【実施例】
【0098】
実施例1
鉄調節タンパク質の調製
実験室規模
【0099】
黄色ブドウ球菌の異なる株に由来する組成物であって、鉄制限及び/又は他の程度の金属イオンキレート化の下で発現される新規なタンパク質を含む組成物について、マウスにおける毒性抗原暴露に対する効力を評価した。組成物の効力の評価は、以下のパラメータを収集することにより行なった。即ち(1)各組成物がマウスの生存毒性抗原暴露に対してホモロガス及びヘテロロガスな防御を与える効力、(2)各組成物の壊死性皮膚病変を低減する効力、及び(3)鉄豊富条件及び鉄欠乏条件(replete and deplete iron conditions)下で生育したブドウ球菌に由来する各組成物が防御を与える効力である。
【0100】
本試験で評価した黄色ブドウ球菌の株は、トリ、ヒト、及びウシという3種の動物に由来するものである。トリ単離株SAAV1は、重度の骨髄炎及び滑膜炎を有する罹患シチメンチョウの群れに由来する野生単離株である。ウシ単離株(株1477及び株2176)は、臨床的に乳腺炎の発症率が高い、2つの異なる商用乳牛群から単離されたものである。ヒト単離株は、ATCC(株19636)から得られたものであり、臨床的骨髄炎患者に由来するものである。
【0101】
各単離株の保存用原種菌(master seed stocks)の調製は以下の手順で行なった。300μMの2,2−ジピリジル(Sigma-Aldrich、セントルイス、MO)を含有する200mlのトリプティックソイ培地(Tryptic Soy Broth:TSB、Difco Laboratories、デトロイト、MI)に、適切な単離株を接種した。培養物を200rpmで攪拌しながら37℃で6時間生育させた後、10,000×gで遠心分離して収集した。得られた細菌ペレットを、20%のグリセロールを含有する100mlのTSB培地に再懸濁させ、無菌下で2mlの低温用バイアルに分注し(各バイアル当たり1ml)、使用まで−90℃で保存した。
【0102】
各保存用原種菌を展開して作業用種菌とした。まず、各原種単離株のうち1バイアルを、1000μMの2,2−ジピリジル(Sigma-Aldrich、セントルイス、MO)を含有する200mlのトリプティックソイ培地(TSB、Difco Laboratories、デトロイト、MI)に接種した。培養物を200rpmで攪拌しながら37℃で6時間生育させた後、10,000×gで遠心分離して収集した。得られた細菌ペレットを、20%のグリセロールを含有する100mlのTSB培地に再懸濁し、無菌下で2ml低温用バイアル に分注し(各バイアル当たり1ml)、使用まで−90℃で保存した。この作業用種菌を使用して、鉄調節膜タンパク質等の鉄調節膜タンパク質を濃縮した組成物を作製した。
【0103】
全ての株を超鉄欠乏培地(即ち、遊離鉄の含有レベルが極めて低い培地)で生育できるように順応させた。これは、2,2−ジピリジルの濃度を(300から1600μMまで)増加させたTSBで細菌を継代培養することにより行なった。
【0104】
細菌からのタンパク質の調製は以下の手順で行なった。細菌は、冷凍された作業用原種から採取し、25mlの鉄欠乏培地(1000μMの2,2−ジピリジルを含有)及び鉄豊富培地で継代培養した後、400rpmで振盪しながら37℃で培養した。12時間の培養後、各培養物のうち5mlを500mlの鉄欠乏又は鉄豊富培地に移送し、37℃で予備培養した。培養物を、100rpmで振盪しながら37℃で8時間培養した後、10,000×gで20分遠心分離し、細胞をペレット化した。細菌ペレットを100mlの滅菌生理食塩水に再懸濁し、10,000×gで10分遠心分離した。その後、ペレット を45mlのトリス緩衝食塩水、pH7.2(Tris-buffered saline:TBS;25mM トリス、150mM NaCl)に再懸濁し、得られた細菌懸濁液を試験管5本に、それぞれ9mlの一定分量ずつ分注した。50ユニットのリゾスタフィン(Sigma、セントルイス、MO)を含有する1ミリリットルのTBSを各試験管に加え、最終量を5ユニット/mlとした。200rpmで振盪しながら37℃で30分培養した後、0.1mgのリゾチーム(Sigma)を含有する1mlのTBSを各試験管に加えた。続いて、この細菌懸濁液を200rpmで振盪しながら更に45分培養した。次に、懸濁液を4℃、3050×gで12分遠心分離し、大細胞残屑をペレット化した。ペレットを乱すことなく上清のみを吸引採取した。この上清を39,000×gで2.5時間遠心分離した。得られたタンパク質含有ペレットを、食塩を含まない200μLのトリス緩衝液、pH7.2に再懸濁した。得られた各単離株のタンパク質溶液を合わせて総量を1mlとし、−90℃で保存した。
【0105】
黄色ブドウ球菌から得られたこのタンパク質濃縮抽出物を、4%濃縮用ゲル及び10%分離用ゲルを用いたSDS−PAGEゲルによりサイズ分画した。電気泳動用サンプルの調製は、10μlのサンプルを30μlのSDS還元サンプルバッファー(62.5mM トリス−HCl、pH6.8、20%グリセロール、2%SDS、5%β−メルカプトエタノール)と混合し、4分煮沸した。サンプルを、Protein II xiセル電源(BioRad Laboratories、リッチモンド、CA、モデル1000/500)を用いて18mAの定電流下、4℃で5時間電気泳動した。SDS−PAGEゲル内に目視される個々のタンパク質の各分子量をGS-800密度計(BioRad)により、広範囲の分子量マーカーを標準試料(BioRad)として用いて測定した。
【0106】
各単離株を1600μMのジピリジルの存在下で生育させて得られたタンパク質のSDS−PAGEパターンは、同一株を300μMのジピリジルの存在下で生育させた場合と比較して、極めて異なるタンパク質発現パターンを示した。例えば、単離株SAAV1を300μMのジピリジル中で生育させた場合、90kDa、84kDa、72kDa、66kDa、36kDa、32kDa、及び22kDaの金属調節タンパク質が産生されたのに対し、1600μMのジピリジル中で生育させた場合には、87.73kDa、54.53kDa、38.42kDa、37.37kDa、35.70kDa、34.91kDa、及び33.0kDaの金属調節タンパク質が産生された。同様に、単離株19636を300μMのジピリジル中で生育させた場合には、42kDa及び36kDaのタンパク質が産生されたのに対し、1600μMのジピリジル中で生育させた場合には、87.73kDa、54.53kDa、38.42kDa、37.37kDa、35.70kDa、34.91kDa、及び33.0kDaの金属調節タンパク質が産生された。鉄豊富培地中で生育させた場合を含む全ての条件下で、金属調節性ではないと見られる以下のタンパク質が発現された。150kDa、132kDa、120kDa、75kDa、58kDa、50kDa、44kDa、43kDa、41kDa、及び40kDa。
【0107】
更には、黄色ブドウ球菌の種々の株を1600μMのジピリジル中で生育させた場合にも、同様のタンパク質発現パターンが見られた。トリ単離株(SAAV1)由来の鉄調節膜タンパク質濃縮組成物は、分子量87.73kDa、54.53kDa、38.42kDa、37.37kDa、35.70kDa、34.91kDa、及び33.0kDaのタンパク質を含んでいた。ATCC単離株19636由来のタンパク質の分子量は、トリ単離株由来のタンパク質と実質的に同一であった。1600μMの2,2−ジピリジルで生育させたウシ単離株は2種とも、そのタンパク質の大部分について、トリ及びATCC分離株同様のバンド形成プロファイルを発現した(87.73kDa、54.53kDa、37.7kDa、35.70kDa、34.91kDa、及び33.0kDa)。しかしながら、どちらのウシ単離株も、トリ及びATCC単離株に見られる38.42kDaのタンパク質を発現しなかった。また、ウシ単離株が発現したタンパク質のうち3種(80.46kDa、65.08kDa、及び31.83kDa)は、トリ及びATCC株には見られなかった(
図1及び表10参照)。全ての条件下において、以下の非金属調節タンパク質が発現された。150kDa、132kDa、120kDa、75kDa、58kDa、50kDa、44kDa、43kDa、41kDa、及び40kDa。
【0108】
【表29】
【0109】
興味深いことに、細菌をリゾスタフィン/リゾチームで処理した後、精製された上清と細菌ペレットとの間に、SDS−PAGE分析により得られたタンパク質プロファイルに違いは見られなかった。抽出された細菌ペレットと上清とは、SDS−PAGEによれば、ともに全く同一のタンパク質プロファイルを有していた。また、細菌細胞をAvestin ホモジナイザーにより30,000psiで破壊した場合にも、同様の知見が得られた。低速遠心分離後に得られた細菌ペレットを、4℃、30,000×gで2.0時間の高速遠心分離後に精製された上清と比較したところ、そのタンパク質プロファイルは同一であった。
【0110】
実施例2
黄色ブドウ球菌由来の免疫化用組成物の調製
【0111】
鉄欠乏条件において生育させたヒト単離株ATCC19636及びウシ単離株1477由来のタンパク質を実施例1と同様に調製し、これを用いて2つのワクチン組成物を処方した。ATCC単離株由来のタンパク質の分子量は、87.73kDa、54.53kDa、38.42kDa、37.37kDa、35.70kDa、34.91kDa、及び33.0kDaであったのに対し、ウシ単離株発現タンパク質の分子量は、87.73kDa、80.46kDa、65.08kDa、54.53kDa、37.37kDa、35.70kDa、34.91kDa、33.0kDa、及び31.83であった。また、各組成物は、以下の非金属調節タンパク質を含有していた。150kDa、132kDa、120kDa、75kDa、58kDa、50kDa、44kDa、43kDa、41kDa、及び40kDa。保存用ワクチンは、これら2つの株の各々から得たタンパク質の水懸濁液(総タンパク質500μg/ml)を、IKA Ultra Turrax T-50 破砕器(IKA、シンシナティ、OH)を用いて、市販のアジュバント(EMULSIGEN、MVP Laboratories、ラルストン、ネブラスカ)と乳化させて調製し、最終用量として、0.1mlの注射用量中の総タンパク質量が50μg、アジュバント濃度が22.5%(体積/体積)となるようにした。対照ワクチン投与用として、実施例1の記載と同様の手順により、鉄豊富条件(TSBに300μMの塩化第二鉄を追加)下で生育させたウシ単離株1477から、タンパク質組成物を調製した。また、上記プロトコルにおいて、タンパク質水懸濁液の代わりに生理食塩水を用いることにより、プラシーボワクチンを調製した。
【0112】
実施例3
マウスへのワクチン投与
【0113】
Harlan Breeding Laboratories(インディアナポリス、IN)から入手した体重16〜22グラムの雌CF−1マウス70頭(N=70)を、同数ずつ7グループに分けた(マウス10頭/1グループ)。マウスの飼育はポリカーボネート製のマウス用ケージ(Ancore Corporation、ベルモア、NY)で行なった。各処理グループは1つのケージで飼育し、食餌及び水は全てのマウスに無制限で与えた。ワクチン投与は、全マウスを対象に、以下のように割り当てた組成物0.1mlを、14日の間隔をおいて2度、腹腔内に投与することにより行なった。
【0114】
グループ1:プラシーボによるワクチン投与。
グループ2:鉄制限下で発現されたATCC19636タンパク質によるワクチン投与。
グループ3:プラシーボによるワクチン投与。
グループ4:鉄制限下で発現されたウシ1477タンパク質によるワクチン投与。
グループ5:鉄制限下で発現されたウシ1477タンパク質によるワクチン投与。
グループ6:鉄制限下で発現されたATCC19636タンパク質によるワクチン投与。
グループ7:ウシ1477FeCl
3によるワクチン投与。ここで「ウシ1477FeCl
3」とは、300μMの塩化第二鉄を追加したTSB中で生育させたウシ1477から得られたタンパク質を指す。
【0115】
実施例4
抗原暴露用生物体(challenge organism)の調製
【0116】
上述した黄色ブドウ球菌株ATCC19636及び株1477を抗原暴露用生物体として用いた。概説すると、冷凍された保存用株(上述)から単離株を取って血液寒天平板上に画線し、37℃で18時間培養した。各単離株の単一コロニーを、1600μMの2,2’−ジピリジルを含有する50mlのトリプティックソイ培地(Difco)で継代培養した。この培養物を、200rpmで回転させながら37℃で6時間培養し、続いて4℃、10,000×gで10分遠心分離し、細菌をペレット化した。この細菌ペレットをTBS中、4℃で遠心分離することにより、2度洗浄した。最終ペレットを凡そ25mlのTBSに再懸濁することで、562nmの透過率(T)が42%の光学密度を有する懸濁液を作製し、抗原暴露に用いた。抗原暴露の直前に、これらの細菌懸濁液のうち1mlを段階希釈して寒天上に蒔き、マウス用量当たりのコロニー形成単位(colony-forming units:CFU)を計数した。
【0117】
実施例5
抗原暴露
【0118】
2度目のワクチン投与から14日後、全グループ(1〜7)のマウスの背面首部に、割り当てられた生物体0.1mlを皮下投与することにより、抗原暴露を行なった。マウスの7つのグループを以下のように抗原暴露した。
【0119】
グループ1(プラシーボによるワクチン投与):ATCC19636により抗原暴露。
グループ2(鉄制限下で発現されたATCC19636タンパク質によるワクチン投与):ATCC19636により抗原暴露。
グループ3(プラシーボによるワクチン投与):ウシ1477により抗原暴露。
グループ4(鉄制限下で発現されたウシ1477タンパク質によるワクチン投与):ウシ1477により抗原暴露。
グループ5(鉄制限下で発現されたウシ1477タンパク質によるワクチン投与):ATCC19636により抗原暴露。
グループ6(鉄制限下で発現されたATCC19636タンパク質によるワクチン投与):ウシ1477により抗原暴露。
グループ7(ウシ1477FeCl
3によるワクチン投与):ウシ1477により抗原暴露。
【0120】
実施例4に記載した計数プロトコルによる算定によれば、抗原暴露に使用した黄色ブドウ球菌19636の濃度は、マウス用量当たり1.35×10
8CFUであり、抗原暴露に使用した黄色ブドウ球菌1477の濃度は、マウス用量当たり1.65×10
8コロニーCFUであった。抗原暴露から7日間にわたって毎日、罹患率、死亡率、及び群全体の病態を記録した。
【0121】
ATCC19636単離株に暴露したマウスを比較すると、プラシーボによりワクチン投与したグループ1のマウスの70%が、抗原暴露から7日以内に死亡した(表11及び
図2)。これは株19636が、今回の投与用量レベルにおいて、マウスを高い確率で死亡させることを表わしている。グループ1のマウスとは対照的に、グループ2のマウスのうち抗原暴露後7日以内に死亡したものは、10%に過ぎなかった。これらの結果は、19636組成物をワクチン投与することにより、マウスが株19636への暴露から有意に防護されたことを示している(p=0.020、フィッシャー直接確率法)。更には、致死時間(time-to-death)のデータをカプラン・マイヤー(Kaplan-Meier)分析したところ、このワクチンによって、ホモロガスな抗原暴露からも有意に(p=0.0042、ログランク検定)防御されたことが分かる(
図3)。加えて、グループ5のマウスのうち、抗原暴露から7日で死亡したものは僅か20%であったことから、ウシ1477組成物によって、ATCC株19636への暴露からも有意に防御されたことが分かる(p=0.015、死亡率のログランク検定)。このデータをカプラン・マイヤー生存曲線及びログランク検定で分析したところ(
図4)、致死からの防御も有意であると判定された(p=0.015、死亡率のログランク検定)ことから、株1477由来のワクチン組成物によって、株19636への暴露からのヘテロロガスな防御が得られたことが分かる。
【0122】
【表30】
【0123】
ウシ1477分離株に暴露されたマウスを比較すると、プラシーボによりワクチン投与されたグループ(グループ3)のマウスのうち、抗原暴露から7日以内に死亡したのは僅か20%であった。しかしながら、ウシ1477単離株への暴露により、グループ3の生存マウスのうち6頭(75%)に、壊死性皮膚病変の発症が誘発された。これらの病変のサイズを測定したところ、生存マウスの病変の平均サイズは18.5mmであった(表12)。対して、グループ4のマウスのうち20%が、抗原暴露から7日以内に死亡したが、生存マウスのうち病変(平均径2.7mm)を発症したのは僅か3頭(38%)であった。これらの結果から、ウシ1477組成物により、ウシ株1477に暴露されたマウスにおいて、病変の発症からのホモロガスな防御が有意に得られたことが分かる(p=0.009、スチューデントt検定)。更に、グループ6のマウスが何れも死亡しておらず、皮膚病変(平均径3.7mm)を発症したマウスも僅か3頭(30%)であったことから、ATCC19636組成物によるワクチン投与によって、株1477への暴露からも防御されることが分かる。総合すると、グループ5及び6のマウスにおける死亡率及び/又は病変発症率の低下は、株19636及び1477由来の組成物が、有意な交差防御的性質(cross-protective nature)を有していることを示している(p=0.012、病変サイズに基づくスチューデントt検定)。非鉄調節タンパク質との比較における本組成物の効力を示すものとして、グループ7のマウスのうち20%が死亡し、生存個体のうち4頭が皮膚病変(平均径15.8mm)を発症した。グループ7のマウスは、1477単離株のタンパク質によるワクチン投与に、ある程度の防御作用があることを示している。病変を発症したマウスが、プラシーボによりワクチン投与されたグループ3に比べて少ないからである。しかしながら、グループ7のマウスに観察された皮膚病変は、グループ4のマウスにおける病変に比べ、発生頻度がより高く、径もより大きかった。ここから、鉄豊富条件下で生育させた細胞から単離されたタンパク質と比較して、鉄制限下で生育させた細菌から単離されたタンパク質は、同一の抗原暴露についてより優れた防御効果を与えることが分かる。
【0124】
【表31】
【0125】
マウスの抗原暴露試験において見られた本タンパク質の交差防御的性質は、実施例1(
図1)に記載した黄色ブドウ球菌株由来のタンパク質が、同様の分子量を有していることからも裏付けられる。ウシ誘導単離株由来のタンパク質のSDS−PAGEプロファイルには顕著な相違(特に、38.4kDaのタンパク質が存在しておらず、他の3種のタンパク質が存在している点)が見られたものの、株1477及びATCC19636の何れに由来するタンパク質も、ヘテロロガスな防御を誘発した。これらの結果は、株19636及び1477の類似したタンパク質が、グループ5及び6に見られた交差防御の原因となっている可能性を示すものである。これに対して、鉄欠乏条件及び鉄豊富条件下で生育させた株1477由来のタンパク質プロファイルは、明らかに異なっている。鉄欠乏条件下で単離されたこれらのタンパク質は、鉄豊富条件下で単離されたタンパク質と比較してより高い防御作用を有することが、グループ4のマウスにおける病変発症率がグループ7のマウスと比べて減少していることから分かる。
【0126】
実施例6
哺乳類において、組織損傷や細菌感染に対する応答が、急性炎症性応答をもたらすことが示されてきた。この応答は、毛細血管透過性を高めるとともに食細胞浸潤を促進し、炎症、腫脹、発熱、疼痛、及び発赤等の臨床徴候を引き起こす。抑制されない場合には、死に至る可能性もある。液性因子の活性化及びサイトカインの放出によって媒介される全身的現象(まとめて急性期タンパク質応答と呼ばれる)の結果、生理学的及び生化学的現象のカスケードが生じる。この応答の持続時間は、損傷の重症度及び全身感染の規模と直接関係している。これまで、細菌性敗血症、大手術、火傷や他の身体外傷の際に、血清中における幾つかの金属イオン、例えば鉄、銅、及び亜鉛等の濃度に変化が生じることが、十分に立証されてきた。例えば、感染の急性期には、鉄及び亜鉛の血漿レベルの減少と、銅の血漿レベルの増加が見られる。血清中におけるこれらの微量金属イオンの変化は、如何なる細菌感染の重症度や進行にも、直接的な影響を与えているものと思われる。
【0127】
本試験では、体内侵入(systemic invension)時に発現され得る新規なタンパク質を模擬的に発現させるべく、様々な金属イオン制限条件下における黄色ブドウ球菌のタンパク質の発現を調べた。本試験で評価した黄色ブドウ球菌の株は、トリ(株SAAV1)、ヒト(株19636)、及びウシ(株1477及び2176)という3種の異なる動物に由来するものである。概略を述べると、保存用原種菌から各単離株を摂取し、200mlのトリプティックソイ培地(TSB)に移して培養物を作製した。各培養物を200rpmで攪拌しながら37℃で6時間培養した。各培養物のうち10mlを、4種の金属イオンキレート剤、即ち2,2−ジピリジル(Dp)、2−ピリジルメチル−エチレンジアミン(TPEN)、カテキン、及びナリンゲニン(何れもSigma、セントルイス、MOから入手)のうち1種を含有する、500mlの欠乏TSBに移送した。更に、各培養物を、塩化第二鉄、塩化亜鉛、及び/又は塩化銅を含有する、濃度300μMで調製されたカチオン豊富培地にて培養した。金属イオンキレート剤は以下の濃度で使用した。2,2−ジピリジル(800μM)、カテキン及びナリンゲニンは300μMで使用し、2−ピリジルメチル−エチレンジアミンは100μMの濃度で使用した。培養物を各キレート剤の下で8時間培養し、その時点で培養物を再度継代し、更に12時間培養した。各培養物を12時間ずつ3回連続して継代培養した。3度目の継代培養の終了時に、各培養物を10,000×gで20分遠心分離して収穫した。各培養物を10,000×gで遠心分離して2度洗浄し、4℃のトリス緩衝食塩水、pH7.2、20mlに再懸濁した。
【0128】
各細菌ペレットを45mlのトリス緩衝食塩水、pH7.2(25mMトリス及び150mM NaCl)に再懸濁し、得られた細菌懸濁液を、5本の試験管にそれぞれ一定分量9mlずつ、計20試験管に分注した。50ユニットのリゾスタフィン(Sigma、セントルイス、MO)を含有する1ミリリットルのTBSを各試験管に加え、最終濃度を5ユニット/mlとした。200rpmで振盪しながら37℃で30分培養した後、0.1mgのリゾチーム(Sigma)を含有する1mlのTBSを各試験管に加えた。その後、この細菌懸濁液を200rpmで振盪しながら更に45分培養した。次に、懸濁液を4℃、3050×gで12分遠心分離し、大細胞残屑をペレット化した。このペレットを乱さないように上清のみを吸引採取した。その後、この上清を39,000×gで2.5時間遠心分離した。こうして得られた、金属調節膜タンパク質が濃縮されたペレットを、200μLトリス緩衝液、pH7.2に再懸濁した。各単離株のタンパク質溶液を合わせて全量を1mlとし、−90℃で保存した。
【0129】
鉄、亜鉛、及び銅欠乏条件下で生育させた黄色ブドウ球菌単離株SAAV1、19636、1477、及び2176から得られたタンパク質は、金属調節ポリペプチドを含有していた。
【0130】
各単離株に由来する細胞抽出物をSDS−PAGEゲルにより、4%の濃縮用ゲル及び10%の分離用ゲルを用いてサイズ分画した。電気泳動用サンプルは、10μlのサンプルを30μlのSDS還元サンプルバッファー(62.5mM トリス−HCl(pH6.8)、20%グリセロール、2%SDS、5%β−メルカプトエタノール)と混合し、4分間煮沸して調製した。サンプルを、Protein II xiセル電源(BioRad Laboratories、リッチモンド、CA、モデル1000/500)を用いて18mAの定電流下、4℃で5時間電気泳動した。
【0131】
亜鉛及び/又は銅キレート化条件下で生育させたタンパク質のSDS−PAGEパターンは、全ての単離株について、独自のバンド形成パターンを示した。これらのパターンは、鉄制限条件下、2,2’−ジピリジルの存在下で生育させた同一の単離株と比較すると、異なるものであった。例えば、19636単離株を鉄制限下又はキレート剤2,2’−ジピリジルの存在下で生育させると、87.73kDa、54.53kDa、38.42kDa、37.37kDa、35.70kDa、34.91kDa、及び33.0kDaの領域に、独自の鉄調節タンパク質が発現された。これらのタンパク質は、単離株を塩化第二鉄の存在下で生育させると、下方調節された。しかしながら、同じ単離株を亜鉛及び/又は銅キレート剤の存在下で生育させると、鉄制限下で発現されたタンパク質と比較して、新規なタンパク質のサブセットが発現された。これらの新規なタンパク質の分子量は、凡そ115kDa、88kDa、80kDa、71kDa、69kDa、35kDa、30kDa、29kDa、及び27kDaであった。更に、87.73kDaのタンパク質は、鉄制限又は銅制限条件下では発現されるが、培養物を亜鉛制限下においた場合には発現されなかった。鉄制限下で発現されたタンパク質は、亜鉛制限及び/又は銅制限下で生育させると下方調節されたものの、単離株を塩化第二鉄とともに生育させた場合に見られるように、完全に遮断されることはなかった。
【0132】
銅制限及び/又は亜鉛制限下で単離株を生育させると発現されるが、鉄制限条件下で同じ単離株を生育させると発現されない、新規なタンパク質が存在すると見られる。生物は遷移金属を、様々な生化学反応を触媒する酵素の構築に使用することから、金属イオンは全身感染時における微生物の生存に重要な役割を果たしているものと思われる。おそらくはこの理由から、敗血症の際にはこれらの遷移金属の利用能が一過的に減少し、微生物の生育に利用されるのを防いでいるのであろう。これらの新規なタンパク質は、細菌が体内侵入時に遭遇する金属イオン制限下でも発現されると思われることから、鉄制限下で生育させた現存組成物の防護効力を高める可能性が極めて高い。
【0133】
実施例7
本発明の組成物は、商業的な大スケールの条件下でも生産可能である。
【0134】
発酵
実施例1で説明した、低温用バイアル入りの作業用種菌(2ml、10
9CFU/ml)を使用した。0.125g/lの2,2−ジピリジル(Sigma)、2.7グラムのBiTekイーストエキストラクト(Difco)、及びグリセロール(3%(体積/体積))を含有し、ブドウ糖を含まない500mlのトリプティックソイ培地(TSB)(Difco)を37℃に予熱し、上述の種菌を播種した。この培養物を、200rpmで攪拌しながら37℃で12時間培養したところで、2リットルの上記培地に移し、更に37℃で4時間培養して増殖させた。この培養物を用い、20リットルのVirtis卓上発酵槽(Virtis、ガーディナー、NY)に入れた13リットルの上記培地に播種した。50%のNaOH及び10%のHClを用いた自動滴定により、pHを6.9から7.1までの範囲で一定に維持した。攪拌速度を400回転/分に調節し、培養物に空気を11リットル/分、37℃で通気した。11mlの消泡剤(Mazu DF 204 Chem/Serv、ミネアポリス、MN)を加えることにより、気泡を自動的に制御した。以上の条件で培養物を連続4時間増殖させたところで、無菌下で150リットルの発酵槽(W. B. Moore、イーストン、PA)にポンプ移送した。この発酵槽に、ブドウ糖を含まない120リットルのトリプティックソイ培地(3,600.0グラム)、BiTekイーストエキストラクト(600グラム)、グリセロール(3,600ml)、2,2−ジピリジル(3.0グラム)、及びMazu DF 204消泡剤(60ml)を加えた。発酵のパラメータは以下の通りとした。攪拌速度を220回転/分に増加させ、60リットル/分の空気と、毎平方インチ当たり(per square inch:psi)10ポンドの逆圧を加えることで、溶存酸素(dissolved oxygen:DO)を30%±10%に維持した。50%のNaOH及び10%のHClを用いた自動滴定により、pHを6.9から7.1までの範囲で一定に維持した。温度は37℃に維持した。発酵開始から4.5時間後(OD
5408−9)の時点で、培養物を、1200リットルのブドウ糖不含有トリプティックソイ培地(36,000グラム)、BiTekイーストエキストラクト (6,000グラム)、グリセロール(36,000ml)、2,2−ジピリジル(30.0グラム)、及びMazu DF 204消泡剤(600ml)を入れた1,500リットルのNew Brunswick Scientific発酵槽IF-15000に移送した。発酵のパラメータは以下の通りとした。攪拌速度を300回転/分に増加させ、300から1100リットル/分の空気と、毎平方インチ当たり(psi)5ポンドの逆圧を加えることで、酸素を補充し、溶存酸素(DO)を60%±10%に維持した。発酵の進行に伴い、溶存酸素の制御を補助するため、追加の酸素を0〜90リットル/分で加えた。50%のNaOHと10%のHClとを用いた自動滴定によりpHを6.9から7.4の間に維持し、温度は37℃に維持した。
【0135】
大発酵槽への接種から凡そ5時間後、培養物に追加の栄養素を補充するべく、18,000グラムのブドウ糖未含有TSB、3,000グラムのイーストエキストラクト、30.0グラムの2,2−ジピリジル、及び18,000mlのグリセロールを含有する、70リットルの培地を供給した。供給速度を凡そ28リットル/時間に調節し、供給の間に攪拌を増加させた。供給終了後、更に引き続き4時間発酵させた時点で、発酵槽の温度を18℃に低下させ、発酵を終了させた(1:100希釈でのOD
54035〜40)。
【0136】
収穫
細菌発酵物の濃縮及び洗浄を、Waukesha Model U-60フィードポンプ(Waukesha Cherry-Burrell, Delevan, WI)に接続した、3台の30ft
2 Alpha 300-K開口チャネルフィルター(open channel filters)(カタログ番号AS300C5、Pall Filtron)を備えた、Pall Filtron Tangential Flow Maxiset-25 (Pall Filtron Corporation、ノースバロ、MA)を使用して行なった。原培養物の体積は1250リットルであったが、これをフィルター入口圧力30psi、透過残物(retentate)圧力5〜6psiとして、50リットル(2.5リットル/分)まで減少させた。この細菌の透過残物にトリス緩衝食塩水、pH8.5を加え、容積を150リットルに調節した後、再度50リットルまで濃縮することにより、混入している外因性タンパク質(例えば分泌毒素やプロテアーゼ等のエキソプロテイン(exoproteins))を除去した。トリス緩衝食塩水のpHを上昇させれば、全細胞懸濁液の保存時に生じ得るタンパク質分解の大半を、防止することができる。pHの上昇の代わりに、或いはpHの上昇に加えて、プロテアーゼ阻害剤を使用してもよい。透過残物を200リットルのタンク内で、底部に装着した磁気駆動式ミキサーによってよく混合した。この透過残物を無菌下で、滅菌した4リットルのNalgeneコンテナーNo. 2122に分注し(3.5リットル)、−20℃の冷凍庫に入れて保存し、製造時の休止点(breaking point)としたが、更に続けて処理することもできる。ペレットの質量は、発酵培養物のサンプル30mlを遠心分離し、その最終収穫量から算出した。要約すると、予め秤量した50mlのNalgeneコニカル試験管を39,000×gで90分、Beckman J2-21遠心分離機により、JA-21ローター(Beckman Instruments、パロアルト、CA)を用いて遠心分離した。運転終了後、上清を捨て、試験管を再度秤量した。各段階についてペレットの質量を算出した。発酵プロセスにより、質量凡そ60キログラムの湿潤ペレットが得られた。
【0137】
破壊
細菌細胞のトリス緩衝食塩水(pH8.5)中スラリー80キログラムを、無菌的に、スチームインプロセス(steam in place)の1000リットルのジャケット付き処理タンク(Lee、Model 259LU)に移送した。該タンクは、上方にはミキサー(Eastern、型番TME-1/2、EMI Incorporated、クリントン、CT)を備え、900リットルのTBS(pH8.5)を含有する。バルク細菌懸濁液を4℃に冷却しながら、200rpmで連続18時間攪拌した後、ホモジナイズ処理により破壊した。要約すると、細菌懸濁液の入った1000リットルのタンクを、型番C-500-BのAvestinホモジナイザー(Avestin Inc、オタワ、カナダ)に接続した。2台目の1000リットルのジャケット付き処理タンク(empty)をホモジナイザーに接続し、前述の処理タンク内の流体が、ホモジナイザーを通過してこの空のタンクに入り込み、再び戻っていくようにして、閉鎖系を維持しながらホモジナイズ処理を複数回通過できるようにした。ホモジナイズ中の温度は4℃に保った。初回の通過の開始時には、Waukeshaの型番10DOのポンプ(Waukesha)を用い、流体を70psiでホモジナイザー経由で循環させた(500ガロン/時間)。その間のホモジナイザーの圧力は30,000psiに調節した。初回の通過に先立ち、ホモジナイザーからホモジナイズ前のサンプルを2口抜き取り、これらを用いて破壊度の特定及びpHの監視用のベースラインを設定した。破壊度の監視は、その透過率(希釈率1:100での540nmによる%T)を、ホモジナイズされていないサンプルと比較することにより行なった。ホモジナイザーの通過回数を規格化し、希釈率1:100での最終的な百分率透過度を、78〜91%T、好ましくは86〜91%の間とした。ホモジナイズ処理後、タンクをホモジナイザーから取り外し、チラーループ(chiller loop)上に設置し、4℃、240rpmで混合した。
【0138】
タンパク質の収穫
図1に示す鉄調節タンパク質を含有する破壊細菌懸濁液を、T-1 Sharpies(Alfa Laval Separations、ウォーミンスター、PA)を用いた遠心分離により収集した。要約すると、破壊細菌ホモジネートの入った1000リットルのジャケット付きジャケット付き処理タンクを12台のSharpiesに、供給速度250ml/分、17psiで、遠心力60,000×gで供給した。流出物を、2台目の1000リットルのジャケット付き処理タンクに、滅菌された閉ループを通じて流し込み、閉鎖系を維持しながら遠心分離機を複数回通過できるようにした。遠心分離時の温度は4℃に維持した。ホモジネートを8回、遠心分離機に通過させた。2回目の通過後に凡そ50%のタンパク質が収集された。その時点で、ホモジネート流体を元の体積の1/3に濃縮し、その後の6回の通過処理時間を短縮した。ホモジネートタンクを遠心分離機から無菌的に取り外し、Millipore Pellicon接線流フィルターアセンブリ(Tangential Flow Filter assembly)(Millipore Corporation、ベッドフォード、MA)に接続した。該アセンブリには25ft
2のスクリーンチャネルシリーズ(screen-channel series)のAlpha 30K Centrasetteフィルター(Pall Filtron)が備えられ、これは濃縮用のWaukesha社の型番U30のフィードポンプに接続されている。濃縮後、処理が完了するまで遠心分離を継続した。各通過後にタンパク質を収集した。収集されたタンパク質は、0.15%のホルマリン(Sigma)を保存剤として含む50リットルのトリス緩衝食塩水(pH8.5)中に再懸濁・分注した。
【0139】
膜濾過法
タンパク質懸濁液を4℃で、膜濾過法により洗浄し、外因性タンパク質(プロテアーゼ、毒素、細胞質及び代謝酵素、等)を除去した。要約すると、50リットルのタンパク質を無菌下で、150リットルの滅菌トリス緩衝食塩水(pH8.5)の入った200リットルの処理タンクに移送した。該タンクの底部に備えられたDayton社製ミキサー、型番2Z846(Dayton Electric、シカゴ、IL)により、125回転/分で回転させた。処理タンクを無菌下で、Millipore Pellicon接線流フィルターアセンブリ(Tangential Flow Filter assembly)(Millipore Corporation、ベッドフォード、MA)に接続した。該アセンブリには25ft
2のスクリーンチャネルシリーズ(screen-channel series)のAlpha 30K Centrasetteフィルター(Pall Filtron)が備えられ、これは濃縮用のWaukesha社の型番U30のフィードポンプに接続されている。200リットルのタンパク質溶液を濾過により、目的容量50リットルとなるまで濃縮した後、150リットルの滅菌食塩水を加えた。続いて、このタンパク質懸濁液を凡そ50リットルまで濃縮した。このタンパク質濃縮物を、上部にミキサーを備えた50リットルのジャケット付き処理タンクに入れ、4℃で保存した。
【0140】
興味深いことに、破壊手段としてホモジナイズ処理を採用し、大スケールプロセスから得られた組成物をSDS−PAGEによって分析し、実施例1で記載したより小さなスケールのプロセスと比較すると、同一のバンド形成プロファイルを示すことが分かった。これらの結果は、リゾスタフィンの代わりに、細菌溶解剤(bacterial lysis agent)として、AvestinホモジナイザーC500-Bを用いることが可能であることを示すものである。この知見によれば、ブドウ球菌から鉄調節タンパク質を大量に、且つ低コストで産生することが可能となる。
【0141】
実施例8
マウスの過剰免疫化(Hyper-immunization)及びポリクローナル抗体の調製
【0142】
鉄制限条件下で生育させた黄色ブドウ球菌株19636由来のタンパク質をマウスにワクチン投与し、このマウスから単離された精製抗体で受動免疫を行なったところ、黄色ブドウ球菌によるホモロガス及びヘテロロガスな抗原暴露からの防御が得られた。15頭の成体CD1マウスを、実施例1及び2に記載したような鉄欠乏条件下で生育させた黄色ブドウ球菌株ATCC19636由来のタンパク質組成物を用いて、実施例3に記載の手順によりワクチン投与した。マウスのワクチン投与は7日間の間隔をおいて3回、各ワクチン投与毎に50μgのタンパク質組成物を腹腔内に投与することにより行なった。3回目の免疫化から7日後、心臓穿刺によりマウスを完全に放血させた。血清をプールし、標準的な硫安塩析法を用いて抗体を精製した。抗体を沈殿させる前にまず、0.5倍量の飽和硫安(pH7.2)を加えて、外因性血清タンパク質を除去した。溶液を4℃、100rpmで24時間攪拌した。溶液を再度、3000×gで30分遠心分離した。上清を採取し、十分量の飽和硫安を加えて最終濃度を55%の飽和状態とし、再沈殿を行なった。溶液を4℃、100rpmで24時間攪拌した。沈殿を3000×gで30分遠心分離した。各サンプルの最終ペレットを、2mlのPBS(pH7.2)に再懸濁した。次いでこの沈殿抗体を、カットオフ分子量50,000の透析用チューブ(Pierce、ロックフォード、IL)に入れ、リン酸緩衝食塩水を1リットルずつ3回交換して用い、30時間かけて透析することにより硫安を除去した。最初に交換した2リットルの液は、0.02%のアジ化ナトリウムを入れて保存した。最後に交換した1リットルの緩衝液には保存剤を用いなかった。透析液を収集し、再度3000×gで30分遠心分離して、残存する残骸を除去した。抗体溶液を4℃で保存し、48時間経過前に使用した。注射の前に、各サンプルを血液寒天に蒔き、無菌であることを確認した。
【0143】
実施例9
受動免疫及び抗原暴露
【0144】
鉄制限時に発現された黄色ブドウ球菌タンパク質に対して産生された抗体の注射による防護効果を評価するために、マウス15頭からなるグループ2つの各々に、精製抗体調製物(グループ1)、又は、生理食塩水(グループ2)の何れかからなる200μLの注射液を腹腔内注射した。別途、マウス15頭からなるグループ2つの各々に、精製抗体調製物(グループ3)又は生理食塩水(グループ4)の何れかを皮下注射した。60分後、腹腔内注射を受けたマウス15頭のグループ2つに対し、1.3×10
8cfuの黄色ブドウ球菌株19636を腹腔内投与して抗原暴露を行なった。同様に、皮下注射を受けたマウス15頭のグループ2つに対し、1.3×10
8cfuの黄色ブドウ球菌株1477を皮下投与して抗原暴露を行ない、異なる黄色ブドウ球菌株による抗原暴露からの交差防御を試験した。死亡率及び/又は病変サイズを5日間記録し、全マウスの肝臓を死後に摘出し、ホモジナイズし、プレートに蒔いて、存在する黄色ブドウ球菌の数を決定し、全身感染の指標とした。カプラン・マイヤー生存曲線(
図5及び6)によれば、鉄制限時に発現された黄色ブドウ球菌タンパク質によりワクチン投与されたマウス由来の抗体を注射することで、防護効果が得られることが示された。ATCC19636暴露グループでは、注射グループと対象グループとの差異は有意ではなかったが(p=0.076、ログランクテスト)、1日目に死亡した抗体注射グループ内のマウス1頭の肝臓を血液寒天で培養し、暴露用抗原生物(黄色ブドウ球菌)の非存在及び/又は存在を決定した。このマウス由来の培養物はブドウ球菌に陰性を示し、血液寒天平板又は培地で生育しなかった。これに対して、プラシーボグループ内で死亡したマウスの肝臓は、全てブドウ球菌の存在に陽性を示し、実際に、これらのマウスの肝臓由来の各血液寒天平板からも、純粋培養物が得られた。肝臓のデータは、抗体注射グループ内で死亡したマウスが黄色ブドウ球菌感染により死亡した可能性を排除するものではなかったが、その感染はプラシーボグループのように全身性ではなかったので、このマウスは他の理由で死亡した可能性がある。この抗体注射マウスの死亡を除外すると、抗体注射とプラシーボ処理との間には有意な差が得られた(p=0.015、ログランクテスト)。ATCC19636由来タンパク質によるワクチン投与後に産生された抗体をマウスに注射し、次いで黄色ブドウ球菌株1477に抗原暴露した、交差抗原暴露(cross-challenge)のデータも、防護的な傾向を示した。抗原暴露後7日から14日の間に、注射グループ及び非注射グループの全てのマウスが、壊死性の皮膚病変を発症し始めていた。しかしながら、マウスの肉眼検査(gross examination)によれば、観察可能な病変の形成、並びに病変の重症度について、グループ間に目に見えて遅延があることが明らかに示されていた。注射マウスの病変の発症は、非注射対照マウスと比べるとより遅かった。対照マウスの病変の発症は注射マウスよりも速く、その重症度も高かった。注射マウスの治癒は、非注射マウスよりも速かった。これは、抗原暴露後21日から35日の期間には、完全に明らかであった。抗原暴露から35日後のマウスの肉眼検査(gross examination)によれば、非注射マウスは外観が著しく悪く、瘢痕の度合いもより高いことが明らかであった。実際に、これらのマウスの多くは正常な姿勢を保てず、外見が捩れているように見えたのに対して、注射マウスは、広範な瘢痕組織及び/又は(例えば非注射マウスが発症した外見の捩れのような)外観の悪化(disfigurement)を殆ど発症しなかった。総体的に、これらのデータは、黄色ブドウ球菌の鉄誘導タンパク質に対して産生された抗体を腹腔内注射することで、黄色ブドウ球菌感染から防護し、また、その重症度を抑制することが可能であることを示している。
【0145】
実施例10
慢性的感染の乳牛群における黄色ブドウ球菌由来のワクチン組成物の評価
【0146】
黄色ブドウ球菌により体細胞数が慢性的に高い病歴を有する商用の乳牛群を選択し、実施例1に記載したワクチン組成物の評価に供した。この実験研究において、ワクチンの効力を判定する基準は以下の通りとした。1)ワクチン投与群(vaccinates)をワクチン非投与対照群(non-vaccinated controls)と比較した場合に、黄色ブドウ球菌により生じる臨床的乳腺炎の罹病率が減少していること、2)ワクチン投与群を対照群と比較した場合に、体細胞数が改善(即ち、減少)していること、及び、3)ワクチン投与群と対照群との間に、黄色ブドウ球菌の培養陽性単離株の比率に減少が見られること。血液の採取は、最初のワクチン投与(0日目)時に行ない、初回の免疫化から3週及び6週間後に再度行なう。ワクチン投与後の注射部位反応及び全身性反応を、試験期間を通じて観察した。更に、バルクタンクの牛乳サンプルを培養して定量的計数を行ない、ワクチン投与後の培養における黄色ブドウ球菌のCFU数が減少したかどうかを確認した。
【0147】
この群のうち、慢性的感染を患う泌乳牛から取られた3種のブドウ球菌単離株を、実施例1に記載した鉄制限条件及び鉄非制限条件下で生育させた。これら3種の単離株をTTX101、TTX102、及びTTX103と名付けた。抽出したサンプルをSDS−PAGEで分離し、そのバンド形成プロファイルを単離株間で比較した。調べた単離株の何れも、同一のバンド形成プロファイルを示した。各単離株由来の組成物が有するタンパク質の分子量は、87.73kDa、80.46kDa、65.08kDa、54.53kDa、37.37kDa、35.70kDa、34.91kDa、33.0kDa、及び31.83kDaであった。これらのタンパク質の分子量は、表10において上述したものと同じであった。更に、単離株を比較したところ、150kDa、132kDa、120kDa、75kDa、58kDa、50kDa、44kDa、43kDa、41kDa、及び40kDaという、鉄によって調節されない全ての条件において発現されるタンパク質と同一のバンド形成プロファイルが見られた。これらの結果は、以前の観察結果と一致していた。TTX101と名付けた1つの単離株を、本試験で使用する組成物を作製するための単離株として選択した。
【0148】
実施例11
黄色ブドウ球菌(TTX101)のワクチン調製
【0149】
単離株TTX101を用いて、実施例1の記載に従い、組成物を調製した。この組成物は、鉄欠乏条件下で発現される、分子量が87.73kDa、80.46kDa、65.08kDa、54.53kDa、37.37kDa、35.70kDa、34.91kDa、33.0kDa、及び31.83kDaのタンパク質を含んでおり、更に、分子量が150kDa、132kDa、120kDa、75kDa、58kDa、50kDa、44kDa、43kDa、41kDa、及び40kDaの金属非調節タンパク質を含んでいた。この株TTX101由来の免疫化用組成物を用いて、以下の手順で実験用ワクチンを調製した。即ち、抽出したタンパク質懸濁液(1ミリリットル当たりの総タンパク質量400μg)を、市販のアジュバント(EMULSIGEN、MVP Laboratories、ラルストン、NE)中で、IKA Ultra Turrax T-50破砕器(IKA、シンシナティ、OH)を用いて乳化させ、その最終用量を、注射用量2.0ml中の総タンパク質800μg、アジュバント濃度22.5%(体積/体積)とした。このワクチンを、21日の間隔を空けて2度、皮下投与した。
【0150】
実施例12
実験デザイン及び群へのワクチン投与
【0151】
最初のワクチン投与の18日前に、本試験に使用する全ての泌乳牛(N=80)について、黄色ブドウ球菌の検査を行なった。検査は、標準化された好気性細菌学的培養法により、各泌乳牛から得られた個々の牛乳サンプルを培養することにより行なった。更に、Dairy herd Improvement Associationにより標準的な手法を用いて、体細胞数(sematic cell counts:SCC)を計数した。80頭の牛のうち14頭が、臨床的に乳腺炎であると診断され、黄色ブドウ球菌について培養陽性であった。残りの牛(N=66)は黄色ブドウ球菌に陰性と判定された。これらの牛80頭を均等に2つのグループに分け、ワクチン投与群をグループ1(N=40)、ワクチン非投与群をグループ2(N=40)と命名した。ブドウ球菌に陽性であると臨床的に診断された牛14頭は、両方のグループに均等に分配し、各試験グループに臨床的乳腺炎の牛が7頭ずつ含まれるようにした。最初のワクチン投与前のグループ間の平均SCCは、ワクチン非投与群が203,219であったのに対し、ワクチン投与群は240,443であった(統計的差異無し、p=0.7)。
【0152】
最初のサンプル採取から14日後、グループ1の全ての牛に対して、実施例11の記載に従い、2mlのワクチンを右肩上部に皮下投与した。最初のワクチン投与から10日後、DHIAによるこの期間の牛乳サンプルを採集し、各牛個体の体細胞の計数を行なった。この期間には、牛乳サンプルについてブドウ球菌の有無を判定するための、細菌学的な試験は行なわなかった。この時期におけるグループ間のSCCの差は、125,241(ワクチン投与群)に対して、196,297(対照群)であった。即ち、ワクチン投与群とワクチン非投与対照群との体細胞数の差は36%であった。このサンプル採取期間における対照群とワクチン投与群とのSCCの差は、統計的な差ではなかった(p=0.5)。何れのサンプル採取期間においても、グループ間のSCCに統計的な差が見られなかったのは、牛個体間のSCCに大きなばらつきがあったためである。同一の時期に、各ワクチン投与牛の注射部位についても調べた。検査した牛の何れについても、身体所見によれば、注射した部位に有害組織反応(adverse tissue response)は見られなかった。更に、ワクチン投与による牛乳の産生量の減少も測定されなかった。
【0153】
初回のワクチン投与から21日後、グループ1(ワクチン投与群)の全ての牛に、2度目のワクチン投与、即ち追加免疫(booster)を行なった。初回のワクチン投与と2度目のワクチン投与との間の期間に、双方のグループ(ワクチン投与群及び対照群)の全ての牛が、環境温度の急激な低下に起因する乳頭の損傷を生じ、これが基で乳頭の端部に病変が形成され、乳頭感染の発症、及び、サンプル採取時のブドウ球菌単離の潜在的な増加を招き、これは3度目のサンプル採取期間に観察された。2度目のワクチン投与から23日後、各牛個体の体細胞の計数のために、DHIAによる牛乳サンプルを採集した。また、牛乳サンプルを細菌学的に検査し、黄色ブドウ球菌の有無を確認した。この期間には、初回のサンプル採取期間に陰性と判定された牛に、黄色ブドウ球菌の単離率の急激な増加がみられた。ワクチン非投与対照群では、これらの牛の42.9%が、今回は黄色ブドウ球菌に陽性であると判定されたのに対し、ワクチン投与群では、僅か35.5%の増加しか示さなかった。ワクチン投与群のワクチン非投与対照群に対する差異は7.4%であった。ワクチン投与グループに見られた黄色ブドウ球菌の単離率の改善が、ワクチン単独の効果に因るものであるとは言い難い。乳頭に損傷がある牛からサンプルを取得する際には、牛乳に黄色ブドウ球菌が混入する可能性が高いため、清浄な牛乳サンプルを得るのは困難であるという点を見落とすことはできない。それでもなお、ワクチン投与群と対照群との間には、平均SCCに有意な差異が見られた。ワクチン投与グループの平均SCCは222,679であったのに対し、対象グループにおいて観測された体細胞数は404,278であった。ワクチン投与群をワクチン非投与対照群と比べた場合の差異は44.9%であった。これらのグループ間でSCCに見られた差異が、グループ間における黄色ブドウ球菌の単離率の差異とも一致しているという点について考えると興味深い。しかしながら、動物個体間でSCCに大きなばらつきがあった上に、試験動物数が少なく、サンプルサイズが小さかったため、この差異は統計的な差異ではなかった(p=0.28)。
【0154】
同一期間に、各ワクチン投与牛の注射部位について、ワクチン組成物によって生じたと思われる有害組織反応があるかどうかを調べた。検査した牛の何れも、身体所見によれば、注射した部位に有害反応は見られなかった。このワクチン組成物は極めて組織適合性が高いと考えられた。各ワクチン投与後における牛乳産生量の減少も測定されなかった。
【0155】
SCC及び牛乳サンプルについて黄色ブドウ球菌の存否を判定することにより、牛の監視を継続した。各グループの牛の一部に対して、2度目のワクチン投与から42日後に、3度目のワクチン投与を行なった。ここで見られた差異は、ワクチン組成物の使用によって体細胞数が減少し、黄色ブドウ球菌による感染が抑制されることを支持するものであった。更なる監視においては、ワクチン組成物に対する抗体価に基づく血清学検査、体調の改善によるワクチン投与牛の牛乳産生量の変化、及び、ワクチン投与動物のワクチン非投与コホートに対するSCCの減少を調べた。更に、毒性黄色ブドウ球菌への暴露後の用量応答に基づくワクチンの防護指数(protective index)を検討するため、別の実験を行なった。
【0156】
実施例13
異なる黄色ブドウ球菌株間でもタンパク質の分子量は類似していることが示され、また、マウスの抗原暴露試験ではヘテロロガスな防御が観察されたことから、
図1で分子量が共通しているタンパク質が、類似したタンパク質なのかどうかを決定することにした。タンパク質の同定のために選択した手法は、マトリックス支援レーザー脱離イオン化質量分析法(matrix-assisted laser desorption/ionization mass spectrometry:MALDI−MS)である。実施例1に記載したSDS−PAGEを用いて組成物の一部を分離し、ゲルをクーマシーブリリアントブルー(Coomassie Brilliant blue)で染色してタンパク質を可視化した。
【0157】
材料及び方法
切除及び洗浄。ゲルを10分間、水により2度洗浄した。所望のタンパク質バンドを各々切除した。この際、サンプル中に存在するゲルの量を低減するため、できるだけタンパク質バンドに近接した部分を切断した。
【0158】
各ゲルスライスを1×1mmの方形に切断し、1.5mlの試験管に入れた。ゲル断片を水で15分間洗浄した。洗浄工程に使用した溶媒の合計量は、各ゲルスライスの体積の凡そ2倍に等しい量であった。次に、ゲルスライスを水/アセトニトリル(1:1)で15分間洗浄した。タンパク質を銀で染色した場合には、この水/アセトニトリル混合液を除去し、ゲル断片をSpeedVac(ThermoSavant、ホールブルック、NY)内で乾燥してから、以下の手順で還元及びアルキル化を行なった。タンパク質を銀染色しない場合には、この水/アセトニトリル混合液を除去し、アセトニトリルを加えてゲル断片を浸し、ゲル断片が白色粘着物になったらアセトニトリルを除去した。ゲル断片を100mMのNH
4HCO
3中で再水和し、5分後に、ゲル断片の体積の2倍に等しい量のアセトニトリルを加えた。これを15分インキュベートし、液体を除去し、ゲル断片をSpeedVac内で乾燥した。
【0159】
還元及びアルキル化。乾燥したゲル断片を10mMのDTT及び100mMのNH
4HCO
3中で再水和し、56℃で45分インキュベートした。試験管を室温まで冷却した後、液体を除去してから、同じ量の55mMのヨードアセトアミド及び100mMのNH
4HCO
3の混合液を直ぐに加えた。これを暗所において、室温で30分インキュベートした。液体を除去し、アセトニトリルを加えてゲル断片を浸し、ゲル断片が白色粘着物になったらアセトニトリルを除去した。ゲル断片を100mMのNH
4HCO
3中で再水和し、5分後に、ゲル断片の体積の2倍に等しい量のアセトニトリルを加えた。これを15分インキュベートし、液体を除去し、ゲル断片をSpeedVac内で乾燥した。ゲルをクーマシーブルー染色した場合であって、残留クーマシーがまだ残っている場合には、100mM NH
4HCO
3/アセトニトリルによる洗浄を繰り返し行なった。
【0160】
ゲル内消化。ゲル断片をSpeed Vac内で完全に乾燥させた。断片を消化緩衝液(50mMのNH
4HCO
3、5mMのCaCl
2、12.5ナノグラム・パー・マイクロリットル(ng/μl)のトリプシン)中、4℃で再水和した。ゲル断片が十分に浸る量の緩衝液を加え、必要に応じて更に加えた。ゲル断片を氷上で45分インキュベートし、上清を除去して、代わりにトリプシンを含有しない同じ緩衝液を5〜2μl加えた。これをエアインキュベータ内で、37℃で一晩インキュベートした。
【0161】
ペプチドの抽出。ゲル断片が十分に浸る量の25mM NH
4HCO
3を加え、(通常は超音波処理槽内で)15分間インキュベートした。同量のアセトニトリルを加え、(可能であれば超音波処理槽内で)15分間インキュベートし、上清を回収した。NH
4HCO
3の代わりに5%ギ酸を用いて、抽出を2度繰り返した。ゲル断片が十分に浸る量の5%ギ酸を加え、(通常は超音波処理槽内で)15分間インキュベートした。同量のアセトニトリルを加え、(可能であれば超音波処理槽内で)15分間インキュベートし、上清を回収した。抽出液をプールし、10mMのDTTを加えて最終濃度を1mM DTTとした。サンプルをSpeedVac内で乾燥し、最終量を凡そ5μlとした。
【0162】
ペプチドの脱塩。ZIPTIPピペットチップ(C18、Millipore、ビルリカ、MA)を用い、製造者の指示に従いサンプルを脱塩した。要約すると、サンプルを再構成溶液(5:95のアセトニトリル:H
2O、0.1%〜0.5%のトリフルオロ酢酸)中で再構成し、遠心分離し、pHを調べて3未満であることを確認した。10μlの溶液1(50:50のアセトニトリル:H
2O、0.1%のトリフルオロ酢酸)を吸引してZIPTIPを水和し、吸引した一定分量を廃棄した。続いて、10μlの溶液2(脱イオンH
2O中に0.1%のトリフルオロ酢酸)を吸引し、吸引した一定分量を廃棄した。サンプルをチップ内に導入するべく、10μlのサンプルをゆっくりとチップ内に吸引し、サンプルチューブ内に排出するという操作を、5から6回繰り返した。10マイクロリットルの溶液2をチップ内に吸引し、溶液を排出して廃棄するという工程を、5〜7回繰り返して洗浄した。ペプチドを溶出するべく、2.5μlの氷冷の溶液3(60:40のアセトニトリル:H
2O、0.1%のトリフルオロ酢酸)を吸引し、排出した後、同じ一定分量を再度チップに吸引及び排出する操作を3回繰り返した。溶液をチップから排出した後、チューブに蓋をして氷冷保存した。
【0163】
質量スペクトルによるペプチドマッピング。ペプチドを10μlから30μlの5%ギ酸に懸濁し、MALDI−TOF MS(Bruker Daltonics Inc.、ビルリカ、MA)で分析した。ペプチド断片の質量スペクトルは、製造者の指示に従って決定した。要約すると、トリプシン消化により得られたペプチドを含むサンプルを、マトリックスのシアノ−4−ヒドロキシ桂皮酸と混合し、ターゲットに移送し、乾燥させた。乾燥サンプルを質量分析器に配置し、照射し、各イオンの飛行時間を検出し、これを用いて組成物中に存在する各タンパク質のペプチド質量フィンガープリントを決定した。機器の標準化には既知のポリペプチドを用いた。
【0164】
データ分析。実験により観測された各質量スペクトル中のペプチドの質量を、Mascotサーチエンジン(Matrix Science Ltd.、ロンドン、UK、及びwww.matrixscience.com、Perkins et al.、Electrophoresis 20, 3551-3567 (1999) を参照のこと)のペプチド質量フィンガープリント検索法を用いて、予測されるタンパク質の質量と比較した。検索パラメータは以下の通りとした:データベース、MSDB又はNCB Inr;分類、細菌(真正細菌)又はFirmicutes(グラム陽性菌);検索の種類、ペプチド質量フィンガープリント;酵素、トリプシン;固定修飾、カルバミドメチル(C)又は無し;可変修飾、酸化(M)、カルバミドメチル(C)、組合せ、又は無し;質量値、モノアイソトピック;タンパク質質量、無制限;ペプチド質量許容値、±150ppm及び±430ppmの間、又は±1Da;ペプチド荷電状態、Mr;最大欠失切断(max missed cleavages)、0又は1;クエリー数、20。
【0165】
結果
本検索の結果得られた、組成物中に存在するタンパク質の質量フィンガープリントを、表2、3、4、及び5に示す。
【0166】
本明細書で引用された全ての特許、特許出願及び公報、並びに電子的に利用可能な資料(例えば、GenBank及びRefSeq等のヌクレオチド配列寄託、SwissProt、PIR、PRF、PDB等のアミノ酸配列寄託、並びに、GenBank及びRefSeqの注釈付翻訳領域からの翻訳等)の全ての開示内容が、援用により組み込まれる。上述の詳細な説明及び実施例は、単に理解の明確化のために供したものであり、これらを不要な限定として解釈してはならない。本発明は表記及び説明の細部に限定されるものではなく、特許請求の範囲により定義される本発明の範囲には、当業者にとって自明の種々の変形が含まれるものとする。
【0167】
別途記載しない限り、本明細書及び特許請求の範囲において使用される、成分の量、分子量等を表わす数値は何れも、全ての場合において、「約(about)」という語により修飾されるものと解すべきである。即ち、別途これとは反対の記載がない限り、本明細書及び特許請求の範囲に記載した数値パラメータは概算値であり、本発明によって得ようとする所望の特性に応じて変化し得る。特許請求の範囲に関する均等論を制限するものではないが、最低限でも、各数値パラメータを解釈する際には、少なくとも報告値の有効桁数を考慮し、従来の端数処理の手法(rounding techniques)を用いるべきである。
【0168】
発明の広い範囲を規定する数値範囲及びパラメータは概算値であるが、個々の実施例に記載した数値は、可能な限り正確に報告した。しかしながら、何れの数値も、対応する試験の測定値に見られる標準偏差に応じて、必然的にある範囲を内在することになる。
【0169】
見出しは何れも読者の便宜のためのものであり、特に明示した場合を除いて、その見出しに続く本文の意味を限定するために用いるべきではない。