【解決手段】エンジンと車体との間を連結するロッド200と、ロッド200に支持された慣性マスをロッド内で所定方向に往復動させるアクチュエータ100と、ロッド200の所定方向への変位の速度に比例した力を発生させるようアクチュエータ100を制御する制御手段とを備え、アクチュエータは、通電により磁界を発生させて、慣性マスを往復動させる第1コイルと、磁界を受けて、逆起電力が発生する第2コイルとを有し、制御手段は、第2コイルに発生する逆起電力を測定し、測定結果に基づき第1コイルへの通電を制御する。
【発明を実施するための形態】
【0009】
以下、本発明の実施形態を図面に基づいて説明する。
図1は、アクチュエータとロッドの斜視図である。
図1は、アクチュエータがロッドに取り付けられる前の状態を示している。
【0010】
本発明の実施形態に係る振動低減装置は、ロッドの振動を抑制するための装置である。振動低減装置は、
図1に示すように、アクチュエータ100及びトルクロッド200備えている。アクチュエータ100は、後述する慣性マスをトルクロッド200に対して相対的に移動させることで、トルクロッド200の振動を抑制する。
【0011】
トルクロッド200は、車体とエンジンとを連結する部材である。トルクロッド200は、ロッド軸部201と、ロッド端部202、203とを備えている。ロッド軸部201は、円筒状のロッド端部202の中心点から、円筒状のロッド端部203の中心点に向く方向を軸心とする。ロッド軸部201には、アクチュエータ100を取り付けるための空洞が形成されている。また、ロッド軸部201の軸心には、シャフトを通すための円筒状の孔が形成されている。なお、
図1では、シャフトの図示を省略している。
【0012】
ロッド端部202は、ロッド軸部201の一端に設けられている。ロッド端部202は筒状に形成されている。ロッド端部202の筒状の孔が、ボルトの挿入孔となる。挿入孔の内壁部分とボルトの間には弾性体が介在している。そして、ロッド端部202は、ボルトにより車体に取り付けられる。
【0013】
ロッド端部203は、ロッド軸部201の他端に設けられている。ロッド端部203は筒状に形成されている。ロッド端部203の筒状の孔が、ボルトの挿入孔となる。挿入孔の内壁部分とボルトの間には弾性体が介在している。そして、ロッド端部203は、ボルトによりエンジンに取り付けられる。
【0014】
アクチュエータ100がトルクロッド200に取り付けられた状態で、トルクロッド200は、エンジンと車体との間に取り付けられる。エンジンの振動は、主にロッド軸部201の軸心に沿って伝わる。このとき、アクチュエータ100は、後述する慣性マスをトルクロッド200に対して相対的に移動させる。相対的な移動方向は、ロッド軸部201の軸心に沿う方向である。これにより、トルクロッド200の振動が抑制される。
また、エンジンの曲げ、捩れの共振振動(以下、エンジン弾性共振振動と称す)を効率よく抑制するために、トルクロッド200は、ロッド端部201の軸心に沿う方向の共振周波数(以下、ロッド共振周波数と称す)がエンジン弾性共振周波数より低くなるよう、構成されている。
【0015】
エンジン弾性共振周波数は、エンジン弾性共振振動の共振周波数であり、一般的な車両用エンジンの場合には、280〜350Hz程度である。一方、ロッド共振周波数は、トルクロッド200の特性により決まる剛性共振周波数であり、ロッド軸部201及びロッド端部202、203の質量により決まる。また、トルクロッド200は弾性体を介して車体及びエンジンに連結されるため、ロッド共振周波数は当該弾性体の特性にも依存する。
【0016】
そのため、本例では、ロッド共振周波数がエンジン弾性共振周波数より低くなるように、トルクロッド200の形状、剛性等を規定している。これにより、本例は、エンジントルクを支持するトルクロッド200において、ロッド軸部201の軸方向への振動を抑制でき、車両の加速時における車室内の騒音を低減できる。
【0017】
次に、
図2及び
図3を用いて、アクチュエータ100の構成を説明する。
図2は
アクチュエータ100の分解斜視図である。
図3は、
図2のアクチュエータ100を組み立てた状態における、
図2のA−A線に沿う断面図である。アクチュエータ100は、可動子を外側に固定子を内側に設けたアウタ可動型の制振装置ある。なお、以下に示す実施例では、アウタ可動型のアクチュエータを例に説明するが、アクチュエータ100は、インナ可動型でもよい。また
図2及び
図3に示すアクチュエータ100は一例にすぎず、アクチュエータ100は他の構造であってもよい。
【0018】
図2に示すように、アクチュエータ100は、インナ部材2と、アウタ部材3と、板バネ4、5と、フランジ6、7と、ボルト8と、シャフト91と、ナット92とを備える。インナ部材2は、アウタ部材3の内側に配置され、シャフト91を介して固定され、固定子となる。一方、アウタ部材3は、トルクロッド200内で、インナ部材2に対して前後方向(スラスト方向)に相対的に往復動するように、板バネ4、5を介してインナ部材2に支持されており、可動子となる。また、アウタ部材3が慣性マスに相当する。本例のアクチュエータ100において、シャフト91の軸方向が慣性マスの移動方向となる。
【0019】
まず、インナ部材2の構成を説明する。インナ部材2の内部には、インナコアとなる複数の板状の積層鋼板21が積層されており、当該積層鋼板21の中心部には、シャフト91を挿入するための挿入孔が設けられている。積層鋼板21はシャフト91に対して対称な形状をしており、ボビン22に覆われている。ボビン22は積層鋼板21を覆うように、二分割されたユニットにより形成されており、ボビン22はシャフト91の軸受けとなる軸受け部221と、コイル23、24、25、26が巻き付けられる巻回部222と、磁石25、26を支持する磁石支持部223を有する。軸受け部221が、ボビン22の中心に形成されており、軸受け部221の上部及び下部にそれぞれ巻回部222が形成され、さらに巻回部222の上部及び下部にそれぞれ磁石支持部223が形成されている。軸受け部221には、シャフト91が挿入される挿入孔が設けられている。
【0020】
またボビン22の上部の巻回部222には、コイル23が巻き付けられている。またコイル23の外側には、コイル24が巻き付けられている。コイル23及びコイル24はコイルの軸心を同じ位置に配置されている。コイルの軸心は、コイル線を巻き付ける際の中心線であって、軸心の長手方向は、シャフト91の中心軸に対して垂直な方向である。コイル24は、コイル23の外周に巻き付けられるため、コイル24の外周の半径は、コイル23の外周の半径よりも大きい。
【0021】
コイル23は、通電により磁界を発生させて、アウト部材3を往復動させるためのコイルである。コイル24は、逆起電力を測定するためのコイルである。コイル23及びコイル24はそれぞれ独立コイルで形成されている。コイル24は、コイル23の通電より発生する磁場の発生領域に設けられる。そのため、アクチュエータ100の外部からコイル23に対して電流を流すと、コイル24は、コイル23から磁界を受けることで励磁し、逆起電力によって電流を流す。コイル24の電流は、アクチュエータ100の外部のセンサに流れる。
【0022】
ボビン22の下部の巻回部222には、コイル25が巻き付けられている。またコイル25の外側には、コイル26が巻き付けられている。コイル25及びコイル26はコイルの軸心を同じ位置に配置されている。コイル26は、コイル25の外周に巻き付けられるため、コイル26の外周の半径は、コイル25の外周の半径よりも大きい。コイル25は、コイル23と同様の作用をもつ。コイル25及びコイル26はそれぞれ独立コイルで形成されている。またコイル26はコイル24と同様の作用をもつ。
【0023】
コイル23はコイル25と配線で接続されている。また、コイル24はコイル26と配線で接続されている。またインナ部材2の断面(
図3の断面に相当)において、コイル23とコイル25は、シャフト91の軸心に対して互いに対称となる位置に配置されている。また、コイル24とコイル26は、シャフト91の軸心に対して互いに対称となる位置に配置されている。
【0024】
上記のようなコイル23〜26の構成により、アクチュエータ100を製造する際に、コイル23〜26のコイル線を、同時にボビンに巻き付けることができる。その結果として、生産性を向上できる。また、コイル23とコイル25との間、及び、コイル24とコイル26との間で、同じ特性をもたせることができる。その結果として、アクチュエータ100の駆動方向に対して均等に推進力を発生できる。
【0025】
ボビン22の上部の磁石支持部223の上端面223aには、磁石27の形状に沿った凹部が形成されており、磁石27が当該凹部に嵌合することで、磁石支持部223に設けられる。また、同様に、ボビン22の下部の磁石支持部223の下端面223bには、磁石28の形状に沿った凹部が形成されており、磁石28が当該凹部と嵌合することで、磁石支持部223に設けられる。
【0026】
磁石27は、1組の磁石271及び磁石272を有し、磁石271及び磁石272は、シャフト91の軸方向と同方向に並列な状態で、磁石支持部223の上端面223aの中央部分に支持されている。永久磁石271及び磁石272は、隣合う磁極が異なるように並べられている。同様に、磁石28は、1組の永久磁石281及び磁石282を有し、磁石281及び磁石282は、シャフト23の軸方向と同方向に並列な状態で、磁石支持部223の下端面223bの中央部分に支持されている。永久磁石261及び磁石262は、隣合う磁極が異なるように並べられている。
【0027】
次に、アウタ部材3の構成を説明する。アウタ部材3は、積層鋼板支持部材31と、上蓋部32と、下蓋部33と、積層鋼板34と、積層鋼板35とを備える。アクチュエータ100はアウタ可動型であって、アウタ部材3の可動マスを大きくとることで、アクチュエータ100の推進力を向上させている。
【0028】
積層鋼板支持部材31は、軽金属または非金属材料で一体形成されており、アウタ部材3の本体部となる。積層鋼板支持部材31は、インナ部材2の上方と下方にそれぞれ設けられている。上方の積層鋼板支持部材31はインナ部材2の磁石27と隙間を空けた状態で設けられている。また、下方の積層鋼板支持部材31はインナ部材2の磁石28と隙間を空けた状態で設けられている。
【0029】
積層鋼板支持部材31の中央部分には、積層鋼板34、35を支持するための孔が形成される。そして、積層鋼板34、35が当該孔に圧入されて、積層鋼板34、35が積層鋼板支持部材31に支持されている。積層鋼板34は磁石27と対向する位置に配置され、積層鋼板35は磁石28と対向する位置に配置されている。なお、積層鋼板34、35は、接着材等で積層鋼板支持部材31に接着されてもよい。
【0030】
積層鋼板支持部材31の角部には、ボルト8を挿入するための挿入孔313が、シャフト91の軸方向と平行に形成されている。
【0031】
積層鋼板34、35は、複数の板状の鋼板が、積層されることで構成されている。また積層鋼板34の積層面に対して垂直方向とシャフト91の軸方向とが平行になり、積層鋼板35の積層面に対して垂直方向とシャフト91の軸方向とが平行になる。
【0032】
上蓋部32は、積層鋼板支持部材31の上面を覆うように形成されている。上蓋部32の角部には、ボルト8を挿入するための挿入孔323が、シャフト91の軸方向と平行に形成されている。
【0033】
下蓋部33は、積層鋼板支持部材31の下面を覆うように形成されている。下蓋部33の角部には、ボルト8を挿入するための挿入孔333が、シャフト91の軸方向と平行に形成されている。
【0034】
次に、インナ部材2及びアウタ部材3以外の構成を説明する。板バネ4、5は、インナ部材2の磁石27、28とアウタ部材3との間に、アウタ部材3の移動軸方向と垂直方向に所定間隔をもち、それぞれ同一の軸心となるように配置され、インナ部材2とアウタ部材3とを連結する。板バネ4及び板バネ5の四隅にはボルト8を挿入する挿入孔41、51が設けられ、板バネ4及び板バネ5の中央部には、シャフト91を挿入する挿入孔42、52が設けられている。
【0035】
フランジ6、7は、板状に形成されており、アウタ部材3の移動軸方向に両端から、板バネ4、5及びアウタ部材3を狭持する。フランジ6の四隅にはボルト8を挿入する挿入孔61が設けられている。フランジ7の四隅には、ボルト8と締結するウェルドナットなどの係合部71が設けられている。2本のボルト8が、挿入孔323、41、51、61に挿入され、係合部71に締結されている。また、2本のボルト8が、挿入孔333、41、51、61に挿入され、係合部71に締結されている。これにより、板バネ5、6は、上蓋部32及び下蓋部33を介して、積層鋼板支持部材31の移動軸方向の両端にそれぞれ固定される。
【0036】
シャフト91の先端部分には、ナット92と締結するようにネジ部が形成されており、シャフト91は、板バネ41の挿入孔42と、インナ部材2の挿入孔と、板バネ5の挿入孔52に挿入され、ナット92に締結される。これにより、インナ部材2及び板バネ4、5はシャフト91及びナット92により締結される。また、アウタ部材3は板バネ4、5を介してシャフト91に支持される。そして、アクチュエータ100をトルクロッド200に取り付けて、ボルト等でアクチュエータ100のシャフト91がトルクロッド200に固定される。これにより、アウタ部材2が、板バネ4、5及びシャフト91を介して、トルクロッド200に支持される。
【0037】
次に、本例の振動低減装置において、制御対象となるアクチュエータ100の状態量の測定について説明する。
【0038】
アクチュエータ100の状態量を測定するには、アクチュエータ100にセンサを取り付けることが考えられる。しかしながら、センサを取り付けた場合には、コストの増大、センサの設置空間の確保等の問題が発生する。
【0039】
アクチュエータ100で発生する逆起電圧と、慣性マスの相対速度(トルクロッド200に対する慣性マスの相対速度)との間には比例関係があることが知られている。そのため、本例は、逆起電圧からトルクロッド200に対するアクチュエータ100の相対速度を得ることによりセンサレス化を実現させている。
【0040】
次にセンサレス化の原理について、
図4を用いて説明する。
図4はアクチュエータ100の電気等価回路を示す。
【0041】
なお
図4における各記号は、コイル23に繋げたシャント抵抗の抵抗r、アクチュエータ100で発生する逆起電圧E、アクチュエータ100への入力電圧Vs、アクチュエータ100に加わる電圧Vc、シャント抵抗間電圧Vr、アクチュエータ100を流れる電流Ic、コイル23、25のインピーダンスZcをそれぞれ表す。
【0042】
逆起電圧E(t)と、慣性マスに対するコイル23、25の相対速度dx
rel(t)/dtは、逆起電力定数K
bを用いると、下記式1のような関係が成り立つ。なお、慣性マスに対するコイル23、25の相対速度dx
rel(t)/dtは、
図1に示す実システムでは制振対象構造物に対するアクチュエータ100の相対速度に対応する。またx
rel(t)は、慣性マスに対するコイル23、25の変位を示す。
【数1】
【0043】
また、
図2に示したアクチュエータの電気等価回路からは次のような関係式を導出できる。
【数2】
【0044】
これら式1及び式2より、相対速度dx
rel(t)/dtは、以下のように求めることができる。
【数3】
【0045】
このように式1又は式3から相対速度dx
rel(t)/dtを得ることにより、相対速度検出に関するセンサレス化が可能になる。
【0046】
上記式3においてコイル23、24のインピーダンスZ
c、逆起電力定数K
bは既知であるから、コイルに流れる電流I
cと電圧V
cを計測すれば、制振対象構造物1に対するアクチュエータ2の相対速度dx
rel(t)/dtを検出できる。しかしながら、
図5に示すように、コイル23には、デジタルアンプ302の出力である矩形波信号が流れる。そのため、矩形波信号からは電圧値を検出することができず、逆起電力を計測できない。
【0047】
一方、上記式1において逆起電力定数K
bは既知であるから、逆起電力を計測すれば、相対速度dx
rel(t)/dtを検出できる。そのため、
図3に示すように、本例では逆起電力を計測するための専用のコイル24、26をアクチュエータ100内に設けている。そして、本例の振動低減装置は、コイル24、26を用いて測定した逆起電力に基づき、コイル23、25への通電を制御している。
【0048】
以下、振動低減装置の構成のうち、アクチュエータ100及びトルクロッド200以外の他の構成について、
図5を用いて説明する。
図5は本例の振動低減装置のブロック図である。なお、
図5ではトルクロッド200の図示を省略している。
【0049】
本例の振動低減装置は、アクチュエータ100及びトルクロッド200以外の他の構成として、コントローラ301及びアンプ302を備えている。
【0050】
コントローラ301は、振動低減装置の全体を制御するための制御装置である。コントローラ301は、トルクロッド200の所定方向(シャフト91の軸方向)への変位の速度に比例した力を、アクチュエータ100から発生させるように、アクチュエータ100を制御する。コントローラ301は、トルクロッド200の変位の速度を、コイル26の出力に基づき計測する。そして、コントローラ301は、測定結果に基づいて、コイル23、25への通電を制御するための制御信号を生成する。
【0051】
測定結果は、後述するように、トルクロッド200の変位の速度(相対速度)に相当する。トルクロッド200は、振動により、速度に比例する加速度を受けながら運動する。そのため、コントローラ301は、トルクロッド200の振動を減衰させるようフィードバック制御を行い、アクチュエータ100から速度に比例した力を発生させている。
【0052】
具体的には、コントローラ301は、コイル24、26の出力信号(アナログ信号)から逆起電力を測定する測定回路が組み込まれている。そして、コントローラ301は、測定回路により、逆起電力の測定結果に対してトルクロッド200の振動を制御するための制御信号を生成し、アンプ302に出力する。
【0053】
アンプ302は、入力される制御信号を増幅しつつ、PWM制御により矩形波信号に変換する。アンプ302の出力側は、コイル23に配線で接続されている。アンプ302には、デジタルアンプ又はアナログアンプを使用する。アンプ302にデジタルアンプを使用した場合には、小型で電力効率のよいアンプを用いることができるため、車両で消費される電力を抑制できる。また、アンプ302にアナログアンプを使用した場合には、制御信号のS/N比を改善し、振動低減装置における制御のロバスト性を高めることができる。
【0054】
コイル23、25に矩形波信号が流れると、コイル23、25は積分器として作用しつつ、コイル23、25には擬似的な交流電圧が印加される。そして、コイル23で、25で発生した磁界が、永久磁石27、28を鎖交することで、アウタ部材3が駆動する。このとき、コイル23、25で発生した磁界は、コイル24、26のコイル面を鎖交する。そのため、コイル24、26には逆起電力が発生する。
【0055】
アクチュエータ100の外部から、コントローラ301をコイル26に電気的に接続することで、コイル24、26で発生した逆起電力は、アナログ信号としてコントローラ301に出力される。そして、コントローラ301は、コイル26から出力されたアナログ信号を測定する。
【0056】
これにより、アクチュエータ100の制振制御において、アウタ部材(可動子)3を制御対象とした場合には、コントローラ301からの制御入力がコイル23に入力される。また、制御対象の状態は、アウタ部材3の相対的な移動(相対速度)を測定することで把握できるが、本例では、相対速度を逆起電力から推定している。そして、逆起電力を測定するためのコイル24、26をアクチュエータ100に設けている。そのため、コイル24、26から出力される電圧を測定することで、逆起電力を直接測定し、コントローラ301は制御対象の結果を得ることができる。これにより、フィードバック制御で、アクチュエータ100が制御される。
【0057】
上記のように、本例は、アクチュエータ100で発生する逆起電力を測定するためのサーチコイルとして、コイル24、26をアクチュエータ100に設け、コイル24、26に発生する逆起電力を測定する。これにより、本例は、アクチュエータ100に設けたコイルを制御対象の状態量を測定するために利用することで、状態量を測定するために電圧センサ及び電流センサを両方設けなくてもよい。その結果として、センサレス化を実現しつつ、コストを削減できる。
【0058】
また、コイル24、26は、コイル23、25に対して独立したコイルで構成されている。これにより、アクチュエータ100の制御中、コイル23、25の電圧及び電流を直接測定できない状態であっても逆起電力を測定できる。
【0059】
なお、本発明の変形例として、アクチュエータ100を、可動子を内側に固定子を外側に設けるインナ可動型にした場合には、アクチュエータ100の可動マスを小さくできるため、アクチュエータ100の小型化及び軽量化を実現できる。
【0060】
また本発明の変形例として、コイル24、26を、コイル23、25と同様に、アクチュエータ100の駆動用コイルとして用いてもよい。変型例に係る振動低減装置では、アンプ302からの出力信号が、コイル23、25だけでなく、コイル24、26にも流れる。そして、コイル24、26は、通電により磁界を発生させて、アウタ部材3を往復動させる。これにより、アクチュエータ100は、コイル23、25だけでアウタ部材3を駆動させた場合と比べて、大きな推進力を発生できる。
【0061】
上記のコイル23、25は本発明に係る「第1コイル」に相当し、上記のコイル24、26は本発明に係る「第2コイル」に相当し、上記のコントローラ301が本発明に係る「制御手段」に相当する。