【課題】原料ガスを基板付近で効果的に熱分解させて原料ガスを効率的に利用することができ、かつ反応管の温度の上昇を抑えて反応管の内面にCNTが成長するのを抑制することができるCNT製造装置の提供を目的とする。
【解決手段】本発明は、表面に触媒を担持した1又は複数の基板上に炭素源を含む原料ガスを供給し、化学気相成長法により前記基板上にカーボンナノチューブを成長させるカーボンナノチューブの製造装置であって、一端側から前記原料ガスを供給し、他端側から化学気相成長法による反応後のガスを排出する筒状の反応管と、前記反応管内に装填され、前記基板を保持する基板ホルダーと、前記基板ホルダーに保持される基板を加熱する加熱手段とを備え、前記加熱手段として、ランプ、マイクロ波供給源又は高周波誘導加熱源が用いられることを特徴とする。
表面に触媒を担持した1又は複数の基板上に炭素源を含む原料ガスを供給し、化学気相成長法により前記基板上にカーボンナノチューブを成長させるカーボンナノチューブの製造装置であって、
一端側から前記原料ガスを供給し、他端側から化学気相成長法による反応後のガスを排出する筒状の反応管と、
前記反応管内に装填され、前記基板を保持する基板ホルダーと、
前記基板ホルダーに保持される基板を加熱する加熱手段と
を備え、
前記加熱手段として、ランプ、マイクロ波供給源又は高周波誘導加熱源が用いられることを特徴とするカーボンナノチューブの製造装置。
【背景技術】
【0002】
カーボンナノチューブ(CNT)は、炭素によって作られる六員環のネットワークが一層又は多層の管状に形成された物質であり、近年、特異な電子挙動を示すことや、軽量でありながら鋼鉄の数十倍もの強度を有すること等が注目され、電子デバイス材料、光学素子材料、導電性材料、及び生体関連材料などへの応用が期待され、その用途、品質、量産性などに対する検討が精力的に進められている。
【0003】
このCNTの製造方法としては、アーク放電法、レーザー蒸発法、化学気相成長法(CVD法)が提案されており、中でもCVD法が量産性に好適とされている。このCVD法によるCNTの製造装置としては、例えば特開2005−104790号公報に記載のものが挙げられ、その模式図を
図7に示す。この従来のカーボンナノチューブの製造装置(以下、「CNT製造装置」ともいう。)101は、一端側から原料ガスを供給し、他端側から化学気相成長法による反応後のガスを排出する筒状の反応炉102と、反応炉102内に装填され、触媒を担持した基板Xを保持する基板ホルダー103と、反応炉102の外周を覆うように配設され、反応炉102内を一定の温度に加熱するための加熱炉104とを備える。この従来のCNT製造装置101は、反応炉102内を所定温度に加熱した状態で、反応炉102の一端側から原料ガスを導入し、この原料ガスを反応炉102内で熱分解させることで基板X表面にCNTを成長させるものである。
【0004】
しかしながら、この従来のCNT製造装置101は、加熱炉104によって反応炉102の外部を高温雰囲気下に保つことによって反応炉102内を加熱するものであるため、一般的には基板Xの温度、反応炉102の温度、加熱炉104の温度の順で高くなる。それゆえ、従来のCNT製造装置101では、基板Xの温度を上昇させるためには、加熱炉104の温度及び反応炉102の温度を基板Xの温度以上に高める必要があり非効率である。
【0005】
また、従来のCNT製造装置101では、反応炉102内が全体的に加熱されるため、基板X付近以外の領域でも原料ガスが熱分解されてしまい、原料ガスを効率的に利用することができない。さらに、従来のCNT製造装置101は、反応炉102の温度が基板Xの温度以上となることで、反応炉102の内面でCNTが成長してしまい、反応炉に付着したCNTの除去作業を要する場合がある。加えて、従来のCNT製造装置101では、分解したカーボンが反応管102の内面に堆積し、基板X上に余分なカーボンが落下してCNTアレイの品質が悪化する場合がある。
【発明を実施するための形態】
【0014】
以下、本発明に係るCNT製造装置の実施の形態を、適宜図面を参照しつつ詳説する。
【0015】
[第一実施形態]
図1のCNT製造装置1は、表面に触媒を担持した複数の基板X上に炭素源を含む原料ガスを供給し、CVD法によって複数の基板X上にカーボンナノチューブを成長させる。CNT製造装置1は、反応管2と、原料ガス供給手段3と、排気手段4と、基板ホルダー5と、加熱手段6とを主に備える。
【0016】
(反応管)
反応管2は、筒状に形成されている。反応管2は、一端側から原料ガスを供給し、他端側からCVD法による反応後のガスを排出する。反応管2の具体的形状としては、複数の基板X及び複数の基板Xを保持する基板ホルダー5を内部に収容可能に構成されている限り特に限定されないが、円筒状が好ましい。また、反応管2は、内部に供給される原料ガスが外部に拡散されないよう、一端側及び他端側以外の領域が密閉されていることが好ましい。
【0017】
反応管2の形成材料としては、加熱手段6から放射されるエネルギーを透過することができる限り特に限定さないが、主にはエネルギーの透過性が高いガラス等の材料が挙げられる。当該カーボンナノチューブの製造装置1は、後述のように、加熱手段6としてランプ又はマイクロ波供給源が用いられる。それゆえ、当該カーボンナノチューブの製造装置1は、反応管2の形成材料として加熱手段6から放射されるエネルギーの透過性が高いガラス等を用いることによって、加熱手段6から放射される電磁波を好適に透過させ、基盤Xに照射することができる。なかでも、反応管2の形成材料としては石英ガラスが好ましい。石英ガラスは、エネルギーの透過率が高く、紫外線からマイクロ波まで広い波長域の電磁波を好適に透過することができる。それゆえ、当該カーボンナノチューブの製造装置1は、反応管2が石英管であることによって、加熱手段6から放射される電磁波を基板Xに好適に照射することができる。
【0018】
(原料ガス供給手段)
原料ガス供給手段3は、CNTの成長に必要とされる原料ガスを反応管2に供給する。原料ガス供給手段3は、原料ガス導入管7を介して反応管2の軸方向の一端側に連結されている。反応管2の軸方向とは、反応管2の長手方向と平行な方向を意味し、その方向に原料ガスが流れる。原料ガス導入管7の形成材料としては、原料ガス等に対する耐食性や反応管2の加熱温度に耐え得る耐熱性を有する限り特に限定されないが、例えば石英ガラス、SiCが挙げられる。
【0019】
原料ガス供給手段3によって供給される原料ガスとしては、炭素源を含む化合物が挙げられる。かかる化合物としては、例えばアセチレン(C
2H
2)、メタン(C
2H
4)等の有機化合物が挙げられ、なかでもアセチレンが好ましい。炭素源を含む化合物としてアセチレンを用いることで、酸素等の支燃性ガスを用いなくても熱分解反応が自発的に継続することができる。
【0020】
また、原料ガス供給手段3は、炭素源を含む原料ガスに加え、反応速度を制御するため窒素(N
2)、水素(H
2)等のキャリアガスを混合して供給してもよい。このキャリアガスの供給量を調整することで原料ガスの分解速度を制御することができる。また、キャリアガスを混合せず、原料ガスのみを供給することも可能である。ただし、この場合、原料ガスが分解し生成されるカーボンが過剰となり、基板XにCNTの成長を阻害するアモルファスカーボンが堆積しないように原料ガスの流量、CNTの成長時間等を調整する必要がある。
【0021】
原料ガスの供給量は、反応管2の大きさによって異なるが、例えば4インチの基板Xを25枚装填できる反応管2における原料ガス供給量の下限としては、1000sccm(Standard cc per min、標準状態(25℃、1気圧)における体積流量)が好ましく、1600sccmがより好ましい。一方、4インチの基板Xを25枚装填できる反応管2における原料ガス供給量の上限としては、2500sccmが好ましく、2000sccmがより好ましい。原料ガスの供給量が前記下限未満の場合、炭素の供給量が不足し、CNTの成長速度が不十分となるおそれがある。逆に、原料ガスの供給量が前記上限を超える場合、炭素の供給量が過剰となり、CNTの成長を阻害するアモルファスカーボンが基板Xに堆積し易くなるおそれがある。
【0022】
また、4インチの基板Xを25枚装填できる反応管2における原料ガスとキャリアガスとの総供給量の下限としては、2000sccmが好ましく、2250sccmがより好ましく、2500sccmがさらに好ましい。一方、4インチの基板Xを25枚装填できる反応管2における原料ガスとキャリアガスとの総供給量の上限としては、10000sccmが好ましく、5000sccmがより好ましく、3000sccmがさらに好ましい。原料ガスとキャリアガスとの総供給量が前記下限未満の場合、原料ガスが少ないためにCNTの成長が遅くなるおそれがある。逆に、原料ガスとキャリアガスとの総供給量が前記上限を超える場合、原料ガスが反応管2内に滞留しにくくなりCNTの成長が遅くなるおそれがある。これに対し、原料ガスとキャリアガスとの総供給量を前記範囲内とすることで、CNTの生産効率を高めることができる。
【0023】
原料ガス供給量に対するキャリアガス供給量の下限としては、200体積%が好ましく、300体積%がより好ましい。一方、原料ガス供給量に対するキャリアガス供給量の上限としては、900体積%が好ましく、800体積%がより好ましい。原料ガス供給量に対するキャリアガス供給量が前記下限未満の場合、原料ガスの分解速度が速くなりすぎて、原料ガス供給方向における上流側の基板Xと下流側の基板Xとで均質なCNTを得られないおそれがある。逆に、原料ガス供給量に対するキャリアガス供給量が前記上限を超える場合、原料ガスの分解速度が遅くなりすぎ、CNTの成長速度が不十分となるおそれがある。
【0024】
(排気手段)
排気手段4は、反応管2内のガスを排出する。排気手段4は、排気管8を介して反応管2の軸方向の他端側に連結されている。排気手段4は、例えばロータリーポンプ等の真空ポンプを有してもよい。排気手段4により反応管2から排出されるガスの排出量を調整することで、反応管2内の圧力を制御することができる。
【0025】
(基板ホルダー)
基板ホルダー5は、反応管2内の下部に装填される。基板ホルダー5は、平行に配設される一対の棒状体から構成されている。これら一対の棒状体は、長手方向に所定間隔で配設される複数の係合部を有する。基板ホルダー5は、これら複数の係合部によって複数の基板Xを反応管2の軸方向に沿って保持可能に構成されている。複数の係合部としては、複数の基板Xを保持可能に構成される限り特に限定されないが、例えば一対の棒状体の対応位置に配設される凹溝が挙げられる。基板ホルダー5の形成材料としては、石英、SiC、セラミックス等が挙げられる。
【0026】
反応管2の中心軸と平行線を基準とする隣接する基板Xの平均間隔(d)の下限としては、0.5cmが好ましく、1cmがより好ましく、1.3cmがさらに好ましい。一方、反応管2の中心軸と平行線を基準とする隣接する基板Xの平均間隔(d)の上限としては、3cmが好ましく、2cmがより好ましく、1.7cmがさらに好ましい。前記平均間隔(d)が前記下限未満の場合、原料ガスを複数の基板X間に十分供給できないおそれがある。逆に、前記平均間隔(d)が前記上限を超える場合、反応管2内に配設できる基板Xの枚数が少なくなるおそれがある。これに対し、基板Xの平均間隔(d)を前記範囲とすることで、より多くの基板XでCNTを略均一に成長させることができる。
【0027】
反応管2に装填する基板Xの枚数の下限としては、15枚が好ましく、25枚がより好ましい。一方、反応管2に装填する基板Xの枚数の上限としては、50枚が好ましく、40枚がより好ましい。反応管2に装填する基板Xの枚数が前記下限未満の場合、一回のプロセスで得られるCNTの量が少なく、生産効率の向上効果が十分に得られないおそれがある。逆に、反応管2に装填する基板Xの枚数が前記上限を超える場合、全ての基板Xに原料ガスを均等に供給することが困難になるおそれがあるか、又は反応管2の巨大化を招来するおそれがある。
【0028】
(加熱手段)
加熱手段6は、基板ホルダー5に保持される複数の基板Xを加熱する。加熱手段6としては、ランプ又はマイクロ波供給源が用いられる。加熱手段6としてランプ又はマイクロ波供給源が用いられることによって、基板ホルダー5に保持される基板Xを加熱手段6から放射される電磁波によって的確かつ効果的に加熱することができる。加熱手段6は、反応管2の外側上方及び外側下方に配設されている。また、加熱手段6は、電磁波が複数の基板Xに向かって放射されるように配設されることが好ましい。さらに、加熱手段6から放射される電磁波が当該カーボンナノチューブの製造装置1の外周に放射されないように、カバーやシールドを外周側に配置してもよい。
【0029】
前記ランプとしては、ハロゲンランプが好ましい。ハロゲンランプは、近赤外線から遠赤外線までの電磁波を好適に放射することができるので、これらの電磁波を基板Xに照射することで基板X側を好適に加熱することができる。特に、前記ランプとしてハロゲンランプが用いられ、かつ反応管2が石英管である場合、ハロゲンランプから放射された電磁波が反応管2を透過しやすいため、基板Xをさらに効果的に加熱することができる。
【0030】
前記ランプのフィラメントの色温度の下限としては、800Kが好ましく、1000Kがより好ましく、1500Kがさらに好ましい。一方、前記ランプのフィラメントの色温度の上限としては、2700Kが好ましく、2500Kがより好ましく、2300Kがさらに好ましい。前記ランプのフィラメントの色温度が前記下限未満の場合、ランプから放射された電磁波の石英管に対する透過率が低下するおそれがある。逆に、前記ランプのフィラメントの色温度が前記上限を超える場合、分光分布の放射強度ピークが短波長側(可視光側)に移動し、エネルギー効率が低下するおそれがある。
【0031】
また、前記マイクロ波供給源としては、例えばマグネトロンの動作によってマイクロ波を発生させ、このマイクロ波をマイクロ波放射部から放射する装置が挙げられる。
【0032】
前記マイクロ波供給源から放射されるマイクロ波の周波数の下限としては、10GHzが好ましく、20GHzがより好ましく、30GHzがさらに好ましい。前記マイクロ波供給源から放射されるマイクロ波の周波数が前記下限未満の場合、アーク放電の発生によって基板Xを均一に加熱できないおそれがある。また、前記マイクロ波供給源から放射されるマイクロ波の周波数の上限としては、特に限定されないが、例えば300GHzとすることができる。
【0033】
加熱手段6による基板Xの加熱温度の下限としては、500℃が好ましく、700℃がより好ましく、800℃がさらに好ましい。一方、加熱手段6による基板Xの加熱温度の上限としては、1300℃が好ましく、1000℃がより好ましく、900℃がさらに好ましい。加熱手段6による基板Xの加熱温度が前記下限未満の場合、CNTの成長速度が遅くなり生産性が劣るおそれがある。逆に、加熱手段6による基板Xの加熱温度が前記上限を超える場合、反応速度が速くなり得られるCNTの密度が低下するおそれがある。これに対し、加熱手段6による基板Xの加熱温度が前記範囲であることによって、CNTをより効率よく成長させることができる。なお、基板Xの加熱温度のモニタリングは、(a)基板Xに熱電対を取り付ける、(b)放射温度計を用いる、等によって行うことができる。
【0034】
原料ガスの反応時間(CNTを成長させるための基板Xの加熱時間)としては、抵抗加熱式ヒーター等により反応管2内全体を加熱する場合の反応時間以上であることが好ましい。反応管2内全体を加熱する場合の反応時間に対する当該カーボンナノチューブの製造装置1の反応時間の比(反応時間比)の下限としては、1.1がより好ましく、1.2がさらに好ましい。一方、反応管2内全体を加熱する場合の反応時間に対する当該カーボンナノチューブの製造装置1の反応時間の比の上限としては、1.4が好ましく、1.3がより好ましい。前記反応時間比が前記下限未満の場合、CNTの成長が不十分になるおそれがある。逆に、前記反応時間比が前記上限を超える場合、原料ガスの利用効率が低下するおそれがある。
【0035】
また、加熱手段6は、電磁波放射方向及び電磁波放射位置の少なくとも一方を変化させることができるように駆動部をさらに有していてもよい。そうすることによって、1枚の基板Xにおける加熱具合が均一になることに加え、複数の基板Xごとの加熱具合も揃えることができる。電磁波放射方向を変化させる駆動部としては、例えば加熱手段6から放射される電磁波が複数の基板Xに略均一に照射されるように、反応管2の軸方向と垂直な面内で放射部位を首振り状に駆動させるもの、反応管2の外周に沿って反応管2の軸方向と垂直な面内で放射部位を往復運動させるもの、又は反応管2の軸方向と平行な方向に放射部位を往復運動させるものが挙げられる。前記駆動部には具体的には反転駆動が可能なモーターを用いるとよい。このように加熱手段6が放射部位を反応管2の軸方向と垂直又は平行な方向に駆動可能に構成されることで、均一に基板Xを加熱することが可能になる。なお、加熱手段6の駆動のさせ方は周期的であっても、非周期的であってもよい。これにより、当該カーボンナノチューブの製造装置1は、原料ガスの反応の前半では大きな周期で駆動させ、後半では小さな周期で駆動させる等、CNTの成長に合わせて調整をすることができるようになる。なお、加熱手段6は、電磁波放射方向及び電磁波放射位置の両方を同時に変化させてもよい。
【0036】
(基板)
基板Xは、平板形状を有し、表面に触媒を担持している。基板Xに担持される触媒に原料ガスが接触することで、基板Xの表面に対して略垂直に配向したCNTが成長する。
【0037】
基板Xの形成材料としては、加熱手段6から放射される電磁波によって加熱可能なものである限り特に限定されず、例えば酸化膜付きシリコン又はセラミクス等が挙げられる。基板Xの形状としては、特に限定されないが、例えば円板状が挙げられる。基板Xの大きさとしては、例えば基板Xが円板状である場合、直径3インチ以上5インチ以下とすることができる。
【0038】
基板Xに担持される前記触媒としては、例えば鉄、ニッケル、コバルト、チタン、白金等が挙げられる。これらの触媒は、蒸着、スパッタリング、ディッピング等により基板X上に層状に積層されてもよい。また、これらの触媒は、基板Xの片面に担持されてもよく、両面に担持されてもよい。さらに、これらの触媒が基板Xの両面に担持される場合、一方の面に担持される触媒と他方の面に担持される触媒とは同種のものでもよく、異なるものでもよい。
【0039】
<利点>
当該カーボンナノチューブの製造装置1は、基板ホルダー5に保持される基板Xを加熱する加熱手段6を有し、この加熱手段6としてランプ又はマイクロ波供給源を用いるので、この加熱手段6によって基板Xを効果的に加熱することができる。つまり、当該カーボンナノチューブの製造装置1は、従来のカーボンナノチューブの製造装置のように、反応炉内を外側から全体的に加熱するものではなく、基板ホルダー5に保持される基板Xを加熱するものである。それゆえ、当該カーボンナノチューブの製造装置1は、加熱手段6によって加熱された基板X付近の温度が、反応管2内の他の領域の温度よりも高くなりやすい。従って、当該カーボンナノチューブの製造装置1は、原料ガスを基板X付近で効果的に熱分解することができ、原料ガスをCNTの成長に効率的に利用することができる。また、従来のカーボンナノチューブの製造装置は、CNTの成長前に予め反応炉内を所定温度に保持し、その中に基板Xを配設することが必要とされたが、当該カーボンナノチューブの製造装置1は、CNTの成長時に基板Xの温度を急速に上昇させることが可能なため、予め反応管2内の温度を高めておく必要がなく原料ガス及び電気代を節約してコストダウンを促進することができる。また、当該カーボンナノチューブの製造装置1は、反応管2の温度上昇を抑えて反応管2の内面にCNTが成長するのを抑制することにより、反応管2の内面に付着したCNTの除去作業を軽減することができると共に、基板X上に余分なカーボンが落下してCNTアレイの品質が悪化するのを防止することができる。さらに、当該カーボンナノチューブの製造装置は、加熱手段6を基板Xの温度まで上昇させる必要がないため、従来のCNT製造装置のように加熱手段6の断熱や保温等を考慮しなくてもよく、構造の簡素化を促進することができる。
【0040】
また、当該カーボンナノチューブの製造装置1は、上述のように、基板Xのみを加熱すればよく、反応管2内を全体的に加熱する必要がないので、加熱手段6が反応管2の外周を覆うように配設されなくてもよい。当該カーボンナノチューブの製造装置1は、加熱手段6が反応管2の外側上方及び外側下方に配設されることで、基板Xを上下方向から効果的に加熱することができる。従って、当該カーボンナノチューブの製造装置1は、加熱効率を向上させて装置の小型化を促進することができる。
【0041】
さらに、当該カーボンナノチューブの製造装置1は、加熱手段6が電磁波放射方向を変化可能な駆動部を有するので、加熱手段6により複数の基板XをCNTの成長に合わせて加熱することができ、複数の基板X上に均質なCNTを成長させることができる。
【0042】
[第二実施形態]
図2のCNT製造装置11は、表面に触媒を担持した複数の基板X上に炭素源を含む原料ガスを供給し、CVD法により複数の基板X上にカーボンナノチューブを成長させる。CNT製造装置11は、反応管2と、原料ガス供給手段3と、排気手段4と、基板ホルダー5と、加熱手段12とを主に備える。反応管2、原料ガス供給手段3、排気手段4及び基板ホルダー5については、
図1のCNT製造装置1と同様のため、同一符号を付して説明を省略する。
【0043】
(加熱手段)
加熱手段12は、基板ホルダー5に保持される複数の基板Xを高周波を用いて加熱する。加熱手段12は、
図3に示すように、誘導コイル13と、誘導コイル13に高周波電流を印加する高周波印加部とを有し、高周波誘導加熱源として構成されている。誘導コイル13は、基板ホルダー5の内部に配設されている。誘導コイル13は、高周波電流を印加されることで基板Xを加熱する誘導磁界を発生させる。加熱手段12による基板Xの加熱温度及び原料ガスの反応時間としては、
図1のCNT製造装置1と同様である。
【0044】
誘導コイル13に印加される高周波電流の周波数の下限としては、200kHzが好ましく、300kHzがより好ましく、400kHzがさらに好ましい。一方、誘導コイル13に印加される高周波電流の周波数の上限としては、700kHzが好ましく、600kHzがより好ましく、500kHzがさらに好ましい。誘導コイル13に印加される高周波電流の周波数が前記下限未満の場合、磁気エネルギーが基板Xに好適に吸収されないおそれがある。逆に、誘導コイル13に印加される高周波電流の周波数が前記上限を超える場合、基板Xを均一に加熱できないおそれがある。
【0045】
(基板)
基板Xは、平板形状を有し、表面に触媒を担持している。基板Xに担持される触媒に原料ガスが接触することで、基板Xの表面に対して略垂直に配向したCNTが成長する。
【0046】
基板Xの形成材料としては、電磁誘導によって誘導加熱されるものである限り特に限定されないが、金属が好ましく、例えば鉄、ニッケル、クロム、銅、アルミニウム等及びそれらのいずれかを含む合金が挙げられる。基板Xの形状及び大きさとしては、
図1のCNT製造装置1に用いられる基板Xと同様である。また、基板Xに担持される触媒としては、
図1のCNT製造装置1に用いられる触媒と同様である。また、金属からなる基板を用いた場合には余りに高温になると基板自体が溶けてしまうので、基板の加熱温度は基板の融点よりも低く抑える必要がある。また、金属製の基板とシリコン又はセラミクスからなる基板とを重ねて用いてもよい。
【0047】
<利点>
当該カーボンナノチューブの製造装置11は、加熱手段12として高周波誘導加熱源が用いられているので、高周波誘導加熱源から発生する磁界が固体又は気体を問わず均一に広がり、基板Xを的確かつ効果的に加熱することができる。また、反応管2の材料としてセラミクスのようなエネルギー透過性のない材料を用いることができる。当該カーボンナノチューブの製造装置11は、非磁性で絶縁体であるものであれば反応管2として用いることができる。
【0048】
[第三実施形態]
図4のCNT製造装置21は、表面に触媒を担持した1つの基板X上に炭素源を含む原料ガスを供給し、CVD法によって基板X上にカーボンナノチューブを成長させる。CNT製造装置21は、反応管2と、原料ガス供給手段3と、排気手段4と、基板ホルダー22と、加熱手段6とを主に備える。CNT製造装置21は、反応管2内に1つの基板Xが装填される枚葉式装置として構成されている。反応管2、原料ガス供給手段3、排気手段4及び加熱手段6については、
図1のCNT製造装置1と同様のため、同一符号を付して説明を省略する。
【0049】
(基板ホルダー)
基板ホルダー22は、反応管2内の下部に装填される。基板ホルダー22の形状としては、基板Xの表面及び裏面が加熱手段6と対向するように基板Xを保持可能に形成される限り特に限定されないが、上部に基板Xを載置できるような平面視環状、U字状、V字状等に形成されるのが好ましく、なかでも平面視円環状に形成されるのが特に好ましい。基板ホルダー22が平面視円環状に形成されることによって、略円板状の基板Xの周縁部を下方から支持することができ、基板Xの両面を加熱手段6により的確に加熱することができる。なお、基板ホルダー22の形成材料は、
図1のCNT製造装置1と同様である。
【0050】
また、基板ホルダー22は、平面視円環状に形成される場合、リングヒーター等の発熱手段を具備していてもよい。例えば、基板ホルダー22が内部にリングヒーターを備えることによって、このリングヒーターの発熱により基板Xの周縁部を効果的に加熱することができる。それゆえ、かかる構成によれば、基板Xの基板ホルダー22との係合部について、加熱手段6に加え、基板ホルダー22が具備する発熱手段によって相乗的に加熱することができる。従って、かかる構成によれば、基板Xを全面に亘ってさらに好適に加熱することができる。また、基板Xは一般に周縁部側から温度が低下するので、基板ホルダー22が具備する発熱手段によって周縁部を加熱することで、基板Xを全体的に略均一に加熱することができる。
【0051】
<利点>
当該カーボンナノチューブの製造装置21は、基板Xの表面及び裏面を的確に加熱することができるので、基板Xを全面に亘って略均一に加熱することができる。従って、当該カーボンナノチューブの製造装置21は、生成するCNTの均一化を促進することができる。
【0052】
[第四実施形態]
図5のCNT製造装置31は、表面に触媒を担持した複数の基板X上に炭素源を含む原料ガスを供給し、CVD法により複数の基板X上にカーボンナノチューブを成長させる。CNT製造装置31は、反応管2と、原料ガス供給手段3と、排気手段4と、基板ホルダー5と、加熱手段6と、冷却手段32とを主に備える。反応管2、原料ガス供給手段3、排気手段4、基板ホルダー5及び加熱手段6については、
図1のCNT製造装置1と同様のため、同一符号を付して説明を省略する。
【0053】
(冷却手段)
冷却手段32は、反応管2の外面側を冷却する。冷却手段32は、反応管2の外側に配設される。冷却手段32としては、反応管2の外面側を冷却できる限り特に限定されないが、例えば空冷装置、水冷装置等が挙げられる。また、この空冷装置としては、例えば送風ファンが挙げられる。
【0054】
<利点>
当該カーボンナノチューブの製造装置31は、反応管2の外面側を冷却する手段を有するので、反応管2の温度が上昇するのを抑制し、CNTが反応管に成長するのを効果的に抑制することができる。
【0055】
[第五実施形態]
図6のCNT製造装置41は、表面に触媒を担持した複数の基板X上に炭素源を含む原料ガスを供給し、CVD法により複数の基板X上にカーボンナノチューブを成長させる。CNT製造装置41は、反応管2と、原料ガス供給手段3と、排気手段4と、基板ホルダー5と、加熱手段6と、反射板42とを主に備える。反応管2、原料ガス供給手段3、排気手段4、基板ホルダー5及び加熱手段6については、
図1のCNT製造装置1と同様のため、同一符号を付して説明を省略する。
【0056】
(反射板)
反射板42は、加熱手段6の外側を覆うように配設されている。反射板42は、加熱手段6によって放射された電磁波を反応管2側に反射させる。反射板42の形成材料としては、加熱手段6によって放射された電磁波を反射させることができる限り特に限定されないが、例えばアルミニウム等の金属が挙げられる。また、反射板42は、合成樹脂製のシート等の表面にめっき層を積層した板状材でもよい。
【0057】
<利点>
当該カーボンナノチューブの製造装置41は、加熱手段6によって放射された電磁波を反応管2側に反射させる反射板42を有するので、反射板42によって反射された電磁波も基板Xを加熱するために用いることができ、基板Xをさらに効率的に加熱することができる。
【0058】
[その他の実施形態]
本発明のカーボンナノチューブの製造装置は、前記態様の他、種々の変更、改良を施した態様で実施することができる。本発明のカーボンナノチューブの製造装置は、前記各実施形態の構成を適宜組み合わせて用いてもよい。例えば、加熱手段として高周波誘導加熱源が用いられる場合であっても、反応管内に1つの基板のみが装填されてもよい。
【0059】
また、加熱手段は、必ずしも反応管の外側上方及び外側下方に設けられる必要はなく、反応管の外側上方又は外側下方のいずれか一方にのみ設けられてもよい。当該カーボンナノチューブの製造装置は、加熱手段が反応管の外側上方又は外側下方のいずれか一方にのみ設けられる場合であっても、加熱手段から放射される電磁波によって基板を好適に加熱することができる。ただし、基板をより効果的に加熱するためには、加熱手段は反応管の外側上方及び外側下方に設けられるのが好ましい。また、加熱手段が反応管の外側上方又は外側下方のいずれか一方にのみ設けられる場合、加熱手段は反応管の中心軸を基準として基板ホルダーの配設位置と対向する側に設けられるのが好ましい。当該カーボンナノチューブの製造装置は、加熱手段が反応管の中心軸を基準として基板ホルダーの配設位置と対向する側に設けられる場合、電磁波を基板に照射しやすく、加熱効率を向上することができる。なお、加熱手段は、反応管の外側上方及び外側下方以外に設けられてもよく、例えば反応管の側面側に設けられてもよく、反応管の外周を囲うように設けられてもよい。
【0060】
また、基板ホルダーは、必ずしも反応管内の下部に装填される必要はなく、例えば反応管内の上部に装填され、基板を下方に保持してもよい。
【0061】
当該カーボンナノチューブの製造装置が冷却手段を有する場合、この冷却手段は反応管の外面側を冷却可能に構成される限り、構成及び配設位置については特に限定されるものではない。例えば、かかる冷却手段は、反応管の外面側に取り付けられるヒートシンクであってもよい。また、反応管とヒートシンクとの間に熱電モジュールを配置することで発電可能に構成されてもよい。
【0062】
当該カーボンナノチューブの製造装置は、加熱手段として高周波誘導加熱源が用いられる場合、誘導コイルは必ずしも基板ホルダーの内部に配設される必要はなく、基板ホルダーの表面に配設されてもよい。また、かかる誘導コイルは、反応管の外部に配設されていてもよい。
【0063】
当該カーボンナノチューブの製造装置は、加熱手段が駆動部を有し、この加熱手段が回転運動可能に構成されてもよい。