特開2015-227508(P2015-227508A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友電気工業株式会社の特許一覧 ▶ 株式会社オートネットワーク技術研究所の特許一覧 ▶ 住友電装株式会社の特許一覧 ▶ 富山住友電工株式会社の特許一覧

<>
  • 特開2015227508-アルミニウム合金線 図000008
  • 特開2015227508-アルミニウム合金線 図000009
  • 特開2015227508-アルミニウム合金線 図000010
  • 特開2015227508-アルミニウム合金線 図000011
  • 特開2015227508-アルミニウム合金線 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2015-227508(P2015-227508A)
(43)【公開日】2015年12月17日
(54)【発明の名称】アルミニウム合金線
(51)【国際特許分類】
   C22C 21/00 20060101AFI20151120BHJP
   C22F 1/04 20060101ALI20151120BHJP
   H01B 1/02 20060101ALI20151120BHJP
   H01B 5/02 20060101ALI20151120BHJP
   H01B 5/08 20060101ALI20151120BHJP
   H01B 7/00 20060101ALI20151120BHJP
   H01B 13/00 20060101ALI20151120BHJP
   B22D 11/00 20060101ALI20151120BHJP
   B22D 11/124 20060101ALI20151120BHJP
   C22F 1/00 20060101ALN20151120BHJP
【FI】
   C22C21/00 A
   C22F1/04 F
   H01B1/02 B
   H01B5/02 Z
   H01B5/08
   H01B7/00 301
   H01B13/00 501B
   B22D11/00 E
   B22D11/124 L
   C22F1/00 613
   C22F1/00 625
   C22F1/00 630A
   C22F1/00 630B
   C22F1/00 630K
   C22F1/00 640A
   C22F1/00 661A
   C22F1/00 681
   C22F1/00 683
   C22F1/00 685Z
   C22F1/00 686A
   C22F1/00 691B
   C22F1/00 691C
   C22F1/00 692A
【審査請求】有
【請求項の数】1
【出願形態】OL
【全頁数】22
(21)【出願番号】特願2015-136923(P2015-136923)
(22)【出願日】2015年7月8日
(62)【分割の表示】特願2014-76657(P2014-76657)の分割
【原出願日】2009年3月23日
(31)【優先権主張番号】特願2008-206726(P2008-206726)
(32)【優先日】2008年8月11日
(33)【優先権主張国】JP
(31)【優先権主張番号】特願2008-206728(P2008-206728)
(32)【優先日】2008年8月11日
(33)【優先権主張国】JP
(71)【出願人】
【識別番号】000002130
【氏名又は名称】住友電気工業株式会社
(71)【出願人】
【識別番号】395011665
【氏名又は名称】株式会社オートネットワーク技術研究所
(71)【出願人】
【識別番号】000183406
【氏名又は名称】住友電装株式会社
(71)【出願人】
【識別番号】591174368
【氏名又は名称】富山住友電工株式会社
(74)【代理人】
【識別番号】100100147
【弁理士】
【氏名又は名称】山野 宏
(72)【発明者】
【氏名】草刈 美里
(72)【発明者】
【氏名】中井 由弘
(72)【発明者】
【氏名】西川 太一郎
(72)【発明者】
【氏名】高木 義幸
(72)【発明者】
【氏名】大塚 保之
【テーマコード(参考)】
4E004
5G301
5G307
5G309
【Fターム(参考)】
4E004KA12
5G301AA01
5G301AA03
5G301AA07
5G301AA08
5G301AA09
5G301AA12
5G301AA13
5G301AA14
5G301AA19
5G301AA21
5G301AA23
5G301AA24
5G301AB01
5G301AB05
5G301AB20
5G301AD01
5G307CA02
5G307CB01
5G307EA01
5G307EF09
5G307EF10
5G309AA01
(57)【要約】
【課題】高靭性及び高導電率であるアルミニウム合金、アルミニウム合金線、アルミニウム合金撚り線、被覆電線、及びワイヤーハーネス、並びにアルミニウム合金線の製造方法を提供する。
【解決手段】導体に利用されるアルミニウム合金線であって、Feを0.005質量%以上2.2質量%以下含有し、残部がAl及び不純物からなり、導電率が58%IACS以上であり、伸びが10%以上であることを特徴とするアルミニウム合金線。
【選択図】図1
【特許請求の範囲】
【請求項1】
導体に利用されるアルミニウム合金線であって、
Feを0.005質量%以上2.2質量%以下含有し、残部がAl及び不純物からなり、
導電率が58%IACS以上であり、
伸びが10%以上であることを特徴とするアルミニウム合金線。
【請求項2】
更に、Mg、Si、Cu、Zn、Ni、Mn、Ag、Cr、及びZrから選択される1種以上の添加元素を合計で0.005質量%以上1.0質量%以下含有することを特徴とする請求項1に記載のアルミニウム合金線。
【請求項3】
前記アルミニウム合金線は、以下の(1)〜(4)のいずれか一つの組成からなることを特徴とする請求項2に記載のアルミニウム合金線。
(1) 質量%で、Feを0.90%以上1.20%以下、Mgを0.10%以上0.25%以下含有し、残部がAl及び不純物。
(2) 質量%で、Feを1.01%以上2.2%以下、Mgを0.05%以上0.5%以下、Mn,Ni,Zr,Zn,Cr,及びAgから選択される1種以上の元素を合計で0.005%以上0.2%以下含有し、残部がAl及び不純物。
(3) 質量%で、Feを1.01%以上2.2%以下、Cuを0.05%以上0.5%以下含有し、残部がAl及び不純物。
(4) 質量%で、Feを1.01%以上2.2%以下、Cuを0.05%以上0.5%以下含有し、更にMgを0.1%以上0.5%以下及びSiを0.05%以上0.3%以下の少なくとも1種を含有し、残部がAl及び不純物。
【請求項4】
更に、Ti及びBの少なくとも一方を含有し、
質量割合で、Tiの含有量は、100ppm以上500ppm以下、Bの含有量は、10ppm以上50ppm以下であることを特徴とする請求項1〜3のいずれか1項に記載のアルミニウム合金線。
【請求項5】
前記アルミニウム合金線の断面において2400nm×2600nmの観察視野をとったとき、この観察視野中に存在する析出物であって、円相当径が100nm以下の析出物の数が10個以下であることを特徴とする請求項1〜4のいずれか1項に記載のアルミニウム合金線。
【請求項6】
前記アルミニウム合金線の断面において2400nm×2600nmの観察視野をとったとき、この観察視野中に存在する析出物であって、円相当径が100nm以下の析出物の数が10個超であることを特徴とする請求項1〜4のいずれか1項に記載のアルミニウム合金線。
【請求項7】
0.2%耐力が40MPa以上であることを特徴とする請求項1〜6のいずれか1項に記載のアルミニウム合金線。
【請求項8】
引張強さが110MPa以上200MPa以下であることを特徴とする請求項1〜7のいずれか1項に記載のアルミニウム合金線。
【請求項9】
線径が0.2mm以上1.5mm以下であることを特徴とする請求項1〜8のいずれか1項に記載のアルミニウム合金線。
【請求項10】
請求項1〜9のいずれか1項に記載の複数のアルミニウム合金線を撚り合わせてなることを特徴とするアルミニウム合金撚り線。
【請求項11】
請求項1〜9のいずれか1項に記載のアルミニウム合金線、複数の当該アルミニウム合金線を撚り合せたアルミニウム合金撚り線、及びこの撚り線を圧縮成形した圧縮線材のいずれかを導体とし、その外周に絶縁被覆層を具えることを特徴とする被覆電線。
【請求項12】
請求項11に記載の被覆電線と、この電線の端部に装着された端子部とを具えることを特徴とするワイヤーハーネス。
【請求項13】
自動車に用いられることを特徴とする請求項12に記載のワイヤーハーネス。
【請求項14】
導体に利用されるアルミニウム合金線の製造方法であって、
Feを0.005質量%以上2.2質量%以下含有し、残部がAlからなるアルミニウム合金の溶湯を鋳造して鋳造材を形成する工程と、
前記鋳造材に圧延を施して圧延材を形成する工程と、
前記圧延材に伸線加工を施して伸線材を形成する工程と、
前記伸線材に軟化処理を施して軟材を形成する工程とを具え、
前記軟化処理は、この軟化処理後の線材の伸びが10%以上となるように前記伸線材に施すことを特徴とするアルミニウム合金線の製造方法。
【請求項15】
前記アルミニウム合金の溶湯は、更に、Mg、Si、Cu、Zn、Ni、Mn、Ag、Cr、及びZrから選択される1種以上の添加元素を合計で0.005質量%以上1.0質量%以下含有することを特徴とする請求項14に記載のアルミニウム合金線の製造方法。
【請求項16】
前記軟化処理は、通電による連続軟化処理、又は高周波誘導加熱による連続軟化処理であり、大気雰囲気又は非酸化性雰囲気で行うことを特徴とする請求項14又は15に記載のアルミニウム合金線の製造方法。
【請求項17】
前記連続軟化処理において、加熱後の降温速度が50℃/sec以上であることを特徴とする請求項16に記載のアルミニウム合金線の製造方法。
【請求項18】
前記軟化処理は、雰囲気炉を用いたバッチ処理であり、非酸化性雰囲気で、雰囲気温度を250℃以上として行うことを特徴とする請求項14又は15に記載のアルミニウム合金線の製造方法。
【請求項19】
前記バッチ軟化処理において、加熱後の降温速度が50℃/sec以下であることを特徴とする請求項18に記載のアルミニウム合金線の製造方法。
【請求項20】
前記鋳造工程及び圧延工程は、連続的に行って、連続鋳造圧延材を形成することを特徴とする請求項14〜19のいずれか1項に記載のアルミニウム合金線の製造方法。
【請求項21】
前記鋳造は、冷却速度を1℃/sec以上として行い、鋳造後に得られた鋳造材のDASが50μm以下であることを特徴とする請求項14〜20のいずれか1項に記載のアルミニウム合金線の製造方法。
【請求項22】
複数の前記伸線材又は軟材を撚り合わせて撚り線を形成する工程と、
前記撚り線を圧縮成形して所定の線径の圧縮線材を形成する工程とを具え、
前記圧縮線材に軟化処理を施すことを特徴とする請求項14〜21のいずれか1項に記載のアルミニウム合金線の製造方法。
【請求項23】
Feを0.005質量%以上2.2質量%以下含有し、残部がAl及び不純物からなり、
導電率が58%IACS以上であり、
伸びが10%以上であることを特徴とするアルミニウム合金。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電線の導体に用いられるアルミニウム合金線及びアルミニウム合金撚り線、これら合金線や合金撚り線を導体とする被覆電線、この被覆電線を具えるワイヤーハーネス、及び上記合金線の製造方法、並びにアルミニウム合金に関するものである。特に、自動車といった搬送機器に利用されるワイヤーハーネスの電線用導体に適した特性(強度、靭性、導電率)をバランスよく具えるアルミニウム合金線に関するものである。
【背景技術】
【0002】
従来、自動車や飛行機などの搬送機器、ロボットなどの産業機器の配線構造には、端子を有する複数の電線を束ねたワイヤーハーネスと呼ばれる形態が利用されている。従来、ワイヤーハーネスの電線用導体の構成材料は、導電性に優れた銅や銅合金といった銅系材料が主流である。
【0003】
昨今、自動車の高性能化や高機能化が急速に進められてきており、車載される各種電気機器、制御機器などの増加に伴い、これらの機器に使用される電線も増加傾向にある。一方、近年、環境保全のため、自動車や飛行機などの燃費の向上が望まれている。軽量化すると、燃費を向上できる。そこで、電線の軽量化のために、比重が銅の約1/3であるアルミニウムを導体に用いることが検討されている。例えば、自動車のバッテリーケーブルといった10mm2以上の電線用導体に純アルミニウムが用いられた例がある。しかし、純アルミニウムは、銅系材料よりも強度が低く、耐疲労特性に劣るため、例えば、導体断面積が1.5mm2以下といった一般的な電線用導体に適用することが難しい。これに対し、特許文献1は、純アルミニウムよりも強度が高いアルミニウム合金からなる自動車用ワイヤーハーネスの電線用導体に利用されるアルミニウム合金線材を開示している。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2005-336549号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、従来のアルミニウム合金線材は、自動車といった搬送機器に配備されるワイヤーハーネスに求められる特性を十分に有していない。
【0006】
電線用導体には、導電率が高いことが望まれる。しかし、特許文献1に記載されるアルミニウム合金線材は、導電率が十分に高いとはいえない。
【0007】
また、特許文献1に記載されるような高強度のアルミニウム合金電線は、靭性が不十分である。従来、自動車用ワイヤーハーネスの電線用導体を構成するアルミニウム合金は、強度の向上を主目的として検討されており、靭性(耐衝撃性や伸びなど)について十分検討されていない。本発明者らが検討したところ、特許文献1に記載されるような高強度のアルミニウム合金線材を用いたワイヤーハーネスを機器などに組み付ける際、導体において端子部との境界近傍で導体が破断することがあるとの知見を得た。即ち、従来、線材自体の特性を検討しているものの、端子部を含むワイヤーハーネスとした場合の特性を検討しておらず、組み付けの際に求められる靭性を十分に有したワイヤーハーネスの開発がなされていない。
【0008】
端子部の装着は、所望の導通状態を維持できるように行われる。しかし、従来のアルミニウム合金線材は、装着時の応力が応力緩和されることで(経時的に低下していくことで)、端子部との固着力が低下し、端子部が電線から抜け落ちることがあるとの知見を得た。即ち、従来のアルミニウム合金線材を用いた電線は、装着された端子部が緩む恐れがある。従って、電線と端子部との固着力が高いワイヤーハーネスの開発が望まれる。
【0009】
そこで、本発明の目的の一つは、高強度、高靭性で導電率が高く、ワイヤーハーネスの電線用導体に好適なアルミニウム合金線、及びアルミニウム合金撚り線、並びにワイヤーハーネスに好適な被覆電線を提供することにある。また、本発明の他の目的は、高強度、高靭性で導電率が高い電線を具えるワイヤーハーネスを提供することにある。更に、本発明の他の目的は、上記本発明アルミニウム合金線の製造方法を提供することにある。
【課題を解決するための手段】
【0010】
導電率が高く、ワイヤーハーネスに望まれる特性、特に耐衝撃性や端子部との固着力を十分に具えた電線用導体に適したアルミニウム合金線を検討した結果、本発明者らは、伸線後(直後でなくてもよい)に軟化処理を施した軟材を利用することが好ましい、との知見を得た。軟化処理を行うと、線材の伸びを向上できるだけでなく、伸線などの塑性加工に伴う歪を除去して、導電率も向上することができる。かつ、本発明者らは、軟化処理を行うことに加えて、特定の組成のアルミニウム合金とする、具体的には特定量のFeを含有するアルミニウム合金とすることで、耐衝撃性や端子部との固着力を向上できる上に、強度にも優れるアルミニウム合金線が得られる、との知見を得た。本発明は、これらの知見に基づくものである。
【0011】
本発明アルミニウム合金線の製造方法は、以下の工程を具える。
1. Feを0.005質量%以上2.2質量%以下含有し、残部がAlからなるアルミニウム合金の溶湯を鋳造して鋳造材を形成する工程。
2. 上記鋳造材に圧延を施して圧延材を形成する工程。
3. 上記圧延材に伸線加工を施して伸線材を形成する工程。
4. 上記伸線材に軟化処理を施して軟材を形成する工程。
そして、本発明製造方法は、軟化処理後の線材の伸びが10%以上となるように伸線材に軟化処理を施す。得られたアルミニウム合金線は、導体に利用される。
【0012】
上記製造方法により、本発明アルミニウム合金線が得られる。本発明アルミニウム合金線は、導体に利用されるものであり、Feを0.005質量%以上2.2質量%以下含有し、残部がAl及び不純物からなる。そして、このアルミニウム合金線(以下、Al合金線と呼ぶ)は、導電率が58%IACS以上、伸びが10%以上である。
【0013】
本発明Al合金線は、軟化処理が施された軟材であるため、導電率及び靭性の双方に優れる上に、端子部との接続強度も高い。また、本発明Al合金線は、特定の組成であるため、強度も高い。従って、本発明Al合金線は、ワイヤーハーネスに望まれる導電率や耐衝撃性、強度、端子部との接続性を十分に具え、ワイヤーハーネスの電線用導体に好適に利用できる。以下、本発明をより詳細に説明する。なお、元素の含有量は、質量%を示す。
【0014】
[Al合金線]
《組成》
本発明Al合金線を構成する本発明Al合金は、Feを0.005%以上2.2%以下含有するAl-Fe系合金である。Feを0.005%以上含有することで、強度に優れるAl合金線が得られる。Feの含有量が高いほどAl合金の強度が高まるが、導電率や靭性が低下する上に、伸線加工時などで断線が生じ易くなるため、Fe:2.2%以下とする。Feは、導電率の低下をあまり招くことなく強度を向上することができるが、Feを添加し過ぎると、伸線加工などの加工性の低下を招く。Feのより好ましい含有量は、0.9%以上2.0%以下である。
【0015】
Feに加えて、Mg、Si、Cu、Zn、Ni、Mn、Ag、Cr、及びZrから選択される1種以上の添加元素を含有することで、強度や靭性、耐衝撃性の向上を図ることができる。Mn,Ni,Zr,Crは、導電率の低下が大きいものの、強度の向上効果が高い元素である。Ag,Znは、導電率の低下が少なく、強度の向上効果をある程度有する。Cuは、導電率の低下が少なく、強度を向上することができる。Mgは、導電率の低下が大きいものの、強度の向上効果が高く、特にSiと同時に含有することで、強度をより向上できる。これらの添加元素は、1種でも2種以上を組み合わせて含有していてもよく、合計含有量が0.005質量%以上1.0質量%以下であることが好ましい。好ましい含有量は、Mg:0.05%以上0.5%以下、Mn,Ni,Zr,Zn,Cr及びAg:合計で0.005%以上0.2%以下、Cu:0.05%以上0.5%以下、Si:0.05%以上0.3%以下であり、より好ましい含有量は、Mg:0.05%以上0.4%以下、特に、Mg:0.1%以上0.4%以下、Mn,Ni,Zr,Zn,Cr及びAg:合計で0.005%以上0.15%以下、Cu:0.05%以上0.4%以下、Si:0.05%以上0.2%以下である。Mgが0.5%超、Mn,Ni,Zr,Zn,Cr及びAgの合計が0.2%超、Cuが0.5%超であると、Al合金の強度が高まるが、導電率や靭性が低下する上に、伸線加工時などで断線が生じ易くなる。Siが0.3%超であると、導電率及び靭性の低下を招く。
【0016】
本発明Al合金線を構成するAl合金において、Feに加えて上記添加元素を含有する場合の具体的な組成として、例えば、以下の(1)〜(4)が挙げられる。
(1) 質量%で、Feを0.90%以上1.20%以下、Mgを0.10%以上0.25%以下含有し、残部がAl及び不純物。
(2) 質量%で、Feを1.01%以上2.2%以下、Mgを0.05%以上0.5%以下、Mn,Ni,Zr,Zn,Cr,及びAgから選択される1種以上の元素を合計で0.005%以上0.2%以下含有し、残部がAl及び不純物。
(3) 質量%で、Feを1.01%以上2.2%以下、Cuを0.05%以上0.5%以下含有し、残部がAl及び不純物。
(4) 質量%で、Feを1.01%以上2.2%以下、Cuを0.05%以上0.5%以下含有し、更にMgを0.1%以上0.5%以下及びSiを0.05%以上0.3%以下の少なくとも1種を含有し、残部がAl及び不純物。
【0017】
更に、上記Al合金は、Ti及びBの少なくとも一方を含有すると、強度をより向上することができる。TiやBは、鋳造時のAl合金の結晶組織を微細にする効果がある。結晶組織が微細であると、強度を向上することができる。B単独の含有でもよいが、Ti単独、特に双方を含有すると、結晶組織の微細化効果が更に向上する。この微細化効果を十分に得るには、質量割合で、Tiを100ppm以上500ppm以下(0.01%以上0.05%以下)、Bを10ppm以上50ppm以下(0.001%以上0.005%以下)含有することが好ましい。Ti:500ppm超、B:50ppm超では、上記微細化効果が飽和したり、導電率の低下を招く。
【0018】
《特性》
本発明Al合金線は、特定の組成の本発明Al合金から構成されると共に軟材であるため、導電性及び靭性に優れ、導電率:58%IACS以上、伸び:10%以上である。添加元素の種類や量、軟化条件にもよるが、本発明Al合金線は、導電率:59%IACS以上、伸び:25%以上を満たすこともできる。
【0019】
また、本発明者らが検討したところ、軟化条件(方式)によって、導電率や靭性を高めたり、耐食性を向上できるとの知見を得た。具体的には、軟化処理として、後述するバッチ処理(光輝処理)を行うと、導電率や伸びが高い傾向にあり、後述する連続処理を行うと、耐食性に優れる傾向にある。各軟化処理を施したAl合金線を調べたところ、析出物の存在状態に差異が見られ、連続軟化処理を行った場合、100nm以下といった非常に微細な析出物が少なく、バッチ軟化処理を行った場合、連続軟化処理を行った場合よりも上記析出物が多く存在していた。即ち、以下のAl合金線が得られた。
【0020】
(連続軟化処理):導体に利用されるAl合金線であって、Feを0.005質量%以上2.2質量%以下含有し、残部がAl及び不純物からなり、このAl合金線の断面において2400nm×2600nmの観察視野をとったとき、この観察視野中に存在する析出物であって、円相当径が100nm以下の析出物の数が10個以下である。
(バッチ軟化処理):導体に利用されるAl合金線であって、Feを0.005質量%以上2.2質量%以下含有し、残部がAl及び不純物からなり、このAl合金線の断面において2400nm×2600nmの観察視野をとったとき、この観察視野中に存在する析出物であって、円相当径が100nm以下の析出物の数が10個超である。
Feに加えて、上述した範囲で上記添加元素(Mg,Si,Cu,Zn,Ni,Mn,Ag,Cr,Zr)を含有していてもよいし、更に、TiやBを含有していてもよい。
【0021】
上述のように析出物の存在状態に差異が生じた理由は、以下のように考えられる。連続軟化処理の場合、軟化処理時に処理対象が高温になり易いことから、鋳造時や鋳造後の圧延時などに析出したFeが再固溶したり、軟化処理後の降温速度(冷却速度)が速い、即ち、急冷され易いことから固溶しているFeが析出し難いためであると考えられる。一方、バッチ軟化処理の場合、連続軟化処理の場合と比較して、軟化処理時に処理対象が高温になり難いことから、Feの再固溶が発生し難かったり、軟化処理後に徐冷されることから(降温速度が遅いことから)連続軟化処理の場合よりもFeが析出し易いためであると考えられる。
【0022】
なお、主として鋳造時に晶析出物が生成され、伸線後に連続軟化処理を行うことで、微細な析出物が低減される。従って、連続軟化処理を行うと、母材に十分にFeが固溶されていることで強度に優れる上に、耐食性にも優れるAl合金線が得られる。一方、バッチ軟化処理を行うと、連続軟化処理を行った場合よりも微細な析出物が多く存在するが、各析出物の大きさは100nm以下であり、その存在量もせいぜい100個/上記観察視野である。この微細な析出物の大きさや存在量は、軟化条件を調整することで変化させられる。例えば、軟化処理時の加熱温度を高く、降温速度(冷却速度)を速くすることで、析出物の大きさを小さく、存在量も少なくできる。従って、バッチ軟化処理の条件によっては、例えば、析出物の大きさが80nm以下、更に50nm以下であり、存在量が50個以下、更に20個以下のAl合金線が得られる。バッチ軟化処理を行った場合でも、母材にFeが固溶されていることから強度が高く、かつ上記微細な析出物が均一的に分散した組織を有することで靭性に優れると共に、連続軟化処理の場合と比較してFeの固溶量が少なくなることで導電率が高いAl合金線が得られる。
【0023】
本発明Al合金線は、引張強さが110MPa以上200MPa以下であることが好ましい。本発明者らは、単に高強度なだけで、靭性に劣る電線用導体ではワイヤーハーネスに適さないとの知見を得た。一般に、強度の向上は靭性の低下を招く。引張強さが上記範囲を満たすことで、高い靭性と高い強度とを両立することができる。また、本発明Al合金線は、0.2%耐力が40MPa以上であることが好ましい。同じ引張強さである場合、0.2%耐力が高い方が端子部との固着力が高くなる傾向にある。
【0024】
添加元素(種類や含有量)、製造条件(軟化条件など)を適宜調整することで、導電率、伸び、引張強さ、0.2%耐力が上記特定の範囲を満たすAl合金線が得られる。添加元素を少なくしたり、軟化処理時の加熱温度を高くした後に降温速度を遅くすると、導電率及び靭性が高くなる傾向にあり、添加元素を多くしたり、軟化処理時の加熱温度を低くすると、強度や0.2%耐力が高くなる傾向にあり、例えば、引張強さを120MPa以上とすることができる。
【0025】
《形状》
本発明Al合金線は、伸線加工時の加工度(断面減少率)を適宜調整することで、種々の線径(直径)を有することができる。例えば、自動車用ワイヤーハーネスの電線用導体に利用する場合、線径は0.2mm以上1.5mm以下が好ましい。
【0026】
また、本発明Al合金線は、伸線加工時のダイス形状によって種々の断面形状を有することができる。断面円形状が代表的であり、その他、楕円形状、矩形や六角形などの多角形状などの断面形状が挙げられる。形状は特に問わない。
【0027】
[Al合金撚り線]
上記本発明Al合金線は、複数の線材を撚り合わせた撚り線とすることができる。細径の線材であっても撚り合わせることで、強度の高い線材(撚り線)とすることができる。撚り合わせ本数は、特に問わない。例えば、7,11,19,37本が挙げられる。また、本発明Al合金撚り線は、撚り合わせた後、圧縮成形した圧縮線材とすると、撚り合わせた状態よりも線径を小さくすることができる。
【0028】
[被覆電線]
上記本発明Al合金線や本発明Al合金撚り線、圧縮線材は、電線用導体に好適に利用することができる。用途に応じて、このまま導体として使用することもできるし、この導体の外周に絶縁材料により形成した絶縁被覆層を具える被覆電線として使用することもできる。絶縁材料は、適宜選択することができる。例えば、ポリ塩化ビニル(PVC)やノンハロゲン樹脂、難燃性に優れる材料などが挙げられる。絶縁被覆層の厚さは、所望の絶縁強度を考慮して適宜選択することができ、特に限定されない。
【0029】
[ワイヤーハーネス]
上記被覆電線は、ワイヤーハーネスに好適に利用することができる。このとき、被覆電線の端部には、機器などの接続対象に接続できるように端子部が装着される。このワイヤーハーネスは、複数の被覆電線に対して一つの端子部を共有するような電線群を含んでいてもよい。また、このワイヤーハーネスに具える複数の被覆電線は、結束具などにより一纏まりに束ねることで、ハンドリング性に優れる。このワイヤーハーネスは、軽量化が望まれている種々の分野、特に、燃費の向上のために更なる軽量化が望まれている自動車に好適に利用することができる。
【0030】
[製造方法]
《鋳造工程》
本発明製造方法は、まず、上記特定の組成のAl合金からなる鋳造材を形成する。鋳造は、可動鋳型又は枠状の固定鋳型を用いる連続鋳造、箱状の固定鋳型を用いる金型鋳造(以下、ビレット鋳造と呼ぶ)のいずれも利用することができる。連続鋳造は、溶湯を急冷凝固できるため、微細な結晶組織を有する鋳造材が得られる。また、急冷凝固により、晶析出物を微細にできる上に、この微細な晶析出物が均一的に分散した組織を有する鋳造材が得られる。このような鋳造材を素材にすると、微細な結晶組織を有するAl合金線を製造し易く、結晶の微細化による強度の向上や、微細な晶析出物の分散による靭性の向上を図ることができる。冷却速度は、適宜選択することができるが、1℃/sec以上が好ましく、4℃/sec以上がより好ましい。また、溶湯の固液共存温度域である600〜700℃において冷却速度が20℃/sec以上であることが更に好ましい。例えば、水冷銅鋳型や強制水冷機構などを有する連続鋳造機を用いると、上述のような冷却速度による急冷凝固を実現できる。連続鋳造において上記冷却速度を調整して急冷凝固を行うことで、鋳造後に得られた鋳造材のDAS(Dendrite Arm Spacing)を小さくすることができる。DASは、50μm以下が好ましく、40μm以下がより好ましい。
【0031】
TiやBを添加する場合、溶湯を鋳型に注湯する直前に添加すると、Tiなどの局所的な沈降を抑制して、Tiなどが均等に混合された鋳造材を製造することができて好ましい。
【0032】
《圧延工程》
次に、上記鋳造材に(熱間)圧延を施し、圧延材を形成する。特に、ビレット鋳造材を用いた場合、鋳造後に均質化処理を行うことが好ましい。
【0033】
上記鋳造工程と圧延工程とは、連続的に行うと、鋳造材に蓄積される熱を利用して熱間圧延を容易に行えて、エネルギー効率がよい上に、バッチ式の鋳造方法と比較して、鋳造圧延材の生産性に優れる。
【0034】
《伸線工程》
次に、上記圧延材又は連続鋳造圧延材に(冷間)伸線加工を施し、伸線材を形成する。伸線加工度は、所望の線径に応じて適宜選択することができる。得られた伸線材は、所望の本数を用意して撚り合わせ、撚り線とすることもできる。
【0035】
《軟化処理(最終熱処理)工程》
次に、上記伸線材又は撚り線に軟化処理を施す。軟化処理は、軟化処理後の線材(単線材又は撚り線)の伸びが10%以上となるような条件により行う。伸線後及び撚り合わせ後の双方に軟化処理を施して、最終的な撚り線の伸びが10%以上となるようにしてもよい。この軟化処理は、結晶組織の微細化、及び加工硬化によって高めた線材の強度を極端に低下させることなく軟化して、線材の靭性を高めるために行う。
【0036】
軟化処理は、連続処理又はバッチ処理が利用できる。軟化処理中の雰囲気は、処理中の熱により線材の表面に酸化膜が生成されることを抑制するために、酸素含有量が少ない雰囲気、例えば、大気雰囲気や非酸化性雰囲気が好ましい。非酸化性雰囲気は、例えば、真空雰囲気(減圧雰囲気)、窒素(N2)やアルゴン(Ar)などの不活性ガス雰囲気、水素含有ガス(例えば、水素(H2)のみ、N2,Ar,ヘリウム(He)といった不活性ガスと水素(H2)との混合ガスなど)や炭酸ガス含有ガス(例えば、一酸化炭素(CO)と二酸化炭素(CO2)との混合ガスなど)といった還元ガス雰囲気が挙げられる。
【0037】
<バッチ処理>
バッチ処理(光輝軟化処理)は、加熱用容器(雰囲気炉、例えば、箱型炉)内に加熱対象を封入した状態で加熱する処理方法であり、一度の処理量が限られるものの、加熱対象全体の加熱状態を管理し易い処理方法である。バッチ処理では、加熱温度を250℃以上とすることで、線材の伸びを10%以上にすることができる。好ましい条件は、加熱温度:300℃以上500℃以下、保持時間:0.5時間以上6時間以下である。加熱温度が250℃未満では靭性及び導電率が向上し難く、加熱温度が500℃超、又は保持時間が6時間超では、強度が低下する。また、バッチ処理では、加熱温度からの冷却する際の速度、即ち、加熱後の降温速度が50℃/sec以下であることが好ましい。降温速度を比較的遅くして徐冷することで、微細な析出物を比較的多く析出することができる。上記降温速度は、例えば、加熱後直ちに炉内から出すのではなく、加熱後に引き続いて炉内に保存した状態とすることで達成することができる。
【0038】
<連続処理>
連続処理は、加熱用容器内に加熱対象を連続的に供給して、加熱対象を連続的に加熱する処理方法であり、1.連続的に加熱できるため作業性に優れる、2.線材の長手方向に均一的に加熱できるため線材の長手方向における特性のばらつきを抑制できる、といった利点がある。特に、電線用導体に利用されるような長尺な線材に軟化処理を施す場合、連続処理が好適に利用できる。連続処理は、加熱対象を抵抗加熱により加熱する直接通電方式(通電連続軟化処理)、加熱対象を高周波数の電磁誘導により加熱する間接通電方式(高周波誘導加熱連続軟化処理)、加熱雰囲気とした加熱用容器(パイプ軟化炉)内に加熱対象を導入して熱伝導により加熱する炉式が挙げられる。連続処理により伸びが10%以上である線材を得るには、例えば、以下のようにする。所望の特性(ここでは、伸び)に関与し得る制御パラメータを適宜変化させて試料に軟化処理を行い、そのときの試料の特性(伸び)を測定し、パラメータ値と測定データとの相関データを予め作成する。この相関データに基づいて、所望の特性(伸び)が得られるようにパラメータを調整する。通電方式の制御パラメータは、容器内への供給速度(線速)、加熱対象の大きさ(線径)、電流値などが挙げられる。炉式の制御パラメータは、容器内への供給速度(線速)、加熱対象の大きさ(線径)、炉の大きさ(パイプ軟化炉の直径)などが挙げられる。伸線機における伸線材の排出側に軟化装置を配置させる場合、線速を数百m/min以上、例えば、400m/min以上とすることで、伸びが10%以上の線材が得られる。また、連続処理では、加熱後の降温速度が50℃/sec以上であることが好ましい。降温速度を比較的速くすることで、微細な析出物の析出を抑制し、当該析出物を比較的少なくすることができる。降温速度の調整は、上述のように線速などを調整することで行える。
【0039】
《その他の工程》
本発明製造方法は、更に、複数の上記伸線材又は軟材を撚り合わせて撚り線を形成する工程と、上記撚り線を圧縮成形して所定の線径の圧縮線材を形成する工程とを具えることで、圧縮線材を製造することができる。このとき、軟化処理は、撚り合わせ前の伸線材のみに施してもよいし、撚り合わせ前後の双方で行ってもよいし、撚り合わせ前の伸線材に施さず、撚り線や圧縮線材にのみ施してもよい。撚り合わせ前に所定の伸びを有する軟材を作製し、この軟材により圧縮線材を形成する場合や撚り合せた後に所定の伸びを有する撚り線(軟材)により圧縮線材を形成する場合、圧縮後に軟化処理を施さなくてもよい。得られた圧縮線材に上述の絶縁被覆層を形成することで、被覆電線を製造することができる。得られた被覆電線の端部に端子部を装着し、複数の端子部付きの被覆電線を束ねることで、ワイヤーハーネスを製造することができる。
【発明の効果】
【0040】
本発明Al合金線、本発明Al合金撚り線、本発明被覆電線、及び本発明Al合金は、高強度かつ高靭性であり、導電率も高い。また、本発明ワイヤーハーネスは、強度、靭性、導電率をバランスよく具え、かつ軽量である。本発明製造方法は、上記本発明Al合金線を生産性よく製造できる。
【図面の簡単な説明】
【0041】
図1図1は、Al-Fe-Mg-(Mn,Ni,Zr,Ag)系合金線において、軟化処理時の温度と、導電率及び引張強さとの関係を示すグラフである。
図2図2は、Al-Fe-Cu系合金線において、軟化処理時の温度と、導電率及び引張強さとの関係を示すグラフである。
図3図3は、Al合金線の断面の顕微鏡写真であり、図3(1)はバッチ軟化処理を施した試料、図3(2)は連続軟化処理を施した試料を示す。
図4図4は、耐衝撃性試験の試験方法を説明する説明図である。
図5図5は、端子固着力試験の試験方法を説明する説明図である。
【発明を実施するための形態】
【0042】
Al合金線を作製し、更にこのAl合金線を用いて被覆電線を作製し、Al合金線、及び被覆電線の種々の特性を調べた。被覆電線は、鋳造→圧延→伸線→撚り線→圧縮→軟化→絶縁被覆層の形成という手順で作製する。
【0043】
[Al合金線の特性]
まず、Al合金線を作製する。ベースとして純アルミニウム(99.7質量%以上Al)を用意して溶解し、得られた溶湯(溶融アルミニウム)に表1に示す添加元素を表1に示す含有量となるように投入して、Al合金溶湯を作製する。成分調整を行ったAl合金溶湯は、適宜、水素ガス除去処理や、異物除去処理を行うことが望ましい。
【0044】
ベルト-ホイール式の連続鋳造圧延機を用いて、用意したAl合金溶湯に鋳造及び熱間圧延を連続的に施し、φ9.5mmのワイヤーロッド(連続鋳造圧延材)を作製する。上記連続鋳造は、冷却機構などを調整して、冷却速度を4.5℃/secとし、得られた鋳造材のDASを、組織写真を用いて測定したところ、20μm程度であった。又は、所定の固定鋳型に上記Al合金溶湯を注湯して冷却してビレット鋳造材を作製し、この鋳造材に均質化処理を施した後、熱間圧延を行って、φ9.5mmのワイヤーロッド(圧延材)を作製する。Ti、又はTi及びBを含有する試料は、表1に示す含有量となるように、鋳造直前のAl合金溶湯にTi粒又はTiB2ワイヤを供給する。
【0045】
上記ワイヤーロッドに冷間伸線加工を施して、線径φ0.3mmの伸線材を作製する。得られた伸線材に、表1に示す軟化処理を施して軟材(Al合金線)を作製する。軟化処理は、箱型炉を用い、表1に示す雰囲気及び加熱温度によるバッチ処理(軟化処理の保持時間はいずれも3時間、降温速度:0.02℃/sec)、又は表1に示す雰囲気による高周波誘導加熱方式の連続処理(線速:500m/min,電流値:200A、降温速度:500℃/sec)とした。ここでは、試料No.1-2,1-3に連続処理を施し、試料No.1-2,1-3以外の試料であって軟化処理を施した試料には、バッチ処理を施した。また、連続処理において温度は、非接触赤外温度計にて測定した。比較として、伸線後に軟化処理を施していない未処理材(試料No.1-102,1-112)も用意した。
【0046】
【表1】
【0047】
得られた線径φ0.3mmの軟材及び未処理材について、引張強さ(MPa)、伸び(%)、0.2%耐力、導電率(%IACS)を測定した。その結果を表2に示す。
【0048】
引張強さ(MPa)、伸び(%、破断伸び)、及び0.2%耐力は、JIS Z 2241(金属材料引張試験方法、1998)に準拠して、汎用の引張試験機を用いて測定した。導電率(%IACS)は、ブリッジ法により測定した。
【0049】
【表2】
【0050】
表1に示すように、特定の組成のAl-Fe系合金からなり、軟化処理を施した試料No.1-1〜1-4,1-11〜1-16,1-21〜1-26は、導電率が58%IACS以上であり、かつ伸びが10%以上である上に、0.2%耐力が40MPa以上、引張強さが110MPa以上である。即ち、試料No.1-1〜1-4,1-11〜1-16,1-21〜1-26は、高導電率、高靭性であるだけでなく、高強度である。特に、Feに加えて、Mg、Si、Cu、Zn、Ni、Mn、Ag、Cr、及びZrから選択される1種以上の添加元素を含有すると、強度が高くなり易く、Mgに加えて更にMn,Ni,Zr,Agを添加したり、Cuに加えて更にMgやSi、Mg及びSiの双方を添加すると、強度がより高い。また、同じ組成の試料を比較すると、連続鋳造圧延を行った試料は、ビレット鋳造を行った試料よりも伸びが高い傾向にあり、組成によっては25%以上であり、靭性に優れる。
【0051】
これに対し、軟化処理を施していない試料No.1-102,1-112は、高強度であるものの、伸びが非常に低く、靭性に劣る上に、導電率が低い。また、軟化処理を施しても、特定の組成でない試料、具体的にはFeやその他の添加元素が多いNo.1-101,1-111は、高強度であるものの、伸び及び導電率が低い。
【0052】
[軟化処理条件(温度)と特性]
軟化処理の条件を変えた試料を作製し、得られた試料について導電率(%)及び引張強さ(MPa)を調べた。その結果を図1,2に示す。ここでは、試料No.1-12(図1),試料No.1-22(図2)の組成を有する線径φ0.3mmの伸線材に軟化処理を施した。軟化処理は、箱型炉を用いたバッチ処理(還元ガス雰囲気、降温速度:0.02℃/sec)とし、加熱温度(軟化温度)を200〜400℃の範囲で適宜選択して伸線材に施した(保持時間:3時間)。
【0053】
図1,2に示すように加熱温度を250℃以上として軟化処理を施すことで、導電率が58%IACS以上で、引張強さが120MPa以上の軟材が得られることが分かる。200℃では、引張強さが高過ぎて伸びが小さくなり、靭性に劣ると考えられる。
【0054】
[軟材の組織]
図3は、作製した軟材の断面の透過型電子顕微鏡(TEM)写真(45000倍)であり、図3(1)は試料No.1-1(バッチ軟化処理),図3(2)は試料No.1-2(連続軟化処理)を示す。図3において、濃い灰色の小さい粒は、析出物であり、黒く比較的大きな粒(円相当径が200nmを超えるような粒)は、晶出物である。図3(2)に示すように、連続軟化処理を施した試料は、円相当径が100nm以下である微細な析出物が少なく、図3(1)に示すように、バッチ軟化処理を施した試料は、円相当径が100nm以下である微細な析出物が連続軟化処理を行った試料よりも多いことが分かる。一つの断面について、2400nm×2600nmの観察視野を3個とり、各観察視野中に存在する円相当径100nm以下の析出物の数を測定したところ、連続軟化処理を行った試料は、上記観察視野中の100nm以下の析出物の数(3個の観察視野における平均数)が3個(10個以下)であり、バッチ軟化処理を行った試料は、18個(10個超20個以下)であった。なお、析出物の大きさ(円相当径)は、顕微鏡写真を画像処理し、析出物の面積を円に換算したときの直径としている。
【0055】
[被覆電線の特性]
上述のように特定の組成のAl-Fe系合金からなり、軟化処理を施したAl合金線は、ワイヤーハーネスの電線用導体に好適に利用できると期待される。そこで、被覆電線を作製して、その機械的特性を調べた。
【0056】
上述のようにして作製した線径φ0.3mmの伸線材(組成:表1参照)を複数本撚り合わせて、撚り線を作製する。ここでは、内側3本、外側8本の合計11本の伸線材を撚り合わせた後、断面外形が円形状となるように圧縮加工を施し、0.75mm2の圧縮線材を作製する。得られた圧縮線材に、表1に示す雰囲気及び加熱温度により、上述した線径φ0.3mmの伸線材に施した軟化処理と基本的に同様の条件で軟化処理(箱型炉を用いたバッチ処理、又は高周波誘導加熱方式の連続処理)を施す。得られた軟材の外周に、絶縁材料(ここでは、ハロゲンフリー絶縁材料)により、絶縁被覆層(厚さ0.2mm)を形成して、被覆電線を作製する。比較として、伸線材を撚り合わせて圧縮した圧縮線材に軟化処理を施していない未処理材(試料No.2-102,2-112)も用意した。
【0057】
得られた被覆電線について、耐衝撃性(J/m)、端子固着力(N)を調べた。その結果を表3に示す。
【0058】
耐衝撃性(J/m又は(N・m)/m)は、以下のように評価した。図4は、耐衝撃性試験の試験方法を説明する説明図である。試料S(評点間距離L:1m)の先端に錘wを取り付け(図4(1))、この錘wを1m上方に持ち上げた後、自由落下させる(図4(2))。そして、試料Sが断線しない最大の錘wの重量(kg)を測定し、この重量に重力加速度(9.8m/s2)と落下距離1mとをかけた積値を落下距離で割った値を耐衝撃性(J/m又は(N・m)/m)として評価する。
【0059】
端子固着力(N)は、以下のように評価した。図5は、端子固着力試験の試験方法を説明する説明図である。撚り線1の外周に絶縁被覆層2を具える試料Sの両端の被覆層2を剥いで、撚り線1を露出させる。一端側の撚り線1に端子部3を取り付け、この端子部3を端子チャック20で挟持する。他端側の撚り線1を線材チャック21で挟持する。汎用の引張試験機を用いて、チャック20,21で両端を挟持した試料Sの破断時の最大荷重(N)を測定し、この最大荷重(N)を端子固着力(N)として評価する。
【0060】
【表3】
【0061】
表3に示すように、特定の組成のAl-Fe系合金からなり、軟化処理を施した撚り線を用いた試料No.2-1〜2-4,2-11〜2-16,2-21〜2-26の被覆電線は、耐衝撃性に優れ、端子部との接続強度も高いことが分かる。
【0062】
[軟化処理条件(方式)と特性]
軟化処理として、バッチ処理を行ったAl合金線と、連続処理を行ったAl合金線とを作製し、耐食性、機械的特性を調べた。
【0063】
Al合金線は、上述のφ0.3mmのAl合金線と同様にして作製した。即ち、上記と同様の純アルミニウムの溶湯に表4に示す添加元素を表4に示す含有量となるように投入してAl合金溶湯を作製し、ベルト-ホイール式の連続鋳造圧延機によりφ9.5mmのワイヤーロッドを作製する(鋳造時の冷却速度:4.5℃/sec、鋳造材のDAS:20μm程度)。このワイヤーロッドに冷間伸線加工を施して、線径φ0.3mmの伸線材を作製し、表4に示す条件で軟化処理(バッチ処理(光輝軟化処理)又は連続処理)を施して、φ0.3mmの軟材(単線)を得る。このときのバッチ処理の条件は、基本的に試料No.1-1又は試料No.1-11と同様とし、連続処理の条件は、試料No.1-2と同様とした。また、得られた線径φ0.3mmの伸線材を11本撚り合せた後、0.75mm2の圧縮線材を作製し、得られた圧縮線材に、表4に示す条件で軟化処理(バッチ処理又は連続処理)を施し、0.75mm2の軟材(圧縮線材)を得る。このときのバッチ処理の条件は、基本的に試料No.2-1又は試料No.2-11と同様とし、連続処理の条件は、試料No.2-2と同様とした。
【0064】
【表4】
【0065】
得られた軟材に、上述と同様にして、引張強さ(MPa)、0.2%耐力、伸び(%、破断伸び)、導電率(%IACS)、耐衝撃性(J/m)、端子固着力(N)を調べた。その結果を表5に示す。
【0066】
上述した線径φ0.3mmの伸線材を作製する途中に得られる線径φ1.0mmの伸線材に対して、φ0.3mmの軟材に施した軟化処理と同様にして表4に示す軟化処理を施した軟材を作製し、この軟材を試料として、孔食電位(V)及び保護電位(V)を測定した。その結果を表5に示す。
【0067】
孔食電位及び保護電位は、以下のようにして測定した。まず、5質量%NaOH水溶液(60℃)に試料を所定時間(1分間)浸漬して、不動態被膜を除去する。次に、50質量%HNO3水溶液に試料を所定時間(約10秒間)浸漬して、洗浄及び中和した後、水洗いする。この洗浄した試料を電解液(5質量%NaCl水溶液)に浸漬して、所定の時間、一定の電圧を印加して還元する(-1.5V、5分間)。その後、電位を掃引していき、孔食電位及び保護電位の測定を実施する。この測定は、三電極方式の電気化学測定セルを構成して行う。このセルは、電解液が注入される容器と、電解液に浸漬される基準電極(RE):Ag/AgCl、対極(CE):Pt、及び測定対象となる試料とを具える。これらRE、CE及び試料の一端をそれぞれ、市販のポテンショスタット/ガルバノスタット装置に接続させ、上述のように一定の電位を印加して電流の変化を測定する。ここでは、孔食電位は、電流が100μA/cm2となった後、電流が増大し続けるときの電位とし、保護電位は、電流が1mA/cm2となった時点で電位を逆方向(ここでは、カソード方向)に掃引し、電流がゼロになる電位とする。孔食電位の絶対値が小さいほど、また、保護電位の絶対値が小さいほど、孔食が少ない、即ち、耐食性に優れると言える。
【0068】
【表5】
【0069】
表5に示すように、特定の組成のAl-Fe系合金からなり、軟化処理を施したAl合金線は、導電率が58%IACS以上、伸びが10%以上、0.2%耐力が40MPa以上、引張強さが110MPa以上であり、高導電率、高靭性、高強度である上に、耐衝撃性にも優れ、端子部との接続強度も高い。特に、同じ組成の試料を比較すると、バッチ軟化処理を行った試料は、連続軟化処理を行った試料よりも、導電率や伸び、強度、耐衝撃性といった機械的特性に優れる傾向にあることが分かる。一方、同じ組成の試料を比較すると、連続軟化処理を行った試料は、バッチ軟化処理を行った試料よりも、孔食電位の絶対値や保護電位の絶対値が小さく、耐食性に優れる傾向にあることが分かる。また、例えば、表5の試料No.15,16を比較することで、引張強さが同程度であっても、0.2%耐力が高いと、端子固着力が高くなる傾向にあることが分かる。
【0070】
上述のように特定の組成のAl-Fe系合金からなり、軟化処理を施したAl合金線を用いた被覆電線は、高導電率、高靭性、高強度であり、端子部との接続強度、及び耐衝撃性にも優れる。従って、この被覆電線は、ワイヤーハーネス、特に自動車用ワイヤーハーネスに好適に利用できると期待される。
【0071】
なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、Fe,Cu,Mg,Si,Zn,Ni,Mn,Ag,Cr,Zrの含有量を特定の範囲で変化させてもよい。また、素線の大きさや形状、撚り線の本数を変更してもよい。
【産業上の利用可能性】
【0072】
本発明ワイヤーハーネスは、軽量で、かつ高強度、高靭性、高導電率が望まれる用途、例えば、自動車の配線に好適に利用することができる。このワイヤーハーネスの電線、或いは電線用導体に、本発明被覆電線、或いは本発明アルミニウム合金線、本発明アルミニウム撚り線を好適に利用することができる。また、本発明アルミニウム合金線の製造方法は、上記本発明アルミニウム合金線の製造に好適に利用することができる。
【符号の説明】
【0073】
1 撚り線 2 絶縁被覆層 3 端子部
S 試料 w 錘 20 端子チャック 21 線材チャック
図1
図2
図4
図5
図3
【手続補正書】
【提出日】2015年8月7日
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
導体に利用されるアルミニウム合金線であって、
Feを0.005質量%以上2.2質量%以下含有し、残部がAl及び不純物からなり、
導電率が58%IACS以上であり、
伸びが10%以上であることを特徴とするアルミニウム合金線。