特開2015-218221(P2015-218221A)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱化学株式会社の特許一覧
特開2015-218221コポリマー、光電変換素子、太陽電池及び太陽電池モジュール
<>
  • 特開2015218221-コポリマー、光電変換素子、太陽電池及び太陽電池モジュール 図000025
  • 特開2015218221-コポリマー、光電変換素子、太陽電池及び太陽電池モジュール 図000026
  • 特開2015218221-コポリマー、光電変換素子、太陽電池及び太陽電池モジュール 図000027
  • 特開2015218221-コポリマー、光電変換素子、太陽電池及び太陽電池モジュール 図000028
  • 特開2015218221-コポリマー、光電変換素子、太陽電池及び太陽電池モジュール 図000029
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2015-218221(P2015-218221A)
(43)【公開日】2015年12月7日
(54)【発明の名称】コポリマー、光電変換素子、太陽電池及び太陽電池モジュール
(51)【国際特許分類】
   C08G 61/12 20060101AFI20151110BHJP
   H01L 51/46 20060101ALI20151110BHJP
   H01L 51/05 20060101ALI20151110BHJP
   H01L 51/30 20060101ALI20151110BHJP
【FI】
   C08G61/12
   H01L31/04 152D
   H01L29/28 100A
   H01L29/28 250G
   H01L31/04 152B
   H01L31/04 152G
【審査請求】未請求
【請求項の数】6
【出願形態】OL
【全頁数】41
(21)【出願番号】特願2014-101491(P2014-101491)
(22)【出願日】2014年5月15日
(71)【出願人】
【識別番号】000005968
【氏名又は名称】三菱化学株式会社
(72)【発明者】
【氏名】岡部 未紗子
(72)【発明者】
【氏名】白鳥 和矢
【テーマコード(参考)】
4J032
5F151
【Fターム(参考)】
4J032BA04
4J032BB05
4J032BB09
4J032BC03
4J032BC12
5F151AA11
5F151BA11
5F151CB13
5F151CB15
5F151DA07
5F151FA04
5F151FA06
5F151GA03
(57)【要約】
【課題】より長波長側の光の吸収が可能となる光電変換素子に適したp型半導体化合物を提供することを目的とする。
【解決手段】以下式(1)で表される構造単位を有するコポリマー。

(式(1)中、R〜Rは、それぞれ独立して、水素原子又は1価の有機基であるか、R及びR、R及びR、R及びRは、それぞれ互いに結合して環を形成していてもよく、Xは2価の原子又は2価の基を表し、環Yは置換基を有していてもよい脂肪族炭化水素環、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい脂肪族複素環、又は置換基を有していてもよい芳香族複素環を表す。)
【選択図】なし
【特許請求の範囲】
【請求項1】
下記式(1)で表される構造単位を有するコポリマー
【化1】
(式(1)中、R〜Rは、それぞれ独立して、水素原子又は1価の有機基であるか、R及びR、R及びR、R及びRは、それぞれ互いに結合して環を形成していてもよく、Xは2価の原子又は2価の基を表し、環Yは置換基を有していてもよい脂肪族炭化水素環、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい脂肪族複素環、又は置換基を有していてもよい芳香族複素環を表す。)
【請求項2】
前記式(1)中、XはO、S、Se、N(R)、C(R)(R)、又はSi(R10)(R11)を表し、R〜R11は、それぞれ独立して、水素原子又は1価の有機基であることを特徴とする請求項1に記載のコポリマー。
【請求項3】
前記式(1)中、R〜Rは、それぞれ独立して、水素原子又は置換基を有していてもよい脂肪族炭化水素基である請求項1又は2に記載のコポリマー。
【請求項4】
基材上に、少なくとも、一対の電極と、前記一対の電極間に活性層と、を有する光電変換素子であって、前記活性層が請求項1〜3のいずれか1項に記載のコポリマーを含有することを特徴とする光電変換素子。
【請求項5】
請求項4に記載の光電変換素子を有する太陽電池。
【請求項6】
請求項5に記載の太陽電池を有する太陽電池モジュール。
【発明の詳細な説明】
【技術分野】
【0001】
本発明はコポリマー、光電変換素子、太陽電池及び太陽電池モジュールに関する。
【背景技術】
【0002】
近年、有機半導体を用いた電子デバイス、なかでも有機薄膜太陽電池(OPV)や有機電界発光素子(OLED)が、盛んに開発されている。有機半導体を用いたデバイスは、基材としてフレキシブル基材を用いることで、可撓性を維持することができるために、様々な状況で設置ができるという特徴を有する。
【0003】
一般的に、有機薄膜太陽電池に用いられる有機半導体としては、π共役高分子化合物が検討されており、π共役高分子化合物としては、特定のドナー性モノマーと特定のアクセプター性モノマーの共重合体(以後、コポリマーということがある)が検討されている。例えば、非特許文献1には、イソチアナフテン骨格とフルオレン骨格とを有するp型半導体化合物であるコポリマーが提案されている。また、非特許文献2には、イソチアナフテン骨格とベンゾチアジアゾール骨格とを含有するコポリマーが提案されている。
【先行技術文献】
【非特許文献】
【0004】
【非特許文献1】Macromolecular Rapid Communications(2007),28(17),1786−1791
【非特許文献2】Journal of Physical Chemistry C (2009),113(52),21928−21936
【発明の概要】
【発明が解決しようとする課題】
【0005】
有機薄膜太陽電池の変換効率を向上させるために、より長波長側の光を吸収できるp型半導体化合物が要求される。特に、タンデム構造を有する太陽電池の場合、吸収波長の異なる材料どうしを積層することで、より広範囲な波長の光を吸収できるようになり、長波長側の光を吸収することが可能なp型半導体化合物が望まれている。
しかしながら、非特許文献1に記載されているp型半導体化合物の吸収波長領域は、350〜800nm程度であり、また、非特許文献2に記載されているp型半導体化合物を活性層に用いた際の吸収波長領域は、300nm〜820nm程度であり、実用化のためには、十分とは言えなかった。
本発明は、上記問題を解決し、より長波長側の光の吸収が可能となる光電変換素子に適したp型半導体化合物を提供することを目的とする。
【課題を解決するための手段】
【0006】
本願発明者らは上記課題を解決すべく鋭意検討した結果、イソチアナフテン骨格と特定の骨格とを有するコポリマーを、光電変換素子の活性層に用いることで、上記課題を解決し、本発明を達成するに至った。すなわち、本発明は以下を要旨とする。
[1]下記式(1)で表される構造単位を有するコポリマー。
【0007】
【化1】
【0008】
(式(1)中、R〜Rは、それぞれ独立して、水素原子又は1価の有機基であるか、R及びR、R及びR、R及びRは、それぞれ互いに結合して環を形成していてもよく、Xは2価の原子又は2価の基を表し、環Yは置換基を有していてもよい脂肪族炭化水素環、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい脂肪族複素環、又は置換基を有していてもよい芳香族複素環を表す。)
【0009】
[2]前記式(1)中、XはO、S、Se、N(R)、C(R)(R)、又はSi(R10)(R11)を表し、R〜R11は、水素原子又は1価の有機基であることを特徴とする[1]に記載のコポリマー。
[3]前記式(1)中、R〜Rは、それぞれ独立して、水素原子又は置換基を有していてもよい脂肪族炭化水素基である[1]又は[2]に記載のコポリマー。
[4]基材上に、少なくとも、一対の電極と、前記一対の電極間に活性層と、を有する光電変換素子であって、前記活性層が[1]〜[3]のいずれかに記載のコポリマーを含有することを特徴とする光電変換素子。
[5][4]に記載の光電変換素子を有する太陽電池。
[6][5]に記載の太陽電池を有する太陽電池モジュール。
【発明の効果】
【0010】
本発明により、より長波長側の光の吸収が可能となる光電変換素子に適したp型半導体化合物を提供することができる。
【図面の簡単な説明】
【0011】
図1】本発明の一実施形態としての光電変換素子の構成を模式的に示す断面図である。
図2】本発明の一実施形態としての太陽電池の構成を模式的に示す断面図である。
図3】本発明の一実施形態としての太陽電池モジュールの構成を模式的に示す断面図である。
図4】本発明の一実施形態としてのタンデム構造型の光電変換素子の構成を模式的に示す断面図である。
図5】実施例1により得られたコポリマー1の吸収スペクトルである。
【発明を実施するための形態】
【0012】
以下に、本発明の実施の形態を詳細に説明する。以下に記載する構成要件の説明は、本発明の実施形態の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に特定はされない。
<1.本発明に係るコポリマー>
本発明に係るコポリマーは、下記式(1)で表される構造単位を有する。
【0013】
【化2】
【0014】
式(1)中、R〜Rは、それぞれ独立して、水素原子及び1価の有機基から選ばれる基であるか、又は、R及びR、R及びR、並びにR及びRは、互いに結合して環を形成してもよい。
【0015】
1価の有機基は、特段の制限はないが、ハロゲン原子、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい脂肪族複素環基、置換基を有していてもよい芳香族複素環基、水酸基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよいアリールオキシ基、置換基を有していてもよいアリールチオ基、ニトロ基、置換基を有していてもよいアミノ基、置換基を有していてもよいシリル基、置換基を有していてもよいカルボニル基、置換基を有していてもよいチオカルボニル基、置換基を有していてもよいスルホニル基、又はシアノ基が挙げられる。
【0016】
ハロゲン原子は、特段の制限はないが、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、中でも、フッ素原子が好ましい。
【0017】
脂肪族炭化水素基は、アルキル基、アルケニル基、又はアルキニル基が挙げられる。なお、脂肪族炭化水素基は、直鎖状の脂肪族炭化水素基、分岐状の脂肪族炭化水素基、又は脂環式の脂肪族炭化水素基であってもよい。
【0018】
脂肪族炭化水素基は特段の制限はないが、炭素数が、通常1以上であり、20以下の脂肪族炭化水素基が好ましい。
【0019】
アルキル基の例としては、メチル基、n−ブチル基、n−ヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基等の直鎖アルキル基;2−メチルプロピル基、2−メチルブチル基、2−エチルへキシル基、2,5−ジメチルへキシル基、2−メチルドデシル基、2−プロピルペンチル基、2−ヘキシルデシル基等の分岐アルキル基;又はシクロプロピル基、シクロペンチル基、シクロへキシル基、シクロオクチル基、シクロデシル基、シクロラウリル基等のシクロアルキル基が挙げられる。
【0020】
アルケニル基の例としては、エテニル基、2−ブテニル基、5−ヘキセニル基、7−オクテニル基、9−デセニル基、11−ドデセニル基等の直鎖アルケニル基;2−メチルー2−プロペニル基、3−メチルー3−ブテニル基、4−メチルー2−ヘキセニル基等の分岐アルケニル基;又は2−シクロプロペニル基、2−シクロブテニル基、2−シクロペンテニル基、3−シクロペンテニル基、2−シクロヘキセニル基、2−シクロヘプテニル基、2−シクロオクテニル基等のシクロアルケニル基が挙げられる。
【0021】
アルキニル基としては、エチニル基、2−ブチニル基、5−ヘキシニル基、7−オクチニル基、9−デシニル基、11−ドデシニル基等の直鎖アルケニル基;1−メチル−2−プロペニル基、2−メチル−3−ブテニル基、4−メチルー2−ヘキセニル基等の分岐
アルケニル基;又は2−シクロオクチニル基、3−シクロオクチニル基等のシクロアルキニル基が挙げられる。
【0022】
上記の脂肪族炭化水素基の中でも、有機溶剤に対する溶解性を向上させるために、炭素数が4以上の脂肪族炭化水素基が好ましく、炭素数が6以上の脂肪族炭化水素基が特に好ましい。一方、立体障害を軽減するという観点から、炭素数が16以下の脂肪族炭化水素基が好ましく、炭素数が12以下の脂肪族炭化水素基が特に好ましい。特に好ましい脂肪族炭化水素基としては、n−オクチル基が挙げられる。
【0023】
芳香族炭化水素基は、特段の制限はないが、炭素数が6以上、30以下の芳香族炭化水素が好ましい。具体的には、フェニル基等の単環式の芳香族炭化水素基;ナフチル基、インダニル基、インデニル基、フェナントリル基、フルオレニル基、アントリル基、アントラセニル基、アズレニル基、ピレニル基、ペリレニル基等の縮合多環式の芳香族炭化水素基;又はビフェニル基、ターフェニル基等の多環式の芳香族炭化水素基が挙げられる。
【0024】
脂肪族複素環基は、特段の制限はないが、炭素数3以上30の脂肪族複素環基が好ましい。具体的には、ピロリジル基、ピペリジル基、ピペラジル基等の窒素を含有する脂肪族複素環基;テトラヒドロフラニル基、ジオキサニル基等の酸素を含有する複素環基;モルホリニル基等の窒素及び酸素を含有する脂肪族複素環;又はチオモルホリニル基等の窒素及び硫黄を含有する脂肪族複素環が挙げられる。
【0025】
芳香族複素環基は、特段の制限はないが、炭素数が2以上、20以下の芳香族複素環基が好ましい。具体的には、チエニル基、フラニル基、ピリジル基、ピリミジル基、チアゾリル基、オキサゾリル基、トリアゾリル基等の単環式芳香族複素環基;又はベンゾチオフェニル基、ベンゾフラニル基、ベンゾチアゾリル基、ベンゾオキサゾリル基、ベンゾトリアゾリル基、チアジアゾロピリジン等の縮合多環式芳香族複素環基が挙げられる。なかでも、チエニル基、ピリジル基、ピリミジル基、チアゾリル基又はオキサゾリル基が好ましい。
【0026】
アルコキシ基は、特段の制限はないが、炭素数が1以上20以下のアルコキシ基が好ましい。具体的には、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、i−ブトキシ基、n−へプトキシ基、i−ヘプトキシ基等が挙げられる。
【0027】
アルキルチオ基は、特段の制限はないが、炭素数が1以上20以下のアルキルチオ基が好ましい。具体的には、メチルチオ基、エチルチオ基、n−プロピルチオ基、i−プロピルチオ基、n−ブチルチオ基、i−ブチルチオ基、n−ヘキシルチオ基、i−ヘキシルチオ基等が挙げられる。
【0028】
アリールオキシ基は、特段の制限はないが、炭素数が6以上20以下のアリールオキシ基が好ましい。具体的には、フェニルオキシ基が挙げられる。
【0029】
アリールチオ基は、特段の制限はないが、炭素数が6以上20以下のアリールチオ基が好ましい。具体的には、フェニルチオ基が挙げられる。
【0030】
カルボニル基は、特段の制限はないが、ホルミル基;アセチル基、ビチリ
ル基、ラウロイル基等の炭素数2〜20のアルキルカルボニル基;トリフルオロアセチル基等の炭素数2〜20のハロアルキルカルボニル基;メトキシカルボニル基、エトキシカルボニル基等の炭素数2〜20のアルコキシカルボニル基;エチルカルバモイル基、ジメチルカルバモイル基等の炭素数1〜20のカルバモイル基;フェニルカルボニル基等の炭素数7〜30のアリールカルボニル基;フェノキシカルボニル基等の炭素数7〜30のア
リールオキシカルボニル基が挙げられる。
【0031】
置換基を有するチオカルボニル基は、特段の制限はないが、例えばチオアルデヒド基;チオアセチル基等の炭素数1〜20のアルキルチオカルボニル基;トリフルオロチオアセチル基等の炭素数1〜20のハロアルキルチオカルボニル基;メトキシチオカルボニル基等の炭素数1〜20のアルコキシチオカルボニル基;フェニルチオカルボニル基等の炭素数7〜30のアリールチオカルボニル基;フェノキシチオカルボニル基等の炭素数7〜30のアリールオキシチオカルボニル基が挙げられる。
【0032】
スルホニル基は、特段の制限はないが、例えばメシル基、ブタンスルホニ
ル基、オクタンスルホニル基、ドデカンスルホニル基等の炭素数1〜20のアルキルスルホニル基;トリフルオロメタンスルホニル基等の炭素数1〜20のハロアルキルスルホニル基;メトキシスルホニル基等の炭素数2〜20のアルコキシスルホニル基;フェニルスルホニル基等の炭素数6〜30のアリールスルホニル基、モノフルオロフェニルスルホニル基等の炭素数6〜30のハロアリールスルホニル基;フェノキシスルホニル基等の炭素数6〜30のアリールオキシスルホニル基が挙げられる。
【0033】
また、上記の基は、さらに1以上の置換基を有していてもよい。上記の基が有していても良い置換基は、特段の制限はなく、上述のR〜Rで挙げた基が挙げられる。具体的には、ハロゲン原子、脂肪族炭化水素基、芳香族炭化水素基、脂肪族複素環基、芳香族複素環基、水酸基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、ニトロ基、アミノ基、シリル基、カルボニル基、チオカルボニル基、スルホニル基、シアノ基等が挙げられる。各基の具体例は、上述で挙げた基が挙げられる。
【0034】
及びR、R及びR、R及びRが互いに結合して環を形成する場合、当該環は、置換基を有していてもよい脂肪族炭化水素環、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい脂肪族複素環、又は置換基を有していてもよい芳香族複素環が挙げられる。
【0035】
脂肪族炭化水素環は、特段の制限はないが、シクロペンタン環又はシクロヘキサン環等のシクロアルカン環;デカリン環、シクロペンタジエン環、ジシクロペンタジエン環等の縮合脂肪族炭化水素環が挙げられる。なかでも、シクロヘキサン等のシクロアルカン環が好ましい。
【0036】
芳香族炭化水素環は、特段の制限はないが、ベンゼン環等の単環式芳香族炭化水素環;又はナフタレン環、インダン環、インデン環、フルオレン環、アントラセン環、アズレン環等の縮合多環式芳香族炭化水素環が挙げられる。なかでも、ベンゼン等の単環式芳香族炭化水素環が好ましい。
【0037】
脂肪族複素環は、特段の制限はないが、ピロリジン環、ピペリジン環、ピペラジン環等の窒素を含有する脂肪族複素環;テトラヒドロフラン環又はジオキサン環等の酸素を含有する脂肪族複素環;モルホリン環等の窒素及び酸素を含有する脂肪族複素環;又はチオモルホリン環等の窒素及び硫黄を含有する脂肪族複素環が挙げられる。なかでも、ピロリジン環、ピペリジン環又はピペラジン環等の窒素を含有する脂肪族複素環;モルホリン環等の窒素及び酸素を含有する脂肪族複素環;又はチオモルホリン環等の窒素及び硫黄を含有する脂肪族複素環が好ましく、より好ましくは、ピロリジン環、ピペリジン環等の窒素を含有する脂肪族複素環である。
【0038】
芳香族複素環は、特段の制限はないが、チオフェン環、フラン環、ピロール環、チアゾール環、チアジアゾール環、ピリジン環、ピリミジン環、ジオキソピロール環等の単環式
芳香族複素環;又はインドール環等の縮合多環式芳香族複素環が挙げられる。なかでも、チオフェン環、ピロール環、チアゾール環、チアジアゾール環、ピリミジン環、ジオキソピロール環等の窒素を含有する単環式芳香族複素環が好ましい。
【0039】
これらの環が有していてもよい置換基は、特段の制限はなく、上述したR〜Rの基が有しいてもよい置換基と同じ基が挙げられる。具体的には、ハロゲン原子、脂肪族炭化水素基、芳香族炭化水素基、脂肪族複素環基、芳香族複素環基、水酸基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、ニトロ基、アミノ基、シリル基、カルボニル基、チオカルボニル基、スルホニル基、又はシアノ基が挙げられる。
【0040】
上述の中でも、ポリマーの平面性を保つためにR〜Rは、それぞれ独立して、水素原子、炭素数6以上12以下のアルキル基、炭素数6以上12以下のアルコキシ基、炭素数6以上12以下のアルキルチオ基、炭素数6以上12以下の芳香族炭化水素基、炭素数12以上18以下のアリールオキシ基、又は炭素数12以上18以下のアリールチオ基であることが好ましく、水素原子又は炭素数6以上12以下のアルキル基であることが特に好ましい。
【0041】
式(1)中、Xは、2価の原子又は2価の基を表す。2価の原子は、特段の制限はないが、O、S、又はSeが挙げられる。2価の基は、特段の制限はないが、N(R)、C(R)(R)、又はSi(R10)(R11)が挙げられる。なお、R〜R11は、それぞれ独立して、水素原子又は1価の有機基を表し、1価の有機基は、特段の制限はないが、R〜Rで挙げた1価の有機基と同じ基が挙げられる。これらの中でも、半導体特性を向上させるために、Xは、S又はSeであることが好ましく、Sであることが特に好ましい。
【0042】
式(1)中、環Yは、置換基を有していてもよい脂肪族炭化水素環、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい脂肪族複素環又は置換基を有していてもよい芳香族複素環である。
【0043】
脂肪族炭化水素環、芳香族炭化水素環、脂肪族複素環、及び芳香族炭化水素環は特段の制限はないが、具体的には、上述のR及びR、R及びR、R及びRが互いに結合して形成する環と同様の環が挙げられる。
【0044】
なお、これらの環が有していてもよい置換基は、特段の制限はないが、ハロゲン原子、脂肪族炭化水素基、芳香族炭化水素基、脂肪族複素環基、芳香族炭化水素基、水酸基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、ニトロ基、アミノ基、シリル基、カルボニル基、チオカルボニル基、スルホニル基、又はシアノ基が挙げられる。
【0045】
上述の中でも、環Yは置換基を有していてもよい芳香族炭化水素環又は置換基を有していてもよい芳香族複素環であることが好ましく、様々な有機溶媒への溶解性が高いという点から、置換基を有していてもよい芳香族複素環であることが好ましい。
【0046】
上記式(1)に示される化合物の中でも、より長波長化が期待できるという点で下記式(2)で表される化合物が好ましい。
【0047】
【化3】
【0048】
式(2)中、R〜R及びXは、それぞれ、式(1)中のR〜R及びXと同義である。
【0049】
式(2)中、Rは、水素原子又は1価の有機基が挙げられる。1価の有機基は、特段の制限はないが、具体的には、式(1)中のR〜Rに記載した1価の有機基と同様の基が挙げられ、好ましい基も同様である。
【0050】
本発明に係るコポリマーの好ましい具体例を以下に示す。しかしながら、本発明に係るコポリマーが以下の例示に限られるわけではない。なお、nは1以上の整数を表す。
【0051】
【化4】
【0052】
【化5】
【0053】
【化6】
【0054】
【化7】
【0055】
本発明に係るコポリマーは、本発明の効果を損なわない範囲で、上記式(1)で表される構造単位以外の構造単位を含んでいてもよい。例えば、上記式(1)で表される構造単位以外に、特段の制限はないが、ジチエノオキサン構造単位、ジチエノシロール構造単位、ジチエノピロール構造単位、シクロペンタジチオフェン構造単位、ジチエノゲルモール構造単位、ベンゾジチオフェン構造単位、ジケトピロロピロール構造単位、チエノチオフェン構造単位、ベンゾチアジアゾール構造単位、ベンゾトリアゾール構造単位、ベンゾオキサゾール構造単位等を含んでいてもよい。
【0056】
上記式(1)で表される構造単位が、本発明に係るコポリマーを構成する構造単位に占める割合に、特段の制限は無いが、通常2モル%以上、好ましくは10モル%以上、より好ましくは25モル%以上、さらに好ましくは70モル%以上であり、本発明に係るコポリマーは、上記式(1)で表される構造単位、及び又は式(2)で表される構造単位のみで構成されるものが特に好ましい。
【0057】
本発明に係るコポリマーのポリスチレン換算の重量平均分子量(Mw)は、特段の制限はないが、通常2.0×103以上、好ましくは2.0×10以上、より好ましくは4
.0×10以上、さらに好ましくは5.0×10以上、よりさらに好ましくは7.0×10以上、特に好ましくは1.0×10以上である。一方、好ましくは1.0×10以下、より好ましくは1.0×10以下、特に好ましくは5.0×10以下である。光吸収波長を長波長化するという観点、高い吸光度を実現するという観点、高いキャリア移動を実現できるという観点、及び有機溶媒への溶解度の観点から、重量平均分子量がこの範囲にあることが好ましい。
【0058】
本発明に係るコポリマーのポリスチレン換算の数平均分子量(Mn)は、通常5.0×10以上、好ましくは1.0×10以上、より好ましくは2.0×10以上、さらに好ましくは2.5×10以上、特に好ましくは3.0×10以上である。一方、好ましくは1.0×10以下、より好ましくは1.0×10以下、さらに好ましくは5.0×10以下、殊更に好ましくは2.0×10以下、特に好ましくは1.0×10以下である。光吸収波長を長波長化するという観点、高い吸光度を実現するという観点、高いキャリア移動を実現できるという観点、及び有機溶媒への溶解度の観点から、数平均分子量がこの範囲にあることが好ましい。
【0059】
本発明に係るコポリマーの分子量分布(PDI,(重量平均分子量/数平均分子量(Mw/Mn)))は、通常1.0以上、好ましくは1.1以上、より好ましくは1.2以上、さらに好ましくは1.3以上である。一方、好ましくは20.0以下、より好ましくは15.0以下、さらに好ましくは10.0以下である。コポリマーの溶解度が塗布に適した範囲になりうるという点で、分子量分布がこの範囲にあることが好ましい。
【0060】
本発明に係るコポリマーのポリスチレン換算の重量平均分子量、数平均分子量、及び分子量分布は、ゲル浸透クロマトグラフィー(GPC)により求めることができる。具体的には、カラムとして、PolymerLaboratories GPC用カラム(PLgel MIXED−B 10μm 内径7.5mm,長さ30cm)を2本直列に繋げて用い、ポンプとしてLC−10AT(島津製作所社製)、オーブンとしてCTO−10A(島津製作所社製)、検出器として示差屈折率検出器(島津製作所製:RID−10A)、及びUV−vis検出器(島津製作所製:SPD−10A)を用いることにより測定できる。測定方法としては、測定対象のコポリマー(1mg)をクロロホルム(200mg)に溶解させ、得られた溶液1μLをカラムに注入する。移動相としてクロロホルムを用い、1.0mL/minの流速で測定を行う。解析にはLC−Solution(島津製作所製)を用いる。
【0061】
本発明に係るコポリマーの溶解度は、特に限定は無いが、好ましくは25℃におけるクロロベンゼンに対する溶解度が通常0.1質量%以上、好ましくは0.5質量%以上、さらに好ましくは1質量%以上であり、一方、通常30質量%以下、好ましくは20質量%である。溶解性が高いことは、塗布によりより厚い膜を成膜できるために好ましい。
【0062】
本発明に係るコポリマーは、分子間で適度な相互作用が起こることが好ましい。本明細書において、分子間で相互作用するということは、分子間でのπ−πスタッキング等の相互作用によってポリマー鎖間の距離が短くなることを意味する。相互作用が強いほど、高い移動度及び/又は結晶性を示す傾向があるため、半導体材料として好適であるものと考えられる。すなわち、分子間で相互作用するコポリマーにおいては分子間での電子移動が起こりやすいため、例えば光電変換素子において活性層中に本発明に係るコポリマーを用いた場合に、活性層内のp型半導体化合物とn型半導体化合物との界面で生成した正孔(ホール)を効率よく電極(アノード)へ輸送できると考えられる。
【0063】
結晶性の測定方法としてはX線回折法(XRD)が挙げられる。本明細書において結晶性を有するとは、XRD測定により得られたX線回折スペクトルが回折ピークを有することを意味する。結晶性を有することは、分子同士が配列した積層構造を有することを意味すると考えられ、後述する活性層を厚膜化できる傾向がある点で好ましい。XRD測定は公知文献(X線結晶解析の手引き(応用物理学選書4))に記載の方法に基づいて行うことができる。
【0064】
本発明に係るコポリマーの正孔移動度(ホール移動度と記す場合がある)は、通常1.0×10−7cm/Vs以上、好ましくは1.0×10−6cm/Vs以上、より好ましくは1.0×10−5cm/Vs以上、特に好ましくは1.0×10−4cm/Vs以上である。一方、本発明に係るコポリマーの正孔移動度は通常1.0×10cm/Vs以下、好ましくは1.0×10cm/Vs以下であり、より好ましくは1.0×10cm/Vs以下であり、特に好ましくは1.0×10cm/Vs以下である。正孔移動度がこの範囲にあることにより、本発明に係るコポリマーは半導体材料として好適に用いられる。また、光電変換素子において高い変換効率を得るためには、n型半導体化合物の移動度と、p型半導体化合物の移動度とのバランスが重要である。本発明に係るコポリマーを光電変換素子においてp型半導体化合物として用いる場合、本発明に係
るコポリマーの正孔移動度とn型半導体化合物の電子移動度とを近づける観点から、本発明に係るコポリマーの正孔移動度がこの範囲にあることが好ましい。正孔移動度の測定方法としてはFET法が挙げられる。FET法は公知文献(特開2010−045186号公報)に記載の方法により行うことができる。
【0065】
一方で、本発明に係るコポリマーは溶液状態での保存安定性が高いことが好ましい。保存安定性が高いとは、溶液とした時に凝集しにくいことを意味する。より具体的には、本発明に係るコポリマー2mgを2mLのスクリューバイアルに入れ、1.5質量%の濃度になるようにo−キシレンに加熱溶解させてから室温まで冷却した際に、冷却を開始してから5分間以上ゲル化しないことが好ましく、1時間以上ゲル化しないことがより好ましい。
【0066】
本発明に係るコポリマー中の不純物は極力少ないほうが好ましい。特に、式(1)で表される構造単位を有するコポリマーを合成する際に、パラジウム、銅等の遷移金属触媒を用いた場合、これらがコポリマー中に残存する場合がありうる。これらの金属触媒がコポリマー中に残存していると遷移金属の重原子効果による励起子トラップが生じるために電荷移動が阻害され、結果として本発明に係るコポリマーを光電変換素子に用いた際に光電変換効率を低下させるおそれがある。そのため、遷移金属触媒の濃度は、コポリマー1gあたり、通常1000ppm以下、好ましくは500pm以下、より好ましくは100ppm以下である。一方、通常0ppmより大きく、1ppm以上であってもよく、3ppm以上であってもよい。
【0067】
なお、コポリマー中に含有される不純物は、例えば、ICP質量分析法により測定することができる。ICP質量分析法は、公知文献(「プラズマイオン源質量分析」(学会出版センター))に記載されている方法により実施できる。具体的には、パラジウム原子及び銅原子については、試料を湿式分解後、分解液中のPd,SnをICP質量分析装置(Agilent Technologies社製 ICP質量分析装置 7500ce型)を用いて検量線法により定量することができる。
【0068】
本発明に係るコポリマーは、式(1)に示されるように、主鎖に五員環が並ぶため、ポリマーの主鎖方向の直線性と平面性が高くなると考えられる。ポリマーの直線性が高いと、π共役が直線的に長くなるため、長波長の光を強く吸収する事が可能となる。またポリマーの平面性が高いとポリマー同士がπスタックし易くなり、耐久性の向上とπスタック方向の移動度の向上が得られる。加えてポリマーが高い平面性を持つことによってHOMO及びLUMOがポリマー全体に分布し、これによりポリマー内の移動度が向上するほか、n型半導体がポリマーのどの部分と接触してもn型半導体のLUMOがポリマーのLUMOと重なる事ができ、電荷分離が起こり易くなる。
【0069】
<2.本発明に係るコポリマーの製造方法>
本発明のコポリマーの製造方法に特段の限定はなく、例えばイソチアナフテン誘導体及びチオフェン誘導体を用いて公知の方法で製造することができる。本発明に係るコポリマーの好ましい製造方法は、下記一般式(3)で表されるイソチアナフテン誘導体化合物と、下記一般式(4)で表される5員環誘導体化合物とを、必要であれば適当な触媒の存在下で、重合する方法が挙げられる。
【0070】
【化8】
【0071】
上記式(3)中、R〜Rは、式(1)のR〜Rと同義である。
【0072】
上記式(3)中のA及び上記式(4)中のQは、重合反応の種類に応じて適宜選択でき、特段の制限はないが、それぞれ独立して、ハロゲン原子、アルキルスタニル基、アルキルスルホ基、アリールスルホ基、アリールアルキルスルホ基、ホウ酸エステル残基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、ホウ酸残基(−B(OH))、ホルミル基、アルケニル基又はアルキニル基を表す。
【0073】
ハロゲン原子は、特段の制限はないが、臭素原子又はヨウ素原子が好ましい。
【0074】
ホウ酸エステル残基は、特段の制限はないが、例えば、下記式で示される基が挙げられる。
【0075】
【化9】
【0076】
(上記式中、Meはメチル基を表し、Etはエチル基を表す。)
【0077】
アルキルスタニル基は、特段の制限はないが、例えば、下記式で示される基が挙げられる。
【0078】
【化10】
【0079】
(上記式中、Meはメチル基を表し、Buはブチル基を表す。)
【0080】
アルケニル基は、特段の制限はないが、例えば、炭素数2〜12のアルケニル基が好ましい。
【0081】
上述の中でも、式(3)又は(4)で表される化合物の合成上の観点及び反応のし易さの観点から、A及びQは各々独立して、ハロゲン原子、アルキルスタニル基、ホウ酸エステル残基、又はホウ酸残基(−B(OH))であることが好ましい。
【0082】
本発明のコポリマーの重合に用いる反応方法としては、Suzuki−Miyauraクロスカップリング反応方法、Stilleカップリング反応方法、Yamamotoカップリング反応方法、Grignard反応方法、ヘック反応方法、園頭反応方法、FeClなどの酸化剤を用いる反応方法、電気化学的な酸化反応を用いる方法、適当な脱離基を有する中間体化合物の分解による反応方法などが挙げられる。これらの中でも、Suzuki−Miyauraカップリング反応方法、Stilleカップリング反応方法、Yamamotoカップリング反応方法、Grignard反応方法が、構造制御がしやすい点で好ましい。特に、Suzuki−Miyauraクロスカップリング反応方法、Stilleカップリング反応方法、Grignard反応方法が、材料の入手しやすさ、反応操作の簡便さの点からも好ましい。これらの反応は、「クロスカップリング−基礎と産業応用−(CMC出版)」、「有機合成のための遷移金属触媒反応(辻二郎著:有機合成化学協会編)」、「有機合成のための触媒反応103(檜山為次郎:東京化学同人)」などの公知文献の記載の方法に従って行うことができる。
【0083】
なお、特段の制限はないが、例えば、A又はQがアルキルスタニル基である場合には公知のStilleカップリング反応の条件に従って反応を行えばよい。また、A又はBがホウ酸エステル残基又はホウ酸残基である場合には公知のSuzuki−Miyauraカップリング反応の条件に従って反応を行えばよい。さらに、A又はQがシリル基である場合には公知のHiyamaカップリング反応の条件に従って反応を行えばよい。カップリング反応の触媒としては例えば、パラジウム等の遷移金属と、配位子(例えばトリフェニルホスフィン等のホスフィン配位子)との組み合わせを用いることができる。
【0084】
以下では、代表例として、Stilleカップリング反応方法を用いる本発明に係るコポリマーの製造方法について説明する。
【0085】
Stilleカップリング反応方法を用いる場合、式(3)中のAがハロゲン原子であり、かつ式(4)中のBがアルキルスタニル基であるか、式(3)中のAがアルキルスタニル基であり、式(4)中のXが、ハロゲン原子であることが好ましい。
【0086】
重合反応において用いられる、式(3)で表される化合物の量に対する、式(4)で表される化合物の量の比は、モル比換算にして、通常0.90以上、好ましくは0.95以上であり、一方、通常1.3以下、好ましくは1.2以下である。モル比率がこのような範囲内にあることは、より高い収率で高分子量体を取得しうる点で好ましい。
【0087】
本発明に係るコポリマーを高純度で製造する場合は、重合前のモノマー(式(3)及び(4)で表される化合物)を精製した後に、重合反応を行うことが好ましい。精製方法としては、例えば、蒸留、昇華精製、カラムクロマトグラフィー又は再結晶等が挙げられる。
【0088】
例えば、本発明に係るコポリマーを有機光電変換素子用の材料として用いる場合、その純度が高いことにより素子特性が向上しうるため、コポリマーが高純度であることが望ましい。本発明に係るコポリマーを有機光電変換素子用の材料として用いる場合、式(3)及び(4)で表される化合物のそれぞれの純度は90%以上であることが好ましく、95%以上であることがより好ましい。
【0089】
重合反応において重合促進のために遷移金属触媒等を用いてもよい。遷移金属触媒は、重合の種類に応じて選択すればよい。遷移金属触媒としては、均一系遷移金属触媒と不均一系遷移金属触媒とが挙げられる。
【0090】
均一系遷移金属触媒としては、重合反応に用いる溶媒に十分に溶解するものが好ましい
。好ましい例としては、特に、パラジウム、ニッケル、鉄、又は銅を含む、後周期遷移金属錯体触媒が挙げられる。具体的な例としては、テトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh)又はトリス(ジベンジリデンアセトン)ジパラジウム(Pd(dba))等の0価のパラジウム触媒;ビス(トリフェニルホスフィン)塩化パラジウム(PdCl((PPh)))又は酢酸パラジウム等の2価のパラジウム触媒等のパラジウム(Pd)触媒;Ni(dppp)Cl又はNi(dppe)Cl等のニッケル触媒;塩化鉄等の鉄触媒;ヨウ化銅等の銅触媒等が挙げられる。ここで、dbaはジベンジリデンアセトンを表し、dpppは1,2−ビス(ジフェニルホスフィノ)プロパンを表し、dppeは1,2−ビス(ジフェニルホスフィノ)エタンを表す。
【0091】
0価のPd触媒として具体的には、Pd(PPh、Pd(P(o−tolyl)、Pd(PCy、Pd(dba)3、PdCl(PPh))等が挙げられる。PdCl((PPh))又は酢酸パラジウム等の2価のPd触媒を用いる場合には、PPhやP(o−tolyl)等の有機配位子と併せて使用することが好ましい。ここで、Phはフェニル基を表し、Cyはシクロヘキシル基を表し、o−tolylは2−トリル基を表す。
【0092】
不均一系遷移金属触媒としては、上述のような均一系遷移金属触媒を、担体に担持させることによって得られる触媒が挙げられる。不均一系遷移金属触媒が含む遷移金属の好ましい例としては、パラジウム、ニッケル、鉄、又は銅を含む、後周期遷移金属が挙げられる。不均一系遷移金属錯体触媒が有する有機配位子としては、均一系遷移金属錯体触媒について挙げたものと同様のものを用いることができる。また、公知文献(Strem社,”Heterogeneous Catalysts”(2011年))記載の有機配位子を用いることもできる。担体の例としては、金属、ナノコロイド、ナノ粒子、磁性化合物、金属酸化物、多孔質物質、粘土、例えば尿素樹脂のようなポリマー、及びデンドリマー等が挙げられる。多孔質物質の具体的な例としては、ミクロ孔物質、メソ孔物質、活性炭、シリカゲル、アルミナ、及びゼオライト等が挙げられる。特に、ポリマーに担持された不均一系遷移金属錯体触媒を用いることは、不均一系遷移金属錯体触媒の回収が容易であるために好ましい。また、ポリマーが多孔性であることは、反応を促進する点でより好ましい。
【0093】
重合反応においては、2種以上の遷移金属錯体触媒を用いることが、高分子量のコポリマーが得られうる点で好ましい。例えば、2種以上の均一系遷移金属錯体を用いてもよいし、2種以上の不均一系遷移金属錯体を用いてもよいし、均一系遷移金属錯体と不均一系遷移金属錯体とを組み合わせて用いてもよい。この2種以上の遷移金属錯体触媒のうち、少なくとも1種は不均一系金属錯体触媒であることが、カップリング反応条件下でモノマーをすばやくオリゴマーに変換することができる点で好ましい。また、オリゴマーになると不均一系金属触媒による重合反応速度が落ちる傾向にあるため、オリゴマーからポリマーへの誘導を均一系金属触媒で行う方が、高分子量体を得るために好ましい。この観点から、2種以上の遷移金属錯体触媒のうち、少なくとも1種が不均一系金属錯体触媒であり、かつ少なくとも1種が均一系金属錯体触媒であることがより好ましい。
【0094】
式(3)及び(4)で表される化合物の量の合計に対する遷移金属錯体の使用量は、通常1×10−4mol%以上、好ましくは1×10−3mol%以上、より好ましくは1×10−2mol%以上であり、一方、通常1×10mol%以下、より好ましくは5mol%以下である。触媒の使用量がこの範囲にあることは、より低コストかつ高い収率で、より高分子量のコポリマーが得られる傾向にある点で好ましい。
【0095】
遷移金属触媒を使用する場合に、アルカリ、補触媒又は相間移動触媒を併用してもよい。
【0096】
アルカリとしては、例えば、炭酸カリウム、炭酸ナトリウム、炭酸セシウム等の無機塩基;トリエチルアミン等の有機塩基;等が挙げられる。
【0097】
補触媒としては、例えば、フッ化セシウム、酸化銅又はハロゲン化銅等の無機塩が挙げられる。補触媒の使用量は、式(3)及び(4)で表される化合物の量の合計に対して、通常1×10−4mol%以上、好ましくは1×10−3mol%以上、より好ましくは1×10−2mol%以上であり、一方、通常1×10mol%以下、好ましくは1×10mol%以下、より好ましくは1.5×10mol%以下である。補触媒の使用量がこの範囲にあることは、より低コストかつ高い収率でコポリマーが得られる傾向にある点で好ましい。
【0098】
相間移動触媒としては、テトラエチルアンモニウムヒドロキシド又はAliquat336(アルドリッチ社製)のような四級アンモニウム塩等が挙げられる。相間移動触媒の使用量は、式(3)及び(4)で表される化合物の量の合計に対して、通常1×10−4mol%以上、好ましくは1×10−3mol%以上、より好ましくは1×10−2mol%以上であり、一方、通常5mol%以下、より好ましくは3mol%以下である。相間移動触媒の使用量がこの範囲にあることは、より低コストかつ高い収率でコポリマーが得られる傾向にある点で好ましい。
【0099】
重合反応に用いられる溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン又はシクロヘキサン等の飽和炭化水素;ベンゼン、トルエン、エチルベンゼン又はキシレン等の芳香族炭化水素;クロロベンゼン、ジクロロベンゼン又はトリクロロベンゼン等のハロゲン化芳香族炭化水素;メタノール、エタノール、プロパノール、イソプロパノール、ブタノール又はt−ブチルアルコール等のアルコール類;水;ジメチルエーテル、ジエチルエーテル、メチル−t−ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン又はジオキサン等のエーテル類;DMF等の非プロトン性極性有機溶媒等が挙げられる。これらの溶媒は、一種を単独で用いても二種以上を併用してもよい。
【0100】
溶媒の使用量は、式(3)及び(4)で表される化合物の合計1gに対して、通常、1×10−2mL以上、好ましくは1×10−1mL以上、より好ましくは1mL以上であり、一方、通常1×10mL以下、好ましくは1×10mL以下、より好ましくは2×10mL以下である。溶媒の使用量がこの範囲にあることは、反応の制御がより容易となる点で好ましい。
【0101】
重合反応の反応温度は、通常0℃以上、好ましくは20℃以上、より好ましくは40℃以上、さらに好ましくは60℃以上である。一方、通常300℃以下、好ましくは250℃以下、より好ましくは200℃以下、さらに好ましくは180℃以下、特に好ましくは160℃以下である。加熱方法としては特段の制限は無いが、オイルバス加熱、熱電対加熱、赤外線加熱、マイクロウェーブ加熱の他、IHヒーターを用いた接触による加熱等が挙げられる。重合反応の時間は、通常1分間以上、好ましくは10分間以上、一方、通常160時間以下、好ましくは120時間以下、より好ましくは100時間以下である。また重合反応は窒素(N)又はアルゴン(Ar)雰囲気下で行うことが好ましい。これらの反応条件で反応を行うことにより、より短時間かつ高い収率でコポリマーが得られうる。
【0102】
重合反応により得られたコポリマーに対しては、さらに末端処理を行うことが好ましい。コポリマーの末端処理を行うことにより、コポリマーの末端残基(上述のA及びQ)の残存量を減らすことができる。例えば、Stilleカップリング反応によってコポリマーを重合した場合には、コポリマーの末端に存在する臭素(Br)やヨウ素(I)等のハ
ロゲン原子及びアルキルスタニル基を、末端処理によって減らすことができる。この末端処理を行うことは、効率及び耐久性の点でよりよい性能のコポリマーを得ることができるために、好ましい。
【0103】
重合反応後に行うコポリマーの末端処理方法としては、特段の制限は無いが、例えば末端残基を芳香族基のような他の置換基で置換する方法が挙げられる。
【0104】
例えば、Stilleカップリング反応によってコポリマーを重合した場合の末端処理方法としては、以下の方法が挙げられる。コポリマーのハロゲン原子の末端処理方法としては、重合反応後の精製前の反応系中に、末端処理剤としてアリールトリアルキルスズを加えた後、加熱攪拌を行うことにより行うことができる。アリールトリアルキルスズの例としてはフェニルトリメチルスズ又はチエニルトリメチルスズ等が挙げられる。コポリマーの末端のハロゲン原子を芳香族基に置換することは、共役安定効果により、コポリマーがより安定になるために、好ましい。
【0105】
末端処理剤の添加量としては、特段の制限は無いが、重合反応に用いたハロゲン原子を末端に有するモノマー(3又は4)の量に対して、通常1.0×10−2モル当量以上、好ましくは0.1モル当量以上、より好ましくは1モル当量以上であり、一方、通常50モル当量以下、好ましくは20モル当量以下、より好ましくは10モル当量以下である。ハロゲン原子の末端処理の反応温度は、通常0℃以上、好ましくは20℃以上、より好ましくは40℃以上、さらに好ましくは60℃以上である。一方、通常300℃以下、好ましくは250℃以下、より好ましくは200℃以下、さらに好ましくは180℃以下、特に好ましくは160℃以下である。加熱方法としては、特段の制限は無いが、オイルバス加熱、熱電対加熱、赤外線加熱、マイクロウェーブ加熱の他、IHヒーターを用いた接触による加熱等が挙げられる。コポリマーのハロゲン原子の末端処理の反応時間は、特段の制限は無いが、通常30分以上、好ましくは1時間以上であり、一方、通常50時間以下、好ましくは20時間以下である。これらの反応条件で反応を行うことにより、より短時間かつ高い変換率で末端処理を行うことができる。
【0106】
また、コポリマーのアルキルスタニル基の末端処理方法としては、重合反応後の精製前の反応系中に、末端処理剤としてアリールハライドを加えたのち、加熱攪拌を行うことにより行うことができる。アリールハライドの例としてはヨードチオフェン、ヨードベンゼン、ブロモチオフェン又はブロモベンゼン等が挙げられる。コポリマーの末端のアルキルスタニル基を別の置換基へと置換することにより、熱分解しやすいアルキルスタニル基中のSn原子がコポリマー中に存在しなくなり、コポリマーの経時劣化が抑えられうる。また、コポリマーの末端のアルキルスタニル基をアリール基に置換することは、共役安定効果によりコポリマーがより安定になりうる点においても好ましい。
【0107】
末端処理剤の添加量としては、特段の制限は無いが、重合に用いたアルキルスタニル基を末端に有するモノマー(3又は4)の量に対して、通常1.0×10−2モル当量以上、好ましくは0.1モル当量以上、より好ましくは1モル当量以上であり、一方、通常50モル当量以下、好ましくは20モル当量以下、より好ましくは10モル当量以下である。アルキルスタニル基の末端処理の反応温度及び反応条件としては、コポリマーのハロゲン原子の末端処理と同様のものを用いることができる。これらの反応条件で反応を行うことにより、より短時間かつ高い変換率で末端処理を行うことができる。
【0108】
また、Suzuki−Miyauraクロスカップリング反応によりコポリマーを重合した場合の末端処理の方法としては、以下の方法が挙げられる。コポリマーのハロゲン原子の末端処理方法としては、アリールボロン酸を加えたのち、加熱攪拌を行う方法が挙げられる。コポリマーのホウ素原子含有基の末端処理方法としては、末端処理剤としてアリ
ールハライドを加えたのち、加熱攪拌を行う方法が挙げられる。
【0109】
末端残基の末端処理方法に特段の制限はないが、それぞれ独立に行うことが好ましい。なお、それぞれの末端処理の順序に特段の制限は無く、適宜選択できる。
【0110】
また、末端処理は、コポリマーの精製前に行ってもよいが、コポリマーの精製後に行ってもよい。末端処理をコポリマー精製後に行う場合には、コポリマーと片方の末端処理剤(例えばアリールハライド又はアリールトリアルキルスズ)とを有機溶剤に溶解した後、パラジウム触媒等の遷移金属触媒を加えて反応を行い、さらにもう片方の末端処理剤(アリールトリアルキルスズ又はアリールハライド)を加えて反応を行えばよい。反応を促進する観点から、末端処理をコポリマー精製前に行う場合と同様に、末端処理時には加熱攪拌を行うことか好ましい。また、収率を向上させる観点から、反応を窒素条件下で行うことも好ましい。反応時間は、特段の制限は無いが、通常30分以上、好ましくは1時間以上であり、一方、通常25時間以下、好ましくは10時間以下である。
【0111】
遷移金属触媒の添加量としては、特段の制限は無いが、式(3)又は(4)で表される化合物の量の合計に対して、通常5.0×10−3モル当量以上、好ましくは1.0×10−2モル当量以上であり、一方、通常1.0×10−1モル当量以下、好ましくは5.0×10−2モル当量以下である。触媒の添加量がこの範囲にあることにより、より低コストかつ高い変換率で末端処理を行うことができる。
【0112】
コポリマー精製後の末端処理時における、アルキルスタニル基の末端処理剤の添加量としては、特段の制限は無いが、重合に用いたアルキルスタニル基を末端に有するモノマー(3又は4)の量に対して、通常1.0×10−2モル当量以上、好ましくは1.0×10−1モル当量以上、より好ましくは1モル当量以上であり、一方、通常50モル当量以下、好ましくは20モル当量以下、より好ましくは10モル当量以下である。末端処理剤の添加量がこの範囲にあることにより、より低コストかつ高い変換率で末端処理を行うことができる。
【0113】
コポリマー生成後の末端処理時における、ハロゲン原子の末端処理剤の添加量としては、特段の制限は無いが、重合に用いたハロゲン原子を末端に有するモノマー(2又は3)の量に対して、通常1.0×10−2モル当量以上、好ましくは1.0×10−1モル当量以上、より好ましくは1モル当量以上であり、一方、通常50モル当量以下、好ましくは20モル当量以下、より好ましくは10モル当量以下である。末端処理剤の添加量がこの範囲にあることにより、より低コストかつ高い変換率で末端処理を行うことができる。
【0114】
重合反応後に行う工程として特に限定はないが、通常はコポリマーを分離する工程が行われる。コポリマーの末端処理を行う場合には、末端処理後にコポリマーを分離する工程を行うことが好ましい。必要に応じて、コポリマーの末端処理前に、さらにコポリマーの分離及び精製を行なってもよい。より短い処理工程でコポリマーを得る観点からは、重合反応後に、コポリマーの末端処理、コポリマーの分離及びコポリマーの精製をこの順に行うことが好ましい。
【0115】
コポリマーの分離方法としては、例えば、反応溶液と貧溶媒とを混合してコポリマーを析出させる方法、又は、水若しくは塩酸で反応溶液中の活性種をクエンチした後にコポリマーを有機溶媒で抽出し、この有機溶媒を留去する方法等が挙げられる。
【0116】
コポリマーの精製方法としては、再沈精製、ソックスレー抽出器を用いた抽出、ゲル浸透クロマトグラフィー、又はスキャベンジャーを用いた金属除去等の、公知の方法が挙げられる。
【0117】
[2−1.式(3)及び(4)で表される化合物の製造方法]
重合反応の原料として用いられる上記式(3)で表される化合物の製造方法は特段の制限はなく、公知の方法により製造することができる。例えば、公知文献(Macromolecular Rapid Communications(2007),28(17),1786−1791)に記載の方法に準じて製造することができる。同様に、上記式(4)で表される化合物の製造方法は、特段の制限はなく、公知の方法により製造することができる。例えば、公知のJ.Am.Chem.,Soc.,2010,132(22)7595−7597に記載の方法に準じて製造することができる。
【0118】
<3.本発明に係るコポリマーを用いた電子デバイス>
本発明に係るコポリマーを用いた有機電子デバイスについて説明する。具体的に、本発明に係るコポリマーは、発光素子、スイッチング素子、光電変換素子、光電導性を利用した光センサー等に用いることができる。
【0119】
発光素子としては、表示デバイスに用いられる各種の発光素子が挙げられる。具体例としては、液晶表示素子、高分子分散型液晶表示素子、電気泳動表示素子、エレクトロルミネッセント素子、エレクトロクロミック素子等が挙げられる。スイッチング素子の具体例としては、ダイオード(pn接合ダイオード、ショットキー・ダイオード、MOSダイオード等)、トランジスタ(バイポーラートランジスタ、電界効果トランジスタ(FET)等)、サイリスタ、更にはそれらの複合素子(例えばTTL等)等が挙げられる。光電変換素子の具体例としては、薄膜太陽電池、電荷結合素子(CCD)、光電子増倍管、フォトカプラ等が挙げられる。また、光電導性を利用した光センサーとしては、これらの光電変換素子を利用したものが挙げられる。
【0120】
本発明に係るコポリマーを有機電子デバイスのどの部位に用いるかは特に制限されず、任意の部位に用いることが可能であるが、有機電子デバイスの半導体層材料として用いる事が好ましい。特に、光電変換素子の場合には、通常は、本発明に係る有機半導体材料を含有する有機半導体層は、有機活性層として使用される。以下、本発明に係るコポリマーを用いた光電変換素子について説明する。
【0121】
<4.光電変換素子>
本発明に係る光電変換素子は、少なくとも、基材と、基材上に形成された一対の電極と、一対の電極間に形成された活性層と、を有し、前記活性層が、本発明に係るコポリマーを含有する。以下、図1を参照して、本発明に係る光電変換素子の一実施形態について説明する。
【0122】
図1に示すように、本発明に係る光電変換素子の一実施形態は、基材106上に、下部電極101と、下部バッファ層102と、活性層103と、上部バッファ層104と、上部電極105が順次形成された層構造を有する。本発明において、下部電極とは、基材106側に積層される電極を意味し、上部電極とは、基材106をボトムとした際に、下部電極よりも上部に積層される電極を意味する。なお、本発明において、下部電極101及び上部電極105を合わせて一対の電極と称す場合がある。また、下部バッファ層102及び上部バッファ層104は、必須の構成ではなく、任意で設ければよく、下部バッファ層102及び上部バッファ層104のうち一方のみを有していてもよい。また、光電変換素子は、上記以外の別の層を任意で有していてもよい。以下、光電変換素子の各構成部材について説明する。
【0123】
<4−1.基材106>
光電変換素子107は、通常は支持体となる基材106に形成される。基材106の材
料に特段の制限は無い。基材106の材料の好適な例としては、石英、ガラス、サファイア又はチタニア等の無機材料、及びフレキシブル基材等が挙げられる。フレキシブル基材の具体例としては、限定されるわけではないが、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリイミド、ナイロン、ポリスチレン、ポリビニルアルコール、エチレンビニルアルコール共重合体、フッ素樹脂フィルム、塩化ビニル又はポリエチレン等のポリオレフィン;セルロース、ポリ塩化ビニリデン、アラミド、ポリフェニレンスルフィド、ポリウレタン、ポリカーボネート、ポリアリレート、ポリノルボルネン又はエポキシ樹脂等の有機材料(樹脂基材);紙又は合成紙等の紙材料;ステンレス、チタン又はアルミニウム等の金属箔に、絶縁性を付与するために表面をコート又はラミネートしたもの等の複合材料が挙げられる。
【0124】
ガラスとしてはソーダガラス、青板ガラス又は無アルカリガラス等が挙げられる。ガラスからの溶出イオンが少ない点で、これらの中でも無アルカリガラスが好ましい。
【0125】
基材106の形状に制限はなく、例えば、板状、フィルム状又はシート状等のものを用いることができる。
【0126】
基材106の膜厚に制限はないが、通常5μm以上、好ましくは20μm以上であり、一方、通常20mm以下、好ましくは10mm以下である。基材の膜厚が5μm以上であることは、光電変換素子の強度が不足する可能性が低くなるために好ましい。基材106の膜厚が20mm以下であることは、コストが抑えられ、かつ質量が重くならないために好ましい。なお、基材106の材料がガラスである場合の膜厚は、通常0.01mm以上、好ましくは0.1mm以上であり、通常1cm以下、好ましくは0.5cm以下である。ガラス基材の膜厚が0.01mm以上であることは、機械的強度が増加し、割れにくくなるために、好ましい。また、ガラス基材の膜厚が0.5cm以下であることは、質量が重くならないために好ましい。
【0127】
<4−2.一対の電極(下部電極101及び上部電極105)>
一対の電極(101、106)は、光吸収により生じた正孔及び電子を捕集する機能を有する。したがって一対の電極には、正孔の捕集に適した電極(以下、アノードと記載する場合もある)と、電子の捕集に適した電極(以下、カソードと記載する場合もある)とを用いることが好ましい。一対の電極は、いずれか一方が透光性であればよく、両方が透光性であっても構わない。透光性があるとは、太陽光が40%以上透過することを指す。また、透明電極の太陽光線透過率は70%以上であることが、透明電極を透過させて活性層に光を到達させるために好ましい。光の透過率は、通常の分光光度計で測定できる。
【0128】
アノードとは、一般には仕事関数がカソードよりも高い導電性材料で構成され、活性層で発生した正孔をスムーズに取り出す機能を有する電極である。
【0129】
アノードの材料を挙げると、例えば、酸化ニッケル、酸化スズ、酸化インジウム、酸化インジウムスズ(ITO)、インジウム−ジルコニウム酸化物(IZO)、酸化チタン、酸化インジウム又は酸化亜鉛等の導電性金属酸化物;金、白金、銀、クロム又はコバルト等の金属あるいはその合金が挙げられる。これらの物質は高い仕事関数を有するため、好ましく、さらに、ポリチオフェン誘導体にポリスチレンスルホン酸をドーピングしたPEDOT:PSSで代表されるような導電性高分子材料を積層することができるため、好ましい。このような導電性高分子を積層する場合には、この導電性高分子材料の仕事関数が高いことから、上記のような高い仕事関数の材料でなくとも、AlやMg等のカソードに適した金属も広く用いることが可能である。ポリチオフェン誘導体にポリスチレンスルホン酸をドーピングしたPEDOT:PSSや、ポリピロール又はポリアニリン等にヨウ素等をドーピングした導電性高分子材料を、アノードの材料として使用することもできる。
【0130】
アノードが透明電極である場合には、ITO、酸化亜鉛又は酸化スズ等の透光性がある導電性金属酸化物を用いることが好ましく、特にITOが好ましい。
【0131】
アノードの膜厚は特に制限は無いが、通常10nm以上、好ましくは20nm以上、さらに好ましくは、50nm以上である。一方、通常10μm以下、好ましくは1μm以下、さらに好ましくは500nm以下である。アノードの膜厚が10nm以上であることにより、シート抵抗が抑えられ、アノードの膜厚が10μm以下であることにより、光透過率を低下させずに効率よく光を電気に変換することができる。アノードが透明電極である場合には、光透過率とシート抵抗とを両立できる膜厚を選ぶ必要がある。
【0132】
アノードのシート抵抗は、特段の制限はないが、通常1Ω/□以上、一方、1000Ω/□以下、好ましくは500Ω/□以下、さらに好ましくは100Ω/□以下である。
【0133】
アノードの形成方法としては、蒸着法若しくはスパッタ法等の真空成膜方法、又はナノ粒子や前駆体を含有するインクを塗布して成膜する湿式塗布法が挙げられる。
【0134】
カソードは、一般には仕事関数が低い値を有する導電性材料で構成され、活性層103で発生した電子をスムーズに取り出す機能を有する電極である。カソードは、電子取り出し層と隣接する。
【0135】
カソードの材料を挙げると、例えば、白金、金、銀、銅、鉄、スズ、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、セシウム、カルシウム又はマグネシウム等の金属及びその合金;フッ化リチウムやフッ化セシウム等の無機塩;酸化ニッケル、酸化アルミニウム、酸化リチウム又は酸化セシウムのような金属酸化物等が挙げられる。これらの材料は低い仕事関数を有する材料であるため、好ましい。カソードについてもアノードと同様に、電子取り出し層としてチタニアのようなn型半導体で導電性を有するものを用いることにより、高い仕事関数を有する材料を用いることもできる。電極保護の観点から、カソードの材料として好ましくは、白金、金、銀、銅、鉄、スズ、アルミニウム、カルシウム若しくはインジウム等の金属、又は酸化インジウムスズ等のこれらの金属を用いた合金である。
【0136】
カソードの膜厚は特に制限は無いが、通常10nm以上、好ましくは20nm以上、より好ましくは50nm以上である。一方、通常10μm以下、好ましくは1μm以下、より好ましくは500nm以下である。カソードの膜厚が10nm以上であることにより、シート抵抗が抑えられ、カソードの膜厚が10μm以下であることにより、光透過率を低下させずに効率よく光を電気に変換することができる。カソードが透明電極である場合には、光透過率とシート抵抗を両立する膜厚を選ぶ必要がある。
【0137】
カソードのシート抵抗は、特に制限は無いが、通常1000Ω/□以下、好ましくは500Ω/□以下、さらに好ましくは100Ω/□以下である。下限に制限は無いが、通常は1Ω/□以上である。
【0138】
カソードの形成方法としては、蒸着法若しくはスパッタ法等の真空成膜方法、又はナノ粒子や前駆体を含有するインクを塗布して成膜する湿式塗布法等がある。
【0139】
さらに、アノード及びカソードは、2層以上の積層構造を有していてもよい。また、アノード及びカソードに対して表面処理を行うことにより、特性(電気特性やぬれ特性等)を改良してもよい。
【0140】
アノード及びカソードを積層した後に、光電変換素子を通常50℃以上、好ましくは80℃以上、一方、通常300℃以下、好ましくは280℃以下、より好ましくは250℃以下の温度範囲において、加熱することが好ましい(この工程をアニーリング処理工程と称する場合がある)。アニーリング処理工程を50℃以上の温度で行うことにより、光電変換素子の各層間の密着性、例えば後述する電子取り出し層とカソード及び/又は電子取り出し層と活性層の密着性が向上する効果が得られるため、好ましい。各層間の密着性が向上することにより、薄膜太陽電池素子の熱安定性や耐久性等が向上しうる。アニーリング処理工程の温度を300℃以下にすることは、活性層内の有機化合物が熱分解する可能性が低くなるため、好ましい。アニーリング処理工程においては、上記の温度範囲内で段階的な加熱を行ってもよい。
【0141】
加熱する時間としては、通常1分以上、好ましくは3分以上、一方、通常3時間以下、好ましくは1時間以下である。アニーリング処理工程は、太陽電池性能のパラメータである開放電圧、短絡電流及びフィルファクターが一定の値になったところで終了させることが好ましい。また、アニーリング処理工程は、常圧下、かつ不活性ガス雰囲気中で実施することが好ましい。
【0142】
加熱する方法としては、ホットプレート等の熱源に有機薄膜太陽電池素子を載せてもよいし、オーブン等の加熱雰囲気中に有機薄膜太陽電池素子を入れてもよい。また、加熱はバッチ式で行っても連続方式で行ってもよい。
【0143】
<4−3.活性層103>
活性層103はp型半導体化合物とn型半導体化合物とを含有し、光電変換が行われる層である。具体的には、光電変換素子107が光を受けると、光が活性層103に吸収され、p型半導体材料とn型半導体材料の界面で電気が発生し、発生した電気がアノード及びカソードから取り出される。
【0144】
活性層103の層構成としては、p型半導体化合物を含有する層とn型半導体化合物を含有する層とが積層された薄膜積層型、又はp型半導体化合物とn型半導体化合物が混合した層を有するバルクヘテロ接合型が挙げられる。なお、バルクヘテロ接合型の活性層は、該混合層の他にp型半導体化合物を含有する層及び/又はn型半導体化合物を含有する層と、がさらに積層された構造であってもよい。なお、高い光電変換効率が期待できるという観点からはバルクヘテロ接合型であることが好ましい。
【0145】
活性層103中に含有されるp型半導体化合物としては、本発明に係るコポリマーが挙げられる。活性層103中が本発明に係るコポリマーを含有することで、より長波長側の光を吸収することができ、高い変換効率を有する光電変換素子を提供することができる。
【0146】
なお、活性層103は、本発明に係るコポリマー以外にも、本発明に係る効果を損なわない限りにおいて、他のp型半導体化合物を含んでいてもよい。他のp型半導体化合物としては、低分子有機化合物であっても高分子化合物であってもよい。これらのp型半導体化合物として特段の制限はないが、例えば、国際公開第2011/016430号又は特開2012−191194号公報等の公知文献に記載のものを使用することができる。
【0147】
n型半導体化合物としては、特段の制限はないが、例えば、フラーレン化合物;8−ヒドロキシキノリンアルミニウムに代表されるキノリノール誘導体金属錯体;ナフタレンテトラカルボン酸ジイミド又はペリレンテトラカルボン酸ジイミド等の縮合環テトラカルボン酸ジイミド類;ペリレンジイミド誘導体、ターピリジン金属錯体、トロポロン金属錯体、フラボノール金属錯体、ペリノン誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、チアゾール誘導体、ベンズチアゾール誘導体、ベンゾチアジアゾール誘導体
、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、アルダジン誘導体、ビススチリル誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、ベンゾキノリン誘導体、ビピリジン誘導体、ボラン誘導体;アントラセン、ピレン、ナフタセン又はペンタセン等の縮合多環芳香族炭化水素の全フッ化物;単層カーボンナノチューブ、n型ポリマー(n型高分子半導体材料)等が挙げられる。
【0148】
その中でも、フラーレン化合物、ボラン誘導体、チアゾール誘導体、ベンゾチアゾール誘導体、ベンゾチアジアゾール誘導体、N−アルキル置換されたナフタレンテトラカルボン酸ジイミド、N−アルキル置換されたペリレンジイミド誘導体又はn型高分子半導体材料が好ましく、フラーレン化合物、N−アルキル置換されたペリレンジイミド誘導体、N−アルキル置換されたナフタレンテトラカルボン酸ジイミド又はn型高分子半導体化合物がより好ましく、フラーレン化合物が特に好ましい。これらの化合物としては、特段の制限はないが、例えば、国際公開第2011/016430号又は特開2012−191194号公報等の公知文献に記載のものを使用することができる。なお、上記のうち一種の化合物を用いてもよいし、複数種の化合物の混合物を用いてもよい。これらの中でも、特に60PCBM、70PCBM又はこれらの混合物を用いることが好ましい。
【0149】
活性層103の膜厚は特に限定されないが、通常10nm以上、好ましくは50nm以上であり、通常1μm以下、好ましくは500nm以下、より好ましくは200nm以下である。活性層103の膜厚が10nm以上であることにより、膜の均一性が保たれ、短絡を起こしにくくなるために好ましい。また、活性層103の厚さが1μm以下であれば内部抵抗が小さくなり、さらには一対の電極間が離れすぎることなく、電荷の拡散が良好になるために好ましい。
【0150】
活性層103の作成方法としては、特段に制限はないが、生産性が向上することから、塗布法により形成することが好ましい。具体的には、本発明に係るコポリマーを含む活性層形成用インクを塗布して活性層103を形成することが好ましい。
【0151】
塗布法としては、任意の方法を用いることができ、例えば、スピンコート法、リバースロールコート法、グラビアコート法、キスコート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーバーコート法、パイプドクター法、含浸・コート法、カーテンコート法等が挙げられる。
【0152】
積層型の活性層を形成する場合、少なくともp型半導体化合物として本発明に係るコポリマーを含有する活性層形成用インクと、n型半導体化合物を含有する活性層用インクを用いて、それぞれ塗布法によりp型半導体含有層とn型半導体含有層とを積層して活性層を形成すればよい。一方で、バルクヘテロ型の活性層を形成する場合は、少なくともp型半導体化合物として本発明に係るコポリマーと、n型半導体化合物とを含有する活性層形成用インクを用いて、塗布法によりバルクヘテロ型の活性層を形成すればよい。
【0153】
上述の活性層形成用インクは、上述の化合物以外に通常、溶媒を含む。溶媒としては、特段の制限はないが、例えば、ヘキサン、ヘプタン、オクタン、イソオクタン、ノナン若しくはデカン等の脂肪族炭化水素類;トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、クロロベンゼン若しくはオルトジクロロベンゼン等の芳香族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロヘプタン、シクロオクタン、テトラリン若しくはデカリン等の脂環式炭化水素類;メタノール、エタノール若しくはプロパノール等の低級アルコール類;アセトン、メチルエチルケトン、シクロペンタノン若しくはシクロヘキサノン等の脂肪族ケトン類;アセトフェノン若しくはプロピオフェノン等の芳香族ケトン類;酢酸エチル、酢酸ブチル若しくは乳酸メチル等のエステル類;クロロホルム、塩化メチレン、ジクロロエタン、トリクロロエタン若しくはトリクロロエチ
レン等のハロゲン炭化水素類;エチルエーテル、テトラヒドロフラン若しくはジオキサン等のエーテル類;又は、ジメチルホルムアミド若しくはジメチルアセトアミド等のアミド類等が挙げられる。
【0154】
なかでも好ましくは、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、クロロベンゼン若しくはオルトジクロロベンゼン等の芳香族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロヘプタン、シクロオクタン、テトラリン若しくはデカリン等の脂環式炭化水素類;アセトン、メチルエチルケトン、シクロペンタノン若しくはシクロヘキサノン等のケトン類;クロロホルム、塩化メチレン、ジクロロエタン、トリクロロエタン若しくはトリクロロエチレン等のハロゲン炭化水素類;又は、エチルエーテル、テトラヒドロフラン若しくはジオキサン等のエーテル類である。より好ましくは、トルエン、キシレン、メシチレン若しくはシクロヘキシルベンゼン等の非ハロゲン芳香族炭化水素類;シクロペンタノン若しくはシクロヘキサノン等の非ハロゲン系ケトン類;アセトフェノン若しくはプロピオフェノン等の芳香族ケトン類;テトラヒドロフラン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロヘプタン、シクロオクタン、テトラリン若しくはデカリン等の脂環式炭化水素類;アセトン、メチルエチルケトン、シクロペンタノン若しくはシクロヘキサノン等のケトン類;又は、1,4−ジオキサン等の非ハロゲン系脂肪族エーテル類である。特に好ましくは、トルエン、キシレン、メシチレン又はシクロヘキシルベンゼン等の非ハロゲン芳香族炭化水素類である。
【0155】
溶媒としては1種の溶媒を単独で用いてもよいし、任意の2種以上の溶媒を任意の比率で併用してもよい。2種以上の溶媒を併用する場合、沸点が60℃以上150℃以下である低沸点溶媒と、沸点が180℃以上250℃以下である高沸点溶媒とを組み合わせることが好ましい。低沸点溶媒と高沸点溶媒との組み合わせの例としては、非ハロゲン芳香族炭化水素類と脂環式炭化水素類、非ハロゲン芳香族炭化水素類と芳香族ケトン類、エーテル類と脂環式炭化水素類、エーテル類と芳香族ケトン類、脂肪族ケトン類と脂環式炭化水素類、又は脂肪族ケトン類と芳香族ケトン類、等が挙げられる。好ましい組み合わせの具体例としては、トルエンとテトラリン、キシレンとテトラリン、トルエンとアセトフェノン、キシレンとアセトフェノン、テトラヒドロフランとテトラリン、テトラヒドロフランとアセトフェノン、メチルエチルケトンとテトラリン、メチルエチルケトンとアセトフェノン、等が挙げられる。
【0156】
なお、活性層形成用インクは上述した化合物以外にも、本発明に係る効果を損なわない限りにおいて、他の添加剤等を含んでいてもよい。
【0157】
<4−4.下部バッファ層102、上部バッファ層104>
上述の通り、本実施形態に係る光電変換素子は、下部電極101と活性層103との間に下部バッファ層102と、上部電極105と活性層103との間に上部バッファ層104と、を有する。下部バッファ層102及び上部バッファ層104は、それぞれ、活性層103からカソードへの電子取り出し効率又は活性層103からアノードへの正孔取り出し効率を向上させる機能を有する。なお、活性層103からカソードへの電子取り出し効率を向上させる機能を有するバッファ層を電子取り出し層、活性層103からカソードへの電子取り出し効率を向上させる機能を有するバッファ層を正孔取り出し層という。なお、上述の通り、下部バッファ層102及び上部バッファ層104は、必須の構成部材ではなく、有機薄膜太陽電池素子4は、下部バッファ層102及び上部バッファ層104を有していなくてもよい。また、どちらか一方の層のみを有していてもよい。
【0158】
下部バッファ層102及び上部バッファ層104は、どちらが電子取り出し層でも、正孔取り出し層でもよいが、下部電極101がカソードで、上部電極105がアノードの場合、下部バッファ層102は電子取り出し層であり、上部バッファ層104は正孔取り出
し層である。一方、下部電極101がアノードで、上部電極105がカソードの場合、下部バッファ層102は正孔取り出し層であり、上部バッファ層104は電子取り出し層である。
【0159】
<4−4−1.電子取り出し層>
電子取り出し層の材料は、活性層103からカソードへ電子の取り出し効率を向上させる材料であれば特段の制限はないが、無機化合物又は有機化合物が挙げられる。
【0160】
無機化合物の例としては、Li、Na、K又はCs等のアルカリ金属の塩;酸化チタン(TiOx)や酸化亜鉛(ZnO)のようなn型半導体酸化物等が挙げられる。なかでも、アルカリ金属の塩としては、LiF、NaF、KF又はCsFのようなフッ化物塩が好ましく、n型半導体酸化物としては、酸化亜鉛(ZnO)が好ましい。このような材料の動作機構は不明であるが、Al等で構成されるカソードと組み合わされた際にカソードの仕事関数を小さくし、太陽電池素子内部に印加される電圧を上げる事が考えられる。
【0161】
有機化合物の例としては、例えば、トリアリールホスフィンオキシド化合物のようなリン原子と第16族元素との二重結合を有するホスフィン化合物;バソキュプロイン(BCP)又はバソフェナントレン(Bphen)のような、置換基を有してもよく、1位及び10位がヘテロ原子で置き換えられていてもよいフェナントレン化合物;トリアリールホウ素のようなホウ素化合物;(8−ヒドロキシキノリナト)アルミニウム(Alq3)のような有機金属酸化物;オキサジアゾール化合物又はベンゾイミダゾール化合物のような、置換基を有していてもよい1又は2の環構造を有する化合物;ナフタレンテトラカルボン酸無水物(NTCDA)又はペリレンテトラカルボン酸無水物(PTCDA)のような、ジカルボン酸無水物のような縮合ジカルボン酸構造を有する芳香族化合物等が挙げられる。
【0162】
電子取り出し層の膜厚は、通常0.1nm以上、好ましくは1nm以上、より好ましくは10nm以上である。一方、通常400nm以下、好ましくは200nm以下である。電子取り出し層の膜厚が0.1nm以上であることでバッファ材料としての機能を果たすことになり、電子取り出し層の膜厚が400nm以下であることで、電子が取り出しやすくなり、光電変換効率が向上しうる。
【0163】
電子取り出し層の材料のLUMOエネルギー準位は、特に限定は無いが、通常−4.0eV以上、好ましくは−3.9eV以上である。一方、通常−1.9eV以下、好ましくは−2.0eV以下である。電子取り出し層の材料のLUMOエネルギー準位が−1.9eV以下であることは、電荷移動が促進されうる点で好ましい。電子取り出し層の材料のLUMOエネルギー準位が−4.0eV以上であることは、n型半導体材料への逆電子移動が防がれうる点で好ましい。
【0164】
電子取り出し層の材料のHOMOエネルギー準位は、特に限定は無いが、通常−9.0eV以上、好ましくは−8.0eV以上である。一方、通常−5.0eV以下、好ましくは−5.5eV以下である。電子取り出し層の材料のHOMOエネルギー準位が−5.0eV以下であることは、正孔が移動してくることを阻止しうる点で好ましい。
【0165】
電子取り出し層の材料のLUMOエネルギー準位及びHOMOエネルギー準位の算出方法としては、サイクリックボルタモグラム測定法が挙げられる。例えば、公知文献(国際公開第2011/016430号)に記載の方法を参考にして実施することができる。
【0166】
電子取り出し層の材料が有機化合物である場合、DSC法により測定した場合のこの化合物のガラス転移温度(以下、Tgと記載する場合もある)は、特段の制限はないが、観
測されないか、又は55℃以上であることが好ましい。DSC法によりガラス転移温度が観測されないとは、ガラス転移温度がないことを意味する。具体的には400℃以下のガラス転移温度の有無により判別する。DSC法によるガラス転移温度が観測されない材料は、熱的に高い安定性を有している点で好ましい。
【0167】
また、DSC法により測定した場合のガラス転移温度が55℃以上である化合物の中でも、ガラス転移温度が、好ましくは65℃以上、より好ましくは80℃以上、さらに好ましくは110℃以上、特に好ましくは120℃以上である化合物が望ましい。一方、ガラス転移温度の上限は特に限定はないが、通常400℃以下、好ましくは350℃以下、より好ましくは300℃以下である。また、電子取り出し層の材料は、DSC法によるガラス転移温度が30℃以上55度未満に観測されないものであることが好ましい。
【0168】
本明細書におけるガラス転移温度とは、アモルファス状態の固体において、熱エネルギーにより局所的な分子運動が開始される温度とされており、比熱が変化する点として定義される。Tgよりさらに温度が上がると、固体構造が変化して結晶化が起こる(この時の温度を結晶化温度(Tc)とする)。さらに温度が上がると、融点(Tm)で融解し液体状態に変化することが一般的である。但し、高温で分子が分解したり、昇華したりして、これらの相転移が見られないこともある。
【0169】
DSC法とは、JIS K−0129“熱分析通則”に定義された熱物性の測定法(示差走査熱量測定法)である。ガラス転移温度をより明確に決める為には、一度ガラス転移点以上の温度に加熱したサンプルを急冷した後に測定することが望ましい。例えば、公知文献(国際公開第2011/016430号)に記載の方法により、測定を実施することができる。
【0170】
電子取り出し層に用いられる化合物のガラス転移温度が55℃以上である場合、この化合物は、印加される電場、流れる電流、曲げや温度変化による応力等の外部ストレスに対して構造が変化しにくいため、耐久性の面で好ましい。さらに、化合物の薄膜の結晶化が進みにくい傾向も有すことから、使用温度範囲においてこの化合物がアモルファス状態と結晶状態との間で変化しにくくなることにより、電子取り出し層としての安定性が良くなるため、耐久性の面で好ましい。この効果は、材料のガラス転移温度が高ければ高いほど、より顕著に表れる。
【0171】
電子取り出し層の形成方法に制限はない。例えば、昇華性を有する材料を用いる場合は真空蒸着法等により形成することができる。また、例えば、溶媒に可溶な材料を用いる場合は、スピンコートやインクジェット等の湿式塗布法等により形成することができる。
【0172】
塗布法により電子取り出し層を形成する場合は、塗布液にさらに界面活性剤を含有させてもよい。界面活性剤の使用により、微小な泡若しくは異物等の付着による凹み及び/又は乾燥工程での塗布むら等の発生が抑制される。界面活性剤としては、公知の界面活性剤(カチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤)を用いることができる。なかでも、ケイ素系界面活性剤、アセチレンジオール系界面活性剤又はフッ素系界面活性剤が好ましい。なお、界面活性剤としては1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
具体的には、例えばアルカリ金属塩を電子取り出し層の材料として用いる場合、真空蒸着、スパッタ等の真空成膜方法を用いて電子取り出し層を成膜することが可能である。なかでも、抵抗加熱による真空蒸着によって、電子取り出し層を形成するのが望ましい。真空蒸着を用いることにより、活性層等の他の層へのダメージを小さくすることができる。
【0173】
一方、n型半導体の金属酸化物については、例えば、酸化亜鉛ZnOを電子取り出し層
の材料として用いる場合には、スパッタ法等の真空成膜方法を用いることもできるが、塗布法を用いて電子取り出し層を成膜することが望ましい。例えば、Sol−Gel Science、C.J.Brinker,G.W.Scherer著、Academic Press(1990)に記載のゾルゲル法に従って、酸化亜鉛で構成される電子取り出し層を形成できる。この場合の膜厚は、通常0.1nm以上、好ましくは2nm以上、より好ましくは5nm以上であり、通常1μm以下、好ましくは100nm以下、より好ましくは50nm以下である。電子取り出し層が薄すぎると、電子の取り出し効率を向上させる効果が十分でなくなり、厚すぎると、電子取り出し層が直列抵抗成分として作用することにより素子の特性を損なう傾向がある。
【0174】
<4−4−2.正孔取り出し層>
正孔取り出し層の材料に特に限定は無く、活性層103からアノードへの正孔の取り出し効率を向上させることが可能な材料であれば特に限定されない。具体的には、ポリチオフェン、ポリピロール、ポリアセチレン、トリフェニレンジアミン又はポリアニリン等に、スルホン酸及び/又はヨウ素等がドーピングされた導電性ポリマー、スルホニル基を置換基に有するポリチオフェン誘導体、アリールアミン等の導電性有機化合物、酸化銅、酸化ニッケル、酸化マンガン、酸化モリブデン、酸化バナジウム又は酸化タングステン等の金属酸化物、ナフィオン、後述のp型半導体等が挙げられる。その中でも好ましくは、スルホン酸をドーピングした導電性ポリマーであり、より好ましくは、ポリチオフェン誘導体にポリスチレンスルホン酸をドーピングした(3,4−エチレンジオキシチオフェン)ポリ(スチレンスルホン酸)(PEDOT:PSS)である。また、金、インジウム、銀又はパラジウム等の金属等の薄膜も使用することができる。金属等の薄膜は、単独で形成してもよいし、上記の有機材料と組み合わせて用いることもできる。
【0175】
正孔取り出し層の膜厚は、通常0.1nm以上である。一方、通常400nm以下、好ましくは200nm以下である。正孔取り出し層の膜厚が0.1nm以上であることでバッファ材料としての機能を果たすことになり、正孔取り出し層の膜厚が400nm以下であることで、正孔が取り出し易くなり、光電変換効率が向上しうる。
【0176】
正孔取り出し層の形成方法に制限はない。例えば、昇華性を有する材料を用いる場合は真空蒸着法等により形成することができる。また、例えば、溶媒に可溶な材料を用いる場合は、スピンコート法やインクジェット法等の湿式塗布法等により形成することができる。正孔取り出し層に半導体材料を用いる場合は、活性層の低分子有機半導体化合物と同様に、前駆体を用いて層を形成した後に前駆体を半導体化合物に変換してもよい。
なかでも、正孔取り出し層の材料としてPEDOT:PSSを用いる場合、分散液を塗布する方法によって正孔取り出し層を形成することが好ましい。PEDOT:PSSの分散液としては、ヘレウス社製のCLEVIOSTMシリーズや、アグファ社製のORGACONTMシリーズ等が挙げられる。
【0177】
塗布法により正孔取り出し層を形成する場合は、塗布液にさらに界面活性剤を含有させてもよい。界面活性剤の使用により、微小な泡若しくは異物等の付着による凹み及び/又は乾燥工程での塗布むら等の発生が抑制される。界面活性剤としては、公知の界面活性剤(カチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤)を用いることができる。なかでも、ケイ素系界面活性剤、アセチレンジオール系界面活性剤又はフッ素系界面活性剤が好ましい。なお、界面活性剤としては1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0178】
<4−5.その他の光電変換素子の構成>
本発明の一実施形態に係る光電変換素子の構造は、図1の構成以外にも、図4に示すようなタンデム構造を有する光電変換素子であってもよい。なお、タンデム構造を有する光
電変換素子とは、数個の同じ、又は異なる材料で作ったpn接合を光の進行方向に重ねて配列した構造を備えた光電変換素子である。具体的には、 基材106、下部電極101、下部バッファ層102、第1の活性層108、中間層109、第2の活性層110、上部バッファ層104、及び上部電極107が順次形成された層構造を有する構造であってもよい。基材106、下部電極101、下部バッファ層102、上部バッファ層104及び上部電極106は、図1の光電変換素子の各構成層において説明した機能と同様の機能を有し、同様の材料、方法、膜厚等により形成することができる。
【0179】
第1の活性層108及び第2の活性層110は、図1の活性層103と同様に、p型半導体化合物とn型半導体化合物とを含有し、光電変換素子107が光を受けると、光が活性層103に吸収され、p型半導体材料とn型半導体材料の界面で電気が発生し、発生した電気がアノード及びカソードから取り出される。
【0180】
第1の活性層108及び第2の活性層110の層構成は、活性層103と同様に、p型半導体化合物層とn型半導体化合物層とが積層された薄膜積層型、p型半導体化合物とn型半導体化合物とが混合した層を有するバルクヘテロ接合型、p型半導体化合物層と、p型半導体化合物とn型半導体化合物とが混合した層(i層)と、n型半導体化合物層とが積層されたもの等が挙げられる。なかでも、p型半導体化合物とn型半導体化合物が混合した層を有するバルクヘテロ接合型が好ましい。
【0181】
第1の活性層108及び第2の活性層110の膜厚は、特段の制限はないが、それぞれ、通常10nm以上、好ましくは50nm以上であり、一方通常1μm以下、好ましくは500nm以下、より好ましくは200nm以下である。活性層103の膜厚が10nm以上であることは、膜の均一性が保たれ、短絡を起こしにくくなるため、好ましい。また、活性層103の厚さが1μm以下であることは、内部抵抗が小さくなる点、及び電極(カノード101−中間層104,中間層104−アノード107)間が離れすぎず電荷の拡散が良好となる点で、好ましい。なお、第1の活性層108及び第2の活性層110の膜厚は同じであってもよいし、互いに異なっていてもよい。
【0182】
第1の活性層108及び第2の活性層110が含有するp型半導体化合物及びn型半導体化合物は、同一の材料であってもよいが、各々異なっていてもよい。限定されるわけではないが、第1の活性層108及び第2の活性層110が含有するp型半導体化合物及びn型半導体化合物は、図1の活性層103において記載したp型半導体化合物及びn型半導体化合物が挙げられる。
【0183】
なお、これらの中でも、第1の活性層108及び第2の活性層110が、互いに異なる光吸収波長を有するp型半導体化合物を含有することが好ましい。光の吸収波長が異なる材料を用いることで、入射光を透過損失することなく、効率良く光電変換を行うことができる。特に、本発明に係るコポリマーは、長波長側(600nm〜1000nm)の光を吸収することができるために短波長側の光を吸収するp型半導体化合物とを組み合わせて用いることが好ましい。具体的には、第1の活性層108及び第2の活性層110のうち、一方の活性層が、本発明に係るコポリマーを含有し、第1の活性層108及び第2の活性層110のうち他方の活性層が、(300nm〜700nm)の光吸収波長を有するp型半導体化合物を含むことが好ましい。具体的な、p型半導体化合物としては、P3HT、ベンゾポルフィリン等が挙げられるがこの限りではない。
【0184】
なお、第1の活性層108及び第2の活性層110の形成方法は、特段の制限はなく、活性層103と同様の方法で形成することができる。
【0185】
中間層109は、第1の活性層108で発生した正孔と第2の活性層110で発生した
電子、もしくは第1の活性層108で発生した電子と第2の活性層110で発生した正孔を再結合により消滅させる機能を有する。この時、各単セルは中間層109により直列に接続されているため、理想的にはタンデムの解放電圧は各単セルの解放電圧の和となる。中間層109は、1種の導電層で形成されていてもよいが、解放電圧の和にロスが生じないよう通常は、電子取り出し層と正孔取り出し層とを含んだ多層であることが好ましい。なお、中間層109は、電子取り出し層と正孔取り出し層の間に、金属層や酸化物半導体層を加えた層構成でもよいが、層構成が増えると製造コストが高くなる。そのため、高い電気特性が得られ、かつ製造コスト・BR>フ安い層構成としては、2層又は3層からなる
中間層が好ましく、2層からなる中間層が特に好ましい。電子取り出し層及び正孔取り出し層の2層で形成される中間層は、製造コストが安い上に高い電気特性が期待される。
【0186】
なお、中間層109が有していてもよい金属層及び酸化物半導体層は特段の制限はないが、Ag、Au、Al等の金属層やITO、IZO、AZO、GZOといった酸化物半導体層が挙げられ、これらの中でも、特に、光透過性の観点からAg、Au、ITO、IZOが好ましい。また、中間層109が有していてもよい電子取り出し層及び/又は正孔取り出し層は、図1の下部バッファ層102及び上部バッファ層104の項目に記載した電子取り出し層及び/又は正孔取り出し層に使用できる材料が挙げられる。
【0187】
中間層109の膜厚は、特に限定はないが、通常0.5nm以上である。一方、通常800nm以下、好ましくは400nm以下である。中間層106の膜厚が0.5nm以上であることで、接合層材料としての機能を果たすことになり、中間層104の膜厚が800nm以下であることで、電荷が取り出し易くなり、また光透過率が高くなることで光電変換効率が向上しうる。
【0188】
中間層109の形成方法は、特段の制限はなく、例えば、昇華性を有する材料を用いる場合は真空蒸着法等の乾式成膜法により形成することができる。また、例えば、溶媒に可溶な材料を用いる場合は、スピンコート法やインクジェット法等の湿式成膜法により形成することができる。
【0189】
<4.6.光電変換素子の製造方法>
図1に示される構成を有する光電変換素子107は、各層について説明した上述の方法に従い、基材106上に、下部電極101、下部バッファ層102、活性層103、上部バッファ層104、及び上部電極105を順次積層することにより作製することができる。また、図2に示されるタンデム構造を有する光電変換素子を製造する場合は、基材106上に、下部電極101、下部バッファ層102、第1の活性層108、中間層109、第2の活性層110、上部バッファ層104及び上部電極105を順次積層することにより作製することができる。
【0190】
下部電極101及び上部電極105を積層した後に、光電変換素子を通常50℃以上、好ましくは80℃以上、一方、通常300℃以下、好ましくは280℃以下、より好ましくは250℃以下の温度範囲において、加熱することが好ましい(この工程をアニーリング処理工程と称する)。
【0191】
アニーリング処理工程を50℃以上の温度で行うことは、光電変換素子の各層間の密着性、例えば、下部バッファ層102と下部電極101及び/又は下部バッファ層102と活性層103の密着性が向上する効果が得られるため、好ましい。各層間の密着性が向上することにより、光電変換素子の熱安定性や耐久性等が向上し得る。また、アニーリング処理工程により、活性層の自己組織化が促進され得る。アニーリング処理工程の温度を300℃以下にすることは、活性層103内の有機化合物が熱分解する可能性が低くなるため、好ましい。アニーリング処理工程においては、上記の温度範囲内で段階的な加熱を行
ってもよい。
【0192】
加熱する時間としては、通常1分以上、好ましくは3分以上、一方、通常3時間以下、好ましくは1時間以下である。アニーリング処理工程は、太陽電池性能のパラメータである開放電圧、短絡電流及びフィルファクターが一定の値になったところで終了させることが好ましい。また、アニーリング処理工程は、常圧下、かつ不活性ガス雰囲気中で実施することが好ましい。
【0193】
加熱する方法としては、ホットプレート等の熱源に光電変換素子を載せてもよいし、オーブン等の加熱雰囲気中に光電変換素子を入れてもよい。また、加熱はバッチ式で行っても連続方式で行ってもよい。
【0194】
アニーリング処理工程により光電変換素子の熱安定性や耐久性等が向上し得るものの、アニーリング処理工程中にフラーレン化合物が凝集し、相分離が促進されるために、光電変換効率が低下することがある。しかしながら活性層103は添加剤を含有しているため、添加剤によってアニーリング処理工程中のフラーレン化合物の凝集が抑制される。このように、活性層103に添加剤を含有させることにより、アニーリング処理工程を行った後での光電変換効率がより高い光電変換素子107が得られることができる。
【0195】
本発明に係る光電変換素子を構成する各層は、特段の制限はなく、シート・ツー・シート(万葉)方式、又はロール・ツー・ロール方式で形成することができるが、下記の理由により、ロール・ツー・ロール方式で形成することが好ましい。
【0196】
ロール・ツー・ロール方式とは、ロール状に巻かれたフレキシブルな基材を繰り出して、間欠的、或いは連続的に搬送しながら、巻き取りロールにより巻き取られるまでの間に加工を行う方式である。ロール・ツー・ロール方式によれば、kmオーダの長尺基板を一括処理することが可能であるため、シート・ツー・シート方式に比べて量産化に適した生産方式である。
【0197】
なお、ロール・ツー・ロール方式に用いることのできるロールの大きさは、ロール・ツー・ロール方式の製造装置で扱える限り特に限定されないが、外径は、通常5m以下、好ましくは3m以下、より好ましくは1m以下であり、通常10cm以上、好ましくは20cm以上、より好ましくは30cm以上である。ロール芯の外径は、通常4m以下、好ましくは3m以下、より好ましくは0.5m以下であり、通常1cm以上、好ましくは3cm以上、より好ましくは5cm以上、更に好ましくは10cm以上、特に好ましくは20cm以上である。これらの径が上記上限以下であるとロールの取り扱い性が高い点で好ましく、下限以上であると、以下の各工程で成膜される層が、曲げ応力により破壊される可能性が低くなる点で好ましい。ロールの幅は、通常5cm以上、好ましくは10cm以上、より好ましくは20cm以上であり、通常5m以下、好ましくは3m以下、より好ましくは2m以下である。幅が上限以下であるとロールの取り扱い性が高い点で好ましく、下限以上であると光電変換素子の大きさの自由度が高くなるため好ましい。
【0198】
<4−7.光電変換特性>
光電変換素子107の光電変換特性は次のようにして求めることができる。光電変換素子107にソーラシュミレーターでAM1.5G条件の光を照射強度100mW/cm2
で照射して、電流−電圧特性を測定する。得られた電流−電圧曲線から、光電変換効率(PCE)、短絡電流密度(Jsc)、開放電圧(Voc)、フィルファクター(FF)、直列抵抗、シャント抵抗といった光電変換特性を求めることができる。
【0199】
本発明に係る光電変換素子の光電変換効率は、特段の制限はないが、通常1%以上、好
ましくは1.5%以上、より好ましくは2%以上である。一方、上限に特段の制限はなく、高ければ高いほどよい。
【0200】
また、光電変換素子の耐久性を測定する方法としては、光電変換素子を大気暴露する前後での、光電変換効率の維持率を求める方法が挙げられる。
(維持率)=(大気暴露N時間後の光電変換効率)/(大気暴露直前の光電変換効率)
【0201】
光電変換素子を実用化するには、製造が簡便かつ安価であること以外に、高い光電変換効率及び高い耐久性を有することが重要である。この観点から、1週間大気暴露する前後での光電変換効率の維持率は、60%以上が好ましく、80%以上がより好ましく、高ければ高いほどよい。
【0202】
<5.太陽電池>
上述の実施形態に係る光電変換素子は、太陽電池、なかでも薄膜太陽電池の太陽電池素子として使用されることが好ましい。図2は、本発明の一実施形態としての薄膜太陽電池の構成を模式的に示す断面図である。図2に示すように、本実施形態の薄膜太陽電池14は、耐候性保護フィルム1と、紫外線カットフィルム2と、ガスバリアフィルム3と、ゲッター材フィルム4と、封止材5と、光電変換素子6と、封止材7と、ゲッター材フィルム8と、ガスバリアフィルム9と、バックシート10とをこの順に備える。そして、薄膜太陽電池は、通常、耐候性保護フィルム1が形成された側(図中下方)から光が照射されて、光電変換素子6が発電する。なお、薄膜太陽電池は、これらの構成部材を全て有する必要はなく、各構成部材を任意で選択して設ければよい。
【0203】
薄膜太陽電池を構成するこれらの構成部材及びその製造方法について特段の制限はなく、周知技術を用いることができる。例えば、国際公開第2011/016430号又は特開2012−191194号公報等の公知文献に記載のものを使用することができる。
【0204】
本発明に係る太陽電池、特に上述した薄膜太陽電池14の用途に特段の制限はなく、任意の用途に用いることができる。例えば、建材用太陽電池、自動車用太陽電池、宇宙機用太陽電池、家電用太陽電池、携帯電話用太陽電池又は玩具用太陽電池等が挙げられる。
【0205】
本発明に係る太陽電池、特に薄膜太陽電池はそのまま用いてもよいし、例えば基材上に太陽電池を設置して太陽電池モジュールとして用いてもよい。例えば、図3に示すように、基材12上に薄膜太陽電池14を備えた太陽電池モジュール13として、使用場所に設置して用いることができる。基材12については、周知技術を用いることができ、例えば、国際公開第2011/016430号又は特開2012−191194号公報等に記載のものを用いることができる。例えば、基材12として建材用板材を使用する場合、この板材の表面に薄膜太陽電池14を設けることにより、太陽電池モジュール13として太陽電池パネルを作製することができる。
【実施例】
【0206】
以下に、実施例により本発明の実施形態を説明するが、本発明はその要旨を超えない限り、これらに限定されるものではない。なお、本実施例に記載の項目は以下の方法によって測定した。
【0207】
[重量平均分子量及び数平均分子量の測定方法]
ポリスチレン換算の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲル浸透クロマトグラフィ(GPC)より求めた。なお、分子量分布(PDI)は、Mw/Mnを表す。
【0208】
ゲル浸透クロマトグラフィ(GPC)測定は以下の条件で行った。
カラム:PolymerLaboratories GPC用カラム(PLgel MIXED−B 10μm 内径7.5mm,長さ30cm)2本直列に接続して使用
ポンプ:LC−10AT(島津製作所社製)
オーブン:CTO−10A(島津製作所社製)
検出器:示差屈折率検出器(島津製作所社製,RID−10A)及びUV−vis検出器(島津製作所社製,RID−10A)及びUV−vis検出
器(島津製作所社製,SPD−10A)
サンプル:試料1mgをオルトジクロロベンゼン(200mg)に溶解させた液1μL
移動相:オルトジクロロベンゼン
流速:1.0mL/min
解析:LC−Solution(島津製作所社製)
【0209】
<合成例1:化合物E2の合成>
【0210】
【化11】
【0211】
100mL多口フラスコに4,5−ジクロロフタル酸(化合物E1)4.4g(18mmol)、DMF0.2mlを加えた。塩化チオニル8.9g(74mmol)を滴下漏斗に加え、ゆっくりと滴下した。オイルバスにて60℃に設定し撹拌を行った。75℃まで昇温し、系が均一になった時点で反応終了とした。減圧留去により溶媒を除去し、酸クロライド(化合物E2)を得た。
<合成例2:化合物E3の合成>
【0212】
【化12】
【0213】
窒素下、200mL多口フラスコを氷浴につけ、メルカプトピリジン4.1g(37m
mol)、テトラヒドロフラン66mL、トリエチルアミン6.6mLを加え15分撹拌した。合成例1により得られた酸クロライド(化合物E2)を26mLのテトラヒドロフランに溶かし、溶液を系に加えた。次に、1%塩酸を264mL加え、クロロホルムで抽出し、10%水酸化ナトリウム水溶液で洗浄し、さらに1M炭酸水素ナトリウム溶液で洗浄した後に、水で洗浄後硫酸ナトリウムで乾燥させた。減圧留去により溶媒を除去し、エーテルを加え、再度減圧留去して、目的のチオエステル体(化合物E3)を1.3gの結晶として析出させた。化合物E3の化学シフトは以下のとおりである。
【0214】
H1NMR(δ8.65(m,2H)、δ7.98(s,2H)、7.73−7.80(
m,4H)、7.32(m,2H)
<合成例3:化合物E4の合成>
【0215】
【化13】
【0216】
窒素下、300mL多口フラスコにチオエステル体(化合物E3)3.5g(8.3mmol)、及び脱水テトラヒドロフラン42mLを加え撹拌を開始した。氷浴につけ、2−チエニルマグネシウムブロミド テトラヒドロ溶液17.9mL(17.9mmol)をゆっくり加え、1時間撹拌した。10%塩酸34mLをゆっくりと加えた後、エーテル
で抽出し、硫酸ナトリウムで乾燥させた。減圧留去により溶媒を除去し、エーテルをもう一度加え析出した粉末をろ取し、目的の化合物(化合物E4)を2.7g得た。化合物E4の化学シフトは以下のとおりである。
【0217】
H1NMR(δ7.83(s,2H)、δ7.7(dd,2H)、δ7.47(dd,2
H)、δ7.1(dd,2H)
<合成例4:化合物E5の合成>
【0218】
【化14】
【0219】
窒素下500mLの多口フラスコに、化合物E4を2.7g(7.3mmol)ジクロロメタン91mL、ローソン試薬4.2g(10mmol)を加え60℃で30分撹拌した。減圧留去により溶媒を除去し、エタノール91mLを加え30分加熱還流させた。水100mLを加え、クロロホルム200mLで抽出後硫酸ナトリウムで乾燥させた。シリカゲルカラムクロマトグラフィーにて原点成分を除去し、クロロホルムーヘキサンの混合溶媒で晶析を行った。目的の化合物E5を2.4g得た。化合物E5の化学シフトは以下のとおりである。
【0220】
H1NMR(δ8.04(s,2H)、δ7.43(dd,2H)、δ7.33(dd,2
H)、δ7.18(dd,2H))
<合成例5:化合物E6の合成>
【0221】
【化15】
【0222】
窒素下、100mL多口フラスコにマグネシウム1.3g(54mmol)、ヨウ素1mg、脱水エーテル20mLを加え撹拌を開始した。ブロモオクタン9.3mL(54mmol)のエーテル20mL溶液をゆっくりと滴下させた。4時間加熱撹拌を行い、グリニア試薬とした。別の500mL多口フラスコに、窒素下で、化合物E5を2.0g(5.4mmol)、エーテル40mL、[1,3-ビス(ジフェニルホスフィノ)プロパン]ニ
ッケル(II)ジクロリド0.15g(0.3mmol)を加え、先に調製したグリニア試薬を滴下し5時間撹拌した。1%塩酸200mLでクエンチし、クロロホルムで抽出し、硫酸ナトリウムで乾燥させた。減圧留去により溶媒を除去し、シリカゲルクロマトグラフィーにて精製し、オレンジオイル(化合物E6)を3.2g(ブロモオクタンを含む)。化合物E6の化学シフトは以下のとおりである。
【0223】
H1NMR(δ7.7(s,2H)、δ7.35(dd,2H)、δ7.33(dd,2H
)、δ7.15(dd,2H)、δ2.7(t)、δ1.65(m)、δ1.3−1.5
(m)、δ0.9(m))
<合成例6:化合物E7の合成>
【0224】
【化16】
【0225】
窒素下100mL多口フラスコに化合物E7を99mg(0.2mmol)、脱水テトラヒドロフラン25mLを加え撹拌した。ドライアイスバスにて系を―65℃まで冷やし、LDA0.57mL(0.57mmol)及びトリメチルティンクロリド 113mg(0.57mmol)を2回にわけてゆっくり加えた。その後、水でクエンチしクロロホルムで抽出し、硫酸マグネシウムで乾燥させた。減圧留去により溶媒を除去し、GPCを用いて精製し、イソチアナフテン誘導体(化合物E7)を200mg得た。
<合成例7:化合物F2の合成>
【0226】
【化17】
【0227】
500mLナスフラスコにチオフェンジカルボン酸5.3g(30.7mmol)、無水酢酸100mLを加え140℃で6時間加熱した。減圧留去により溶媒を除去し、トルンで再結晶を行い3.5gの1H,3H−thieno[3,4−c]furan−1,3−dione(化合物F2)を得た。
<合成例8:化合物F3の合成>
【0228】
【化18】
【0229】
窒素下、100mLナスフラスコ中で1H,3H−thieno[3,4−c]furan−1,3−dione(化合物F2)3.57g(0.023mol)を脱水DMF35mLに溶解した。次いで、氷浴中でnオクチルアミン4.2mL(0.025mol)を加えた後、140℃で2時間加熱した。放冷後水と混合して析出した肌色粉末を濾取し、冷メタノールで洗浄を行い、5.3gの4−[[1−octylamino]carbonyl]−3−thienophenecarboxylic acid(化合物F3)を得た。
<合成例9:化合物F4の合成>
【0230】
【化19】
【0231】
100mLナスフラスコに、4−[[1−octylamino]carbonyl]−3−thienophenecarboxylic acid(化合物E3)5.27g(18.6mmol)と塩化チオニル18mLを加えバス温度を72℃に設定して3時間加熱した。放冷後、1N水酸化ナトリウム水溶液に滴下し、析出した茶色粉末を濾取した。冷メタノールを用いて洗浄し、乾燥させ5−octyl−4H−thieno[3,4−c]pyrrole−4,6(5H)−dione(化合物F4)を4.55g得た
(収率91%)。
<合成例10:化合物F5の合成>
【0232】
【化20】
【0233】
窒素下、200mLナスフラスコ中で5−octyl−4H−thieno[3,4−c]pyrrole−4,6(5H)−dione(化合物F4)2.65g(10mmol)を、トリフルオロ酢酸50mL、濃硫酸15mLに溶解した。氷浴中で、更にNBS5.33g(30mmol)を溶解するまで攪拌後、氷浴を外して室温まで上昇させ20時間攪拌した。氷水と混合してクエンチ後、クロロホルムを用いて抽出、溶媒を減圧留去により除去し、カラムクロマトグラフィー(展開溶媒 ヘキサン:クロロホルム2:1→1:1)にて精製した。ヘキサンを用いて懸濁洗浄後、イミドチオフェン誘導体(1,3−dibromo−5−octyl−4H−thieno[3,4−c]pyrrole−4,6−(5H)−dione)(化合物F5)を2.58g得た(収率61%)。
【0234】
<合成例11:コポリマー1の合成>
【0235】
【化21】
【0236】
窒素雰囲気下、50mL二口ナスフラスコに、合成例6で得られたイソチアナフテン誘導体(化合物E7、0.06g,0.08mmol)及び合成例10で得られたイミドチオフェン誘導体(化合物F5、0.03g,0.07mmol)を入れ、さらに、テトラキストリフェニルホスフィンパラジウム 4.2mg(0.004mmol)、トルエン1.3mL、DMF0.3mL、を入れ、CEM社マイクロ波フォーカスド化学合成システムを使用し、80℃で2分、130℃で2分、170℃で2分、200℃で50分、重合反応を行った。反応液をトルエンで4倍に希釈して末端処理として、トリメチル(フェニル)スズ(0.1mL)を加えてエンドキャップは、80℃で2分、130℃で2分、170℃で2分、200℃で20分加熱攪拌し、さらにブロモベンゼン(0.1mL)を加えて80℃で2分、130℃で2分、170℃で2分、200℃で20分加熱攪拌し、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、メタノールに加え析出した沈殿を濾別することで、目的とするコポリマー1(20mg)を得た。得られたコポリマー1をクロロホルムに溶かし、溶けたものの重量平均分子量Mwは2800であり、PDIは1.4であった。
【0237】
<実施例1:コポリマーの吸収波長測定>
合成例11で得られたコポリマー1の吸収波長測定を行った。なお、吸収波長測定は、分光光度計(日立製作所製、U−3500)を用いて実施した。具体的には、コポリマー1のトルエン溶液を作成し、1cm角の石英セルを用いて、400nmから1000 n
mの範囲で測定を行った。得られた結果を図5に示す。
【0238】
公知文献(Macromolecular Rapid Communications(2007),28(17),1786−1791)に記載の主鎖に6員環であるベンゼン環を含むコポリマーは直線性が失われ、長波長での吸収が弱くなっており、その吸収端は約820nmである。一方で、図5に示すように、本発明に係るコポリマーは主鎖が5員環により構成されるために直線性が高く、その吸収端は約1000nmとなっており長波長化が達成されている。その為、本発明に係るコポリマーは長波長側の光を吸収することができ、変換効率の向上が期待される。また、タンデム型の太陽電池素子における長波長側材料としても有望である。
【符号の説明】
【0239】
101 下部電極
102 下部バッファ層
103 活性層
104 上部バッファ層
105 上部電極
106 基材
107 光電変換素子
108 第1の活性層
109 中間層
110 第2の活性層
1 耐候性保護フィルム
2 紫外線カットフィルム
3,9 ガスバリアフィルム
4,8 ゲッター材フィルム
5,7 封止材
6 太陽電池素子
10 バックシート
12 基材
13 太陽電池モジュール
14 薄膜太陽電池
図1
図2
図3
図4
図5