【実施例】
【0034】
本発明の液晶表示装置の一実施例について説明する。
図6は本発明の実施形態で説明したn型のTFTだけで構成したゲートドライバの1ブロック分の回路図である。この回路は2相のクロックCLK1、CLK2と入力信号IN、2つの電源VGH、VGLで駆動される。ここではVGHが高電圧側の電源であり、VGLが低電圧側の電源であるとしている。また、入力信号INは、このブロックが縦列に接続された複数のブロックの初段である場合はスタート信号であり、それ以外のブロックでは前段のブロックの出力となる。制御部610及び出力部620に接続されたクロックの関係は、ブロック毎に変わり、
図6のブロックの前後に接続するブロックでは、制御部にCLK2が接続され、出力部にCLK1が接続される。また、クロックCLK1、CLK2及びスタート信号の振幅範囲はVGH、VGL間の電圧となる。
【0035】
ゲートドライバの1ブロックは、制御部610と出力部620で構成されており、出力部620は2つのTFT Tr1、Tr2で構成され、制御部610は3つのTFT Tr3、Tr4、Tr5で構成されている。出力部620を構成するTFT Tr1のゲート電圧は、ブートストラップ法により昇圧されVGH以上の電圧となる構成となっている。容量Cbは、その昇圧の為の容量であるが、TFT Tr1でのソース−ゲート間の寄生容量が十分大きい場合は、必ずしも設ける必要は無い。
【0036】
本発明の実施形態の説明の中で述べたように、出力部620を構成するTFT Tr1、Tr2の下部には遮光膜が配置されており、出力部620は平面的に制御部610と画素マトリクスの間に配置されている。
図7は、出力部620のレイアウトを示したものであり、
図8及び
図9は、
図7中の線分D−D’、E−E’の断面を示したものである。
【0037】
次に
図8を用いて出力部620の断面構造を説明する。ガラス等の絶縁性で光を透過する材料でできたTFT基板101の上に、遮光膜320を成膜、パターニングして形成する。遮光膜320には融点の高い、W、Cr、Ti及びこれらを含有する合金を用いることができる。遮光膜320の上にpoly−Si膜の下地となる層間膜330を成膜する。層間膜にはSiO
2やSiNx、それらの積層膜などを用いることができる。層間膜330の上には、poly−Si膜340が成膜、形成される。poly−Si膜は、a−Si膜を成膜し、その後、エキシマレーザー等によりアニールすることで形成することができる。poly−Si膜340の上にはゲート絶縁膜350が成膜される。ゲート絶縁膜にはSiO
2、SiNx及びそれら積層膜を用いることができる。ゲート絶縁膜350の上にはゲート金属を成膜、パターニングしてゲート電極360が形成される。ゲート金属には、Cr、Al等を用いることができる。poly-Si膜340の形成から、ゲート電極360の形成の間に、TFTのソース、ドレイン領域に不純物を注入する工程や、ソース、ドレイン領域とチャネル形成領域の間にLDD(Lightly Doped Drain)を形成する為の低濃度不純物注入工程、閾値制御の為のチャネルドーズ等の工程、活性化の為の工程等を行う場合もある。ゲート金属の上には層間膜370が成膜される。層間膜370にはSiO
2、SiNx及びそれら積層膜を用いることができる。層間膜370の上には配線金属380が成膜、パターニングして形成される。配線金属380にはAl及びそれを含む合金などを用いることができる。画素マトリクス領域においては、
図12と同じ構造の画素TFTが形成される。図示していないが、配線金属380の上には前述とは異なる層間膜、ITO(Indium Tin Oxide)等の透明電極による画素電極などが形成される。配線金属380より上部の構造は、液晶のモードにより適宜変えることができる。また、各TFTでは配線金属380は、TFTのソース、ドレイン領域とコンタクトホールを介して電気的に接続され、配線領域では必要に応じて配線金属380とゲート電極360もコンタクトホールを介して電気的に接続される。遮光膜320の大きさは少なくとも、TFTのチャネルが形成されるゲート電極360とpoly−Si膜340が平面的に重なる領域及び、LDD構造を有する場合はLDD領域とも平面的に重ねる必要があり、さらにTFTに斜めから照射される光に対応する為に、少なくともpoly−Si膜と同程度以上の大きさにするのが望ましい。制御部610を構成するTFTでは、TFTの下部に遮光膜320を必ずしも設ける必要が無い。つまり、
図8において遮光膜320を削除した構造を用いることができる。
【0038】
出力部620を構成する2つのTFTの下部に設けられた遮光膜320は、ゲートドライバのブロック毎に出力端子と同電位となる電圧を供給する。しかし、より誤動作を抑制するには、TFT Tr1(ブートストラップ法によりゲート電圧が昇圧または降圧されるTFT)の下部の遮光膜320には出力端子と同電位となる電圧を供給し、TFT Tr2(ブートストラップ法によりゲート電圧が昇圧または降圧されるTFTとは異なるTFT)の下部の遮光膜320には電源VGL(ソース電極)と同電位となる電圧を供給するのが望ましい。上記のように遮光膜320に電位を供給するための構造を、
図9を用いて説明する。
図9は、
図7の線分E−E’で示した部分の断面図であり、TFT Tr1の遮光膜320と出力端子を形成する配線金属380との電気的接続を示している。TFT Tr1のTFT下部から延伸した遮光膜320と出力端子を形成する配線金属380が平面的に重なる領域に、下地となる層間膜330、ゲート絶縁膜350、層間膜370を貫通したコンタクトホール325が形成され、このコンタクトホール325を介して遮光膜320と配線金属380が電気的に接続されている。TFT Tr2では同様にコンタクトホールを介して、TFT Tr2から延伸した遮光膜320が、電源VGLと同電位となる配線金属380と電気的に接続されている。
【0039】
尚、画素マトリクス200においては、画素TFT300の下部に設けられた遮光膜320は、何れの配線とも電気的に接続していないフローティング構造であってもよく、ゲート線と同電位となるように電気的に接続してもよい。しかし画素数の多い液晶表示装置の場合は、ゲート線の寄生容量を小さくするために、画素TFT300の下部に設けられた遮光膜320はフローティングとなる方が良い。
【0040】
上記説明した構造における液晶表示装置のTFT基板101に配置される遮光膜320のパターンを模式的に示したものを
図10に示す。遮光膜320は、画素マトリクス200において、個々の画素TFT300の配置位置に対して孤立パターンが配置され、ゲートドライバ600を構成する出力部620の領域においても、それを構成するTFTの配置位置に対応して孤立パターンとして配置される。しかし、制御部610の領域では、必ずしも遮光膜320を配置する必要が無いため、ここで示した例では遮光膜320は配置されていない。尚、図示していないが、画素マトリクス200と出力部620の間に、TFTによる保護素子を配置する場合は、そのTFTの位置に対応して遮光膜320を配置した方が良い。さらに、画素マトリクス200周辺で、データ線にTFTによる保護素子を配置する場合も、そのTFTの位置に対応して遮光膜320を配置した方が良い。保護素子以外にも、検査回路等TFTを用いたその他の回路を、開口部107を通して光が照射される位置に配置する場合も、遮光膜320を配置した方が良い。
【0041】
次にタイミングチャートを用いて、ゲートドライバの動作について説明する。
図11は、
図6で示した本発明の液晶表示装置に適用可能なゲートドライバの1ブロック分の動作を示したタイミングチャートである。このブロックは縦列に接続された複数のブロックのn番目のブロックとしているので、
図6中でINと記載された入力信号は、n−1番目のブロックの出力信号となる。期間T1〜T4は各々、液晶表示装置に1行分の映像信号を書き込む1水平期間を示している。ここで言う1行分とは、
図3において任意の1本のゲート線に接続された画素行のことである。また、クロックCLK1及びCLK2のハイレベルは電源VGHと同じ電位であり、ローレベルは電源VGLと同じ電位であるとする。
【0042】
期間T1では、入力信号INがローレベルであることから、TFT Tr1のゲート電極に接続されたノードC1の電位は、ローレベルである。また、TFT Tr2のゲート電極に接続されたノードC2の電位はハイレベルを保持している。期間T2では、入力信号がハイレベルとなる期間があり、CLK1もハイレベルとなる期間がある為、TFT Tr3が導通状態となり、ノードC1の電位がV1まで上昇する。ここでV1の電位はVGHからTFT Tr3の閾値電圧だけ小さい値である。ノードC1がハイレベル、ノードC2がハイレベルであることから、TFT Tr1、Tr2共に導通状態であるが、CLK2がローレベルであることから、出力OUTnはローレベルである。T2の期間で、CLK1がハイレベルの期間では、ノードC1にゲート電極が接続されたTFT Tr5も導通状態となるが、CLK1がハイレベルの間は、ノードC2はハイレベルのままである。しかし、CLK1がローレベルに変化するとTFT Tr4は非導通状態となり、TFT Tr5が導通状態のままであることから、ノードC2の電位はCLK1の電位と共にローレベルへ変化する。これに伴い、TFT Tr2も導通状態から非導通状態へと変わる。しかし、CLK2がローレベルなので、TFT Tr1を通して、出力OUTnはローレベルを維持する。期間T3ではCLK1がローレベルであるためTFT Tr4が非導通状態であり、TFT Tr5が導通状態でもCLK1がローレベルであるからノードC2はローレベルを維持し、TFT Tr2は非導通状態のままである。また、クロックCLK1がローレベルであることからTFT Tr3が非導通状態であり、ノードC1はフローティング状態となる。CLK2がハイレベルに変化するに従い、TFT Tr1のゲート−ソース間の寄生容量および容量Cbによる容量結合で、出力OUTnの電位上昇とともにノードC1の電位はV2まで上昇する。V2の電位はV1の電位にクロックCLK2の電圧振幅であるVGH−VGLを加算した値となり、TFT Tr1の閾値電圧とVGHを足した値よりも高くすることができる。従って、出力OUTnの電位V4は最終的にVGHの電位まで上昇する。その後クロックCLK1がローレベルへ変化すると、出力OUTnの電位もローレベルへ変化し、前述の容量結合によりノードC1の電位も下がっていく。ただし、ノードC1の電位はTFT Tr1を非導通状態とするまでは下がらないため、出力OUTnはCLK1のローレベル電位であるVGLの電位まで到達する。期間T4では、クロックCLK1がハイレベルとなり、TFT Tr3、Tr4が導通状態となり、ノードC1の電位が入力INの電位であるVGLの電位になり、ノードC2の電位がTFT Tr4によりハイレベルに充電される。この時のノードC2の電位V3は、VGHの電位からTFT Tr4の閾値電圧分だけ小さい値となり、TFT Tr2が導通状態となる。結果として、出力OUTnはVGLの電位を維持する。
【0043】
このような動作が複数の縦列に接続されたブロック内で順次行われることにより、ゲートドライバはクロックに同期したパルスを順次出力していくという動作を行えるのである。
【0044】
以上説明したように、実施例で示した本発明の液晶表示装置では、極めて強い光が照射されても画質劣化を生じさせない液晶表示装置を小さい寸法の液晶パネルを用いて実現することが可能となる。
【0045】
さらに実施形態で示した液晶表示装置よりも、さらにゲートドライバ回路の誤動作の発生を防ぐことが可能となる。
【0046】
実施例で示した本発明の液晶表示装置が、実施形態と同様の効果を有する理由は、実施形態のなかで示した理由と同じである。実施形態で示した液晶表示装置よりも、さらにゲートドライバ回路の誤動作を防ぐことができる理由について、以下に説明する。
【0047】
単一の導電型のTFTだけでゲートドライバ回路を構成した場合、ゲートドライバの出力部620がハイレベルを出力する際に、そのレベルが十分高くならず、次の段へ出力を転送できないという誤動作が生じることがある。この誤動作はTFT Tr1が導通状態となる際に、何らかの理由でTFT Tr2も導通状態となることで生じる。実施形態で示した液晶表示装置では、TFT Tr1とTr2の下部に配置する遮光膜に出力端子と同じ電位を供給していた。つまり、このブロックがハイレベルを出力する際、遮光膜の電位もハイレベルになる。n型のTFTのバックチャネル側に配置された導体の電位が高くなると、閾値電圧は低くなる方向に変化する。ここで、製造上のばらつきにより、TFT Tr2の閾値電圧が小さかった場合、遮光膜電位の影響により、ゲート電圧がローレベルであっても、ソース−ドレイン間に電流が流れてしまうことがある。すると、出力の電位はVGHとVGLの電位の間で分圧され、VGHよりも小さくなる。このようにTFT Tr2の閾値電圧が小さいブロックが複数連続した場合、ブロック間で出力が転送される度にその電圧が徐々に減少し、最終的には転送できなくなる。
【0048】
実施例で示した本発明の液晶表示装置では、出力部を構成するTFT Tr1とTr2の下部に配置する遮光膜にそれぞれ異なる電位を供給している。ドレイン端子がクロックに接続されたTFT Tr1の下部に配置された遮光膜には、出力部の出力端子と同じ電位を供給し、ソース端子が電源VGLに接続されたTFT Tr2の下部に配置された遮光膜には、電源VGLの電位が供給されている。従って、出力端子の電圧がハイレベルに変化しても、TFT Tr1の閾値電圧だけが小さくなる方向に変化するだけであるので、出力端子の電位が低下することがない。よって、誤動作のモードの1つが発生しなくなり、より誤動作が生じにくくなるのである。
【0049】
これまでに示した例では、画素TFTおよびゲートドライバをn型のTFTのみで構成する例を示したが、p型のTFTのみで構成してもよい。p型のTFTで構成した場合、ゲートドライバの出力部を構成するTFTでドレイン端子にクロックが接続されたTFTの下部に配置された遮光膜には、出力部の出力端子の電位を供給し、ソース端子に電源VGHが接続されたTFTの下部に配置された遮光膜には、電源VGHの電位を供給すればよい。制御部を構成するTFTの接続関係は、電源VGHとVGLの関係が逆になるように構成し、制御クロックとしては、ハイレベルとローレベルの関係が逆になるようにすればよい。
【0050】
さらに、n型、p型何れのTFTで構成した場合においても、制御部の回路構成は
図4、
図6に示した構成以外のものを用いることも可能である。例えば、ゲートドライバの走査方向が切り替えられる機能を追加した構成や、3相以上のクロックで制御される構成でも良い。また、出力部においても、ソース端子が電源に接続されたTFTが2つ以上ある構成でも良い。その場合は、ソース端子が電源に接続された全てのTFTにおいて、その下部に配置された遮光膜に電源電位を供給し、ドレイン端子がクロックに接続されたTFTの下部に配置された遮光膜には出力端子の電圧を供給する。
【0051】
すなわち、本発明のポイントは、出力部が、少なくともドレイン端子にクロックが接続され、ゲート端子の電位がブートストラップ効果により電源電圧範囲よりも昇圧または降圧されるTFTと、ソース端子が電源に接続されたTFTとで、各々の下部に配置される遮光膜の電位を変えることであり、特にブートストラップ効果でゲート端子の電位が昇圧または降圧されるTFTの下部の遮光膜には、出力端子の電位を供給することである。さらに、出力部を構成するTFTの下部にのみ遮光膜を配置し、制御部を構成するTFTの下部には遮光膜を設ける必要が無いように、パッケージ部材で覆う位置を設定することである。
【0052】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、液晶表示装置の構成は適宜変更可能である。