特開2015-178524(P2015-178524A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ シプラ・リミテッドの特許一覧

<>
  • 特開2015178524-リファキシミン複合体 図000016
  • 特開2015178524-リファキシミン複合体 図000017
  • 特開2015178524-リファキシミン複合体 図000018
  • 特開2015178524-リファキシミン複合体 図000019
  • 特開2015178524-リファキシミン複合体 図000020
  • 特開2015178524-リファキシミン複合体 図000021
  • 特開2015178524-リファキシミン複合体 図000022
  • 特開2015178524-リファキシミン複合体 図000023
  • 特開2015178524-リファキシミン複合体 図000024
  • 特開2015178524-リファキシミン複合体 図000025
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2015-178524(P2015-178524A)
(43)【公開日】2015年10月8日
(54)【発明の名称】リファキシミン複合体
(51)【国際特許分類】
   C07D 498/22 20060101AFI20150911BHJP
   A61K 31/437 20060101ALI20150911BHJP
   A61K 31/439 20060101ALI20150911BHJP
   A61K 47/32 20060101ALI20150911BHJP
   A61K 47/40 20060101ALI20150911BHJP
   A61P 1/00 20060101ALI20150911BHJP
   A61P 1/04 20060101ALI20150911BHJP
   A61P 1/12 20060101ALI20150911BHJP
   A61P 1/18 20060101ALI20150911BHJP
   C08B 37/16 20060101ALI20150911BHJP
【FI】
   C07D498/22 301
   C07D498/22CSP
   A61K31/437
   A61K31/439
   A61K47/32
   A61K47/40
   A61P1/00
   A61P1/04
   A61P1/12
   A61P1/18
   C08B37/16
【審査請求】有
【請求項の数】1
【出願形態】OL
【全頁数】25
(21)【出願番号】特願2015-108057(P2015-108057)
(22)【出願日】2015年5月28日
(62)【分割の表示】特願2011-540194(P2011-540194)の分割
【原出願日】2009年12月9日
(31)【優先権主張番号】2577/MUM/2008
(32)【優先日】2008年12月10日
(33)【優先権主張国】IN
(71)【出願人】
【識別番号】511109180
【氏名又は名称】シプラ・リミテッド
(74)【代理人】
【識別番号】100097456
【弁理士】
【氏名又は名称】石川 徹
(72)【発明者】
【氏名】マルトイ ガンパトイ グハガレ
(72)【発明者】
【氏名】スニルクマル パラスナトフ サロジェ
(72)【発明者】
【氏名】ドハルマラジェ ラマチャンドラ ラオ
(72)【発明者】
【氏名】ラジェンドラ ナラヤンラオ カンカン
【テーマコード(参考)】
4C072
4C076
4C086
4C090
【Fターム(参考)】
4C072AA03
4C072BB04
4C072CC03
4C072CC12
4C072DD08
4C072EE09
4C072FF05
4C072GG01
4C072GG07
4C072JJ05
4C072UU01
4C076AA36
4C076CC16
4C076CC32
4C076CC41
4C076CC47
4C076EE16E
4C076EE16Q
4C076EE39E
4C076EE39Q
4C076EE59E
4C076EE59Q
4C076FF15
4C076FF63
4C086AA01
4C086AA02
4C086AA03
4C086CB25
4C086MA01
4C086MA04
4C086NA02
4C086NA03
4C086NA14
4C086ZA66
4C086ZA68
4C086ZA73
4C090AA01
4C090AA03
4C090AA09
4C090BA11
4C090BB04
4C090BB12
4C090CA46
4C090DA09
4C090DA23
(57)【要約】      (修正有)
【課題】溶解性及び安定性が向上した合成リファマイシン系抗菌剤であるリファキシミン[(2S,16Z,18E,20S,21S,22R,23R,24R,25S,26S,27S,28E)−5,6,21,23,25−ペンタヒドロキシ−27−メトキシ−2,4,11,16,20,22,24,26−オクタメチル−2,7−(エポキシペンタデカ−[1,11,13]−トリエンイミノ)ベンゾフロ−[4,5−e]−ピリド−[1,2−a]−ベンゾイミダゾール−1,15−(2H)−ジオン,25−アセタート(I)]の提供。
【解決手段】リファキシミンと複合体形成剤とを含む複合体であって、該複合体形成剤が、ポリビニルピロリドン(PVP)又はシクロデキストリンである、複合体。該複合体の製造方法、該複合体を含む医薬組成物、及び該複合体の治療的使用。
【選択図】図1
【特許請求の範囲】
【請求項1】
リファキシミンと、複合体形成剤とを含む複合体であって、該複合体形成剤が、ポリビ
ニルピロリドン(PVP)又はシクロデキストリンであるが、ただし、ヒドロキシブテニルシ
クロデキストリン又はその誘導体ではないことを条件とする、前記複合体。
【請求項2】
前記複合体形成剤が、K値がK-15からK-90の範囲のPVPである、請求項1記載の複合体。
【請求項3】
前記複合体形成剤が、PVP K-12、K-15、K-17、K-25、K-30、K-60、K-80、K-90、及びK-
120からなる群から選択されるPVPである、請求項2記載の複合体。
【請求項4】
前記複合体形成剤がK-30である、請求項3記載の複合体。
【請求項5】
前記複合体形成剤が、α-シクロデキストリン、β-シクロデキストリン、又はγ-シク
ロデキストリンからなる群から選択されるシクロデキストリンである、請求項1記載の複
合体。
【請求項6】
前記シクロデキストリンがβ-シクロデキストリンである、請求項5記載の複合体。
【請求項7】
図1から8のいずれか1つに示される通りの固有溶解プロフィールを有することを特徴と
する、請求項1記載の複合体。
【請求項8】
前記複合体が非結晶形である、請求項1記載の複合体。
【請求項9】
リファキシミンと複合体形成剤の比が、20:1w/wから1:20w/wの範囲である、請求項1〜8
のいずれか1項記載の複合体。
【請求項10】
リファキシミンと複合体形成剤の比が、10:1w/wから1:2w/wの範囲である、請求項9記載
の複合体。
【請求項11】
請求項1〜10のいずれか1項記載のリファキシミンと複合体形成剤との複合体の製造方法
であって、a)リファキシミンを溶媒に溶解すること;b)リファキシミンの該溶液に複合体
形成剤を加えること;及びc)該溶液から複合体を単離することを含む、前記製造方法。
【請求項12】
前記複合体形成剤が、前記リファキシミン溶液に、それ自体で又は溶媒との溶液の形で
加えられる、請求項11記載の方法。
【請求項13】
前記リファキシミンのための溶媒が、エーテル、アルコール、エステル、アルデヒド、
ハロゲン化された溶媒、炭化水素、及びこれらの混合物からなる群から選択される、請求
項11又は12記載の方法。
【請求項14】
前記複合体形成剤が、溶媒との溶液の形の前記リファキシミン溶液に加えられ、かつ該
複合体形成剤溶媒が、エーテル、アルコール、エステル、アルデヒド、ハロゲン化された
溶媒、炭化水素、及びこれらの混合物からなる群から選択される、請求項11、12、又は13
記載の方法。
【請求項15】
前記リファキシミンのための溶媒、及び/又は前記複合体形成剤のための溶媒がエタノ
ールである、請求項13又は14記載の方法。
【請求項16】
前記単離が、工程b)で得られた反応塊を濃縮すること、及び乾燥させて単離された複合
体を得ることを含む、請求項11〜15のいずれか1項記載の方法。
【請求項17】
請求項11〜16のいずれか1項に従って製造された、請求項1〜10のいずれか1項記載の、
リファキシミンと複合体形成剤との複合体。
【請求項18】
請求項1〜10又は17のいずれか1項記載の複合体を含む、医薬組成物。
【請求項19】
腸関連障害を治療する際に使用するための、請求項18記載の医薬組成物。
【請求項20】
前記腸関連障害が、過敏性腸症候群、下痢、旅行者下痢症、微生物が関与する下痢症、
クローン病、慢性膵炎、膵機能不全、及び/又は大腸炎からなる群から選択される、請求
項19記載の医薬組成物。
【請求項21】
下痢を治療するための、請求項18記載の医薬組成物。
【発明の詳細な説明】
【技術分野】
【0001】
(発明の技術分野)
本発明は、リファキシミンの複合体、及びこうした複合体の製造方法に関する。
【背景技術】
【0002】
(背景)
リファキシミンは、グラム陽性細菌、グラム陰性細菌、及び嫌気性細菌に対するインビ
トロ活性を有する半合成リファマイシン系抗菌薬である。リファキシミンは、細菌のリボ
核酸(RNA)合成を阻害することによって作用する。リファキシミンは、(2S,16Z,18E,20S,2
1S,22R,23R,24R,25S,26S,27S,28E)-5,6,21,23,25-ペンタヒドロキシ-27-メトキシ-2,4,11
,16,20,22,24,26-オクタメチル-2,7-(エポキシペンタデカ-[1,11,13]-トリエンイミノ)ベ
ンゾフロ-[4,5-e]-ピリド-[1,2-a]-ベンゾイミダゾール-1,15-(2H)-ジオン,25-アセター
ト(I)という化学名である。
【化1】
【0003】
リファキシミンは、大腸菌(Escherichia coli)の非侵襲性株によって引き起こされる旅
行者下痢症の治療のために使用される。
【0004】
WO2009137672は、腸疾患(BD)を治療する方法であって、それを必要とする対象に胃腸洗
浄剤を投与すること;及び治療有効量の抗生物質を投与することとを含む前記方法を開示
している。
【0005】
リファキシミンは、US4,341,785において最初に開示された。この特許は、リファキシ
ミンの製造方法、及び、適切な溶媒又は溶媒の混合物を使用することによるリファキシミ
ンの結晶化方法も開示している。この特許は、リファキシミンの多形には言及していない
【0006】
US4,557,866及びこれと等しいCA1215976は、リファキシミンの製造方法を開示している
【0007】
WO2007047253は、ヒドロキシブテニルシクロデキストリンと抗真菌性アゾール化合物と
の医薬組成物を開示している。しかし、この出願は、いかなる有効な方法もこうした複合
体の利点の証明も提供していない。
【0008】
WO2008035109は、リファキシミンの非結晶形を開示している。
【0009】
US7,045,620は、リファキシミンα、リファキシミンβ、及びリファキシミンγと称さ
れる、様々な結晶多形形態のリファキシミンを開示している。これらの多形形態は、粉末
X線回折を使用して特徴付けられる。US7,045,620によれば、結晶化溶媒中の水の存在は
、結晶形成において重要な役割を果たす。したがって、リファキシミン多形体は、含水量
の変化と共に変化を受け、水分の増加又は減少に伴って、ある形の別の形への相互転換が
起こる。
【0010】
US7,045,620は、含水量が2.0%と3.0%の間であるリファキシミンα、含水量が5.0%と6.0
%の間であるリファキシミンβ、及び結晶性が低く含水量が1.0%と2.0%の間であるリファ
キシミンγをさらに開示している。
【0011】
EP1698630は、δ及びεと称される、リファキシミンのさらなる多形形態を開示してい
る。これらの形態の安定性も、水分に依存する。
【0012】
しかし、これらの形態はすべて吸湿性であり、ある形から別の形に相互転換する傾向が
ある。したがって、これらの形態は、取り扱い及び保管が困難であり、取り扱い及び保管
中に、条件の制御、特に湿度及び温度の制御が必要となる。
【0013】
したがって、多形形態の薬剤物質の転換は、転換によって、医薬的要件及び規格を満た
すのに困難が生じるので、非常に不都合である。こうした多形的変化を示す生成物の物理
化学的特性は、多形形態の実質的比率によって変わる。これにより、多形形態を適切な剤
形に製剤化する際に、さらなる困難が生じる。
【0014】
また、リファキシミンは、水に溶けにくいので、製剤化学者には、公知の多形形態を使
用して一定の製剤を調製することが困難であることがわかっている。したがって、製剤に
適し、かつ溶解性及び安定性が増大した形態のリファキシミンを製造する必要性が存在す
る。
【発明の概要】
【課題を解決するための手段】
【0015】
本発明の第1の態様によれば、溶解性及び安定性が向上したリファキシミンの一形態が
提供される。リファキシミンのこの形態は、リファキシミンと複合体形成剤とを含む複合
体である。
【0016】
本発明の別の態様によれば、リファキシミンと複合体形成剤とを含む複合体が提供され
る。本明細書全体を通して、この複合体を「リファキシミン複合体」ということができる
。一実施態様では、該複合体は、リファキシミンと複合体形成剤のみを含む、すなわち複
合体中には他の構成成分が存在しない。
【0017】
好都合なことに、本発明の複合体は、特にリファキシミンと複合体形成剤との物理的混
合物と比較して、向上した溶解性及び安定性を示す。
【0018】
本発明で使用される複合体形成剤は、ポリビニルピロリドン(PVP)又はシクロデキスト
リン(CD)を含む。
【0019】
一実施態様では、複合体形成剤はPVPである。代替実施態様では、複合体形成剤はCDで
ある。
【0020】
一実施態様では、複合体形成剤は、ヒドロキシブテニルシクロデキストリンでもスルホ
ニルヒドロキシブテニルシクロデキストリンでもない。
【0021】
一実施態様では、複合体形成剤は、K値がK-15からK-90の範囲のPVPである。適切には、
複合体形成剤は、PVP K-12、K-15、K-17、K-25、K-30、K-60、K-80、K-90、及びK-120か
らなる群から選択されるPVPであり、好ましくはK-25、K-30、又はK-90である。一般的に
は、複合体形成剤は、PVP K-30である。
【0022】
一実施態様では、複合体形成剤は、非修飾型シクロデキストリンである。言い換えれば
、該CDは、ヒドロキシル基のいずれも修飾されていない環状グルコースオリゴ糖である。
一実施態様では、複合体形成剤は、α-シクロデキストリン、β-シクロデキストリン、又
はγ-シクロデキストリンからなる群から選択されるシクロデキストリンであり、好まし
くはβ-シクロデキストリンである。
【0023】
一実施態様では、リファキシミンと複合体形成剤の重量比は、20:1w/wから1:20w/wの範
囲である。「w/w」は、重量によるものを意味することを理解されたい。好都合には、リ
ファキシミンと複合体形成剤の比は、10:1w/wから1:2w/wの範囲である。一般的には、リ
ファキシミンと複合体形成剤の比は、4:1w/wから1:2w/wの範囲である。この比は、1:1w/w
であってもよい。
【0024】
本発明の別の態様によれば、図1から8のいずれか1つに示される通りの固有溶解プロフ
ィールを有することを特徴とするリファキシミン複合体が提供される。
【0025】
本発明の別の態様によれば、リファキシミンと複合体形成剤とを含む複合体の製造方法
であって:
a)リファキシミンを溶媒に溶解すること;
b)該リファキシミン溶液に複合体形成剤を加えて混合物を形成すること;
c)工程b)で得られた反応塊から複合体を単離すること;
を含む前記方法が提供される。
【0026】
一実施態様では、該複合体は、リファキシミンと複合体形成剤のみを含む、すなわち複
合体中には他の構成成分が存在しない。
【0027】
該方法で使用される複合体形成剤は、ポリビニルピロリドン(PVP)又はシクロデキスト
リン(CD)を含む。
【0028】
一実施態様では、複合体形成剤はPVPである。代替実施態様では、複合体形成剤はCDで
ある。
【0029】
一実施態様では、複合体形成剤は、K値がK-15からK-90の範囲のPVPである。適切には、
複合体形成剤は、PVP K-12、K-15、K-17、K-25、K-30、K-60、K-80、K-90、及びK-120か
らなる群から選択されるPVPであり、好ましくはK-25、K-30、又はK-90である。一般的に
は、複合体形成剤は、PVP K-30である。
【0030】
一実施態様では、複合体形成剤は、α-シクロデキストリン、β-シクロデキストリン、
又はγ-シクロデキストリンからなる群から選択されるシクロデキストリンであり、好ま
しくはβ-シクロデキストリンである。
【0031】
一実施態様では、リファキシミンと複合体形成剤の重量比は、20:1w/wから1:20w/wの範
囲である。「w/w」は、重量によるものを意味することを理解されたい。好都合には、リ
ファキシミンと複合体形成剤の比は、10:1w/wから1:2w/wの範囲である。一般的には、リ
ファキシミンと複合体形成剤の比は、4:1w/wから1:2w/wの範囲である。この比は、1:1w/w
であってもよい。したがって、本発明の別の態様によれば、リファキシミンと複合体形成
剤とを含み、リファキシミンと複合体形成剤の重量比が、20:1w/wから1:20w/w、好ましく
は10:1w/wから1:2、より好ましくは4:1w/wから1:2w/wの範囲である複合体が提供される。
【0032】
本発明の方法で使用されるリファキシミンは、任意の多形形態であるか、又は任意の多
形形態の混合物であり得る。
【0033】
複合体形成剤は、それ自体で又は溶媒との溶液の形でリファキシミン溶液に加えること
ができる。
【0034】
リファキシミンのための溶媒は、エーテル、アルコール、エステル、アルデヒド、ハロ
ゲン化された溶媒、炭化水素、及びこれらの混合物からなる群から選択することができる
。好ましくは、溶媒は、アルコール、例えば、メタノール又はエタノールである。一般的
には、溶媒は、エタノールである。
【0035】
複合体形成剤は、溶液の形でリファキシミンに加えることができる。こうした場合には
、複合体形成剤のための溶媒は、エーテル、アルコール、エステル、アルデヒド、ハロゲ
ン化された溶媒、炭化水素、及びこれらの混合物からなる群から選択することができる。
好ましくは、溶媒は、アルコール、例えば、メタノール又はエタノールである。一般的に
は、溶媒は、エタノールである。
【0036】
或いは、複合体形成剤は、それ自体で、すなわち溶液ではない形で、リファキシミン溶
液に加えることができる。
【0037】
適切には、単離は、工程b)で得られた反応塊を濃縮すること、及び乾燥させて単離され
た複合体を得ることを含む。
【0038】
本発明の別の態様によれば、上述の方法に従って製造された複合体が提供される。
【0039】
本発明の別の態様によれば、リファキシミンと複合体形成剤とを含み、次のうちの少な
くとも1つを向上させるような複合体が提供される:
a)分解(例えば加水分解、酸化など)に対するリファキシミンの安定性
b)水溶性
c)溶解
d)自由流動性及び非吸湿性
e)溶解性、送達、及び/又は性能
f)取り扱い安全性。
【0040】
本発明のさらに別の態様によれば、医療で使用するための上述の通りのリファキシミン
複合体が提供される。
【0041】
本発明のさらに別の態様によれば、大腸菌の非侵襲性株によって引き起こされる旅行者
下痢症の治療の際に使用するための上述の通りのリファキシミン複合体が提供される。本
発明はさらに、腸疾患を治療する際に使用するための上述の通りのリファキシミン複合体
を提供する。
【0042】
本発明のさらに別の態様によれば、大腸菌の非侵襲性株によって引き起こされる旅行者
下痢症を治療するための医薬品並びに腸疾患を治療するための医薬品の製造の際に使用す
るための上述の通りのリファキシミン複合体の使用が提供される。
【0043】
本発明のさらに別の態様によれば、高血圧症若しくは前立腺肥大症を治療する又は腸疾
患を治療するための方法であって、治療有効量の上述の通りのリファキシミン複合体を、
それを必要とする患者に投与することを含む前記方法が提供される。
【図面の簡単な説明】
【0044】
図1】HPLC-UV法による、β-リファキシミンとPVPとの物理的混合物(1:2w/wリファキシミン:PVP)の固有溶解プロフィールと比較した、本発明のリファキシミンのPVP複合体(1:2w/wリファキシミン:PVP)の固有溶解プロフィール。
図2】HPLC-UV法による、β-リファキシミンとPVPとの物理的混合物(1:1w/wリファキシミン:PVP)の固有溶解プロフィールと比較した、本発明のリファキシミンのPVP複合体(1:1w/wリファキシミン:PVP)の固有溶解プロフィール。
図3】HPLC-UV法による、β-リファキシミンとPVPとの物理的混合物(4:1w/wリファキシミン:PVP)の固有溶解プロフィールと比較した、本発明のリファキシミンのPVP複合体(4:1w/wリファキシミン:PVP)の固有溶解プロフィール。
図4】HPLC-UV法による、β-リファキシミンとPVPとの物理的混合物(10:1w/wリファキシミン:PVP)の固有溶解プロフィールと比較した、本発明のリファキシミンのPVP複合体(10:1w/wリファキシミン:PVP)の固有溶解プロフィール。
図5】HPLC-UV法による、β-リファキシミンとCDとの物理的混合物(1:2w/wリファキシミン:β-CD)の固有溶解プロフィールと比較した、本発明のリファキシミンのβ-シクロデキストリン複合体(1:2w/wリファキシミン:β-CD)の固有溶解プロフィール。
図6】HPLC-UV法による、β-リファキシミンとCDとの物理的混合物(1:1w/wリファキシミン:β-CD)の固有溶解プロフィールと比較した、本発明のリファキシミンのβ-シクロデキストリン複合体(1:1w/wリファキシミン:β-CD)の固有溶解プロフィールを示す図である。
図7】HPLC-UV法による、β-リファキシミンとCD(4:1w/wリファキシミン:β-CD)との物理的混合物の固有溶解プロフィールと比較した、本発明のリファキシミンのβ-シクロデキストリン複合体(4:1w/wリファキシミン:β-CD)の固有溶解プロフィールを示す図である。
図8】HPLC-UV法による、β-リファキシミンとCDとの物理的混合物(10:1w/wリファキシミン:β-CD)の固有溶解プロフィールと比較した、本発明のリファキシミンのβ-シクロデキストリン複合体(10:1w/wリファキシミン:β-CD)の固有溶解プロフィールを示す図である。
図9】1:1w/w濃度での、リファキシミンのβ-シクロデキストリン複合体の粉末X線回折(XRD)を示す図である。
図10】リファキシミンのPVP複合体(10:1w/wリファキシミン:PVP)の粉末X線回折(XRD)を示す図である。
【発明を実施するための形態】
【0045】
(発明の詳細な説明)
本発明の種々の態様をより十分に理解及び認識することができるように、これ以降、本
発明を、ある種の好ましいかつ任意の実施態様と絡めて詳細に記述する。
【0046】
本発明は、溶解性及び安定性が向上したリファキシミンの一形態を提供する。リファキ
シミンのこの形態は、リファキシミンと複合体形成剤との複合体を含む。本発明で使用さ
れる複合体形成剤としては、より詳細には、ポリビニルピロリドン又はシクロデキストリ
ンが挙げられる。
【0047】
本発明のリファキシミン-複合体形成剤複合体の製造方法であって:
a)リファキシミンを適切な溶媒に溶解すること;
b)該リファキシミン溶液に、複合体形成剤をそれ自体で又は溶液の形で加えて混合物を形
成すること;
c)例えば、工程b)で得られた反応塊を濃縮し、複合体を得るためにさらに乾燥させること
によって、複合体を単離すること;
を含む前記方法も、本発明によって提供される。
【0048】
本発明の方法で使用されるリファキシミンは、先行技術に開示されている方法のうちの
いずれか1つによって得ることができる。例えば、本発明の方法で使用されるリファキシ
ミンは、多形形態α、β、γ、δ、又はεであり得る。本発明の好ましい実施態様では、
使用されるリファキシミンはβ形である。β形のリファキシミンは、溶解性が最小の、公
知の形態のリファキシミンである。
【0049】
使用される溶媒は、エーテル、アルコール、エステル、アルデヒド、ハロゲン化された
溶媒、炭化水素、及びこれらの組み合わせから選択することができる。
【0050】
本発明の方法では、使用される複合体形成剤は、ポリビニルピロリドン(PVP)又はシク
ロデキストリン(CD)から選択することができる。
【0051】
ポリビニルピロリドン(PVP、「ポビドン」としても知られている)は、特定の分子量の
白色粉末として市販されている。一般に、PVPポリマーの分子量は、K値(例えばK-15からK
-90)によって示される。K値は、20,000から1,000,000の範囲の平均分子量を示す。好まし
いPVPは、分子量が一般的に約40,000であるK-30である。PVPの並外れた特性は、水中並び
に様々な有機溶媒中でのその溶解性である。
【0052】
本発明の方法では、PVPは、PVP K-12、K-15、K-17、K-25、K-30、K-60、K-80、K-90、
及びK-120からなる群から選択することができる。好ましくはK-25、K-30、K-90、最も好
ましくはK-30である。
【0053】
本発明の方法では、複合体を形成するために使用されるシクロデキストリンは、6個の
グルコース単位を有するα-シクロデキストリン、7個のグルコース単位を有するβ-シク
ロデキストリン、又は8個のグルコース単位を有するγ-シクロデキストリンを含めた任意
の形のシクロデキストリンであり得る。シクロデキストリンはまた、無水又は水和形であ
り得る。好ましいシクロデキストリンは、β-シクロデキストリンである。
【0054】
複合体形成剤は、それ自体で、又は適切な溶媒に溶解した溶液として加えることができ
る。封入可能なリファキシミンの量は、リファキシミンの分子量に直接関係する。
【0055】
ある実施態様では、1モルの複合体形成剤は、1モルのリファキシミンを封入する。好
ましくは、製剤に使用されるリファキシミン及び複合体形成剤の量は、所望の治療効果を
提供するのに一般的に十分なものである。重量に基づくと、リファキシミンと複合体形成
剤との間の比(「w/w」と称される)は、20:1から1:20、好ましくは10:1から1:2の範囲であ
る。一般的には、リファキシミンと複合体形成剤の比は、4:1から1:2の範囲である。この
比は、1:1であってもよい。
【0056】
溶媒は、真空乾燥又は真空蒸発によって、迅速かつ完全に除去することができる。一実
施態様では、溶媒を噴霧乾燥によって除去して、リファキシミン複合体を得ることができ
る。別の実施態様では、リファキシミン複合体は、凍結乾燥によって得ることができる。
さらに別の実施態様では、リファキシミン複合体は、マイクロ波処理技術によって単離す
ることができる。
【0057】
本発明の第3の態様によれば、次の少なくとも1つを向上させるようなリファキシミン複
合体が提供される:
a)分解(例えば加水分解、酸化など)に対するリファキシミンの安定性
b)リファキシミンの水溶性の向上
c)より優れた溶解
d)自由流動性及び非吸湿性のリファキシミン
e)溶解性、送達、又は性能の改変
f)リファキシミンの取り扱い安全性。
【0058】
本発明のリファキシミン複合体は、諸成分の単なる物理的混合物ではない。このリファ
キシミン複合体は、例えば保管安定性に関して、従来の遊離ベースのリファキシミンより
も優れている。
【0059】
さらに、製剤中の賦形剤として複合形成剤を使用することによって溶解性はある程度ま
では向上するが、リファキシミンとの複合体を形成させることによって、複合体形成剤を
賦形剤として物理的に混合するよりもはるかに溶解性が向上することが観察された。さら
に、シクロデキストリン又はPVPとのリファキシミン複合体の水溶性は、リファキシミン
の水溶性よりも高いことが分かっている。複合体の溶解性の向上によって、図1から8に示
す通りに、溶解速度をさらに増大させることができ、それによって、これらの複合体の体
内での生体利用効率が大きくなる。複合体の生体利用効率及び安定性のこうした増大によ
って、より多い投与量の単独のリファキシミンと比較して、より少ない投与量で、所望の
治療効果を達成することができる。さらには、これらの複合体によって、リファキシミン
の結晶形態の相互転換が避けられる。加えて、これらの複合体は、胃腸刺激及び目への刺
激を軽減又は予防するために、不快な臭いや味を軽減又は排除するために、並びに、薬剤
-薬剤間又は薬剤-添加剤間の相互作用を予防するために使用することができる。
【0060】
本発明の別の態様によれば、図1から8のいずれか1つに示す通りの固有溶解プロフィー
ルを有することを特徴とするリファキシミン複合体が提供される。
【0061】
リファキシミン複合体、例えば、リファキシミン-PVP複合体又はリファキシミン-CD複
合体の固有溶解を測定するために、リファキシミン試料を測定し、異なるパラメータ設定
の影響を比較した。分析のために、自動の試料収集器によって、適切な時間間隔で溶解媒
体から一定分量を取り出す。サンプリングのための時間間隔は、使用される薬剤及び溶解
媒体の特性に応じて、例えば2から30分まで変動し得る。これらの作業に適した溶解機器
としては、LAB INDIA DISSO 2000が挙げられる。
【0062】
該複合体は、様々な用途で使用することができる。一実施態様では、本発明の組成物は
、錠剤、カプセル、又は経口液剤の形である。該組成物にはさらに、リファキシミンの所
望の治療効果を増強又は達成するために、追加の構成成分を任意に含めることができる。
このような構成成分の例としては、これらに限定されないが、界面活性剤、賦形剤、崩壊
剤、結合剤、滑沢剤、分散剤、増粘剤(thickening agent)が挙げられる。
【0063】
これ以降、本発明を以下の実施例によってさらに例示することとなるが、これらは本発
明の範囲を少しも限定しない。
【実施例】
【0064】
(実施例1-リファキシミン-PVP複合体(1:2w/w比)の製造)
(製造1)
2gのリファキシミンを、25〜30℃で30mlのエタノールに溶解した。4gのPVP K-30を、40
mlのエタノールに溶解した。PVP K-30の溶液をリファキシミン溶液に加えて攪拌した。反
応塊を、35℃で真空中で乾燥するまで濃縮し、次いで30〜35℃で24時間完全に乾燥させて
、5.4gのリファキシミン-PVP複合体を得た。
【0065】
(製造2)
5gのリファキシミンを、25〜30℃で75mlのエタノールに溶解した。反応塊を35℃に加熱
し、このリファキシミン溶液に10gのPVP K-30を加えて攪拌した。反応塊を、35℃で真空
中で乾燥するまで濃縮し、次いで30〜35℃で24時間完全に乾燥させて、13gのリファキシ
ミン-PVP複合体を得た。
【0066】
(実施例2-リファキシミン-PVP複合体(1:1w/w比)の製造)
(製造1)
2gのリファキシミンを、25〜30℃で30mlのエタノールに溶解した。2gのPVP K-30を、20
mlのエタノールに溶解した。PVP K-30の溶液をリファキシミン溶液に加えて攪拌した。反
応塊を、35℃で真空中で乾燥するまで濃縮し、次いで30〜35℃で24時間完全に乾燥させて
、3.1gのリファキシミン-PVP複合体を得た。
【0067】
(製造2)
5gのリファキシミンを、25〜30℃で75mlのエタノールに溶解した。反応塊を35℃に加熱
し、このリファキシミン溶液に5gのPVP K-30を加えて攪拌した。反応塊を、35℃で真空中
で乾燥するまで濃縮し、次いで30〜35℃で24時間完全に乾燥させて、8.8gのリファキシミ
ン-PVP複合体を得た。
【0068】
(実施例3-リファキシミン-PVP複合体(4:1w/w比)の製造)
(製造1)
10gのリファキシミンを、30〜35℃で150mlのエタノールに溶解した。2.5gのPVP K-30を
25mlのエタノールに溶解することによって、PVP K-30の溶液を製造した。この溶液を、30
〜35℃でリファキシミン溶液に加えた。反応塊を攪拌し、30〜35℃で真空中で濃縮して乾
燥させ、次いで70℃で24〜30時間完全に乾燥させて、12.5gのリファキシミン-PVP複合体
を得た。
【0069】
(製造2)
5gのリファキシミンを、25〜30℃で75mlのエタノールに溶解した。反応塊を35℃に加熱
し、このリファキシミン溶液に1.25gのPVP K-30を加えて攪拌した。反応塊を、35℃で真
空中で乾燥するまで濃縮し、次いで30〜35℃で24時間完全に乾燥させて、5.5gのリファキ
シミン-PVP複合体を得た。
【0070】
(実施例4-リファキシミン-PVP複合体(10:1w/w比)の製造)
(製造1)
10gのリファキシミンを、30〜35℃で150mlのエタノールに溶解した。1gのPVP K-30を15
mlのエタノールに溶解することによって、PVP K-30の溶液を製造した。この溶液を、リフ
ァキシミン溶液に加えた。反応塊を30〜35℃で攪拌し、30〜35℃で真空中で濃縮して乾燥
させ、次いで30〜35℃で24〜30時間完全に乾燥させて、10.3gのリファキシミン-PVP複合
体を得た。
【0071】
(製造2)
5gのリファキシミンを、25〜30℃で75mlのエタノールに溶解した。反応塊を35℃に加熱
し、このリファキシミン溶液に0.5gのPVP K-30を加えて攪拌した。反応塊を、35℃で真空
中で乾燥するまで濃縮し、次いで30〜35℃で24時間完全に乾燥させて、5.0gのリファキシ
ミン-PVP複合体を得た。
【0072】
(実施例5-リファキシミン-β-シクロデキストリン複合体(1:2w/w比)の製造)
(製造1)
2gのリファキシミンを、25〜30℃で30mlのエタノールに溶解した。この溶液に4gのβ-
シクロデキストリンを加えて攪拌した。反応塊を35℃で真空中で濃縮し、20mlのエタノー
ルを用いて揮散させた。この残渣を濃縮して乾燥させ、30〜35℃で真空中で20〜24時間乾
燥させて、5.1gのリファキシミン-βシクロデキストリン複合体を得た。
【0073】
(製造2)
4gのリファキシミンを、25〜30℃で60mlのエタノールに溶解した。反応塊を35℃に加熱
し、このリファキシミン溶液に8gのβ-シクロデキストリンを加えて攪拌した。反応塊を
、35℃で真空中で乾燥するまで濃縮し、次いで30〜35℃で24時間完全に乾燥させて、10.7
gのリファキシミン-βシクロデキストリン複合体を得た。
【0074】
(実施例6-リファキシミンβ-シクロデキストリン複合体(1:1w/w比)の製造)
2gのリファキシミンを、25〜30℃で30mlのエタノールに溶解した。この溶液に2gのβ-
シクロデキストリンを加えて攪拌した。反応塊を35℃で真空中で濃縮し、次いで30〜35℃
で20〜24時間完全に乾燥させて、2.8gのリファキシミン-βシクロデキストリン複合体を
得た。
【0075】
(実施例7-リファキシミン-β-シクロデキストリン複合体(4:1w/w比)の製造)
7gのリファキシミンを、30〜35℃で100mlのエタノールに溶解した。この溶液に1.75gの
β-シクロデキストリンを加えて攪拌した。反応塊を攪拌し、30〜35℃で真空中で濃縮し
て乾燥させ、次いで30〜35℃で24〜30時間完全に乾燥させて、8.1gのリファキシミン-β
シクロデキストリン複合体を得た。
【0076】
(実施例8-リファキシミン-β-シクロデキストリン複合体(10:1w/w比)の製造)
7gのリファキシミンを、30〜35℃で100mlのエタノールに溶解した。この溶液に0.7gの
β-シクロデキストリンを加えて攪拌した。反応塊を攪拌し、30〜35℃で真空中で濃縮し
て乾燥させ、次いで30〜35℃で24〜30時間完全に乾燥させて、6.75gのリファキシミン-β
シクロデキストリン複合体を得た。
【0077】
(固有溶解比較研究)
(実施例9-錠剤の製造)
(リファキシミン複合体を含む錠剤形成用混合物を製造するための一般的プロセス)
実施例1から8のいずれかに従って製造された、リファキシミン複合体のみを含む(すな
わち賦形剤を含まない)錠剤形成用混合物(100mg)を製造し、2.5トンの圧縮圧で5分間操作
する手動のハンドプレスを使用してペレットに圧縮した。
【0078】
(リファキシミンと複合体形成剤との物理的混合物を含む錠剤形成用混合物を製造するた
めの一般的プロセス)
同様に、リファキシミンとそれに見合う割合の複合体形成剤との物理的混合物のみを含
む(すなわち賦形剤を含まない)錠剤形成用混合物(100mg)を、リファキシミンと所望の割
合の複合体形成剤とを乳鉢と乳棒で5分間混合し、かつ2.5トンの圧縮圧で5分間操作する
手動のハンドプレスを使用してペレットに圧縮することによって製造した。
【0079】
(実施例10-リファキシミンとPVPK(ここではPVPKはPVP K-30である)とを含む1:2物理的混
合物の製造)
100mgの投与APIのリファキシミンと200mgのPVPKとを均一に混合して、ペレット調製の
ために使用した(注入体積:30μl)。
【0080】
100mgのペレットについて、LAB INDIA DISSO 2000でインビトロ溶解研究を実施した。
【0081】
該ペレットを、ペレットの表面だけを溶解媒体に接触させるように、PFTEホルダーに固
定した。このPFTE装填ホルダーを、900mlの0.1Mのリン酸二水素ナトリウム(37±0.5℃でp
H7.4)を含有する溶解用容器に入れた。実験計画の各実施に対して、2つのペレットを測定
した。100rpmでパドルを回転させて、攪拌を行った。攪拌を1440分まで行い、指定時間に
10mlの試料を取り出すことによって、試験媒体中に溶解した活性成分、すなわちリファキ
シミンの濃度を決定した。
【0082】
リファキシミン複合体の濃度を、以下に指定する通りの条件下で、最大波長300nmでHPL
C UV法によって定量化した。
【表1】
【0083】
PVPK複合体(1:2w/w)から、並びに物理的混合物(1:2w/w)から放出されたリファキシミン
の割合を、図1に示す通りに時間に対してプロットした。この曲線の傾きから固有溶解速
度を導いた。表1は、結果を表形式で示すものである。
【表2】
【0084】
(実施例11-リファキシミンとPVPKとを含む1:1物理的混合物の製造)
100mgの投与APIのリファキシミンと100mgのPVPKとをそれぞれ、均一に混合して、ペレ
ット調製のために使用した(注入体積:20μl)。
【0085】
PVP複合体(1:1w/w)から、並びに物理的混合物(1:1w/w)から放出されたリファキシミン
の割合を、図2に示す通りに時間に対してプロットした。この曲線の傾きから固有溶解速
度を導いた。表2は、結果を表形式で示すものである。
【表3】
【0086】
(実施例12-リファキシミンとPVPKとを含む4:1物理的混合物の製造)
100mgの投与APIのリファキシミンと25mgのPVPKとを均一に混合して、ペレット調製のた
めに使用した(注入体積:15μl)。
【0087】
PVP複合体(4:1w/w)から、並びに物理的混合物(4:1w/w)から放出されたリファキシミン
の割合を、図3に示す通りに時間に対してプロットした。この曲線の傾きから固有溶解速
度を導いた。表3は、結果を表形式で示すものである。
【表4】
【0088】
(実施例13-リファキシミンとPVPKとを含む10:1物理的混合物の製造)
100mgの投与APIのリファキシミンと10mgのPVPKとを均一に混合して、ペレット調製のた
めに使用した(注入体積:10μl)。
【0089】
PVP複合体(10:1w/w)から、並びに物理的混合物(10:1w/w)から放出されたリファキシミ
ンの割合を、図4に示す通りに時間に対してプロットした。この曲線の傾きから固有溶解
速度を導いた。表4は、結果を表形式で示すものである。
【表5】
【0090】
(実施例14)
PVPKの代わりにベータシクロデキストリンを使用して、実施例10を再び行い、CD複合体
(1:2w/w)から、並びに物理的混合物(1:2w/w)から放出されたリファキシミンの割合を、図
5に示す通りに時間に対してプロットした。この曲線の傾きから固有溶解速度を導いた。
表5は、結果を表形式で示すものである。
【表6】
【0091】
(実施例15)
PVPKの代わりにベータシクロデキストリンを使用して、実施例11を再び行い、CD複合体
(1:1w/w)から、並びに物理的混合物(1:1w/w)から放出されたリファキシミンの割合を、図
6で示す通りに時間に対してプロットした。この曲線の傾きから固有溶解速度を導いた。
表6は、結果を表形式で示すものである。
【表7】
【0092】
(実施例16)
PVPKの代わりにベータシクロデキストリンを使用して、実施例12を再び行い、CD複合体
(4:1w/w)から、並びに物理的混合物(4:1w/w)から放出されたリファキシミンの割合を、図
7に示す通りに時間に対してプロットした。この曲線の傾きから固有溶解速度を導いた。
表7は、結果を表形式で示すものである。
【表8】
【0093】
(実施例17)
PVPKの代わりにベータシクロデキストリンを使用して、実施例13を再び行い、CD複合体
(10:1w/w)から、並びに物理的混合物(10:1w/w)から放出されたリファキシミンの割合を、
図8に示す通りに時間に対してプロットした。この曲線の傾きから固有溶解速度を導いた
。表8は、結果を表形式で示すものである。
【表9】
【0094】
結果は、それぞれ2回の結果の平均で報告した。
【0095】
下の表9及び10に示す通り、リファキシミン複合体は、リファキシミンと複合体形成剤
との物理的混合物と比較すると、より優れた溶解速度を示した。
【0096】
リファキシミンの実質的放出の割合は、図1から8で得られる特性データから算出される
。複合体からのリファキシミンの実質的放出の割合を算出するための式を、下に示す。
【数1】
【0097】
【表10】
上のデータは、PVP複合体が物理的混合物よりも、より好都合であることを示している
。この利点は、PVPの濃度がより低い時、すなわち比率が10:1の時に最大である(73:30)が
、高濃度、すなわち比率が1:2又は33.3%の時には、該利点は約1.36倍(92.67:68.05)であ
る。
【0098】
【表11】
上のデータは、CD複合体が物理的混合物よりも、より好都合であることを示している。
この利点は、CDの濃度がより低い時、すなわち比率が10:1の時に最大である(55.55:9.84)
が、高濃度、すなわち比率が1:2又は33.3%の時には、該利点は約3.1倍(79.18:25.52)であ
る。
【0099】
これらの結果により、この技術に従ってリファキシミン複合体が形成されてきたことが
さらに証明された。
【0100】
本発明は、添付の特許請求の範囲内で変更可能であることを理解されたい。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
【手続補正書】
【提出日】2015年6月26日
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
リファキシミンと、複合体形成剤とを含む複合体であって、該複合体形成剤が、ポリビ
ニルピロリドン(PVP)又はシクロデキストリンであるが、ただし、ヒドロキシブテニルシ
クロデキストリン又はその誘導体ではないことを条件とする、請求項2記載の複合体。