【課題】ハンドに載置したウェーハを検出するセンサのスキャンタイミングのばらつきによる検出精度の低下を回避し、ハンド上におけるウェーハの位置と正規の載置位置との差異を正確に求め、ウェーハを正確に搬送する。
【解決手段】停止状態にある搬送開始位置から受渡位置に向かって移動し始めたハンド23上のウェーハ7における周縁位置3箇所が各光電センサ6L,6C,6Rを通過したことを各センサ6L,6C,6Rの出力信号変化に基づいて検出し、この検出情報から抽出可能な直交座標系上におけるウェーハ7の移動量と、各光電センサ6L,6C,6Rの位置情報とに基づいてウェーハ7の中心位置を算出し、ウェーハ7の中心位置と基準中心位置との差異に基づいて搬送駆動機構1の動作量を規定する動作指令を生成し、この動作指令に基づいて搬送駆動機構1の作動を制御するようにした。
直線状の移動経路に沿ってハンドを搬送開始位置から受渡位置に移動させることにより前記ハンド上の前記円盤状搬送対象物を所定の搬送目的位置まで搬送可能な搬送駆動機構と、前記搬送駆動機構の作動を制御する制御部とを備え、
前記制御部が、
停止状態にある前記搬送開始位置から前記受渡位置に向かって移動し始めた前記ハンド上の前記円盤状搬送対象物を3以上の光電センサに通過させ、これら各光電センサの出力信号の変化を検出することによって前記円盤状搬送対象物における相互に異なる3箇所以上の周縁位置が前記各光電センサを通過したことを検出する周縁位置検出手段と、
前記ハンドの正規の移動経路に沿った第1軸と当該第1軸を含む水平面内において第1軸と直交する第2軸とによって規定される直交座標系上における前記各光電センサの設置位置である光電センサ位置情報と、前記周縁位置検出手段で検出した検出情報のうち前記各光電センサに対する前記円盤状搬送対象物の周縁位置の通過開始時点における検出情報に関連付けて取得可能な前記円盤状搬送対象物の移動量とに基づいて前記直交座標系上における前記円盤状搬送対象物の中心位置を算出する中心位置算出手段と、
前記円盤状搬送対象物を前記ハンド上における正規の載置位置に載置した際の当該円盤状搬送対象物の中心位置である前記直交座標系上の基準中心位置と前記中心位置算出手段によって算出した前記円盤状搬送対象物の中心位置との差異を算出する変位量算出手段と、
前記変位量算出手段で算出した差異に基づいて、前記ハンド上の円盤状搬送対象物を前記所定の搬送目的位置に搬送するために必要な前記搬送駆動機構の動作量を規定する動作指令を生成する動作指令生成手段とを有し、
前記動作指令生成手段で生成した前記動作指令に基づいて前記搬送駆動機構の作動を制御するものであることを特徴とする搬送ロボット。
前記ハンド上における前記円盤状搬送対象物の1つの載置位置を基準とし、その基準載置位置に載置した状態において前記搬送開始位置から前記受渡位置に向かって移動し始めた前記ハンド上の前記円盤状搬送対象物における前記3箇所以上の周縁位置が前記各光電センサをそれぞれ通過し始める時点までに前記第1軸に沿って移動した量である基準移動量と、
前記基準移動量を抽出するために用いた前記円盤状搬送対象物を前記ハンド上に前記基準載置位置から変位させたキャリブレーション用載置位置に載置した状態において前記搬送開始位置から前記受渡位置に向かって移動し始めた前記ハンド上の前記円盤状搬送対象物における前記3箇所以上の周縁位置が前記各光電センサをそれぞれ通過し始める時点までに前記第1軸に沿って移動した量であって且つ前記光電センサと同数の移動量を1組とする複数組のキャリブレーション用移動量と、
前記基準載置位置に対する前記各キャリブレーション用載置位置の相対位置座標とを利用して、前記各光電センサの位置座標を推定し、
当該推定した前記各光電センサの位置座標に基づく前記光電センサ位置情報を前記中心位置算出手段で利用している請求項1又は2に記載の搬送ロボット。
前記基準移動量の抽出処理後又はn組目(nは1以上の整数)の前記キャリブレーション用移動量の抽出処理後に前記円盤状搬送対象物を前記ハンド上に載置したまま、任意の変位量を加えた1組目又はm組目(mはn+1)のキャリブレーション用位置補正動作で前記ハンドを前記受渡位置に対して任意の変位量分だけずれた位置へ移動させて前記円盤状搬送対象物を所定の搬送先に移載し、前記搬送開始位置に戻した前記ハンドを位置補正動作なしで前記受渡位置へ移動させて、前記搬送先に移載した前記円盤状搬送対象物を前記ハンド上に載置した状態で前記搬送開始位置に戻し、位置補正動作なしで前記受渡位置へ向かって移動し始めたタイミングで、1組目又はm組目(mはn+1)の前記キャリブレーション用移動量の抽出処理を行うように前記制御部が前記搬送駆動機構の作動を制御し、前記基準載置位置に対する前記各キャリブレーション用載置位置の相対位置座標を、前記各組のキャリブレーション用移動量を抽出するために行うキャリブレーション用位置補正動作時の変位量に基づいて取得する請求項3に記載の搬送ロボット。
直線状の移動経路に沿ってハンドを搬送開始位置から受渡位置に移動させることにより前記ハンド上の前記円盤状搬送対象物を所定の搬送目的位置まで搬送可能な搬送駆動機構を有する搬送ロボットを利用して前記円盤状搬送対象物を搬送する搬送方法であり、
停止状態にある前記搬送開始位置から前記受渡位置に向かって移動し始めた前記ハンド上の前記円盤状搬送対象物を3以上の光電センサに通過させ、これら各光電センサの出力信号の変化を検出することによって前記円盤状搬送対象物における相互に異なる3箇所以上の周縁位置が前記各光電センサを通過したことを検出する周縁位置検出ステップと、
前記ハンドの正規の移動経路である第1軸と当該第1軸を含む水平面内において第1軸と直交する第2軸とによって規定される直交座標系上における前記各光電センサの設置位置である光電センサ位置情報と、及び前記周縁位置検出ステップで検出した検出情報のうち前記各光電センサに対する前記円盤状搬送対象物の周縁位置の通過開始時点における検出情報に関連付けて取得可能な前記ウェーハの移動量とに基づいて前記直交座標系上における前記円盤状搬送対象物の中心位置を算出する中心位置算出ステップと、
前記円盤状搬送対象物を前記ハンド上における正規の載置位置に載置した際の当該円盤状搬送対象物の中心位置である前記直交座標系上の基準中心位置と前記中心位置算出ステップによって算出した前記円盤状搬送対象物の中心位置との差異を算出する変位量算出ステップと、
前記変位量算出ステップで算出した差異に基づいて、前記ハンド上の円盤状搬送対象物を前記所定の搬送目的位置に搬送するために必要な前記搬送駆動機構の動作量を規定する動作指令を生成する動作指令生成ステップとを経て、
前記動作指令生成ステップで生成した前記動作指令に基づいて前記搬送駆動機構の作動を制御することを特徴とする円盤状搬送対象物の搬送方法。
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、特許文献1記載の発明は、ハンド上に載置した円盤状搬送対象物がハンドの移動に伴ってセンサを通過させ、センサに対する円盤状搬送対象物の通過開始点及び通過終了点を検出して、それらの検出値に基づいて上述の処理を行うようにしている。したがって、センサが円盤状搬送対象物物の通過開始点及び通過終了点を検出してからそれらのデータを取り込むまでの遅延時間があり、円盤状搬送対象物の移動速度によっては真値に対する誤差が生じる場合が考えられる。
【0008】
ハンドを比較的遅い一定の速度で移動させた場合には、上述のような誤差は大きな問題とはならないが、ハンドを高速で移動させたり、ハンドの移動速度を加速させながら円盤状搬送対象物を搬送目的位置に搬送するように構成されている場合、ハンドに載置した円盤状搬送対象物がセンサを通過し始める時点の搬送速度よりもセンサを通過し終える時点での搬送速度の方が速くなり、センサのスキャンタイミングのばらつきによって、センサを通過し終える時点の検出精度がセンサを通過し始める時点の検出精度よりも低下する可能性を排除できない。特に、円盤状搬送対象物の搬送効率を向上させるべくハンドの移動速度を速く設定すればするほど、実際の円盤状搬送対象物の周縁位置(真値)に対する検出値(センサで検出した円盤状搬送対象物の周縁位置)の誤差が大きくなることが予想される。
【0009】
また、円盤状搬送対象物の径サイズを既知の値として円盤状搬送対象物の中心位置を算出するように構成した場合、たとえ厳密に製造される円盤状搬送対象物において径サイズの誤差が個体毎に殆ど無いとはいえ、例えば膨張処理などによって実際の径サイズが既知の値として利用する値と異なれば、既知の径サイズを利用して算出した円盤状搬送対象物の中心位置が、実際の円盤状搬送対象物の中心位置(真値)からずれてしまうことになる。
【0010】
このような事態が生じた場合には、実際に搬送する円盤状搬送対象物の中心位置を正確に算出することができず、その誤差を含む算出値から求めたロボット動作極座標系における補正値に変換して算出し、その補正値に基づいて搬送駆動機構を作動させて、ハンド上に載置保持(把持)した円盤状搬送対象物の基準載置位置(基準把持位置)からのズレ量を修正して、所定の搬送目的位置に搬送する精度が低下する。
【0011】
本発明は、このような問題に着目してなされたものであって、主たる目的は、ハンドによる円盤状搬送対象物の搬送速度や加速度に受ける影響(スキャンタイミングのばらつきの影響)を極力抑えるとともに、円盤状搬送対象物の径サイズを既知の値として利用することなく、ハンドに載置保持した円盤状搬送対象物の位置と正規の中心位置との差異を正確に求め、円盤状搬送対象物を所定の搬送目的位置へより正確に搬送することが可能な搬送ロボット及び円盤状搬送対象物の搬送方法を提供することにある。
【課題を解決するための手段】
【0012】
すなわち本発明は、直線状の移動経路に沿ってハンドを搬送開始位置から受渡位置に移動させることによりハンド上の円盤状搬送対象物を所定の搬送目的位置まで搬送可能な搬送駆動機構と、搬送駆動機構の作動を制御する制御部とを備えた搬送ロボットに関するものである。
【0013】
ここで、円盤状搬送対象物は、円盤状のものであればよく、例えば半導体ウェーハや液晶パネル等が挙げられる。また、制御部は、搬送駆動機構に内蔵又は付帯されるものであってもよいし、搬送駆動機構の外部に設けられるものであってもよい。搬送駆動機構としては、直交する2軸に沿ってハンドをそれぞれ直線的な進退動作可能に構成したものや、アームの基端部を旋回軸周りに旋回可能に構成し且つアームの先端部に設けたハンドを進退動作可能に構成したものを挙げることができる。
【0014】
本発明に係る搬送ロボットは、円盤状搬送対象物をハンド上における正規の載置位置に載置した状態で、ハンドを搬送開始位置から受渡位置に移動させれば、ハンド上の円盤状搬送対象物を所定の搬送目的位置まで正確に搬送することができるものである。このことは、すなわち、円盤状搬送対象物をハンド上における正規の載置位置からずれた位置に載置した状態で、ハンドを搬送開始位置から受渡位置に移動させれば、ハンド上の円盤状搬送対象物を所定の搬送目的位置に対して載置位置のズレ量に応じて移動した位置に搬送することを意味する。本発明に係る搬送ロボットでは、このように円盤状搬送対象物をハンド上における正規の載置位置からずれた位置に載置した状態であっても、ハンド上の円盤状搬送対象物を所定の搬送目的位置まで正確に搬送することができるように、以下に述べる構成を採用している。
【0015】
すなわち、本発明に係る搬送ロボットは、制御部として、周縁位置検出手段と、中心位置算出手段と、変位量算出手段と、動作指令生成手段とを有し、且つ動作指令生成手段で生成した動作指令に基づいて搬送駆動機構の作動を制御するものを適用した構成であることを特徴としている。
【0016】
具体的に、周縁位置検出手段は、停止状態にある搬送開始位置から受渡位置に向かって移動し始めたハンド上の円盤状搬送対象物を3以上の光電センサに通過させ、これら各光電センサの出力信号の変化を検出することによって円盤状搬送対象物における相互に異なる3箇所以上の周縁位置が各光電センサを通過したことを検出するものである。
【0017】
また、中心位置算出手段は、ハンドの正規の移動経路である第1軸と、第1軸を含む水平面内において第1軸と直交する第2軸とによって直交座標系を規定した場合、この直交座標系上における各光電センサの設置位置である光電センサ位置情報と、周縁位置検出手段で検出した検出情報のうち各光電センサに対する円盤状搬送対象物の周縁位置の通過開始時点における検出情報に関連付けて取得可能な円盤状搬送対象物の移動量とを利用して円盤状搬送対象物の中心位置を算出するものである。
【0018】
変位量算出手段は、円盤状搬送対象物をハンド上における正規の載置位置に載置した際の当該円盤状搬送対象物の中心位置である直交座標系上の基準中心位置と、中心位置算出手段によって算出した円盤状搬送対象物の中心位置との差異(変位量)を算出するものである。また、動作指令生成手段は、変位量算出手段で算出した差異(変位量)に基づいて、ハンド上の円盤状搬送対象物を所定の搬送目的位置に搬送するために必要な搬送駆動機構の動作量を規定する動作指令を生成するものである。
【0019】
このように、本発明に係る搬送ロボットでは、ハンド上の円盤状搬送対象物の周縁における3箇所以上の位置がそれに対応する3以上の光電センサを通過するタイミングとして、ハンドが停止状態にある搬送開始位置から受渡位置に向かって移動し始めた時点、つまり、ハンドが初速の時点または初速に近い時点となるように設定しているため、高速状態にある円盤状搬送対象物の通過をセンサで検出する態様と比較して、スキャンタイミングのばらつきによる影響を受ける確率を効果的にゼロに近付けることができ、ハンド上の円盤状搬送対象物の周縁における3箇所以上の位置が3以上の光電センサを通過した事象をそれぞれの光電センサの出力信号の変化に基づいて正確に検出することができ、円盤状搬送対象物の搬送速度の高速化に伴って円盤状搬送対象物の周縁位置を検出する精度が低下し得る問題を防止・抑制することができる。
【0020】
さらに、本発明に係る搬送ロボットでは、ハンド上に実際に載置している円盤状搬送対象物の中心位置を算出する際に用いる情報として、周縁位置検出手段で検出した検出情報のうち、各光電センサに対して円盤状搬送対象物の周縁位置が通過し始める事象を検出した情報に関連付けて取得可能な円盤状搬送対象物の移動量を利用しているため、ハンドを停止状態の搬送開始位置から受渡位置に向かって加速させながら移動させる構成であっても、相対的に速度が遅い通過開始時点における検出情報を利用する一方で、相対的に速度が速くスキャンタイミングのばらつきの影響を受け易い通過終了時点における検出情報は利用しないことにより、例えばスキャンタイミングのばらつきにより真値に対して誤差を含む検出情報を利用してハンド上の円盤状搬送対象物の中心位置を算出するという事態を回避することができる。
【0021】
特に、本実施形態に係る搬送ロボットでは、上述した各光電センサに対する円盤状搬送対象物の周縁位置の通過開始時点における検出情報に関連付けて取得可能な円盤状搬送対象物の移動量と、各光電センサの設置位置である光電センサ位置情報とに基づき、円盤状搬送対象物における複数の周縁位置及び複数の光電センサ位置情報を共通の直交座標系上において定義することが可能であることを利用して、直交座標系上における円盤状搬送対象物の中心位置を算出するように構成しているため、円盤状搬送対象物の中心位置算出精度の向上を図ることができる。
【0022】
また、本発明の搬送ロボットでは、ハンド上に載置している円盤状搬送対象物の径サイズを既知の値として利用することなく、直交座標系上における円盤状搬送対象物の中心位置を算出するように構成しているため、高温処理などによって個体毎に径サイズが異なった円盤状搬送対象物であっても各円盤状搬送対象物の中心位置を高い精度で算出することができる。
【0023】
さらにはまた、光電センサは、例えばリニアセンサと比較して安価であるため、コスト面において有利である。なお、光電センサは、透過型又は反射型の何れのタイプであってもよい。
【0024】
このように、本発明に係る搬送ロボットであれば、ハンド上に実際に載置している円盤状搬送対象物の中心位置をより一層正確に算出することができ、ハンド上に実際に載置している円盤状搬送対象物の中心位置と、円盤状搬送対象物をハンド上における正規の載置位置に載置した際の当該円盤状搬送対象物の中心位置である基準中心位置との直交座標系上における正確な差異を求めることができ、この差異を含めて搬送駆動機構の動作量を補正した動作指令を生成して、この動作指令(補正した動作量を含む動作指令)に基づいて搬送駆動機構を作動させることによって、ハンド上に実際に載置している円盤状搬送対象物の中心位置と基準中心位置とのズレ量を修正して、ハンド上に載置している円盤状搬送対象物を所定の搬送目的位置に搬送することができる。
【0025】
本発明において、中心位置算出手段における算出処理で用いる「円盤状搬送対象物の移動量」として、例えば、円盤状搬送対象物自体の移動を直接検出可能な検出機器(センサやカメラ)による検出値を適用することも可能である。一方、ハンドの少なくとも第1軸に沿った移動量を検出可能なハンド移動量検出部を備えた搬送ロボットであれば、各光電センサに対する円盤状搬送対象物の周縁位置の通過開始を周縁位置検出手段によって検出した時点におけるハンド移動量検出部の検出値に基づいて「円盤状搬送対象物の移動量」を取得するように構成することができる。通常、搬送ロボットは、ハンドの移動を制御しながらハンド上の円盤状搬送対象物を所定の搬送目的位置へ搬送するように構成されていることから、ハンドの移動量は搬送ロボットの制御下において極めて容易又は比較的容易に取得することができることに着目し、このようなハンドの移動量に基づき、ハンド上の円盤状搬送対象物の移動量を取得するようにすれば効率が良い。
【0026】
また、本発明に係る搬送ロボットにおいて、制御部の中心位置算出手段では、直交座標系上における各光電センサの設置位置である光電センサ位置情報を利用するが、これら各光電センサを幾ら高精度で取り付けたとしてもごく僅かな誤差が生じることは避けられないのが実情である。そこで、本発明の搬送ロボットでは、ハンド上における円盤状搬送対象物の1つの載置位置を基準とし、その基準載置位置に載置した状態において搬送開始位置から受渡位置に向かって移動し始めたハンド上の円盤状搬送対象物における3箇所以上の周縁位置が各光電センサをそれぞれ通過し始める時点までに第1軸に沿って移動した量である基準移動量と、基準移動量を抽出するために用いた円盤状搬送対象物を前記ハンド上に基準載置位置から変位させたキャリブレーション用載置位置に載置した状態において搬送開始位置から受渡位置に向かって移動し始めたハンド上の円盤状搬送対象物における3箇所以上の周縁位置が各光電センサをそれぞれ通過し始める時点までに第1軸に沿って移動した量であって且つ光電センサと同数の移動量を1組とする複数組のキャリブレーション用移動量と、基準載置位置に対する各キャリブレーション用載置位置の相対位置座標とを利用して、各光電センサの位置座標を推定し、この推定した光電センサ位置座標に基づく光電センサ位置情報を中心位置算出手段で利用するように構成することが可能である。このような構成を採用すれば、各光電センサの設置誤差による影響を受けることなく、ハンド上に載置保持した円盤状搬送対象物の中心位置を正確に算出することができる。ここで、円盤状搬送対象物の中心位置を正確に算出する際に利用する「キャリブレーション用移動量」は複数組あり、各組におけるキャリブレーション用移動量の数(移動量の数値そのものではなく、移動量自体をデータとして捉えた場合そのデータの数)は光電センサと同数である。換言すれば、1組のキャリブレーション用移動量を抽出する処理によって取得するキャリブレーション用移動量の数は、光電センサと同数である。また、上述の内容で円盤状搬送対象物の中心位置を正確に算出する際に利用する「基準移動量」は、1組で足り、この1組の基準移動量の数は、基準載置位置に載置した状態において搬送開始位置から受渡位置に向かって移動し始めたハンド上の円盤状搬送対象物における3箇所以上の周縁位置が各光電センサをそれぞれ通過し始める時点までに第1軸に沿って移動したそれぞれの移動量であることから、光電センサと同数である。
【0027】
このように、基準載置位置に対する各キャリブレーション用載置位置の相対位置座標を利用して光電センサ位置座標を推定する構成において、基準載置位置に対する各キャリブレーション用載置位置の正確な相対位置座標を効率良く取得する構成として、本発明では、基準移動量の抽出処理後又はn組目(nは1以上の整数)のキャリブレーション用移動量の抽出処理後に円盤状搬送対象物を前記ハンド上に載置したまま、任意の変位量を加えた1組目又はm組目(mはn+1)のキャリブレーション用位置補正動作でハンドを受渡位置に対して任意の変位量分だけずれた位置へ移動させて円盤状搬送対象物を所定の搬送先に移載し、搬送開始位置に戻したハンドを位置補正動作なしで受渡位置へ移動させて、搬送先に移載した円盤状搬送対象物をハンド上に載置した状態で搬送開始位置に戻し、位置補正動作なしで受渡位置へ向かって移動し始めたタイミングで、1組目又はm組目(mはn+1)のキャリブレーション用移動量の抽出処理を行うように制御部が搬送駆動機構の作動を制御し、基準載置位置に対する各キャリブレーション用載置位置の相対位置座標を、各組のキャリブレーション用周縁位置を抽出するために行うキャリブレーション用位置補正動作時の変位量に基づいて取得する構成を採用することができる。当該構成であれば、基準移動量を抽出した処理の後に1組目のキャリブレーション用移動量を抽出する処理と、n組目(nは1以上の整数、例えば4)のキャリブレーション用移動量を抽出した処理の後にm組目(mはn+1、例えばnが4であれば5)のキャリブレーション用移動量を抽出する処理、これら両方の処理を経て各組のキャリブレーション用移動量を抽出するために行うキャリブレーション用位置補正動作時の変位量を把握(取得)することができ、キャリブレーション用位置補正動作時の変位量に基づいて基準載置位置に対する各キャリブレーション用載置位置の正確な相対位置座標を取得することができる。
【0028】
また、本発明に係る円盤状搬送対象物の搬送方法は、直線状の移動経路に沿ってハンドを搬送開始位置から受渡位置に移動させることによりハンド上の円盤状搬送対象物を所定の搬送目的位置に搬送可能な搬送駆動機構を有する搬送ロボットを利用して円盤状搬送対象物を搬送目的位置に搬送する際に用いる搬送方法に関するものであり、周縁位置検出ステップと、中心位置算出ステップと、変位量算出ステップと、動作指令生成ステップとを経て、動作指令生成ステップで生成した動作指令に基づいて搬送駆動機構の作動を制御することを特徴としている。
【0029】
具体的には、周縁位置検出ステップは、停止状態にある搬送開始位置から受渡位置に向かって移動し始めたハンド上の円盤状搬送対象物を3以上の光電センサに通過させ、これら各光電センサの出力信号の変化を検出することによって前記円盤状搬送対象物における相互に異なる3箇所以上の周縁位置が前記各光電センサを通過したことを検出する処理工程である。また、中心位置算出ステップは、ハンドの正規の移動経路である第1軸と、第1軸を含む水平面内において第1軸と直交する第2軸とによって直交座標系を規定した場合に、この直交座標系上における各光電センサの設置位置である光電センサ位置情報と、周縁位置検出ステップで検出した検出情報のうち各光電センサに対する円盤状搬送対象物の周縁位置の通過開始時点における検出情報に関連付けて取得可能な前記ウェーハの移動量に基づいて直交座標系上における円盤状搬送対象物の中心位置を算出する処理工程である。
【0030】
また、変位量算出ステップは、円盤状搬送対象物をハンド上における正規の載置位置に載置した際の当該円盤状搬送対象物の中心位置である直交座標系上の基準中心位置と中心位置算出ステップによって算出した円盤状搬送対象物の中心位置との差異(変位量)を算出する処理工程であり、動作指令生成ステップは、変位量算出ステップで算出した差異(変位量)に基づいて、ハンド上の円盤状搬送対象物を所定の搬送目的位置に搬送するために必要な搬送駆動機構の動作量を規定する動作指令を生成する処理工程である。そして、動作指令生成ステップで生成した動作指令に基づいて搬送駆動機構の作動を制御する円盤状搬送対象物の搬送方法であれば、上述した搬送ロボットが奏する作用効果に準じた作用効果を得ることができる。
【発明の効果】
【0031】
本発明によれば、停止状態にある搬送開始位置から受渡位置に向かって移動し始めたハンド上の円盤状搬送対象物を3以上の光電センサによって、円盤状搬送対象物の周縁における相互に異なる3箇所以上がそれぞれ光電センサを通過した時点を検出し、その検出した情報のうち各光電センサに対する円盤状搬送対象物の周縁位置の通過開始時点における検出情報と、光電センサの位置情報とを利用して、ハンド上に載置した円盤状搬送対象物の中心を算出し、その算出値と、ハンド上における正規の載置位置に載置した円盤状搬送対象物の中心との差異を正確に求めることができ、この差異に基づいて生成した動作指令に基づいて搬送駆動機構を動作させることによって、円盤状搬送対象物を所定の搬送目的位置(正規の移載位置)に高精度で搬送することが可能になる。このような構成或いは搬送方法を採用した本発明であれば、円盤状搬送対象物の搬送速度や加速度による影響は受け難くなり、また、円盤状搬送対象物の径サイズを既知の値として利用することなく、ハンドに載置保持した円盤状搬送対象物の位置と正規の中心位置との差異を正確に求めることができ、円盤状搬送対象物を所定の搬送目的位置へ正確に搬送することが可能になる。
【発明を実施するための形態】
【0033】
以下、本発明の一実施形態を、図面を参照して説明する。
【0034】
本実施形態に係る搬送ロボットTは、直線状の移動経路に沿ってハンド23を
図1に示す搬送開始位置(S)から、
図2に示す受渡位置(E)に移動させることによって、ハンド23上の円盤状搬送対象物7を所定の搬送目的位置まで搬送可能な搬送駆動機構1と、搬送駆動機構1の作動を制御する制御部4とを備えたものである。
【0035】
本実施形態では、円盤状搬送対象物としてウェーハ7を適用している。ウェーハ7は、個体ごとに寸法誤差が生じることを排除すべく、高精度に形成されている。以下では、搬送ロボットTによって直径が例えば300mm(半径が150mm)のウェーハ7を所定の搬送目的位置(正規の移載位置)に搬送する場合について説明する。
【0036】
本実施形態の搬送ロボットTは、
図1及び
図2に示すように、ウェーハ搬送室A内に配置され、ウェーハ搬送室Aに隣接する処理室またはロードロック室B内のポートB1にウェーハ7を受け渡したり、或いはウェーハ搬送室Aに隣接するロードポート(図示省略)上のFOUP内にウェーハ7を受け渡すことが可能なものである。以下では、処理室またはロードロック室B内に設定した所定の搬送目的位置(正規の移載位置)にウェーハ7を搬送する場合について説明する。
【0037】
本実施形態における搬送駆動機構1は、先端部に設けたハンド23を搬送開始位置(S)と受渡位置(E)との間で直線状の移動経路に沿って移動させることが可能なアーム2と、旋回軸31によりアーム2の基端部を旋回可能に支持する本体部3とを備えたものである。つまり、本実施形態における搬送駆動機構1は、直線動作と旋回動作が可能なものである。
【0038】
そして、本実施形態では、
図1に示すように、ハンド23上が搬送開始位置(S)から受渡位置(E)に向かって移動し始めた時点で、ハンド23上のウェーハ7が通過する(よぎる)位置に複数の光電センサ(代表的なものとしてファイバーセンサなどがある)6L,6C,6Rを配置している。具体的には、3つの光電センサ6L,6C,6Rによって、ウェーハ7の周縁における異なる3箇所を検出できるように各光電センサ6L,6C,6Rを配置している。なお、3つの光電センサについて本明細書では、便宜上、
図1及び
図2等における紙面左側の光電センサ、中央の光電センサ、右側の光電センサをそれぞれ「左光電センサ6L」、「中央光電センサ6C」、「右光電センサ6R」と称する。
【0039】
左光電センサ6L、中央光電センサ6C及び右光電センサ6Rは、例えば、投光部と光を受ける受光部(センサヘッド)とを備え、投光部から受光部に向かって投光された光(センサ光軸)が検出対象物(本実施形態ではウェーハ7)によって遮られたり、反射することで、受光部に到達する光量が変化し、受光部によりその変化を検出して電気信号に変換し、出力するものである。本実施形態では、反射式の光電センサ、又は透過式の光電センサの何れであっても好適に用いることができる。なお、ウェーハ7が透明な素材から形成されている場合であっても、ウェーハ7の周縁では屈折率が異なることで光量レベルに変化が生じ、その変化を受光部で検出して電気信号に変換して出力可能に構成されている。本実施形態では、受光部であるセンサヘッドに到達する光量が変化した時点で出力する電気信号が、ON信号とOFF信号との間で切り替わる二値化信号出力可能な光電センサを適用している。
【0040】
本実施形態の各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)は、ハンド23を搬送開始位置(S)と受渡位置(E)との間で移動させた場合に、ハンド23上に載置保持されているウェーハ7の周縁がこれら3つの光電センサ6L,6C,6R全てのセンサ光軸を遮ることが可能な位置に配置されている。
【0041】
本実施形態に係る搬送ロボットTは、上述したように、ウェーハ7をハンド23上における正規の載置位置に載置した状態(
図1参照)で、ハンド23を搬送開始位置(S)から受渡位置(E)(
図2参照)に移動させれば、ハンド23上のウェーハ7を所定の搬送目的位置まで正確に搬送することができるように設定している。そして、このハンド23の搬送開始位置(S)から受渡位置(E)までの移動経路を「ハンド23の正規の移動経路」とすると、このハンド23の正規の移動経路に対して直交する方向に各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)を配置している。
【0042】
ここで、ハンド23の正規の移動経路と一致する軸を第1軸(Y軸)とし、第1軸を含む水平面内において第1軸と直交する軸を第2軸(X軸)としてこれら第1軸及び第2軸によって直交座標系を規定した場合、各光電センサ6L,6C,6Rの設置位置を、直交座標系上の座標として把握することができる。本実施形態では、
図3に示すように、本実施形態では、各光電センサ6L,6C,6Rの中央位置を、各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)の設置位置(座標)として捉えている。
【0043】
図3に示すように、左光電センサ6Lの直交座標系上における設置位置は(x
L,y
L)であり、中央光電センサ6Cの直交座標系上における設置位置は(x
C,y
C)であり、右光電センサ6Rの直交座標系上における設置位置は(x
R,y
R)である。本実施形態に係る搬送ロボットTは、これら各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)の直交座標系上の座標である設置位置情報(x
L,y
L),(x
C,y
C),(x
R,y
R)及び各光電センサ6L,6C,6Rによるウェーハ7の通過検出情報などを利用して、後述するように搬送ロボットTによりウェーハ7を正規の移載位置に搬送できるように構成している。
【0044】
なお、ウェーハ7の周縁には、オリエンテーションフラットやノッチ等の切欠が形成されている場合がある。この場合には、各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)が、ウェーハ7の周縁のうちオリエンテーションフラットやノッチ等の切欠が形成されていない箇所を検出できるように、各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)の配置位置又はハンド23上におけるウェーハ7の載置姿勢(向き)を設定している。
【0045】
搬送駆動機構1を構成するアーム2は、
図1及び
図2に示すように、アーム2のうち最も基端側(本体部3側)に配置した第1リンク要素21と、第1リンク要素21の先端部に水平旋回可能に連結した第2リンク要素22と、第2リンク要素22の先端部に水平旋回可能に連結したエンドエフェクタであるハンド23とを備えたものである。このアーム2は、アーム長が最小になる折畳状態(
図1参照)と、アーム長が折畳状態時よりも長くなる伸長状態(
図2参照)との間で形状が変わるリンク構造(多関節構造)のものである。また、第1リンク要素21の内部空間には、第2リンク要素22に動力を伝達して第2リンク要素22を回転させる動力伝達機構(例えばプーリ及びベルト)を設け、第2リンク要素22の内部空間にも、ハンド23に動力を伝達してハンド23を回転させる動力伝達機構(例えばプーリ及びベルト)を設けている(図示省略)。
図1ではハンド23として先端を二股状に分岐させたフォーク状に形成したものを示しているが、各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)によるセンシング処理に支障を来さない条件を満たせば、例えば先端を平面視略矩形状に形成したのものなど、他の形状をなすハンドを適用してもよい。
【0046】
このようなアーム2は、基端部を旋回軸31回りに水平旋回させたり、リンク要素21,22同士を関節部分で水平旋回させてアーム2全体の形状を適宜変形させながら、ハンド23を
図1に示す搬送開始位置(S)(折畳状態にあるアーム2におけるハンド23の位置)から
図2に示す受渡位置23(E)(伸長状態にあるアーム2のハンド23の位置)に移動させて、ウェーハ7を所定の搬送目的位置(正規の移載位置)にまで搬送するものである。ここで、
図1に示すように、ハンド23の正規の移動経路と重なるY軸(第1軸)は、旋回軸31の中心31aを通る座標軸であり、Y軸に直交するX軸(第2軸)は、Y軸を含む水平面内においてY軸と直交し且つ旋回軸31の中心31aを通る座標軸であり、ハンド23を含むアーム2は、これらの座標軸によって規定されるXY座標系(本発明の「直交座標系」に相当)の平面上を動くものとして捉えることができる。
【0047】
また、旋回軸31及びアーム2の動作座標系はロボット動作極座標系(r,θ)として示すことができる。「r」は、旋回軸31の中心31aを通るハンド23の進行方向(r軸方向)であり、「θ」は、旋回軸31回りのr軸の回転角度である。そして、搬送駆動機構1によりウェーハ7を正規の移載位置(本実施形態では、処理室またはロードロック室B内に設定した所定の搬送目的位置)に搬送した時点におけるウェーハ7の中心位置を(r
0,θ
0)とした場合、Y軸は、θがθ
0である時のr軸方向と一致する(
図2参照)。
【0048】
図4に示すように、ウェーハ7をハンド23上における正規の載置位置からずれた位置に載置した状態で、ハンド23を搬送開始位置(S)から受渡位置(E)に移動させれば、その移動後のハンド23上にあるウェーハ7の中心位置7aが、所定の搬送目的位置(正規の移載位置)に搬送した場合のウェーハ7の中心位置7aに対して、載置位置のズレ量に応じて変位する。
図4では、ハンド23における正規の載置位置から変位した位置に載置保持したウェーハ7を実線で示し、ハンド23における正規の載置位置に載置保持したウェーハ7を破線で示している。
【0049】
なお、XY座標系上における各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)の具体的な配置として、例えば、左光電センサ6Lを第二象限(X座標が負の値をとり、Y座標が正の値をとる点からなる領域)に配置し、右光電センサ6Rを第一象限(X座標とY座標がともに正の値をとる点からなる領域)に配置し、中央光電センサ6Cを、Y軸に合致する位置に配置する標準配置を採用することができるが、本実施形態では、中央光電センサ6Cを第一象限に配置している点で標準配置とは異なる配置態様を採用している。
【0050】
本実施形態に係る搬送ロボットTにおいて、搬送駆動機構1の作動を制御する制御部4は、
図5に示すように、周縁位置検出手段41と、中心位置算出手段42と、変位量算出手段43と、動作指令生成手段44と、位置補正実行手段45とを備えている。なお、
図1及び
図2では、制御部4を本体部3に内蔵又は付帯させた態様を例示しているが、本体部3にそれとは別体の情報処理装置等を接続することによって制御部4を構成することもできる。
【0051】
周縁位置検出手段41は、停止状態にある搬送開始位置(S)から受渡位置(E)に向かって移動し始めたハンド23上のウェーハ7を各光電センサ6L,6C,6Rに通過させ、これら各光電センサ6L,6C,6Rの出力信号の変化を検出することによってウェーハ7の周縁位置における相互に異なる3箇所が各光電センサ6L,6C,6Rを通過したことを検出するものである。具体的に、この周縁位置検出手段41は、ウェーハ7を載置保持したハンド23を搬送開始位置(S)から受渡位置(E)に向かって移動させた際に、各光電センサ6L,6C,6Rの受光部(センサヘッド)が出力する二値化信号の変化を検出することによって、ウェーハ7の周縁3箇所がそれぞれ各光電センサ6L,6C,6Rを通過したことを検出するものである。ウェーハ7を載置保持したハンド23が停止状態にある搬送開始位置(S)から受渡位置(E)に向かって移動し始めた場合に、各光電センサ6L,6C,6Rの受光部(センサヘッド)が出力する二値化信号が変化する時点は、ウェーハ7の周縁が各光電センサ6L,6C,6Rを通過し始めた時点(通過開始時点)と、ウェーハ7の周縁が各光電センサ6L,6C,6Rを通過し終えた時点(通過終了時点)である。なお、各光電センサ6L,6C,6Rをウェーハ7の周縁が通過するタイミングは、同時又は略同時である場合もあれば、ハンド23上におけるウェーハ7の載置位置のズレ量に応じて同時でない場合もある。また、各光電センサ6L,6C,6Rの配置を適宜変更した場合には、その配置構成によって、ハンド23上にウェーハ7を載置基準位置に載置した場合であっても、ウェーハ7の周縁が各光電センサ6L,6C,6Rを通過するタイミングが不揃いになることも想定される。
【0052】
本実施形態の搬送ロボットTは、搬送駆動機構1のうち少なくともハンド23の移動量を検出可能なハンド移動量検出部5を備えている。このハンド移動量検出部5は、搬送駆動機構1に付帯させたものであり、例えばモータの回転方向や回転量の検出値に基づいて,搬送駆動機構1のハンド23の移動量や旋回軸31の回転角度を間接的に算出するものであってもよい。あるいは、搬送駆動機構1に付帯させたものではなく、エンコーダなどの位置検出器をアーム2のリンク回転軸やハンド23に直接取り付けて、それらリンク回転軸の回転量やハンド23の移動量を直接検出可能なものであってもよい。また、ハンド移動量検出部として、搬送ロボットTそのものにではなく、搬送ロボットTの周辺機器や周辺のスペース(例えば処理室またはロードロック室Bなど)に配置したレーザ変位センサによって、第1軸(Y軸)方向のハンド23の移動量のみ検出可能なものを適用することもできる。本実施形態では、搬送開始位置にあるハンド23の位置を基準点とし、この基準点に対するハンド23の移動量を検出するように構成している。
【0053】
中心位置算出手段42は、XY座標系上における各光電センサ6L,6C,6Rの設置位置である光電センサ位置情報と、周縁位置検出手段41で検出した検出情報のうち、各光電センサ6L,6C,6Rに対するウェーハ7の周縁位置の通過開始時点における検出情報に関連付けて取得可能なウェーハ7の移動量とを利用してウェーハ7の中心位置を算出するものである。本実施形態では、各光電センサ6L,6C,6Rの光電センサ位置情報として各光電センサ6L,6C,6Rの中央位置を用いるが、光電センサ6L,6C,6Rの設置誤差を排除するために、後述するキャリブレーション処理により取得したデータに基づいて推定した位置座標を、各光電センサ6L,6C,6Rの光電センサ位置情報として用いることができる。
【0054】
そして、本実施形態に係る搬送ロボットTでは、周縁位置検出手段41で検出した検出情報のうち、ウェーハ7の周縁が光電センサ6L,6C,6Rのセンサ光軸をよぎり始めた時点における検出情報、つまり、ウェーハ7の周縁3箇所が光電センサ6L,6C,6Rのセンサ光軸をよぎり始めた時点において、各光電センサ6L,6C,6Rの出力信号変化を検出することによりウェーハ7の周縁3箇所が光電センサ6L,6C,6Rを通過し始めたことを特定可能な検出情報に基づき、各光電センサ6L,6C,6R単位でウェーハ7の周縁位置が通過し始めた時点(ウェーハ7の周縁が光電センサ6L,6C,6Rのセンサ光軸をよぎり始めた瞬間にセンサヘッドの二値化信号出力が変化し、その変化を検出した時点)におけるハンド23の移動量をハンド移動量検出部5から取得し、各光電センサ6L,6C,6Rに対するウェーハ7の周縁の通過開始時点におけるハンド23の移動量をΔy
Li,Δy
Ci,Δy
Ri(単位:mm)として所定の記憶領域に記憶する。ここで、これら移動量Δy
Li,Δy
Ci,Δy
Riは、ハンド23上に載置保持しているウェーハ7の周縁のうち各光電センサ6L,6C,6Rの検出対象である位置が、ハンド23の搬送開始位置(S)から受渡位置(E)に向かう移動に伴って各光電センサ6L,6C,6Rを通過し始める時点までに第1軸(Y軸)に沿って移動した量(移動量)として捉えることができる。すなわち、各光電センサ6L,6C,6Rに対するウェーハ7の周縁の通過開始時点におけるハンド23の移動量Δy
Li,Δy
Ci,Δy
Ri(単位:mm)は、「ウェーハ7の周縁位置の通過開始時点における検出情報に関連付けて取得可能なウェーハの移動量」と同義である。
【0055】
以上より、
図3に示すように、XY座標系上における各光電センサ6L,6C,6Rの座標をそれぞれ(x
L,y
L),(x
C,y
C),(x
R,y
R)として捉えた場合、各光電センサ6L,6C,6Rで検出した情報に基づき、ウェーハ7の周縁における相互に異なる3箇所毎の移動量は、各光電センサ6L,6C,6Rの設置位置(x
L,y
L),(x
C,y
C),(x
R,y
R)を基準位置としてそれぞれΔy
Li,Δy
Ci,Δy
Ri(単位:mm)として特定し、取得することができる。
【0056】
ここで、光電センサ位置情報が、
図3に示す各光電センサ6L,6C,6Rの位置座標(x
L,y
L),(x
C,y
C),(x
R,y
R)である場合、それら各座標(x
L,y
L),(x
C,y
C),(x
R,y
R)、及び各光電センサ6L,6C,6Rのセンシング処理によって取得したウェーハ7の周縁位置を検出した時点におけるウェーハ7の移動量Δy
Li,Δy
Ci,Δy
Riにより、各光電センサ6L,6C,6Rとウェーハ7の周縁位置が平面視において交差する位置の座標(x
L,y
Li),(x
C,y
Ci),(x
R,y
Ri)は、以下の数式1で示す座標になる。
【0058】
そして、搬送開始位置(S)にある停止状態のハンド23上に載置したウェーハ7の中心座標を(x
i,y
i)とし、ウェーハ7が半径R
i(単位:mm)の円であると仮定すると、三平方の定理より、以下の数式2で示す方程式が成り立つ。
【0060】
各光電センサの位置座標(x
L,y
L),(x
C,y
C),(x
R,y
R)は既知の座標(設計上の位置座標)であってもよいし、後述するキャリブレーション処理によって予め推定した座標であってもよい。また、移動量Δy
Li,Δy
Ci,Δy
Riはハンド23が搬送開始位置(S)から受渡位置(E)に向かって移動する毎に検出する値として、上記方程式をウェーハ7の中心座標である(x
i,y
i)について解くと以下の数式3で示す方程式となる。
【0062】
本実施形態における中心位置算出手段42では、数式3に示す演算処理により、ハンド23上に載置したウェーハ7の中心位置7aをXY座標系上における座標(x
i,y
i)として算出するように構成している。なお、上記数式3は、上記数式2で示す方程式を解いた数式解の一例であり、解の導出方法によっては更に整理又は変形した式となることもある。
【0063】
変位量算出手段43は、ウェーハ7をハンド23上における正規の載置位置に載置した際のこのウェーハ7の中心位置であるXY座標系上の基準中心位置と、中心位置算出手段42によって算出したウェーハ7の中心位置との差異(変位量)を算出するものである。具体的に、この変位量算出手段43では、XY座標系上の基準中心位置を(x
0,y
0)とし、この基準中心位置(x
0,y
0)に対するウェーハ7の中心位置(x
i,y
i)の変位量(Δx,Δy)を数式4に示す式で算出する。
【0065】
動作指令生成手段44は、変位量算出手段43で算出した差異(変位量)に基づいて、ハンド23上のウェーハ7を所定の搬送目的位置に搬送するために必要な搬送駆動機構1の動作量を規定する動作指令を生成するものである。本実施形態に係る搬送ロボットTは、搬送駆動機構1として、旋回軸31及びアーム2を備えるものを適用しており、上述の通り、旋回軸31及びアーム2の動作座標系はロボット動作極座標系(r,θ)として示すことができる。そして、ウェーハ7をハンド23上における正規の載置位置に載置した状態でハンド23を正規の搬送経路に沿って搬送開始位置(S)から受渡位置(E)に移動させた時点のウェーハ7の中心位置のY座標を「r」とした場合、変位量算出手段43で算出した変位量(Δx,Δy)は以下の数式5によって表すことができる。
【0067】
そして、正規の移載位置(所定の搬送目的位置)が、XY座標におけるY軸上の正の値であることから、本実施形態における動作指令生成手段44では、座標上の第一象限及び第二象限内(条件:r+Δr>0)での位置補正に限定して、ロボット動作極座標系(r,θ)上における搬送駆動機構1の補正量(Δr,Δθ)を以下の数式6に示す演算処理によって求めている。
【0069】
なお、搬送駆動機構1の補正量(Δr,Δθ)を計算する機器の演算能力が十分でなく、変位量算出手段43で算出した変位量(Δx,Δy)のうちΔyに前記「r」を足した距離(r+Δy)が、変位量算出手段43で算出した変位量(Δx,Δy)のΔxに対して十分大きい場合などには、テイラー展開の一次近似により求めた下記数式7に示す演算処理によってロボット動作極座標系(r,θ)上における搬送駆動機構1の補正量(Δr,Δθ)を算出するようにしてもよい。
【0071】
位置補正実行手段45は、動作指令生成手段44で算出した搬送駆動機構1の動作指令に基づいて旋回軸31及びアーム2の作動を制御することにより、ハンド23に載置しているウェーハ7を所定の搬送目的位置(正規の移載位置)に移動させる位置補正処理を実行するものである。
【0072】
次に、このような搬送ロボットT及び各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)を用いて、ハンド23上に載置されているウェーハ7の中心位置7aと基準中心位置との差異を検出し、その検出値を旋回軸31やアーム2の動作に実際に反映させて、ウェーハ7を所定の搬送目的位置(正規の移載位置)へ搬送する方法及び作用について説明する。
【0073】
本実施形態では、ハンド23上に載置されているウェーハ7の中心位置7aと基準中心位置との差異を検出するに際して、各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)によって検出した検出情報や、各光電センサ6L,6C,6R自体の座標上における位置情報を利用する。しかしながら、各光電センサ6L,6C,6Rを所定位置に支持する装置の組立精度や部品の加工精度などの種々の影響により、各光電センサ6L,6C,6Rを設計上の位置に正確に配置することは困難であり、各光電センサ6L,6C,6Rの実際の位置と、設計上の位置とで多少の誤差が発生する。この誤差について何ら考慮しないままウェーハ7の搬送処理を実行した場合、ウェーハ7を正規の移載位置に搬送する精度が低下してしまうことが想定される。
【0074】
そこで、本実施形態では、予め各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)についてキャリブレーション処理を行い、このキャリブレーション処理によって取得したデータ(複数のキャリブレーションデータ)を利用して各光電センサ6L,6C,6Rの位置座標を推定するようにしている。
【0075】
キャリブレーション処理は、ハンド23上におけるウェーハ7の1つの載置位置を基準とし、その基準載置位置にウェーハ7を載置した状態において搬送開始位置(S)から受渡位置(E)に向かって移動し始めたハンド23上のウェーハ7における周縁3箇所が各光電センサ6L,6C,6Rを通過し始める時点までに第1軸(Y軸)に沿って移動した量である基準移動量と、基準移動量を抽出するために用いたウェーハ7を基準載置位置から(相互に異なる任意の量だけ)変位させたキャリブレーション用載置位置に載置した状態において搬送開始位置(S)から受渡位置(E)に向かって移動し始めたハンド23上のウェーハ7における周縁3箇所が各光電センサ6L,6C,6Rを通過し始める時点までに第1軸(Y軸)に沿って移動した量であって且つ光電センサと同数の移動量を1組とする複数組のキャリブレーション用移動量と、各キャリブレーション用載置位置の基準載置位置に対する相対位置座標とを利用して、各光電センサ6L,6C,6Rの位置座標を推定する処理である。
【0076】
ここで、各光電センサ6L,6C,6Rの位置座標を推定する処理で用いる基準移動量と複数のキャリブレーション用移動量とを取得する手順について説明する。
【0077】
先ず、ウェーハ7の搬送先であるロードロックB室内のポートB1上にウェーハ7を、その中心位置7aが、正規の移載位置(所定の搬送目的位置)に搬送したウェーハ7の中心位置とおおよそ合致する位置に予め置いておく。
【0078】
そして、本実施形態の搬送ロボットTでは、キャリブレーション時に用いる専用の教示データに従い、制御部4による作動制御によって搬送駆動機構1を位置補正なしに作動させて、ポートB1上に置いてあるウェーハ7を受渡位置(E)に位置付けたハンド23上に移載し、そのハンド23を搬送開始位置(S)にまで移動させる。なお、ハンド23とポートB1との間でウェーハ7を移載する際は、搬送駆動機構1全体を適宜の昇降機構(図示省略)によって昇降移動させてもよいし、あるいは、搬送駆動機構1を昇降不能に構成し、処理室またはロードロック室B内に設けた昇降機構によってポートB1を昇降移動させることで対応してもよい。
【0079】
本実施形態の搬送ロボットTでは、ウェーハ7を処理室またはロードロック室Bから取り出し、搬送開始位置(S)に位置付けて一旦停止した状態から受渡位置(E)に向かって移動し始めたハンド23上のウェーハ7が、各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)を通過することによって、ハンド23上にあるウェーハ7の周縁における3箇所が各光電センサ6L,6C,6Rを通過し始めた時点を各光電センサ6L,6C,6Rで検出し、この検出した通過開始時点におけるハンド23の第1軸(Y軸)正方向への移動量(Δy
L1*,Δy
C1*,Δy
R1*)をそれぞれ抽出する。この抽出した移動量(Δy
L1*,Δy
C1*,Δy
R1*)は、各光電センサ6L,6C,6Rがハンド23上にあるウェーハ7の周縁3箇所をそれぞれ検出するまでの移動量と同義であり、これら移動量(Δy
L1*,Δy
C1*,Δy
R1*)と、この検出時点においてウェーハ7の中心位置が上述の基準中心位置(停止状態にある搬送開始位置(S)のハンド23上における正規の載置位置にウェーハ7を載置した際のウェーハ7の中心位置7aである直交座標系上の基準中心位置)に対して変位している量(ズレ量)(Δx
1*,Δy
1*)との組を、1番目のキャリブレーションデータとして所定の記憶部に記憶する。ここで、1番目のキャリブレーションデータ取得時におけるズレ量(Δx
1*,Δy
1*)は(0,0)である。1番目のキャリブレーションデータ取得時におけるハンド23上のウェーハ7の載置位置がキャリブレーション処理時における「基準載置位置」であり、この基準載置位置に載置したウェーハ7の周縁3箇所を各光電センサ6L,6C,6Rによって検出する同義までの移動量(Δy
L1*,Δy
C1*,Δy
R1*)が「基準移動量」になる。以上の手順によって基準移動量の抽出処理が完了する。
【0080】
基準移動量の抽出処理に引き続いて、本実施形態の搬送ロボットTは、各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)による検出情報に基づいて抽出可能なウェーハ7の周縁3箇所の移動量(Δy
Ln*,Δy
Cn*,Δy
Rn*)であって光電センサと同数の移動量を1組とする複数組のキャリブレーション用周縁位置を取得する処理(キャリブレーション用周縁位置の抽出処理)を行う。本実施形態では、各組の移動量(Δy
Ln*,Δy
Cn*,Δy
Rn*)と、後述するズレ量(Δx
n*,Δy
n*)=(Δx
n,Δy
n)とを合わせたデータ(キャリブレーションデータ)を複数組取得する処理を行う。なお、座標値における「n」は、何番目のキャリブレーションデータであるかを意味する。本実施形態では、49組のキャリブレーションデータを取得するように設定している。
【0081】
複数組のキャリブレーション用移動量を抽出する手順(換言すれば、2番目以降のキャリブレーションデータを取得する手順)を以下に説明する。1番目のキャリブレーションデータを取得した後に続いて、制御部4が、教示データに基づき、
図6に示すハンド23のXY座標位置(x
hand,y
hand)にキャリブレーション用の位置補正量(Δx
n,Δy
n)を加えた動作指令によってアーム2及び旋回軸31を作動させてハンド23を搬送開始位置(S)から受渡位置(E)に向かって移動させ、ウェーハ7を搬送先の処理室またはロードロック室Bへ搬送し、ポートB1に移載した後、ハンド23を搬送開始位置(S)にまで移動させる。その結果、ポートB1上のウェーハ7の中心位置7aは、ポートB1上における正規の移載位置に移載したウェーハ7の中心位置に対してキャリブレーション用の位置補正量(Δx
n,Δy
n)分だけ変位している。すなわち、上述の「ズレ量」は、このキャリブレーション用の位置補正量を意味する。なお、キャリブレーション用の位置補正量(Δx
n,Δy
n)における「n」は、何番目のキャリブレーションデータ取得時の位置補正量であるかを意味する。キャリブレーション処理時におけるハンド23の位置補正量(Δx
n,Δy
n)は、
図6に記した中央一から外側へ渦巻状に変位した順番の番号順にそれぞれ異なるように設定されている。なお、キャリブレーション用の位置補正量は等間隔ではなく、実際の搬送で位置補正動作を行う搬送領域内の任意の値としてもよい。また、キャリブレーションデータの取得順番も渦巻状に限定されることなく、適宜の順番としても構わない。
【0082】
引き続いて、本実施形態の搬送ロボットTでは、制御部4によって位置補正を行うことなく搬送駆動機構1を作動させて、停止状態にある搬送開始位置(S)から受渡位置(E)に向かって移動し始めたハンド23上にあるウェーハ7の周縁3箇所が各光電センサ6L,6C,6Rを通過し始める時点を各光電センサ6L,6C,6Rで検出し、この検出した通過開始時時点におけるハンド23の第1軸(Y軸)正方向への移動量(Δy
L2*,Δy
C2*,Δy
R2*)を、キャリブレーション用移動量として抽出する。この検出値(Δy
L2*,Δy
C2*,Δy
R2*)と、検出時点において上述の基準中心位置に対するウェーハ7の中心位置のズレ量(Δx
2*,Δy
2*)=(Δx
2,Δy
2)との組を、2番目のキャリブレーションデータとして所定の記憶部に記憶する。本実施形態では、49番目のキャリブレーションデータを取得するまで、2番目のキャリブレーションデータを取得した手順に準じた手順を繰り返す。ここで、2番目以降のキャリブレーションデータにおけるウェーハ7の載置位置及び移動量が、本発明における「キャリブレーション用載置位置」及び「キャリブレーション用移動量」である。そして、上述のとおり、各組におけるキャリブレーション用移動量の数は、光電センサと同数(後述するように最適化問題で光電センサの位置を推定する場合において、各組におけるキャリブレーション用移動量の個数は、推定するパラメータ数、つまり光電センサの個数と同じであり、本実施形態では「3」)である。なお、取得するキャリブレーションデータの数は「49」に限定されず、適宜の数に設定することができる。
【0083】
上記手順によって取得した複数のキャリブレーションデータに基づき、各光電センサ6L,6C,6Rの位置座標を推定する。
【0084】
具体的に、ウェーハ7の中心位置(x
i,y
i)をハンド23上に相互に異ならせて載置した各載置位置(基準載置位置及びキャリブレーション用載置位置)において、各光電センサ6L,6C,6Rで検出がウェーハ7の周縁3箇所をそれぞれ検出するまでの移動量(基準移動量及びキャリブレーション用移動量)のデータをキャリブレーション処理によって取得している本実施形態では、推定する各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)の位置座標を以下の数式8に示す座標とするとともに、キャリブレーション処理実行前の各光電センサ6L,6C,6Rが、停止状態にある搬送開始位置(S)から受渡位置(E)に向かって移動し始めたハンド23上にあるウェーハ7の周縁3箇所を検出した通過開始時時点におけるハンド23の第1軸(Y軸)正方向への移動量とセンサ位置座標とから推定されるウェーハ周縁位置、及びウェーハ7の半径を以下の数式9に示す値とし、光電センサの誤差εを以下の数式10で示す式で表すことができる点に着目し、以下の数式11に示す評価関数Jを最小とする数式8に示す各座標を最適化手法により求め、それらの各座標を各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)の位置座標とすることができる。ここで、評価関数Jを最小化する最適化問題とするため、正負の値を取る誤差εを平方して正の値としたε
2を使用する。
【0089】
キャリブレーションデータを取得する処理は、同一のウェーハ7を使用して行うため、ウェーハ7の半径は測定回数に依存しない値となる。ここで、数式11は、数式10に基づき以下の数式12に示す評価関数として表すことができる。
【0091】
そして、ハンド23上におけるウェーハ7の基準中心位置(x
0,y
0)に対する各載置位置(キャリブレーション用載置位置)におけるウェーハ7の中心位置座標(x
i,y
i)のズレ量を(Δx
i*,Δy
i*)とし、各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)によってウェーハ7の周縁3箇所を検出するまでのハンド23(ウェーハ7)の移動量をΔy
Li*,Δy
Ci*,Δy
Ri*,とすると、評価関数Jは、以下の数式13に示す式に整理することができる。
【0093】
そして、この数式13に、キャリブレーション処理で取得した複数組のキャリブレーションデータを代入することで、数式12に示す座標を最適化手法により求め、この求めた座標を各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)の位置座標とすることができる。
【0094】
評価関数Jを極値(今回は最小化)とする最適化問題は、一般的な非線形最適化の解法である最急降下法、準ニュートン法、共役勾配法などを用いることができる。
【0095】
なお、ウェーハ7のズレ量が大きくなるほど、推定した各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)の位置座標を用いたウェーハ7の中心位置の計算精度が劣化する傾向がある場合には、ズレ量に比例した重み付Wを乗じた評価関数J´を使用して、各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)の位置座標の推定処理を実施してもよい。以下の数式14に重み付けの一例を示す。
【0097】
また、各光電センサ6L,6C,6Rの位置座標の推定処理に時間を要する場合や計算結果が局所解となり、真値(光電センサの実際の設置位置の座標値)に対する推定値の計算精度が低下することを回避するためにも、各光電センサ6L,6C,6Rの取付位置範囲を予め制約条件として与えて最適化問題を解くようにしてよい。
【0098】
本実施形態の搬送ロボットTは、このような演算処理によって各光電センサ(左光電センサ6L、中央光電センサ6C、右光電センサ6R)の位置座標を推定した後で、
図7に示す周縁位置検出ステップS1以降の各処理を行う。
【0099】
すなわち、本実施形態に係る搬送ロボットTは、光電センサ位置座標推定処理を行った後において、先ず、制御部4の作動制御によって、所定の受取先(例えば図示しないロードポート上に載置したFOUP内)から受け取ったウェーハ7を載置保持したハンド23を、静止状態にある搬送開始位置(S)から受渡位置(E)に向かって移動し始めたタイミングで、ウェーハ7の周縁3箇所が各光電センサ6L,6C,6Rを通過させる。この際に、これら各光電センサ6L,6C,6Rの二値化信号の出力変化を検出することによってウェーハ7の周縁位置における相互に異なる3箇所が各光電センサ6L,6C,6Rを通過したことを周縁位置検出手段41によって検出する(周縁位置検出ステップS1、
図7参照)。
【0100】
続いて、本実施形態に係る搬送ロボットTは、制御部4の中心位置算出手段42により、光電センサ位置情報と、周縁位置検出ステップS1で検出した検出情報のうち各光電センサ6L,6C,6Rに対するウェーハ7の周縁位置の通過開始時点における検出情報とに基づいてウェーハ7の中心位置7aを算出する中心位置算出ステップS2を行う(
図7参照)。本実施形態では、光電センサ位置情報である各光電センサ6L,6C,6Rの位置座標(x
L,y
L),(x
C,y
C),(x
R,y
R)として、上述のキャリブレーション処理を通じて推定した各光電センサ6L,6C,6Rの位置座標を用いることができる。また、
図3に示すように、各光電センサ6L,6C,6Rに対するウェーハ7の周縁位置の通過開始時点における検出情報、すなわち、ウェーハ7の周縁位置における異なる3箇所が各光電センサ6L,6C,6Rを通過し始めたことを各光電センサ6L,6C,6Rの出力信号変化によって検出したという情報に基づき、当該時点におけるハンド23の移動量をハンド移動量検出部5から取得し、各光電センサ6L,6C,6Rに対するウェーハ7の周縁の通過開始時点におけるハンド23の移動量をΔy
Li,Δy
Ci,Δy
Ri(単位:mm)として所定の記憶領域に記憶する。ハンド23の移動量Δy
Li,Δy
Ci,Δy
Riは、ハンド23上に載置保持しているウェーハ7の移動量と同義である。つまり、ハンド23の移動量Δy
Li,Δy
Ci,Δy
Riは、搬送開始位置(S)から受渡位置(E)に向かうハンド23の移動に伴ってウェーハ7を搬送する際に、各光電センサ6L,6C,6Rがこれら各光電センサ6L,6C,6Rに接近して直ちに通過し始めるウェーハ7の周縁を検出するまでのウェーハ7の移動量を意味する。
【0101】
そして、中心位置算出ステップS2では、光電センサ位置情報と、ハンド23を停止状態にある搬送開始位置(S)から受渡位置(E)に向かって移動し始めてから最初に各光電センサ6L,6C,6Rの出力信号が変化するまでのウェーハ7の移動量Δy
Li,Δy
Ci,Δy
Riとを利用して、前記数式3に示す演算処理により、搬送開始位置(S)に位置付けたハンド23上に載置したウェーハ7の中心位置7aをXY座標系上における座標(x
i,y
i)として算出する。
【0102】
次いで、本実施形態に係る搬送ロボットTは、制御部4の変位量算出手段43により、ウェーハ7の基準中心位置(ウェーハ7をハンド23上における正規の載置位置に載置した際のこのウェーハ7の中心位置)と、中心位置算出ステップS2で算出したウェーハ7の中心位置7a(x
i,y
i)との差異(変位量)を算出する(変位量算出ステップS3、
図7参照)。この変位量算出ステップS3では、XY座標系上の基準中心位置を(x
0,y
0)とし、この基準中心位置(x
0,y
0)に対するウェーハ7の中心位置(x
i,y
i)の変位量(Δx,Δy)を前記数式4に示す式で算出する。
【0103】
引き続いて、本実施形態の搬送ロボットTは、変位量算ステップS3で算出した変位量(Δx,Δy)に基づいて、ハンド23上のウェーハ7を所定の搬送目的位置に搬送するために必要な搬送駆動機構1の動作量を規定する動作指令を制御部4の動作指令生成手段44によって生成する(動作指令生成ステップS4、
図7参照)。この動作指令生成ステップS4では、ウェーハ7をハンド23上における正規の載置位置に載置した状態でハンド23を正規の搬送経路に沿って搬送開始位置(S)から受渡位置(E)に移動させた時点のウェーハ7の中心位置のY座標を「r」とし、座標上の第一象限及び第二象限内(条件:r+Δr>0)での位置補正に限定して、ロボット動作極座標系(r,θ)上における搬送駆動機構1の補正量(Δr,Δθ)を前記数式6に示す演算処理によって求めている。なお、変位量算出ステップS3においてXY座標系上の基準中心位置(x
0,y
0)に対するウェーハ7の中心位置(x
i,y
i)の変位量がゼロである場合、すなわち、基準中心位置(x
0,y
0)とウェーハ7の中心位置(x
i,y
i)が一致する場合、動作指令生成ステップS5では、搬送駆動機構1の正規の移動量(位置補正なしの場合における移動量)に対する補正量がゼロである動作指令を生成することになる。
【0104】
そして、本実施形態に係る搬送ロボットTは、動作指令算出ステップS4で算出した搬送駆動機構1の動作指令に基づいて旋回軸31及びアーム2の作動を制御することにより、ハンド23に載置しているウェーハ7を所定の搬送目的位置(正規の移載位置)に搬送する位置補正処理を実行する(位置補正実行ステップS5、
図7参照)。本実施形態では、ハンド23を搬送開始位置(S)から受渡位置(E)に向かって移動させている途中で搬送駆動機構1の動作指令を生成し、この動作指令に基づいて、一旦受渡位置(E)に移動させた後に、旋回軸31を補正量(Δθ)減じた分だけ旋回させるとともに、ハンド23を補正量(Δr)減じた分だけ移動させることによって、ウェーハ7をウェーハ搬送室Aから搬送先である処理室またはロードロック室B内において予め設定された所定の搬送目的位置(正規の移載位置)に搬送する位置補正処理を実行している。ここで、基準中心位置(x
0,y
0)とハンド23上に実際に載置保持しているウェーハ7の中心位置(x
i,y
i)が一致している場合、搬送駆動機構1は正規の移動量(位置補正なし)で作動することになり、ハンド23は搬送開始位置(S)から正規の移動経路に沿って受渡位置(E)に移動し、その後の補正量に応じた追加動作はしない。一方、基準中心位置(x
0,y
0)とハンド23上に実際に載置保持しているウェーハ7の中心位置(x
i,y
i)が一致していない場合、搬送駆動機構1は正規の移動量に補正量を含めた動作指令に基づいて位置補正動作を行うことになり、ハンド23は搬送開始位置(S)から受渡位置(E)に移動した後、受渡位置(E)に対して補正量(Δr,Δθ)減じた分だけずれた位置まで移動する。何れの場合であっても、ハンド23上に載置保持しているウェーハ7を所定の搬送目的位置(正規の移載位置)に搬送することができる。
【0105】
本実施形態の搬送ロボットTは、ウェーハ7を処理室またはロードロック室B内の所定の搬送目的位置に搬送した後、上述の昇降機構(昇降手段)を作動させてハンド23上のウェーハ7を処理室またはロードロック室B内のポートB1に移載し、ウェーハ7を載置保持していないハンド23を搬送開始位置(S)にまで移動させる。
【0106】
以上の手順により、ハンド23上に載置保持しているウェーハ7を正規の移載位置に移載することができる。そして、次に搬送するウェーハ7が存在する場合、つまり次に搬送するウェーハ7がハンド23上に載置された場合には、上述のステップS1乃至ステップS5を繰り返し、各ウェーハ7を正規の移載位置に搬送することができる。
【0107】
このように、本実施形態に係る搬送ロボットTは、ハンド23上に載置しているウェーハ7の周縁3箇所が各光電センサ6L,6C,6Rを通過した時点をそれぞれの光電センサ6L,6C,6Rの出力信号の変化に基づいて検出するタイミングとして、ハンド23が停止状態にある搬送開始位置(S)から受渡位置(E)に向かって移動し始めた時点、つまり、ハンド23が初速の時点または初速に近い時点となるように設定しているため、高速状態にあるウェーハ7の通過をセンサで検出する態様と比較して、スキャンタイミングのばらつきによる影響を受ける確率をゼロに近付けることができ、ウェーハ7の搬送速度の高速化に伴ってウェーハ7の周縁位置がセンサを通過した時点を検出する精度が低下し得る問題を防止・抑制することができる。
【0108】
特に、本実施形態に係る搬送ロボットTでは、ハンド23上に実際に載置しているウェーハの中心位置を算出する際に用いる情報として、周縁位置検出手段41で検出した検出情報のうち、各光電センサ6L,6C,6Rに対するウェーハ7の周縁位置の通過開始時点における検出情報を利用しているため、ハンド23を停止状態の搬送開始位置(S)から受渡位置(E)に向かって加速させながら移動させる構成であっても、相対的に速度が遅く通過開始時点における検出情報を利用する一方で、相対的に速度が速く、スキャンタイミングのばらつきの影響を受け易い通過終了時点における検出情報は利用しないことにより、例えばスキャンタイミングのばらつきにより真値に対して誤差を含む検出情報を利用してハンド上の円盤状搬送対象物の中心位置を算出するという事態を回避することができる。また、このような構成を採用することによって本実施形態の搬送ロボットTは、ウェーハ7を載置保持したハンド23を搬送開始位置(S)から受渡位置(E)に向かって加速させながら移動させる途中において、ウェーハ7がセンサを通過し始めた点と、通過し終えた点とを検出し、それら検出点同士の直線距離に基づいてウェーハ7の中心位置を算出する構成であれば生じ得る問題、つまり、スキャンタイミングのばらつきにより、ウェーハの搬送速度の高速化に伴ってセンシング精度が低下し、相対的に搬送速度が遅い通過開始時点のセンシング精度と比較して、相対的に搬送速度が速い通過終了時点のセンシング精度が劣ってしまい、ウェーハの周縁位置の真値に対する誤差が生じ、その誤差を含む検出値に基づいて算出したウェーハの中心位置も真値からずれた値になり、その中心位置に基づいて算出する正規の載置位置に対するズレ量を修正して所定の搬送目的位置に搬送する精度が低下するという問題を回避することができる。
【0109】
さらに、本実施形態に係る搬送ロボットTは、ウェーハ7の中心位置7aを算出する際に、ハンド23上に載置しているウェーハ7の径サイズを既知の値として利用していないため、例えば高温処理などによって個体毎に径サイズが異なったウェーハ7であっても各ウェーハ7の中心位置を高い精度で算出することができる。
【0110】
そして、本実施形態に係る搬送ロボットTは、ハンド23上に実際に載置しているウェーハ7の中心位置7aを、真値に対して誤差なく正確に算出することによって、ハンド23上に実際に載置しているウェーハ7の中心位置7aと、ウェーハ7をハンド23上における正規の載置位置に載置した際の中心位置である基準中心位置との正確な差異を求めることができ、この差異を含めて、ハンド23上のウェーハ7を所定の搬送目的位置に搬送するために必要な搬送駆動機構1の動作量を規定する動作指令(ウェーハ7をハンド23上における正規の載置位置からずれた位置に載置した場合には、補正動作量を含む動作指令)を生成して、この動作指令に基づいて搬送駆動機構1を作動させることによって、ハンド23上に実際に載置しているウェーハ7の中心位置と基準中心位置とのズレ量を修正して、ハンド23上に載置しているウェーハ7を所定の搬送目的位置に搬送することができる。
【0111】
また、本実施形態に係る搬送ロボットTは、制御部4の中心位置算出手段42で利用する光電センサ位置情報(各光電センサ6L,6C,6Rの位置座標)として、キャリブレーション処理によって取得したキャリブレーションデータに基づいて推定した値を適用しているため、各光電センサ6L,6C,6Rを幾ら高精度で取り付けたとしても避けられない僅かな設置誤差を排除して、ハンド23上に載置したウェーハ7の中心位置を正確に算出することができる。
【0112】
特に、本実施形態では、キャリブレーションデータを取得して各光電センサ6L,6C,6Rの位置座標を推定する手順として、ハンド23上におけるウェーハ7の1つの載置位置を基準とし、その基準載置位置に載置した状態において搬送開始位置(S)から受渡位置(E)に向かって移動し始めたハンド23上のウェーハ7の周縁における3箇所が各光電センサ6L,6C,6Rを通過し始める時点までに第1軸(Y軸)に沿って移動した量である1組の基準移動量と、基準移動量を抽出するために用いたウェーハ7をハンド23上に基準載置位置から変位させたキャリブレーション用載置位置に載置した状態において搬送開始位置(S)から受渡位置(E)に向かって移動し始めたハンド23上のウェーハ7の周縁3箇所が各光電センサ6L,6C,6Rを通過し始める時点までに第1軸(Y軸)に沿って移動した量であって且つ各組における移動量の数が光電センサと同数である複数組のキャリブレーション用移動量と、基準載置位置に対する各キャリブレーション用載置位置の相対位置座標とを利用して、光電センサ位置座標を推定している。したがって、各光電センサの位置をセンサの設置時点において正確に調整できていない(正確に調整していない)場合であっても、上述の方法によって各光電センサの位置を定義することができ、この定義した各光電センサの位置を用いてウェーハの中心位置を正確に算出することが可能になる。
【0113】
さらに、本実施形態に係る搬送ロボットTでは、基準移動量の抽出処理後又はn組目(nは1以上の整数)のキャリブレーション用移動量の抽出処理後にウェーハ7をハンド23上に載置したまま、任意の変位量を加えた1組目又はm組目(mはn+1)のキャリブレーション用位置補正動作でハンド23を受渡位置(E)に対して任意の変位量分だけずれた位置へ移動させてウェーハ7を所定の搬送先(ポートB1)に移載し、搬送開始位置(S)に戻したハンド23を位置補正動作なしで受渡位置(E)へ移動させて、搬送先に移載したウェーハ7をハンド23上に載置した状態で搬送開始位置(S)に戻し、位置補正動作なしで受渡位置(E)へ向かって移動し始めたタイミングで、1組目又はm組目(mはn+1)のキャリブレーション用移動量の抽出処理を行うように制御部4が搬送駆動機構1の作動を制御し、基準載置位置に対する各キャリブレーション用載置位置の相対位置座標を、各組のキャリブレーション用周縁位置を抽出するために行うキャリブレーション用位置補正動作時の変位量に基づいて取得する構成を採用しているため、光電センサ位置座標を推定する際に利用する基準載置位置に対する各キャリブレーション用載置位置の正確な相対位置座標を効率良く取得することができる。
【0114】
なお、本発明は上述した実施形態に限定されるものではない。例えば、円盤状搬送対象物が、ウェーハ以外のもの、例えば液晶等であっても構わない。
【0115】
また、搬送駆動機構を正規の動作量分だけ作動させた後に、動作指令(動作指令生成手段(動作指令生成ステップ)によって生成する指令)に基づいて、ハンド上に実際に載置している円盤状搬送対象物の中心位置と基準中心位置とのズレ量に応じた位置補正動作を追加で行う場合において、搬送駆動機構の動作指令を生成するタイミングは、ハンドを搬送開始位置から受渡位置に向かって移動させている最中、或いはハンドを搬送開始位置から受渡位置に向かって移動させた後の時点の何れであってもよい。
【0116】
また、光電センサは3つ以上であればよく、光電センサによって検出する円盤状搬送対象物の周縁位置の数は光電センサの数と同一となる。3つ以上の光電センサの配置もまた、円盤状搬送対象物の周縁における相互に異なる位置を検出可能な配置であれば特に限定されない。
【0117】
中心位置算出手段における算出処理で用いる「円盤状搬送対象物の移動量」として、例えば、円盤状搬送対象物自体の移動を直接検出可能な検出機器(センサやカメラ)による検出値を適用することができる。
【0118】
また、中心位置算出手段(中心位置算出ステップ)で用いる各光電センサの設置位置(位置座標)は、キャリブレーション処理によって推定した値ではなく、設計上の設置位置(位置座標)であっても構わない。
【0119】
また、キャリブレーション処理以外の適宜の処理や方法によって推定又は取得可能な各光電センサの設置位置(位置座標)を中心位置算出手段(中心位置算出ステップ)で用いることもできる。
【0120】
キャリブレーション処理によって各光電センサの設置位置(位置座標)を推定する場合、円盤状搬送対象物上に付けたマーカ位置をエリアセンサ等の画像処理装置で測定したり、搬送駆動機構の駆動源に付帯させているエンコーダ等の位置検出器の情報に基づいて、基準載置位置に対する各キャリブレーション用載置位置のズレ量(相対位置座標)を直接的又は間接的に算出しても構わない。
【0121】
また、搬送駆動機構は、ハンドに載置保持した円盤状搬送物を直線的な移動経路に沿って搬送可能なものであればよく、アームを構成するリンク要素の数や形状、関節部(軸)の数は適宜変更することができる。さらには、リンク要素同士を、水平旋回動作に代えて、或いは加えて、スライド動作可能に連結してもよい。
【0122】
さらにはまた、搬送駆動機構が、
図8に示すように、アーム2の旋回軸31の軸中心31aが、第1軸(Y軸)上になく、第1軸に対して第2軸方向(X軸正方向またはX軸負方向)に任意の値だけ変位した位置にあるものであっても構わない。なお、
図8は、この一変形例に係る搬送駆動機構を
図4に対応させて示す図であり、
図4に示す部分や寸法表示、角度表示などに対応するものには同じ符号を付している。
図8では、光電センサを省略している。
図8に示すアーム2は、
図4に示すアーム2と比較して、旋回軸31の軸中心31aを第1軸に対して第2軸負方向に任意の値だけ変位した位置に設定している点、アーム2の第2リンク要素22と、ハンド23との間に、旋回軸中心31aのY軸に対するX軸方向への変位量に応じた長手寸法を有する第3リンク要素24を介在させて、第2リンク要素22の先端部と第3リンク要素24の基端部を相対旋回動作可能に接続するとともに、第3リンク要素24の先端部とハンド23の基端部を相対旋回動作可能に接続している点で異なる。なお、ハンド23の先端形状や、第2リンク要素とハンドの間に介在させるリンク要素の数や寸法は適宜変更することができる。
【0123】
搬送駆動機構が、複数のアームを備えた複数アームタイプであってもよい。一例としては、
図8に示すようなアームを、第1軸(Y軸)を中心に対称配置した2アームロボットを挙げることができる。もちろん、各アームの旋回軸を同じ位置に設定した複数アームロボットであっても構わない。
【0124】
また、搬送駆動機構として、ハンドを直交する2軸(本発明における第1軸と第2軸)に沿ってそれぞれ直進移動させることが可能な直交座標系のロボットを適用することもできる。
【0125】
また、円盤状搬送対象物をハンド上に載置した状態で保持する態様としては、真空吸引して保持する「真空吸着保持」、ベルヌーイ効果を利用したいわゆる「ベルヌーイ保持」、機械的な爪やローラを用いて円盤状搬送対象物に物理的に接触して保持する「メカニカル保持」、静電気力で円盤状搬送対象物を保持する「静電気保持」、円盤状搬送対象物自体の重力によって保持する(例えばハンドに溝または3点以上のノッチを設け、円盤状搬送対象物を溝や複数のノッチ内に収めて保持する)「重力保持」、これら何れの載置保持態様であっても構わない。
【0126】
また、円盤状搬送対象物の搬送先は処理室またはロードロック室内のポートに限らず、ロードポート上のFOUP内や適宜のポートであってもよい。
【0127】
その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。