に保つことができる。概して、アンドリュッソープロセスでは、およそ95%の純度を有するメタンが使用され、CH
4/NH
3モル比は、1.0から1.2にわたり、(CH
4+NH
3)/全O
2モル比は、1.5から2、好ましくは1.6から1.9にわたり;圧力は、一般に1から2バールであり、反応温度は、1050℃と1150℃の間である。
【0037】
一定に保たれるパラメータ(原料の純度、一定モル比、一定温度および圧力、一定滞留時間など)のこれらの条件下での、DMDSなどの、式(I)の硫黄含有化合物の効果は、結果として、導入されるアンモニアに対して1から5%のHCNの収率の増加、アンモニアの分解度の低下に関連した選択性の増加、および10から40℃の触媒の温度の上昇をもたらす。有利には、適切な場合には、導入される酸素の量を減少させることができ、メタンおよびアンモニアも減少させることができ、その結果、生産性が増加することとなる。
【0038】
本発明のプロセスは、H
2Sなどの毒性ガスの使用をなくすことができ、およびこのプロセスの条件下で容易に蒸発させることができる非毒性液体製品(約110℃の沸点)を要する。DMDSなどの、式(I)の硫黄含有化合物は、最終生成物の補足的精製段階を必要とすることなく、使用する触媒の生産性を有意に向上させることができる。H
2Sの使用とは異なり、本発明のプロセスに従って得られる生成物には、H
2Sなどの硫黄含有化合物がなく、生成物は、硫黄の存在が望ましくない任意の後続のプロセス、例えばアセトンシアノヒドリンを調製するためのプロセスにおいて直接使用することができる。
【0039】
驚くべきことに、DMDSなどの、式(I)の硫黄含有化合物は、H
2Sまたはジメチルスルフィド(DMS)などの他の硫黄含有化合物より、特に、ロジウムめっき白金網の脆性または金属の喪失の観点から、触媒に対して長期的悪影響を殆ど及ぼさないことがさらに観察された。従って、触媒を、交換前に実質的により長い間、使用することができる。
【0040】
本発明は、アンモニアとメタン(または天然ガス)の反応によりシアン化水素酸を生産するためのプロセスにおける、前記プロセスの収率を増加させるための、有効量での、一般式(I):R−S−(S)
x−R’に対応する少なくとも一つの硫黄含有化合物の使用にも関し、この式中のRおよびR’は、同一であり、または異なり、1から5個の炭素原子を含有する線状または分岐アルキルまたはアルケニルラジカルを表し、ならびにxは、1から5にわたる数である。
【0041】
本発明のプロセスから直接得られる生成物は、メチルメルカプト−プロピオンアルデヒド(MMP)との反応によるメチオニンまたはメチオニンのヒドロキシ類似体の生産にも有利に使用される。
【0042】
化学式CH
3−S−(CH
2)
2−CH(NH
2)−COOHのメチオニン、即ち2−アミノ−4−(メチルチオ)酪酸は、メチオニン必要量が有意である、特に家禽の、食物摂取の補足物として必要とされる、動物によって合成されない、必須アミノ酸である。化学合成経路によって得られるメチオニンは、動物用飼料のための、主として家禽のための、天然由来供給物(魚粉、大豆ミールなど)の代用品として定評がある。
【0043】
他のアミノ酸とは異なり、メチオニンは、右旋形(dまたは+)ででも、左旋形(lまたは−)ででも生体吸収され得、これが、ラセミ生成物を生じさせる結果となる化学合成の開発を可能にした。それ故、合成メチオニンの市場は、主として、dl−メチオニン、通常はDLMで示される固体製品のものである。事実上定量的にメチオニンにインビボで変換されるという特有の特徴を有する、化学式CH
3−S−(CH
2)
2−CH(OH)−COOHの2−ヒドロキシ−4−(メチルチオ)酪酸に対応するメチオニンの液体誘導体、α−ヒドロキシ酸も存在する。この液体製品は、88重量%水溶液の形態で市販されており、一般にはメチオニンのヒドロキシ類似体で示される。
【0044】
メチオニンまたはこのヒドロキシル化誘導体に関して非常に多くの合成が記載されているが、工業的に活用されている化学プロセスは、同じ主原料および同じ重要中間体、即ち:
3−(メチルチオ)プロパナールまたはメチルチオプロピオンアルデヒド(MTPA)でも示される、メチルメルカプトプロピオンアルデヒド(MMP)をもたらす結果となる、アクロレインおよびメチルメルカプタン(MSH);
MMPとの反応後、最終的にメチオニンまたはメチオニンのヒドロキシ類似体をもたらす、シアン化水素酸またはシアン化ナトリウム(NaCN)
に、本質的に基づく。
【0045】
報文:Techniques de l’Ingenieur,traite Genie des Procedes[Treatise on Process Engineering],J 6−410−1から9を参照することができ、この報文には、メチルメルカプトプロピオンアルデヒドおよびシアン化水素酸を中間生成物として使用するメチオニンの合成プロセスについての工業的加工条件が記載されており、これらのプロセスのうちの一つは、ことによると、次の反応によって概略的に示される:
H
2S+CH
3OH→CH
3SH+H
2O
CH
3SH+CH
2=CH−CHO→CH
3−S−CH
2−CH
2−CHO
CH
3−S−CH
2−CH
2−CHO+HCN→CH
3−S−CH
2−CH
2−CH(OH)−CN
CH
3−S−CH
2−CH
2−CH(OH)−CN+NH
3→CH
3−S−CH
2−CH
2−CH(NH
2)−CN
CH
3−S−CH
2−CH
2−CH(NH
2)−CN+2H
2O+H
+→CH
3−SCH
2)
2−CH(NH
2)−COOH。
【0046】
有利には、本発明によるプロセスから直接得られる生成物は、反応:
CH
3−C(O)−CH
3+HCN→(CH
3)
2C(OH)CN
に従って、アセトンとの反応によりアセトンシアノヒドリンを生産するためにも使用される。
【0047】
アセトンシアノヒドリンは、下に概略的に示す2つの経路に従ってメチルメタクリラート(MMA)を生産するための中間化合物である。第一の経路は、α−オキシイソブチラミドモノスルファートを形成、これをメタクリルアミドスルファートに転化させることに存する。その後、この後者のメタクリルアミドスルファートを加水分解し、メタノールでエステル化して、メチルメタクリラートを形成する。
【0048】
第二の経路は、メタノールと直接反応させること、その後、脱水反応を用いてメチルメタクリラートを生じさせることに存する。
【0049】
報文:Techniques de l’Ingenieur,traite Genie des Procedes[Treatise on Process Engineering],J 6−400−1から6を参照することができ、この報文には、アセトンシアノヒドリン経路によるメチルメタクリラートの生成プロセスについての工業的加工条件が記載されている。
【0050】
【化1】
【0051】
有利には、本発明のプロセスから直接得られる生成物は、反応:
CH
2=CH−CH−CH
2+2HCN→NC−(CH
2)
4−CN
に従ってブタジエンと反応させることによるアジポニトリルの生産にも使用される。
【0052】
アジポニトリルは、水素化後、結果としてヘキサメチレンジアミンとなり、このヘキサメチレンジアミンは、ヘキサメチレンジアミンアジピン酸の重縮合によるポリアミドPA−6,6(Nylon(登録商標))の生産のための中間化合物である。
【0053】
報文:Techniques de l’Ingenieur,traite Genie des Procedes[Treatise on Process Engineering],J 6−515−1から7を参照することができ、この報文には、この経路によるポリアミドPA−6,6の合成が記載されている。
【0054】
有利には、本発明のプロセスから直接得られる生成物は、反応:
HCN+NaOH→NaCN+H
2O
に従って水酸化ナトリウムで中和することによるシアン化ナトリウムの生産にも用いられる。
【0055】
シアン化ナトリウムは、多くの用途、特に、貴金属の抽出、電気めっきまたは化合物の合成のための用途を有する。
【0056】
以下の実施例は、本発明を例証するものであるが、本発明の範囲を限定するものではない。
【0057】
実施例
(実施例1)
硫黄含有化合物を有さず、メタンの滴定濃度95容量%を有する、天然ガス(NG)を、アンモニア、空気および酸素と、1.16のCH
4/NH
3容量比および1.70の(CH
4+NH
3)/全O
2容量比で混合する。NGの流量は、4000kg/時である。この混合物を送って15のPt/Rh(90/10)網の床に通す。アンモニアに対するHCNの収率は、48時間後に68.0%で安定し、このときの温度は、約1060℃である。
【0058】
メタンの容量に対する硫黄の容量によって表して10ppmの量でDMDSを添加する。非常に急速に、収率が70.0%に上昇し、出口でのN
2およびH
2ガスの分析から決定されるアンモニアの分解度は、2%降下し、ならびに網の温度は、+10℃上昇する。DMDSを継続的に注入し、この注入が、60日より長い間の性能の維持を可能にする。DMDSの注入の停止は、収率の漸進的降下を生じさせる。生成される純粋なHCNは、硫黄含有化合物を含有しない。
【0059】
(実施例2)
メタンの容量に対する硫黄の容量によって表して125ppmの量でDMDSを添加することを除き、実施例1と同じ手順に従う。非常に急速に、収率は、73.0%に上昇し、アンモニアの分解度は、4%降下し、および網の温度は、+40℃上昇する。DMDSを継続的に注入し、この注入が、50日より長い間の性能の維持を可能にする。生成される純粋なHCNは、硫黄含有化合物を含有しない。
【0060】
(実施例3(比較例))
DMDSの代わりにH
2Sを添加することを除き、実施例1と同じ手順に従う。メタンの容量に対する硫黄の容量によって表して100ppmの量でH
2Sを添加する。HCNの収率は、1.0%しか上昇せず、アンモニアの分解度および網の温度は、実質的に変わらないままである。さらに、生成される純粋なHCNは、下流の適用に有害であるH
2Sの微量を含有する。
【0061】
(実施例4)
硫黄含有化合物を有さず、メタンの滴定濃度95容量%を有する、天然ガス(NG)を、アンモニア、空気および酸素と、1.16のCH
4/NH
3容量比および1.73の(CH
4+NH
3)/全O
2容量比で混合する。NGの流量は、4100kg/時である。この混合物を送って18のPt/Rh(90/10)網の床に通す。アンモニアに対するHCNの収率は、50日間の実行後に67%であり、このときの温度は、約1060℃である。
【0062】
メタンの容量に対する硫黄の容量によって表して15ppmの量でDMDSを添加する。非常に急速に、収率が69%に上昇し、アンモニアの分解度は、3.5%降下し、網の温度は、+10℃上昇する。
【0063】
DMDSの注入の停止は、67%への収率降下、3.5%のアンモニアの分解度上昇、および10℃の温度降下を生じさせる。
【0064】
メタンの容量に対する硫黄の容量によって表して25ppmの量でDMDSを再び注入する。非常に急速に、収率は、69%に上昇し、アンモニアの分解度は、3.5%降下し、および網の温度は、10℃上昇する。
【0065】
(実施例5)
実施例1から4からのもの以外の反応器において、硫黄含有化合物を有さず、メタンの滴定濃度97容量%を有する、天然ガス(NG)を、アンモニア、空気および酸素と、1.09のCH
4/NH
3容量比および1.95の(CH
4+NH
3)/全O
2容量比で混合する。NGの流量は、3120kg/時である。この混合物を送って20のPt/Rh(90/10)網の床に通す。アンモニアに対するHCNの収率は、1週間の作動後に64.0%で安定する。メタンの容量に対する硫黄の容量によって表して10ppmの量でDMDSを添加する。非常に急速に、収率が67.0%に上昇し、アンモニアの分解度は降下し、網の温度は上昇する。DMDSを継続的に注入し、この注入は、アンモニアの流量および天然ガスの流量の変化にもかかわらず、60日間、少なくとも67%での収率の維持を可能にする。メタンの容量に対する硫黄の容量によって表して20ppmにDMDSの濃度を上昇させることによっても、尚、68%の収率が得られる。DMDSの注入の停止は、収率の降下を生じさせる。
【0066】
(実施例6)
メタンの容量に対する硫黄の容量によって表して20ppmの量でDMDSを混ぜた(doped)、硫黄含有化合物を有さず、メタンの滴定濃度94容量%を有する天然ガス(NG)を、アンモニア、空気および酸素と、1.15のCH
4/NH
3容量比および1.76の(CH
4+NH
3)/全O
2容量比で混合する。NGの流量は、3840kg/時である。この混合物を送って20のPt/Rh(90/10)網の床に通す。アンモニアに対するHCNの収率は、66.5%であり、このときの温度は、約1060℃である。
【0067】
DMDSの注入の停止は、64%への収率の降下、3.5%のアンモニア分解度の上昇、および10℃の温度降下を生じさせる。
【0068】
次に、メタンの容量に対する硫黄の容量によって表して3ppmの量でH
2Sを添加する。HCNの収率は、1.0%未満上昇し、アンモニアの分解度および網の温度は、実質的に変わらないままである。
【0069】
H
2Sの注入停止は、64%への収率の小さな降下を生じさせる。