【実施例】
【0035】
(実施例)
上記アルミニウム端子の実施例について、図を用いて説明する。本例の端子1は、
図1に示すようにメス型端子であり、オス型端子8を相手方端子として端子対をなすよう構成されている。
図2及び
図3に示すように、端子1は、オス型端子8と直接接触する接点部11に、Al合金材2上に形成された合金層3と、合金層3上に積層された導電性皮膜層4とを有している。合金層3は、Snを必須に含有し、さらにCu、Zn、Co、Ni及びPdから選択される1種または2種以上の添加元素Mを含んでいる。また、導電性皮膜層4は、Sn
3O
2(OH)
2を含んでいる。
【0036】
図1及び
図2に示すように、端子1は、オス型端子8のタブ部81が挿入される角筒部12と、角筒部12に連なり、電線を接続するバレル部13と、角筒部12の内部に存在し、角筒部12に挿入されたタブ部81を押圧する弾性片部14とを有している。また、角筒部12、バレル部13及び弾性片部14は一体に形成されている。
【0037】
端子1は略棒状を呈しており、角筒部12及びバレル部13が一列に並んでいる。なお、本例において、端子1の長手方向におけるバレル部13側を後方といい、角筒部12側を前方ということがある。前後方向の記載は便宜上のものであり、端子1を使用する際の実際の向きとは何ら関係がない。
【0038】
角筒部12は、端子1の長手方向に伸びた略角筒状を呈している。
図1及び
図2に示すように、角筒部12の前方の開口端121は、オス型端子8のタブ部81を挿入できるように開放されている。また、
図1に示すように、後方の開口端122にはバレル部13が連なっている。
【0039】
バレル部13は、
図1に示すように、電線の端末部から露出させた導体を圧着して電気的に接続するワイヤバレル部131と、電線の絶縁被覆部を圧着するインシュレーションバレル部132とを有している。ワイヤバレル部131及びインシュレーションバレル部132は、端子1の長手方向に垂直な断面が略U字状を呈している。
【0040】
ワイヤバレル部131の底面133には、周囲よりも突出したセレーション部134が設けられている。セレーション部134は、導体を圧着する際に、セレーション部134と導体との接触部分に圧力を集中させる作用を有する。これにより、導体の表面に存在する自然酸化膜を容易に破壊することができ、ワイヤバレル部131と導体との間の良好な電気的接続をより容易に形成することができる。
【0041】
図2に示すように、角筒部12の内部には、弾性片部14が設けられている。弾性片部14は、角筒部12の底板部123が内側後方へ折り返されて形成されており、角筒部12内に挿入されたオス型端子8のタブ部81を、底板部123に対面する天板部124へ向けて押圧する。また、弾性片部14にはタブ部81と直接接触する接点部11が設けられており、弾性片部14の表面には導電性皮膜層4が存在している。
【0042】
端子1の長手方向における弾性片部14の略中央には、略球面状を呈するように天板部124側に突出した接点部11が形成されている。接点部11は、オス型端子8のタブ部81を角筒部12に挿入した際に、タブ部81と接触しつつ、タブ部81を上方へ向けて押圧する。また、接点部11とタブ部81とが接触した状態においては、接点部11の表面に存在する導電性皮膜層4がタブ部81に押し付けられ、両者の間に電気的接続が形成される。
【0043】
本例の合金層3及び導電性皮膜層4は、例えば以下のようにして形成することができる。
【0044】
まず、板状のAl合金材2に脱脂処理等の前処理を施した後、複数回のめっき処理を行い、Al合金材2上に多層金属層20を形成する。多層金属層20には、Snめっき層202と、添加元素Mを含むめっき層とが少なくとも含まれる。多層金属層20には、後に拡散バリア層となるめっき層や、添加元素M’を含むめっき層等を必要に応じて追加しても良い。例えば本例の多層金属層20は、
図4に示すように、Al合金材2上に、Niめっき層201、Snめっき層202、Znめっき層203及びCuめっき層204が順次積層された4層構造を有している。なお、めっき処理の条件としては、従来公知の条件を採用することができる。
【0045】
次に、多層金属層20を酸化雰囲気下において加熱してリフロー処理を行う。リフロー処理により、多層金属層20におけるSnめっき層202、Znめっき層203及びCuめっき層204を、
図3に示す合金層3及び導電性皮膜層4に変化させることができる。なお、本例の構成においては、Niめっき層201を構成するNiの一部は合金層3に拡散し、残部が拡散バリア層5となる。
【0046】
次に、本例の作用効果を説明する。端子1は、Al合金材2上に、合金層3と、Sn
3O
2(OH)
2を含み、合金層3上に積層された導電性皮膜層4を有している。そのため、高温環境下においても、端子間の接触抵抗が低い状態を長期間に亘って維持することができる。
【0047】
また、端子1は、角筒部12、バレル部13及び弾性片部14が一体に形成されている。それ故、従来の端子において行われていた弾性片部14を組み付ける作業を省略することができ、コストをより低減することができる。
【0048】
また、導電性皮膜層4の存在により、オス型端子8のタブ部81を角筒部12に挿入する際に必要な挿入力を低減することができる。さらに、低い接触荷重で良好な電気的接触を形成できるため、JIS A 3000系合金等の従来のAl合金材2を素材として用いることができ、材料コストをより低減することができる。
【0049】
また、導電性皮膜層4は、安価なSnを用いて作製することができるため、端子1全体のコストに与える影響が小さい。それ故、本例の端子1は、従来の端子と同等以下のコストで製造することができる。
【0050】
以上のように、端子1は、長期間に亘って低い接触抵抗を維持することができ、安価に製造することができる。
【0051】
(実験例)
本例は、導電性皮膜層4の高温耐久性を評価した例である。本例においては、以下の方法により、導電性皮膜層4を有する試料E1、E2及び従来のSnリフローめっき膜を有する試料C1を作製し、評価に供した。
【0052】
<試料E1>
JIS A 3000系合金よりなる板状のAl合金材2に電解脱脂処理を施した後、以下の条件でめっき処理を行い、Niめっき層201、Snめっき層202、Znめっき層203及びCuめっき層204が順次積層された4層構造を有する多層金属層20(
図4参照)を形成した。
【0053】
(Niめっき層201の形成)
・めっき浴の液組成
硫酸ニッケル(NiSO
4):265g/L
塩化ニッケル(NiCl
2):45g/L
ホウ酸(H
3BO
4):40g/L
・光沢材
・膜厚:0.3μm
・液温:50℃
・電流密度:0.5A/dm
2
【0054】
(Snめっき層202の形成)
・めっき浴の液組成
硫酸第1スズ(SnSO
4):40g/L
硫酸(H
2SO
4):100g/L
・光沢材
・膜厚:2μm
・液温:50℃
・電流密度:0.5A/dm
2
【0055】
(Znめっき層203の形成)
・めっき浴の液組成
塩化亜鉛(ZnCl
2):60g/L
塩化ナトリウム(NaCl):35g/L
水酸化ナトリウム(NaOH):80g/L
・膜厚:0.2μm
・液温:25℃
・電流密度:1A/dm
2
【0056】
(Cuめっき層204の形成)
・めっき浴の液組成
硫酸銅(CuSO
4):180g/L
硫酸(H
2SO
4):80g/L
塩素イオン(Cl
-):40mL/L
・膜厚:0.2μm
・液温:20℃
・電流密度:1A/dm
2
【0057】
なお、多層金属層20を構成するSnめっき層202、Znめっき層203及びCuめっき層204の厚みは、原子比において、(Cu+Zn):Snがほぼ6:5になるように設定している。また、多層金属層20を構成する金属層のうち、最も酸化されにくいCuからなるCuめっき層204が最外層となるように多層金属層20を形成した。
【0058】
次に、大気雰囲気において、多層金属層20を有するAl合金材2を300℃で3分間加熱してリフロー処理を施し、拡散バリア層5、合金層3及び導電性皮膜層4を形成した(
図3参照)。合金層3、導電性皮膜層4及び拡散バリア層5の膜厚は、それぞれ、2μm、0.02μm及び0.5μmであった。以上により、試料E1を得た。
【0059】
<組成分析>
試料E1の組成分析を以下の方法により行った。
【0060】
[合金層3]
EDX(エネルギー分散型X線分光法)を用いて合金層3の組成分析を行った。その結果、合金層3には、Sn、Cu、Zn及びNiが存在していると共に、Sn、Cu及びZnが合金化した(Cu,Zn)
6Sn
5の金属間化合物が存在していることを確認した。
【0061】
[導電性皮膜層4]
XPS(X線光電子分光法)を用いて、導電性皮膜層4の組成分析を行った。その結果、導電性皮膜層4には、Sn、Cu及びZnが存在していることを確認した。しかしながら、これらの元素の化学状態を判別することはできず、Sn、Cu及びZnは、酸化物または水酸化物の状態で存在していることを確認した。なお、XPSでは、酸化物と水酸化物とを分離することが難しいのが実情である。
【0062】
次に、Snの化学状態を決定するため、TEM(透過型電子顕微鏡)を用いて、導電性皮膜層4に存在するSn系化合物の格子定数を測定した。その結果、Sn系化合物の格子定数は0.260〜0.262nmであった。この値に対応するSn系化合物としては、Sn
3O
2(OH)
2(格子定数0.254nm)及びSnO
2(格子定数0.265nm)の2種の化合物が考えられる。しかしながら、格子定数の値からは両者を判別することは困難である。
【0063】
そこで、導電性皮膜層4に存在するSn系化合物の化学状態を更に詳細に分析するために、ボルタンメトリー法を用いた分析を行った。具体的には、0.5mol/LのNH
4OH水溶液と0.5mol/LのNH
4Cl水溶液との混合水溶液に、試料E1、対極(Pt網)及び基準電極(ビー・エー・エス製、Ag/AgCl(3mol/L NaCl))を浸漬した。この状態において、試料E1の電位を2mV/sの速度で浸漬した際の電位から掃引し、試料E1に流れる電流を測定した。
【0064】
図5に、ボルタンメトリー法により得られた初期状態の電流−電位曲線(符号60)を示す。
図5の縦軸は電流であり、横軸は基準電極と試料E1との電位差である。
図5より知られるように、本測定においては、−900mV付近に還元ピーク(符号601)が現れた。一方、特許第5235810号公報等に記載されているように、SnOに対応する還元ピークは−1200mV付近に出現し、SnO
2に対応する還元ピークは−1450mV付近に出現することが知られている。従って、試料E1に含まれるSn系化合物は、Sn
3O
2(OH)
2であると推定できる。
【0065】
また、160℃の高温下に120時間保持する高温耐久試験を行った後の試料E1より得られた電流−電位曲線(符号61)及び温度85℃、相対湿度85%RHの雰囲気下に96時間保持する高湿耐久試験を行った後の試料E1より得られた電流−電位曲線(符号62)を
図5に示した。これらの電流−電位曲線の取得方法は、上述のボルタンメトリー法と同一である。
【0066】
図5より知られるように、試料E1は、初期状態(符号60)、高温耐久試験後(符号61)及び高湿耐久試験後(符号62)のいずれの状態においても、Sn
3O
2(OH)
2に対応する−900mV付近の還元ピーク(符号601)が現れた。また、高湿耐久試験後においては、SnOに対応する小さい還元ピーク(符号621)が現れた。これらの結果から、試料E1は、高温環境下及び高湿環境下のいずれの環境においても、Sn
3O
2(OH)
2の変質が抑制されていることがわかる。
【0067】
<試料E2>
試料E2は、Niめっき層201とSnめっき層202との間に膜厚0.3μmの内部Cuめっき層を追加し、多層金属層20を5層構造(図示略)とした以外は試料E1と同様に作製した。試料E2の表面には、試料E1と同様の導電性皮膜層4が形成されていると推定できる。
【0068】
<試料C1>
Al合金材2上に、0.3μmのNiめっき層と1.2μmのSnめっき層とを順次積層した後、リフロー処理を行い、従来のリフローSnめっき膜を有する試料C1を得た。
【0069】
<耐久性試験>
試料E1、E2及びC1を用い、初期状態における接触抵抗の測定(初期評価)及び高温耐久試験を行った後の接触抵抗の測定(高温耐久試験後評価)を行った。
【0070】
接触抵抗の測定は、以下の手順により実施した。まず、半径3mmの半球状凸部を備えた硬質Auめっき材を接触子として準備し、上記半球状凸部を測定対象の試料に当接させた。この状態から、各試料と接触子との間に付与する荷重を徐々に増加させつつ、試料と接触子との間の接触抵抗を測定した。
【0071】
図6に、高温耐久試験後の試料における、荷重の増加に伴う接触抵抗の変化をプロットしたグラフを示す。
図6の縦軸は接触抵抗の値であり、横軸は荷重の値である。また、
図7に、初期評価及び高温耐久試験後評価において、荷重が5Nである時の各試料の接触抵抗をプロットしたグラフを示す。
図7の縦軸は接触抵抗の値であり、横軸方向には試料E1、E2及びC1の結果を順に並べた。
【0072】
図6及び
図7より知られるように、導電性皮膜層4を有する試料E1及び試料E2は、高温耐久試験後評価においても低い接触抵抗を示した。なお、高温耐久試験後評価における試料E1及び試料E2の接触抵抗−荷重曲線は、初期評価における接触抵抗−荷重曲線(図示略)と略同一であった。
【0073】
一方、従来のリフローSnめっき膜を有する試料C1は、初期評価においては、試料E1及びE2と略同一の接触抵抗−荷重曲線(図示略)を示したが、高温耐久試験後評価において接触抵抗が増大した。
【0074】
また、試料E1及びE2は、高温耐久試験後評価において、測定開始時の接触抵抗が10mΩ以下であった。この結果から、試料E1及び試料E2は、ごく微小な接触荷重においても、端子1に要求される接触抵抗の特性を満たすことが理解できる。従って、接点部11の表面に導電性皮膜層4を有する端子1を用いることにより、弾性片部14による押圧力を低減することができ、ひいては応力緩和による接触荷重の減少を抑制できることが理解できる。