特開2015-161639(P2015-161639A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社フローテック・リサーチの特許一覧

特開2015-161639可視化流体の流速計測方法及び流速計測システム
<>
  • 特開2015161639-可視化流体の流速計測方法及び流速計測システム 図000004
  • 特開2015161639-可視化流体の流速計測方法及び流速計測システム 図000005
  • 特開2015161639-可視化流体の流速計測方法及び流速計測システム 図000006
  • 特開2015161639-可視化流体の流速計測方法及び流速計測システム 図000007
  • 特開2015161639-可視化流体の流速計測方法及び流速計測システム 図000008
  • 特開2015161639-可視化流体の流速計測方法及び流速計測システム 図000009
  • 特開2015161639-可視化流体の流速計測方法及び流速計測システム 図000010
  • 特開2015161639-可視化流体の流速計測方法及び流速計測システム 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2015-161639(P2015-161639A)
(43)【公開日】2015年9月7日
(54)【発明の名称】可視化流体の流速計測方法及び流速計測システム
(51)【国際特許分類】
   G01P 5/20 20060101AFI20150811BHJP
   G01P 13/00 20060101ALI20150811BHJP
   G01F 1/00 20060101ALI20150811BHJP
   G01F 1/704 20060101ALI20150811BHJP
【FI】
   G01P5/20 F
   G01P13/00 D
   G01F1/00 K
   G01F1/704
【審査請求】未請求
【請求項の数】13
【出願形態】OL
【全頁数】18
(21)【出願番号】特願2014-38171(P2014-38171)
(22)【出願日】2014年2月28日
(71)【出願人】
【識別番号】508292604
【氏名又は名称】株式会社フローテック・リサーチ
(74)【代理人】
【識別番号】100094835
【弁理士】
【氏名又は名称】島添 芳彦
(72)【発明者】
【氏名】西野 耕一
【テーマコード(参考)】
2F030
2F034
2F035
【Fターム(参考)】
2F030CA02
2F030CC11
2F034AA01
2F034AB03
2F034DA01
2F034DA07
2F034DA15
2F034DB01
2F034DB07
2F034DB14
2F035FA08
2F035FB01
(57)【要約】

【課題】トモグラフィックPIV計測法により可視化流体の3次元速度ベクトル又は3速度成分を取得するための演算処理装置の負荷及びデータ解析時間を軽減又は短縮する。
【解決手段】撮像装置(1-4)によって撮像された2次元画像データに基づいて3次元空間(α)内の各時刻(t,t+Δt)の粒子分布が再構築され(S3)、連続2時刻の3次元輝度情報が得られる。3次元空間を分割してなる所定厚のスライス領域(β)が設定され、スライス領域内の粒子分布が3次元輝度情報より抽出される(S4)。スライス領域内の粒子分布は、複数の仮想投影面に投影され、連続2時刻の複数且つ仮想の2次元粒子画像が生成される(S6)。複数の2次元粒子画像に2次元PIVを実行して得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、3次元空間における可視化流体の3次元速度ベクトル又は3速度成分が取得される(S7,S8,S11)。
【選択図】図7
【特許請求の範囲】
【請求項1】
微小粒子群により可視化された可視化流体を撮像する複数の撮像装置によって、微小時間間隔を隔てた連続2時刻の粒子像を撮像し、撮像により得られた粒子像の画像データに基づいて3次元空間内の粒子分布を再構築し、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を測定する可視化流体の流速計測方法において、
前記撮像装置によって撮像された2次元画像データに基づいて前記3次元空間内の各時刻の粒子分布を再構築し、連続2時刻の3次元輝度情報を得る工程と、
前記3次元空間を分割してなる所定厚のスライス領域を設定し、該スライス領域の内部の粒子分布を前記3次元輝度情報より抽出して、該粒子分布を複数の仮想投影面に投影することによって、連続2時刻の複数且つ仮想の2次元粒子画像を生成する工程と、
複数の前記2次元粒子画像に2次元PIVを実行して得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を取得する工程とを有することを特徴とする流速計測方法。
【請求項2】
微小粒子群により可視化された可視化流体を撮像する複数の撮像装置によって、微小時間間隔を隔てた連続2時刻の粒子像を撮像し、撮像により得られた粒子像の画像データに基づいて3次元空間内の粒子分布を再構築し、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を測定する可視化流体の流速計測方法において、
前記3次元空間を分割してなる所定厚のスライス領域を設定し、前記撮像装置によって撮像された2次元画像データに基づいて前記スライス領域内の各時刻の粒子分布を再構築し、前記スライス領域内における連続2時刻の3次元輝度情報を得る工程と、
前記3次元輝度情報に基づいて前記スライス領域の内部の粒子分布を複数の仮想投影面に投影することによって、連続2時刻の複数且つ仮想の2次元粒子画像を生成する工程と、
複数の前記2次元粒子画像に2次元PIVを実行して得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、前記スライス領域における可視化流体の3次元速度ベクトル又は3速度成分を取得する工程と、
各スライス領域における前記3次元速度ベクトル又は3速度成分の情報を集合、統合又は合成して、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を取得する工程とを有することを特徴とする流速計測方法。
【請求項3】
前記スライス領域は、前記3次元空間を等分割した空間であることを特徴とする請求項1又は2に記載の流速計測方法。
【請求項4】
前記スライス領域は、前記可視化流体に照射されるレーザー光の光軸と平行に前記可視化流体の流路を横断する空間であることを特徴とする請求項1乃至3のいずれか1項に記載の流速計測方法。
【請求項5】
前記仮想投影面は、前記撮像装置の光軸と直交する平面であることを特徴とする請求項1乃至4のいずれか1項に記載の流速計測方法。
【請求項6】
前記3次元輝度情報を得る前記工程において、前記2次元画像の画素に基づいて前記スライス領域内の前記3次元輝度情報を重み付け累算で特定するための重み係数を算出し且つ記憶し、
前記2次元粒子画像を生成する前記工程において、前記スライス領域内の粒子分布を前記重み係数に従って前記仮想投影面に投影することを特徴とする請求項2に記載の流速計測方法。
【請求項7】
微小粒子群により可視化された可視化流体を撮像するように配置され、微小時間間隔を隔てた連続2時刻の粒子像を撮像する複数の撮像装置と、該撮像装置によって得られた画像データに基づいて3次元空間内の粒子分布を再構築し、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を演算する演算処理装置とを有する可視化流体の流速計測システムにおいて、
前記演算処理装置は、前記撮像装置によって撮像された2次元画像データに基づいて前記3次元空間内の各時刻の粒子分布を再構築し、連続2時刻の3次元輝度情報を得るように構成された3次元輝度情報取得手段と、
前記3次元空間を分割してなる所定厚のスライス領域を設定し、該スライス領域の内部の粒子分布を前記3次元輝度情報より抽出して、該粒子分布を複数の仮想投影面に投影することによって、連続2時刻の複数且つ仮想の2次元粒子画像を生成する2次元粒子画像生成手段と、
複数の前記2次元粒子画像に2次元PIVを実行し、これにより得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を演算する演算手段とを有することを特徴とする流速計測システム。
【請求項8】
微小粒子群により可視化された可視化流体を撮像するように配置され、微小時間間隔を隔てた連続2時刻の粒子像を撮像する複数の撮像装置と、該撮像装置によって得られた画像データに基づいて3次元空間内の粒子分布を再構築し、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を演算する演算処理装置とを有する可視化流体の流速計測システムにおいて、
前記演算処理装置は、前記3次元空間を分割してなる所定厚のスライス領域を設定し、前記撮像装置によって撮像された2次元画像データに基づいて前記スライス領域内の各時刻の粒子分布を再構築し、連続2時刻の3次元輝度情報を得るように構成された3次元輝度情報取得手段と、
前記スライス領域の内部の粒子分布を複数の仮想投影面に投影することによって、該スライス領域内における連続2時刻の複数且つ仮想の2次元粒子画像を生成する2次元粒子画像生成手段と、
複数の前記2次元粒子画像に2次元PIVを実行し、これにより得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、前記スライス領域における可視化流体の3次元速度ベクトル又は3速度成分を演算する第1演算手段と、
各スライス領域における前記3次元速度ベクトル又は3速度成分の情報を集合、統合又は合成して、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を取得する第2演算手段とを有することを特徴とする流速計測システム。
【請求項9】
前記スライス領域は、前記3次元空間を等分割した空間であることを特徴とする請求項7又は8に記載の流速計測システム。
【請求項10】
前記スライス領域は、前記可視化流体に照射されるレーザー光の光軸と平行に前記可視化流体の流路を横断する空間であることを特徴とする請求項7乃至9のいずれか1項に記載の流速計測システム。
【請求項11】
前記仮想投影面は、前記撮像装置の光軸と直交する平面であることを特徴とする請求項7乃至10のいずれか1項に記載の流速計測システム。
【請求項12】
前記3次元輝度情報取得手段は、前記2次元画像の画素に基づいて前記スライス領域内の前記3次元輝度情報を重み付け累算で特定するための重み係数を算出し且つ記憶し、
前記2次元粒子画像生成手段は、前記スライス領域内の粒子分布を前記重み係数に従って前記仮想投影面に投影することを特徴とする請求項8に記載の流速計測システム。
【請求項13】
前記可視化流体の流路は、円形の流路断面を有し、画像座標と物理座標との関係を求めるために校正画像を取得すべく前記流路内に配置される円形校正板が用いられ、該校正板は、中心円形領域に配設された直交格子配列の指標と、外周領域に周方向に配設された環状配列の指標とを有することを特徴とする請求項1乃至6のいずれか1項に記載の流速計測方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、可視化流体の流速計測方法及び流速計測システムに関するものであり、より詳細には、微小粒子群により流体を可視化してなる可視化流体の流動場を撮像装置によって撮影し、可視化流体の3次元速度ベクトル又は3速度成分を計測する流速計測方法及び流速計測システムに関するものである。
【背景技術】
【0002】
流体を可視化するためのトレーサ粒子をマーカとして流体の流れに混入し、流動場の流体速度等を計測する可視化計測技術が知られている。可視化流体計測技術として知られる直接撮影法においては、二重露光撮影又は高速度カメラ撮影や、パルスレーザ及びデジタルCCDカメラを用いたフレームまたぎ撮影等の方法によって、トレーサ粒子を微小時間間隔(例えば、1ms間隔)で連続撮影することにより、粒子の移動距離が測定される。粒子の速度は、移動距離を時間間隔で除すことによって演算される。
【0003】
可視化流体計測技術の一種として知られたPIV(Particle Image Velocimetry、粒子像流速計測)は、このような可視化流体の速度分布を調べる直接撮影法として普及した計測技法である。PIV計測法は、流体にレーザシート光を照射して、流体に含まれる寸法10μm程度の微小粒子を微小時間間隔(時刻t及び時刻t+Δt)の連続撮影により撮像し、粒子又は粒子群の速度を画像解析により求め、これにより、流速分布等を測定する流速計測方法である。このようなPIV計測法によれば、レーザシート光内における面内2成分の速度成分を計測することができる。
【0004】
また、レーザシート光(2次元)内の速度3成分を得る計測技法として、ステレオPIV計測法が知られている。ステレオPIV計測法は、異なる角度方向から可視化流体を撮影する少なくとも2台のCCDカメラによって流体中の微粒子を微小時間間隔で連続撮影し、複数のカメラ映像の視差に基づいて、粒子又は粒子群の三次元移動量を画像解析により求め、これにより、可視化流体の速度3成分(x軸、y軸及びz軸方向)を計測する流速計測方法である。
【0005】
このようなPIV計測法又はステレオPIV計測法は、例えば、特開2011−247601号公報、特開2004−286733号公報(特許文献1及び2)等に記載されている。
【0006】
可視化流体の速度3成分を計測するための他の流速計測方法として、方形断面又は矩形断面を有する所定厚の帯状且つ立体的なレーザ光を可視化流体に照射し、異なる角度方向から可視化流体を撮影する少なくとも3台のCCDカメラによって流体中の微粒子を撮像し、撮像により取得した粒子像の画像データに基づいて3次元空間内の粒子分布を再構築し、3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を測定するトモグラフィックPIV計測法が知られている(特開2005−91364号公報、特開2013−217902号公報等)。トモグラフィックPIV計測法は、CT(Computed・Tomography)技術とPIV技術との融合により流体の3次元流速分布を効率的且つ高精度に測定することができる計測技法である。典型的には、4台のCCDカメラが撮影に使用され、各カメラは、連続2時刻(t及びt+Δt)の各々において流体中の微粒子を同時に撮影する。ステレオPIV技術が2次元計測技術であるのに対し、トモグラフィックPIV技術は、3次元計測技術である点で優位性がある。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2011−247601号公報
【特許文献2】特開2004−286733号公報
【特許文献3】特開2005−91364号公報
【特許文献4】特開2013−217902号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかしながら、トモグラフィックPIV計測法においては、計測システムの画像解析装置を構成する記憶装置は、3次元粒子分布のデータや、3次元voxel(ボクセル)群の輝度データ等の3次元データを解析データとして記憶し且つ保存すべく、過大な記憶容量の記憶部又は記憶手段を保有しなければならない。また、計測システムを構成する演算処理装置には、多量の3次元データのデータ解析のために多大な動作負荷が課せられるので、演算処理装置は、演算処理のために比較的長時間のデータ解析時間を要する。このため、トモグラフィックPIV計測法においては、高性能且つ大容量の電子機器を記憶装置及び演算処理装置として採用せざるを得ず、この結果、計測システムの初期設備費が高額化するとともに、システム構成が複雑化する傾向がある。
【0009】
また、3次元粒子分布のデータや、3次元voxel群の輝度データ等の3次元データは、カメラによって撮影された実際の粒子画像とは相違するので、撮影された粒子画像の妥当性を計測過程において視覚的又は感覚的に評価し又は認識し難く、粒子画像に基づく3次元データの再構築の妥当性を視覚的又は感覚的に確認することもできない。
【0010】
本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、トモグラフィックPIV計測法により可視化流体の3次元速度ベクトル又は3速度成分を取得するための演算処理装置の負荷及びデータ解析時間を軽減又は短縮することができる流速計測方法及び流速計測システムを提供することにある。
【0011】
本発明は更に、このような流速計測方法及び流速計測システムにおいて、記憶装置の記憶容量を低減することができる流速計測方法及び流速計測システムを提供することを目的とする。
【課題を解決するための手段】
【0012】
本発明は、上記目的を達成すべく、微小粒子群により可視化された可視化流体を撮像する複数の撮像装置によって、微小時間間隔を隔てた連続2時刻の粒子像を撮像し、撮像により得られた粒子像の画像データに基づいて3次元空間内の粒子分布を再構築し、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を測定する可視化流体の流速計測方法において、
前記撮像装置によって撮像された2次元画像データに基づいて前記3次元空間内の各時刻の粒子分布を再構築し、連続2時刻の3次元輝度情報を得る工程(S3)と、
前記3次元空間を分割してなる所定厚のスライス領域を設定し、該スライス領域の内部の粒子分布を前記3次元輝度情報より抽出して、該粒子分布を複数の仮想投影面に投影することによって、連続2時刻の複数且つ仮想の2次元粒子画像を生成する工程(S4,S6)と、
複数の前記2次元粒子画像に2次元PIVを実行して得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を取得する工程(S7,S8,S11)とを有することを特徴とする流速計測方法を提供する。
【0013】
本発明は又、微小粒子群により可視化された可視化流体を撮像する複数の撮像装置によって、微小時間間隔を隔てた連続2時刻の粒子像を撮像し、撮像により得られた粒子像の画像データに基づいて3次元空間内の粒子分布を再構築し、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を測定する可視化流体の流速計測方法において、
前記3次元空間を分割してなる所定厚のスライス領域を設定し、前記撮像装置によって撮像された2次元画像データに基づいて前記スライス領域内の各時刻の粒子分布を再構築し、前記スライス領域内における連続2時刻の3次元輝度情報を得る工程(S3',S5')と、
前記3次元輝度情報に基づいて前記スライス領域の内部の粒子分布を複数の仮想投影面に投影することによって、連続2時刻の複数且つ仮想の2次元粒子画像を生成する工程(S6)と、
複数の前記2次元粒子画像に2次元PIVを実行して得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、前記スライス領域における可視化流体の3次元速度ベクトル又は3速度成分を取得する工程(S7,S8)と、
各スライス領域における前記3次元速度ベクトル又は3速度成分の情報を集合、統合又は合成して、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を取得する工程(S11)とを有することを特徴とする流速計測方法を提供する。
好ましくは、前記3次元輝度情報を得る前記工程においては、前記2次元画像の画素に基づいて前記スライス領域内の前記3次元輝度情報を重み付け累算で特定するための重み係数が算出され且つ記憶され、前記2次元粒子画像を生成する前記工程においては、前記スライス領域内の粒子分布は、前記重み係数に従って前記仮想投影面に投影される。
【0014】
本発明の上記構成によれば、粒子分布を再構築した3次元空間がスライス領域に分割され、スライス領域の粒子分布が3次元輝度情報より抽出される。スライス領域の粒子分布は、複数の仮想投影面に投影され、連続2時刻の複数且つ仮想の2次元粒子画像が生成される。複数の2次元粒子画像に対して2次元PIVが実行され、これにより得られる複数の画像面内の粒子の2次元移動ベクトルが求められ、かくして求められた2次元移動ベクトルに基づいて、3次元空間における可視化流体の3次元速度ベクトル又は3速度成分が得られる。即ち、演算処理装置は、3次元のvoxel群輝度データを演算処理するのではなく、2次元のpixel群輝度データを演算処理するにすぎないので、演算処理装置のデータ解析に要する負荷及びデータ処理時間は軽減又は短縮する。従って、上記構成の流速計測方法又は流速計測システムによれば、演算処理装置の解析時間を短縮し、計測を高速化することができる。
【0015】
また、本発明の上記構成によれば、各スライス領域の粒子群を投影した2次元粒子画像は、シート光照明で撮影される通常のPIV粒子画像と直接に対比可能な粒子画像であるので、上記撮像装置による粒子撮影の妥当性を評価し得るとともに、3次元輝度情報の再構築の妥当性を視覚的に確認することができる。
【0016】
更に、本発明の上記構成によれば、各スライス領域の粒子分布を仮想投影面に投影する過程において、ステレオPIV解析を最も精度良く行うことのできる視線方向を任意に選択することが可能であるので、測定精度の高精度化を達成することが可能となる。
【0017】
他の観点より、本発明は、微小粒子群により可視化された可視化流体を撮像するように配置され、微小時間間隔を隔てた連続2時刻の粒子像を撮像する複数の撮像装置と、該撮像装置によって得られた画像データに基づいて3次元空間内の粒子分布を再構築し、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を演算する演算処理装置とを有する可視化流体の流速計測システムにおいて、
前記演算処理装置は、前記撮像装置によって撮像された2次元画像データに基づいて前記3次元空間内の各時刻の粒子分布を再構築し、連続2時刻の3次元輝度情報を得るように構成された3次元輝度情報取得手段(S3)と、
前記3次元空間を分割してなる所定厚のスライス領域を設定し、該スライス領域の内部の粒子分布を前記3次元輝度情報より抽出して、該粒子分布を複数の仮想投影面に投影することによって、連続2時刻の複数且つ仮想の2次元粒子画像を生成する2次元粒子画像生成手段(S4,S6)と、
複数の前記2次元粒子画像に2次元PIVを実行し、これにより得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を演算する演算手段(S7,S8,S11)とを有することを特徴とする流速計測システムを提供する。
【0018】
本発明は又、微小粒子群により可視化された可視化流体を撮像するように配置され、微小時間間隔を隔てた連続2時刻の粒子像を撮像する複数の撮像装置と、該撮像装置によって得られた画像データに基づいて3次元空間内の粒子分布を再構築し、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を演算する演算処理装置とを有する可視化流体の流速計測システムにおいて、
前記演算処理装置は、前記3次元空間を分割してなる所定厚のスライス領域を設定し、前記撮像装置によって撮像された2次元画像データに基づいて前記スライス領域内の各時刻の粒子分布を再構築し、連続2時刻の3次元輝度情報を得るように構成された3次元輝度情報取得手段(S3',S5')と、
前記スライス領域の内部の粒子分布を複数の仮想投影面に投影することによって、該スライス領域内における連続2時刻の複数且つ仮想の2次元粒子画像を生成する2次元粒子画像生成手段(S6)と、
複数の前記2次元粒子画像に2次元PIVを実行し、これにより得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、前記スライス領域における可視化流体の3次元速度ベクトル又は3速度成分を演算する第1演算手段(S7,S8)と、
各スライス領域における前記3次元速度ベクトル又は3速度成分の情報を集合、統合又は合成して、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を取得する第2演算手段(S11)とを有することを特徴とする流速計測システムを提供する。
好ましくは、前記3次元輝度情報取得手段は、前記2次元画像の画素に基づいて前記スライス領域内の前記3次元輝度情報を重み付け累算で特定するための重み係数を算出し且つ記憶し、前記2次元粒子画像生成手段は、前記スライス領域内の粒子分布を前記重み係数に従って前記仮想投影面に投影する。
【0019】
本発明の上記構成においては、3次元輝度情報の再構築、仮想の2次元粒子画像の生成、2次元PIV、3次元速度ベクトル又は3速度成分の算出は、スライス領域単位に実行される。各スライス領域における3次元速度ベクトル又は3速度成分の情報は、集合、統合又は合成され、3次元空間における可視化流体の3次元速度ベクトル又は3速度成分が得られる。このような構成によれば、計測システムを構成する記憶装置は、各スライス領域の3次元輝度情報を記憶する記憶容量を保有すれば良く、従って、記憶装置の記憶容量を低減することができる。即ち、本発明の上記構成によれば、前述した解析時間の短縮、再構築の妥当性の視覚的確認および測定精度の高精度化という優位性のみならず、計測システムを構成する記憶装置の記憶容量を低減することが更に可能となるので、計測システムの初期設備費を更に低廉化することともに、システム構成を更に簡素化することができる。
【発明の効果】
【0020】
本発明の流速計測方法及び流速計測システムによれば、トモグラフィックPIV計測法により可視化流体の3次元速度ベクトル又は3速度成分を取得するための演算処理装置の負荷及びデータ解析時間を軽減又は短縮することができる。
【0021】
また、3次元輝度情報の再構築、2次元粒子画像の生成、2次元PIV、3次元速度ベクトル又は3速度成分の算出をスライス領域単位に実行する本発明の流速計測方法及び流速計測システムによれば、演算処理装置の負荷及びデータ解析時間を軽減又は短縮し得るだけではなく、記憶装置の記憶容量を低減することができる。
【図面の簡単な説明】
【0022】
図1図1は、本発明の好適な実施形態に係る流速計測システムの計測部の構成を概略的に示す概略斜視図である。
図2図2(A)は、計測システムの初期設定において計測流路内に配置される校正板及び支柱の構造を示す斜視図であり、図2(B)は、校正板の基準点のパターンを示す平面図である。
図3図3(A)は、図2に示す校正板の平面図であり、図3(B)は、校正板の底面図である。
図4図4(A)は、CCDカメラによって連続2時刻に撮影された粒子画像であり、図4(B)は、CCDカメラによって撮影された粒子画像を拡大した画像である。
図5図5は、CCDカメラの撮影対象領域を拡大して示す斜視図である。
図6図6(A)は、スライス領域内の粒子分布を仮想投影面に投影することによって得られた2次元粒子画像を例示する画像データであり、図6(B)は、複数の2次元粒子画像に基づいて得られた可視化流体の3次元速度ベクトルを例示する概略斜視図である。
図7図7は、本発明の好適な実施例に係る流速計測方法を示すフローチャートである。
図8図8は、本発明の好適な実施例に係る他の流速計測方法を示すフローチャートである。
【発明を実施するための形態】
【0023】
本発明の好適な実施形態によれば、上記スライス領域は、上記3次元空間を等分割した空間である。好ましくは、スライス領域は、可視化流体に照射されるレーザー光の光軸と平行に可視化流体の流路を横断する空間である。
【0024】
本発明の或る実施形態においては、上記仮想投影面は、撮像装置の光軸と直交する平面である。
【0025】
好ましくは、可視化流体の流路は、円形の流路断面を有し、画像座標と物理座標との関係を求めるために校正画像を取得すべく流路内に配置される円形校正板が用いられる。校正板は、中心円形領域に配設された直交格子配列の指標と、外周領域に周方向に配設された環状配列の指標とを有する。このように外周領域の指標を流路の外周面の形態に相応するパターンに配置することにより、流路壁近傍における画像の歪みを適切に補正して画像座標と物理座標との関係を求め、計測領域の形状に最適な座標情報を効率良く取得することができる。
【0026】
以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。
【0027】
図1は、本発明の好適な実施形態に係る流速計測システムの計測部の構成を概略的に示す概略斜視図である。
【0028】
本発明に係る流速計測システムは、CT(Computed・Tomography)技術とステレオPIV技術との融合により流体の3次元流速分布を効率的且つ高精度に測定するトモグラフィック・ステレオPIVシステム(以下、「TSPIVシステム」という。)である。TSPIVシステムは、微粒子(トレーサ粒子)を注入した可視化流体(気体)Pの可視化流路を形成する真円形断面の円筒体10を有する。微粒子の寸法は、例えば、10μm程度である。円筒体10は、透明樹脂又は透明ガラス等の管壁11を有し、円筒体10の上部及び下部は、流体Pの供給路及び排出路(図示せず)に接続される。
【0029】
TSPIVシステムは、レーザーヘッド及び光学系装置等を含む光源(図示せず)と、記憶装置、演算処理装置、画像表示(ディスプレイ)装置及び各種入・出力装置等を備えた画像処理装置(図示せず)とを有する。光源が照射した帯状且つ立体的なレーザー光Lが、円筒体10の中心軸線と直交する方向に照射される。本例において、円筒体10の中心軸線は、鉛直方向に配向され、レーザー光Lの光軸は、水平方向に配向される。レーザー光Lは、幅W及び高さHの方形断面又は矩形断面を有し、レーザー光Lの幅Wは、円筒体10の内径Dよりも大きく、円筒体10内の垂直流路は、レーザー光Lの光軸と直交し、高さHの範囲内においてレーザー光Lに包含される。レーザー光Lの高さHは、数mm〜数cm程度の所定寸法、例えば、5〜10mmの範囲内の所定値に設定される。可視化流体は、下向き又は上向き(本例では下向き)に円筒体10内の流路を流動する。
【0030】
CCDカメラ2、3がレーザー光Lの上側に配置され、CCDカメラ1、4がレーザー光Lの下側に配置される。CCDカメラ1〜4の光軸は、円筒体10の中心軸線に対して所定角度をなして傾斜しており、CCDカメラ1〜4は、角度が異なる4方向から流体P中の微粒子を撮影するように位置決めされる。
【0031】
図2(A)は、円筒体10内に配置される校正板20及び支柱21の構造を示す斜視図であり、図2(B)は、校正板20の指標パターンを示す平面図である。また、図3(A)は、校正板20の平面図であり、図3(B)は、校正板20の底面図である。
【0032】
校正板20は、CCDカメラ1〜4の画像座標と、流路内空間の物理座標との関係を予め特定するCCDカメラ1〜4の校正を実施するためのものである。校正板20は、CCDカメラ1〜4の位置固定後に円筒体10内に挿入され、カメラ校正作業の完了後に撤去される。図2(A)には、校正板20及び支柱21を組み付けた状態が示されている。校正板20及び支柱21は、黒色の表面を有する金属部材からなり、支柱21の頂部は、校正板20の切欠き部22に嵌合し、校正板20を水平に支持する。
【0033】
図2(B)に示すように、校正板20は、黒色の背景面に白色の指標(図3に示す基準点23)を円形上面及び円形下面の所定位置に配置した構成を有する。背景の色と基準点の色とは輝度が大きく相違すれば良く、従って、白色の背景面に黒の円形基準点を配置することも可能である。図3に示すように、基準点23は、校正板20の各面(上面及び下面)に上下同一位置に配置される。基準点23は、中心円形領域に配設された直交格子配列の基準点23aと、外周領域に周方向に配設された環状配列の基準点23bとを有する。基準点23a、23bは、基本的に同一の直径を有する円形輪郭の指標であるが、XY方向を指示するために中央領域に配列された特定の基準点23cは、基準点23a、23bよりも大きい直径を有する。
【0034】
このように外周領域の基準点23bを管壁11の内周面の形態に相応するパターンに配置することにより、管壁11を透過して得られる画像に歪みが生じないように画像座標及び物理座標の関係(投影関数)を適切に求めることができる。
【0035】
校正板20を用いて画像座標と物理座標との関係を求め、TSPIVシステムの初期設定が完了すると、微粒子を含む可視化流体Pが供給路(図示せず)から円筒体10内に供給される。可視化流体Pは、円筒体10内の流路を流動して排出路(図示せず)に流出する。
【0036】
CCDカメラ1〜4の撮影は、微小時間間隔Δtを隔てた2時刻(時刻t、t+Δt)の各々において同時に実行される。図4(A)は、CCDカメラ1〜4によって時刻t及び時刻t+Δtに撮影された粒子画像である。図4(B)は、CCDカメラ1によって時刻tに撮影された粒子画像を拡大した画像である。また、図5は、CCDカメラ1〜4の撮影対象領域αを拡大して示す斜視図である。
【0037】
円筒体10内の流路を移動する微粒子群は、撮影対象領域αにおいてレーザー光Lを反射し、図4に示すような粒子画像としてCCDカメラ1〜4によって撮像される。粒子画像にMART(Multiplicative Algebraic Reconstruction Technique)を適用することにより、異なる時刻(t及びt+Δt)における3次元空間内の粒子分布を再構築することができる。再構築された3次元輝度情報より、voxel群(3次元)を要素データとした3次元配列が得られる。この再構築過程において、粒子画像(2次元)の各pixelの輝度は、その輝度の源泉となるvoxel群の輝度の重み付け加算により表され、重み付けの係数が算出される。
【0038】
再構築された時刻t及び時刻t+Δtの3次元輝度情報に対し、任意の位置に定義された所定厚のスライス領域βの粒子分布が抽出される。図5には、厚さhのスライス領域βが例示されている。スライス領域βは、レーザー光Lが照射された円筒体10内の3次元空間(即ち、撮像対象領域α)をレーザー光Lの光軸と平行に等分割した円形平板状の空間であり、レーザー光Lの光軸と平行に可視化流体の流路を横断する。スライス領域βの厚さhは、例えば、レーザー光Lの高さH×1/5〜高さH×1/10の範囲内の所定値に設定され、各スライス領域βは、撮影対象領域αの全高さHに亘って均等に分割することより設定される。
【0039】
スライス領域βにおける粒子分布は、重み付け係数を用いた前述の計算処理の適用により、任意の複数の視線方向に定義された複数の仮想投影面に投影され、この結果、ステレオPIVに最適な連続2時刻(t及びt+Δt)の複数の仮想粒子画像が生成される。本例において、仮想投影面は、CCDカメラ1〜4の光軸と直交する平面である。図6(A)は、仮想投影面に投影された仮想粒子画像を例示する画像データである。
【0040】
各スライス領域βに位置する粒子群の粒子画像として生成した仮想の投影画像に対し、2次元PIVが実行され、これにより得られた各画像面内の粒子の2次元移動ベクトルと、スライス領域βにおける3次元速度ベクトルと、別途に生成したカメラパラメータ及び2時刻の時間間隔Δtとの間に成立する関係式に関し、最小二乗法が適用され、スライス領域βにおける3次元速度ベクトルが算出される。このような過程を全てのスライス領域βに対して実行することにより、対象物理空間(撮影対象領域α)における可視化流体Pの3次元速度ベクトルを取得することができる。図6(B)は、上記過程により得られた撮影対象領域α内の3次元速度ベクトルを例示する概略斜視図である。
【0041】
以上説明したとおり、このようなTSPIVシステムによれば、voxel群(3次元)を要素データとした3次元のvoxel群データは、2次元PIVを適用可能な2次元の複数の粒子画像に変換される。即ち、TSPIVシステムにおいては、CCDカメラ1〜4によって撮影された画像データは、3次元のvoxel群データとして演算処理されるのではなく、2次元PIVを適用可能な2次元の複数の仮想粒子画像に変換され、連続2時刻(t及びt+Δt)の複数の仮想粒子画像(投影画像)に対して2成分PIVを実行することにより、粒子画像の移動ベクトル(2次元)が求められる。前述したように、この移動ベクトル、別途生成したカメラパラメータ、2時刻の時間間隔Δtおよび粒子群の3次元の速度ベクトルとの間に成立する関係式に関する最小二乗法の適用により、粒子群の3次元速度ベクトルが求まる。これを流速分布と見做すことによって、3次元流速分布が得られる。
【0042】
このようなTSPIVシステムによれば、演算処理装置が演算すべきデータは、3次元のvoxel群輝度データではなく、2次元のpixel群輝度データであるので、演算処理装置のデータ解析に要する負荷及びデータ処理時間は大幅に軽減又は短縮する(一桁〜二桁程度の軽減又は短縮である)。このため、演算処理装置の解析時間を短縮し、計測を高速化することができる。
【0043】
また、各スライス領域βの粒子群を投影した粒子画像は、シート光照明で撮影される通常のPIV粒子画像と直接に対比可能な粒子画像であるので、粒子像の撮影の妥当性を評価し得るとともに、再構築の妥当性を視覚的に確認することができる。
【0044】
更に、各スライス領域βの粒子群の投影において、ステレオPIV解析を最も精度良く行うことのできる視線方向を選択することができるので、測定精度の高精度化を達成することが可能となる。
【0045】
次に、TSPIVシステムの画像解析過程を示すフローチャートに基づいて本発明の流速計測方法について説明する。
【0046】
図7は、本発明の好適な実施例に係る流速計測方法を示すフローチャートである。
【0047】
図7に示す如く、CCDカメラ1〜4は、異なる2時刻(時刻t、t+Δt)において撮影対象領域α内の粒子を同時に撮影する(S(ステップ)1)。この撮影は、3台以上の撮像装置による流体中粒子の3方向且つ連続2時刻の撮影である。
【0048】
各撮影時刻(時刻t、t+Δt)においてCCDカメラ1〜4により撮像された各粒子画像に関し、各pixelの輝度値が、その源泉となる3次元空間における粒子群の輝度の重み付け累算で表される下式の重み付け係数wijを計算することにより求められる(S2)。
【数1】
【0049】
上式において、I(xi,yi)はCCDカメラ1〜4によって撮像された2次元画像の2次元座標(xi,yi)において、各座標(xi,yi)のpixel(ピクセル)の輝度を表しており、iは、各2次元画像におけるpixelの番号である。E(Xj,Xj,Xj)は、3次元座標(Xj,Xj,Xj)を有するvoxel(ボクセル)の輝度を表しており、jはvoxel番号である。なお、voxelは、体積の要素であり、pixelが2次元画像データを表す正規格子単位であるのに対し、voxelは、3次元空間における正規格子単位である。輝度E(Xj,Xj,Xj)が相対的に高い値を示すことは、その座標(Xj,Xj,Xj)を有するj番目のvoxel jにレーザー光を反射する粒子群が比較的多量に存在することを意味する。
【0050】
各撮影時刻(時刻t、t+Δt)において、全CCDカメラ1〜4の粒子画像に関し、重み付け係数wijを用いてMART(Multiplicative Algebraic Reconstruction Technique)が適用され、各時刻における粒子の3次元輝度分布情報が再構築される(S3)。
【0051】
撮影対象領域αは、任意の軸線方向(本例では、流路の中心軸線)に垂直な所定厚のスライス領域βに等分割され、再構築された2時刻(時刻t、t+Δt)の3次元輝度分布は、スライス領域βの3次元輝度分布に分割される(S4)。
【0052】
先ず、特定のスライス領域βが着目され(S5)、このスライス領域βに含まれる粒子の3次元輝度分布情報に基づき、pixelの輝度I(xi,yi)とvoxelの輝度E(Xj,Xj,Xj)との関係を示す上式を利用して、各CCDカメラ1〜4の画像を仮想投影面に投影した仮想的な2次元画像が生成される(S6)。
【0053】
かくして生成された2時刻(時刻t、t+Δt)の仮想的な2次元画像に関し、2次元PIVが適用され、各CCDカメラ1〜4の仮想投影面における粒子の2次元移動ベクトルが算出される(S7)。
【0054】
次いで、この2次元移動ベクトルと、粒子の3次元速度ベクトルと、別途生成したカメラパラメータ及び2時刻の時間間隔Δtとの間に成立する関係式に関し、最小二乗法が適用され、粒子の3次元速度ベクトルが算出される(S8)。3次元速度ベクトルの算出は、撮影対象領域αの全スライス領域βに関して実行される(S9:S10)。
【0055】
全スライス領域βに関し、このような画像解析及び演算処理が完了した後、各スライス領域βに対して算出した3次元速度ベクトルが統合され、撮影対象空間αにおける粒子速度ベクトルが得られる(S11)。所望により、CCDカメラ1〜4の撮影(S1)〜粒子速度ベクトル取得(S11)の一連の流速計測過程が反復実行され(S12、S13)、これにより、撮影対象空間αの粒子速度ベクトルが時系列的に取得される。規定数の2時刻粒子速度データが得られた段階で一連の流速計測過程が終了する(S12)。
【0056】
図8は、本発明の好適な実施形態に係る他の流速計測方法を示すフローチャートである。
【0057】
図7に示す流速計測方法は、撮影対象領域αの粒子分布を再構築して領域α全体の3次元輝度情報を得て、スライス領域β内の粒子分布を3次元輝度情報より抽出した後、仮想2次元粒子画像を生成して2次元PIVを実行するように構成されているが、図8に示す流速計測方法の如く、各スライス領域βの粒子分布だけを再構築して各スライス領域βの3次元輝度情報を得た後、仮想2次元粒子画像を生成して2次元PIVを実行するように流速計測方法を構成しても良い。
【0058】
図8に示す如く、CCDカメラ1〜4による撮影対象領域α内の粒子の撮影(S1)により得られた各撮影時刻(時刻t、t+Δt)の粒子画像に基づき、スライス領域βが設定される(S2')。特定のスライス領域βが着目され(S3')、前述の重み付け係数wij(上記数式1)が特定のスライス領域βの粒子群に関して計算され且つ記憶されるとともに(S4’)、各撮影時刻(時刻t、t+Δt)において、全CCDカメラ1〜4の粒子画像より、重み付け係数wijを用いてMART(Multiplicative Algebraic Reconstruction Technique)が適用され、各時刻におけるスライス領域β内の粒子の3次元輝度分布情報が再構築され、記憶される(S5')。
【0059】
スライス領域βに含まれる粒子の3次元輝度分布情報に基づき、前述した仮想の2次元画像が重み付け係数wijに従って生成され(S6)、かくして得られた2時刻(時刻t、t+Δt)の仮想2次元画像に関し、2次元PIVが適用され、各CCDカメラ1〜4の仮想投影面における粒子の2次元移動ベクトルが算出される(S7)。
【0060】
次いで、この2次元移動ベクトルと、粒子の3次元速度ベクトルと、別途生成したカメラパラメータ及び2時刻の時間間隔Δtとの間に成立する関係式に関し、最小二乗法が適用され、粒子の3次元速度ベクトルが算出される(S8)。スライス領域β内の粒子群に関する重み付け係数wijの計算(S4’)〜3次元速度ベクトルの算出(S8)の過程は、撮影対象領域αの全スライス領域βについて実行される(S9:S10)。
【0061】
全スライス領域βに関し、このような画像解析及び演算処理が完了した後、各スライス領域βに対して算出した3次元速度ベクトルが統合され、撮影対象空間α全域の粒子速度ベクトルが得られる(S11)。所望により、CCDカメラ1〜4の撮影(S1)〜粒子速度ベクトル取得(S11)の一連の流速計測過程が反復実行され(S12、S13)、これにより、撮影対象空間αの粒子速度ベクトルが時系列的に取得される。規定数の2時刻粒子速度データが得られた段階で一連の流速計測過程が終了する(S12)。
【0062】
このような流速計測方法によれば、前述の実施形態と同じく、演算処理装置の解析時間の短縮、計測の高速化等の利点が得られる。しかも、上記流速計測方法においては、3次元輝度情報の再構築がスライス領域単位に実行されることから、画像解析過程において記憶すべき3次元輝度情報の情報量又はデータ数が低減するので、記憶装置の記憶容量を低減することができる。
【0063】
以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。
【0064】
例えば、上記実施形態においては、撮影対象空間は、真円形断面の円筒形流路であるが、多角形断面、楕円形断面、3角形断面等の各種断面形態の流路に設計しても良い。
【0065】
また、上記実施形態では、粒子撮影のために4台の撮像装置(CCDカメラ)が使用されているが、粒子撮影のために3台又は5台以上の撮像装置を使用しても良い。
【産業上の利用可能性】
【0066】
本発明は、微小粒子群により流体を可視化してなる可視化流体の流動場を撮像装置によって撮影し、可視化流体の3次元速度ベクトル又は3速度成分を計測する流速計測方法及び流速計測システムに適用される。殊に、本発明は、微小粒子群により可視化された可視化流体を撮像する複数の撮像装置によって、微小時間間隔を隔てた連続2時刻の粒子像を撮像し、撮像により得られた粒子像の画像データに基づいて3次元空間内の粒子分布を再構築し、3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を測定する可視化流体の流速計測方法及び流速計測システムに適用される。本発明の流速計測方法及び流速計測システムは、トモグラフィックPIV計測法を改良したトモグラフィック・ステレオPIV計測法である。本発明のトモグラフィック・ステレオPIV計測法によれば、可視化流体の3次元速度ベクトル又は3速度成分を取得するための演算処理装置の負荷及びデータ解析時間を軽減又は短縮することができるので、本発明の実用的効果は、顕著である。
【符号の説明】
【0067】
1〜4 CCDカメラ
10 円筒体
11 管壁
20 校正板
P 可視化流体
L レーザー光
α 撮影対象領域
β スライス領域
図1
図2
図3
図4
図5
図6
図7
図8
【手続補正書】
【提出日】2014年3月11日
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】請求項6
【補正方法】変更
【補正の内容】
【請求項6】
前記3次元輝度情報を得る前記工程において、前記2次元画像の画素に基づいて前記スライス領域内の前記3次元輝度情報を特定するための重み係数を算出し且つ記憶し、
前記2次元粒子画像を生成する前記工程において、前記スライス領域内の粒子分布を前記重み係数に従って前記仮想投影面に投影することを特徴とする請求項2に記載の流速計測方法。
【手続補正2】
【補正対象書類名】特許請求の範囲
【補正対象項目名】請求項12
【補正方法】変更
【補正の内容】
【請求項12】
前記3次元輝度情報取得手段は、前記2次元画像の画素に基づいて前記スライス領域内の前記3次元輝度情報を特定するための重み係数を算出し且つ記憶し、
前記2次元粒子画像生成手段は、前記スライス領域内の粒子分布を前記重み係数に従って前記仮想投影面に投影することを特徴とする請求項8に記載の流速計測システム。
【手続補正3】
【補正対象書類名】明細書
【補正対象項目名】0013
【補正方法】変更
【補正の内容】
【0013】
本発明は又、微小粒子群により可視化された可視化流体を撮像する複数の撮像装置によって、微小時間間隔を隔てた連続2時刻の粒子像を撮像し、撮像により得られた粒子像の画像データに基づいて3次元空間内の粒子分布を再構築し、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を測定する可視化流体の流速計測方法において、
前記3次元空間を分割してなる所定厚のスライス領域を設定し、前記撮像装置によって撮像された2次元画像データに基づいて前記スライス領域内の各時刻の粒子分布を再構築し、前記スライス領域内における連続2時刻の3次元輝度情報を得る工程(S3',S5')と、
前記3次元輝度情報に基づいて前記スライス領域の内部の粒子分布を複数の仮想投影面に投影することによって、連続2時刻の複数且つ仮想の2次元粒子画像を生成する工程(S6)と、
複数の前記2次元粒子画像に2次元PIVを実行して得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、前記スライス領域における可視化流体の3次元速度ベクトル又は3速度成分を取得する工程(S7,S8)と、
各スライス領域における前記3次元速度ベクトル又は3速度成分の情報を集合、統合又は合成して、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を取得する工程(S11)とを有することを特徴とする流速計測方法を提供する。
好ましくは、前記3次元輝度情報を得る前記工程においては、前記2次元画像の画素に基づいて前記スライス領域内の前記3次元輝度情報を特定するための重み係数が算出され且つ記憶され、前記2次元粒子画像を生成する前記工程においては、前記スライス領域内の粒子分布は、前記重み係数に従って前記仮想投影面に投影される。
【手続補正4】
【補正対象書類名】明細書
【補正対象項目名】0018
【補正方法】変更
【補正の内容】
【0018】
本発明は又、微小粒子群により可視化された可視化流体を撮像するように配置され、微小時間間隔を隔てた連続2時刻の粒子像を撮像する複数の撮像装置と、該撮像装置によって得られた画像データに基づいて3次元空間内の粒子分布を再構築し、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を演算する演算処理装置とを有する可視化流体の流速計測システムにおいて、
前記演算処理装置は、前記3次元空間を分割してなる所定厚のスライス領域を設定し、前記撮像装置によって撮像された2次元画像データに基づいて前記スライス領域内の各時刻の粒子分布を再構築し、連続2時刻の3次元輝度情報を得るように構成された3次元輝度情報取得手段(S3',S5')と、
前記スライス領域の内部の粒子分布を複数の仮想投影面に投影することによって、該スライス領域内における連続2時刻の複数且つ仮想の2次元粒子画像を生成する2次元粒子画像生成手段(S6)と、
複数の前記2次元粒子画像に2次元PIVを実行し、これにより得られる複数の画像面内の粒子の2次元移動ベクトルに基づいて、前記スライス領域における可視化流体の3次元速度ベクトル又は3速度成分を演算する第1演算手段(S7,S8)と、
各スライス領域における前記3次元速度ベクトル又は3速度成分の情報を集合、統合又は合成して、前記3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を取得する第2演算手段(S11)とを有することを特徴とする流速計測システムを提供する。
好ましくは、前記3次元輝度情報取得手段は、前記2次元画像の画素に基づいて前記スライス領域内の前記3次元輝度情報を特定するための重み係数を算出し且つ記憶し、前記2次元粒子画像生成手段は、前記スライス領域内の粒子分布を前記重み係数に従って前記仮想投影面に投影する。