【実施例】
【0042】
以下、実施例及び比較例に基づき、本発明を具体的に説明する。
図4は、本発明の実施例、及び比較例に係るSiC単結晶ウェハを作製するためのSiC単結晶インゴットの製造に用いた、改良型レーリー法による単結晶成長の装置である。結晶成長は、昇華原料3を誘導加熱により昇華させ、種結晶1上に再結晶させることにより行われる。種結晶1は、黒鉛蓋(坩堝蓋体)6の内面に取り付けられており、昇華原料3は黒鉛坩堝4の内部に充填される。この黒鉛坩堝4、及び黒鉛蓋6は、熱シールドのために断熱材5で被膜され、二重石英管8内部の黒鉛支持台座7の上に設置される。石英管8の内部を、真空排気装置および圧力制御装置12を用いて1.0×10
-4Pa未満まで真空排気した後、純度99.9999%以上の高純度Arガスを、配管10を介してマスフローコントローラ11で制御しながら流入させ、真空排気装置および圧力制御装置12を用いて石英管内圧力を80kPaに保ちながらワークコイル9に高周波電流を流し、黒鉛坩堝下部を目標温度である2400℃まで上昇させる。窒素ガス(N
2)も同様に、配管10を介してマスフローコントローラ11で制御しながら流入させ、雰囲気ガス中の窒素分圧を制御して、SiC結晶中に取り込まれる窒素元素の濃度を調整した。坩堝温度の計測は、坩堝上部及び下部の断熱材5に直径2〜15mmの光路を設けて放射温度計13aおよび13bにより行う。坩堝上部温度を種結晶温度、坩堝下部温度を原料温度とした。その後、石英管内圧力を成長圧力である0.8kPa〜3.9kPaまで約15分かけて減圧し、この状態を所定の時間維持して結晶成長を実施した。
【0043】
(実施例1)
先ず、原料や種結晶を装填しない坩堝と、2000℃で熱処理された市販の黒鉛製フェルトを1式用意し、結晶成長に先立って黒鉛製フェルトの熱処理を行った。その後、坩堝と断熱材は成長時と同様の組立を行い、上述した成長準備と同様に石英管内部に設置して真空排気を行った。続いて、石英管内に高純度Arガスを、配管を介してマスフローコントローラで制御しながら流入させ、石英管内圧力を80kPaに保ちながらワークコイルに高周波電流を流し、黒鉛坩堝下部および上部が目標温度に達するまで上昇させ、この状態を12時間保持して熱処理を完了させた。実施例1の黒鉛製フェルトの熱処理温度は2300℃とし、高純度アルゴン雰囲気中で12時間の熱処理を行った。
【0044】
次に、上記の坩堝とフェルトを用いて行った、実施例1の結晶成長について説明する。種結晶1として、(0001)面を主面とし、<0001>軸が<11−20>方向に4°傾いた、口径101mmの4Hの単一ポリタイプで構成されたSiC単結晶ウェハを使用した。成長圧力は1.33kPaであり、窒素ガスの分圧は180Paから90Paである。窒素分圧はインゴット全体で最適な導電性を維持するために変化させた。ここで、一般的な黒鉛フェルトと比較して、本実施例のような高温熱処理されたフェルトは劣化が少なく、単結晶インゴット側面からの入熱変動を抑制できるので、低転位密度、かつ低弾性歪のSiC単結晶ウェハが製造可能となる。
【0045】
こうして得られたSiC単結晶インゴットは、口径が106.8mm、高さは34.8mmであった。このようにして、実施例1の口径100mmウェハ作製用のSiC単結晶インゴットを製造した。
【0046】
得られたインゴットは公知の加工技術により、種結晶と同じく、オフ角度4°の(0001)面を有する厚さ0.4mmの鏡面ウェハ8枚に加工し、品質の評価を行った。種結晶側から順に数えて11〜18をウェハ番号とする。ここで、11番〜18番の各ウェハのインゴット高さに対する相対位置は、それぞれ0.2〜0.9まで0.1刻みである。すなわち、相対位置0は種結晶表面に相当し、1.0はインゴットの高さに相当する。
【0047】
作製した8枚のウェハについて、先ず、ラマン分光測定器(日本分光社製NRS-7100、分解能±0.05cm
-1)を用いて、前述した通りの方法でラマンシフトを測定した。その後、溶融KOHエッチングを行い、光学顕微鏡によってBPD密度およびTSD密度を計測した。ここでは、J.Takahashi et al.,Journal of CrystalGrowth,135,(1994),61−70に記載されている方法に従って、530℃の溶融KOHに試料を10分間浸漬し、貝殻型ピットをBPD、中型・大型の六角形ピットをTSDとして、エッチピット形状から転位欠陥を分類した。エッチピットの観察例を
図2に示す。転位密度の算出方法としては、
図3に示した通り、図の上下、左右で対称関係にある52点にて、その点が測定エリアの中心となるように、TSDについてはピットのサイズが大きいので2073μm×1601μmとし、TSD以外については663μm×525μmの測定エリアでエッチピットを計数し、その平均値をウェハの転位密度とした。なお、図中に示したdの値は100mmウェハについては3.25mm、150mmウェハについては4.8mmとしたが、前記以外の口径についても、適当なdを選ぶことにより、口径の影響を受けずに転位密度を正確に評価できる。
【0048】
前述の評価結果を、表1に示す。18番のウェハがBPD密度500個/cm
2以下であり、またBPD、TSDの合計密度も1000個/cm
2を下回り、本発明範囲の特性を有していた。
【0049】
【表1】
【0050】
(実施例2)
次に、実施例2について説明する。実施例2でも、実施例1と同様に、2000℃で熱処理された市販の黒鉛製フェルトを1式用意し、結晶成長に先立って黒鉛製フェルトの熱処理を行った。実施例2の黒鉛製フェルトの熱処理温度は2500℃であり、この点以外は実施例1と同様に処理を行った。
【0051】
上記の坩堝とフェルトを用いて行った、実施例2の結晶成長方法は、実施例1と同様である。実施例2も実施例1と同様な理由で、低転位密度、かつ低弾性歪のSiC単結晶ウェハが製造可能となるが、より高温で処理された黒鉛製フェルトを用いることにより、断熱材劣化による面内温度勾配の過剰な低下が抑えられるので、特にBPDの低減に効果がある。
【0052】
こうして、口径が105.7mm、高さは37.9mmの口径100mmウェハ作製用のSiC単結晶インゴットを製造した。
得られたインゴットは、実施例1と同様のインゴット内の相対位置を有する鏡面ウェハ8枚に加工し(種結晶側から順に数えて21〜28番)、品質の評価を行った。評価結果を表2に示す。27番〜28番のウェハがBPD密度、BPDとTSDの合計密度でも本発明範囲の品質を有していた。
【0053】
【表2】
【0054】
(実施例3)
次に、実施例3の結晶製造方法について説明する。実施例3では、
図5の概略図で示した構造の黒鉛坩堝24を結晶成長に用いた。この黒鉛坩堝24では、種結晶21が坩堝蓋体26の内面側に取り付けられており、この坩堝蓋体26の外周側面に接しながら、そのまわりを取り囲むように、高熱伝導黒鉛材製の熱流束制御部材27が配置されている。ここで、種結晶21が取り付けられる種結晶取付け領域を形成する坩堝蓋体26の室温熱伝導率=λ
1と、熱流束制御部材27の室温熱伝導率=λ
2とは、1.15×λ
1≦λ
2の関係にある。さらに、この実施例3では、結晶成長に先立って、実施例1と同様に2300℃で黒鉛製フェルトの熱処理も行った。熱流束制御部材27を含めた坩堝の構造以外の結晶成長条件は実施例1と同様にして単結晶インゴットの製造を行った。実施例3の坩堝構造は、単結晶インゴットの側面に沿った熱流束が増加した条件下で、熱流束が過剰にインゴットに入射しないことを意図した構造である。この坩堝構造により、単結晶インゴット側面からの入熱変動を抑制できることから、低転位密度、かつ低弾性歪のSiC単結晶ウェハが製造可能となる。
【0055】
この実施例3では、上記のような熱流束制御部材27を備えた坩堝が使用され、また、断熱材は実施例1と同様の方法で熱処理されている。こうして得られたSiC単結晶インゴットは、口径が105.5mm、高さは37.8mmであった。
得られたインゴットは、実施例1と同様のインゴット内の相対位置を有する鏡面ウェハ8枚に加工し(種結晶側から順に数えて31〜38番)、品質の評価を行った。評価結果を表3に示す。33番〜38番のウェハが本発明範囲の特性を有しているが、特に34番〜38番のウェハはBPDとTSDの合計密度でも500個/cm
2を下回っており、非常に良好である。
【0056】
【表3】
【0057】
(実施例4)
次に、実施例4の結晶製造方法について説明する。実施例4では、
図6の概略図で示した構造の黒鉛坩堝24を結晶成長に用いた。この黒鉛坩堝24では、種結晶21が坩堝蓋体26の内面側に取り付けられており、この坩堝蓋体26の外周側面に接しながらそのまわりを取り囲むと共に、一部が黒鉛坩堝の側壁の外側部分に延設されるようにして高熱伝導黒鉛材製の熱流束制御部材27が配置されている。ここで、種結晶21が取り付けられる種結晶取付け領域を形成する坩堝蓋体26の室温熱伝導率=λ
1と、熱流束制御部材27の室温熱伝導率=λ
2とは、1.3×λ
1≦λ
2の関係にある。さらに、この実施例4では、結晶成長に先立って黒鉛製フェルトの熱処理も行った。すなわち、この実施例4については、実施例2と同様の条件である2500℃で黒鉛製フェルトの熱処理を行った。熱流束制御部材27を含めた坩堝の構造以外の結晶成長条件は実施例1と同様にして、単結晶インゴットの製造を行った。
【0058】
この実施例4では、実施例3と同じ目的で設計された坩堝が使用され、また、断熱材は実施例2と同様の方法で熱処理されている。これらにより、単結晶インゴット側面からの入熱変動はより効果的に抑制され、前述の実施例よりもさらに低転位密度、かつ低弾性歪のSiC単結晶ウェハが製造可能となる。こうして得られたSiC単結晶インゴットは、口径が105.7mm、高さは39.6mmであった。
【0059】
得られたインゴットは、実施例1と同様のインゴット内の相対位置を有する鏡面ウェハ8枚に加工し(種結晶側から順に数えて41〜48番)、品質の評価を行った。評価結果を表4に示す。すべてのウェハが本発明範囲の特性を有しており、特に44番〜48番のウェハはBPDとTSDの合計密度でも300個/cm
2を下回っており、極めて良好である。
【0060】
【表4】
【0061】
(実施例5)
次に、実施例5について説明する。実施例5では、口径150mmのウェハの作製を行った。実施例5の結晶製造については、口径150mmウェハ用インゴットに対応したサイズの坩堝、及び断熱材が使用されたが、その基本構造は
図7で示した通りである。この黒鉛坩堝24では、坩堝蓋体26の内面側の略中央部分に種結晶21が取り付けられており、坩堝蓋体26の外側には、種結晶21が取り付けられた種結晶取付け領域を囲うように、高熱伝導黒鉛材製の熱流束制御部材27が配置されている。ここで、坩堝蓋体26のうち、少なくとも種結晶21が取り付けられる種結晶取付け領域を形成する部材の室温熱伝導率=λ
1と、熱流束制御部材27の室温熱伝導率=λ
2とは、実施例4と同様に1.3×λ
1≦λ
2の関係にある。さらに、この実施例5では、結晶成長に先立って黒鉛製フェルトの熱処理も行った。実施例5については、実施例2と同様の条件である2500℃で黒鉛製フェルトの熱処理を行った。
【0062】
また、実施例5の種結晶としては、(0001)面を主面とし、<0001>軸が<11−20>方向に4°傾いた、口径154mmの4Hの単一ポリタイプで構成されたSiC単結晶ウェハを使用した。種結晶のサイズ、及び熱流束制御部材27を含めた坩堝の構造以外の結晶成長条件は実施例1とほぼ同様の条件にして、単結晶インゴットの製造を行った。
【0063】
実施例5は、口径150mmウェハ作製用の単結晶インゴットの製造例だが、製造方法の考え方は、基本的には実施例4と同様であり、口径が異なるインゴットの場合でも、低転位密度、かつ低弾性歪のSiC単結晶ウェハが製造可能となる。このようにして、実施例5の口径150mmウェハ作製用のSiC単結晶インゴットを製造した。得られたSiC単結晶インゴットは、口径が158.1mm、高さは42.6mmであった。
【0064】
得られたインゴットは、実施例1と同様のインゴット内の相対位置を有する鏡面ウェハ8枚に加工し(種結晶側から順に数えて51〜58番)、品質の評価を行った。評価結果を表5に示す。すべてのウェハが本発明範囲の特性を有しており、特に55番〜58番のウェハがBPDとTSDの合計密度でも300個/cm
2を下回り、極めて良好である。
【0065】
そして、58番のウェハのSi面には、ホモ・エピタキシャル成長を実施した。エピタキシャル成長の条件は、成長温度1550℃、シラン(SiH
4)、プロパン(C
3H
8)、水素(H
2)の流量が、それぞれ32cc/min、21cc/min、150L/minであり、窒素ガスは、活性層におけるキャリア濃度が1×10
16cm
-3となる流量とし、厚さ約5μmの活性層を成長させた。エピタキシャル膜の表面は全面に渡って非常に平坦で、キャロット等のエピ欠陥も非常に少ない、良好なエピ薄膜が形成されていることが分かった。さらに、このエピタキシャルウェハ上にMOSFET構造を作製し、ゲート絶縁膜の耐圧を測定したところ、およそ820Vであった。
【0066】
【表5】
【0067】
(実施例6)
次に、実施例6の結晶製造方法について説明する。実施例6では、
図8の概略図で示した構造の黒鉛坩堝を結晶成長に用いた。この黒鉛坩堝24では、種結晶21が坩堝蓋体26の内面側に取り付けられており、坩堝蓋体26の外周側に、黒鉛坩堝の側壁の一部を介して、高熱伝導黒鉛材製の熱流束制御部材27が配置されている。ここで、種結晶21が取り付けられる種結晶取付け領域を形成する坩堝蓋体26の室温熱伝導率=λ
1と、熱流束制御部材27の室温熱伝導率=λ
2とは、1.4×λ
1≦λ
2の関係にある。さらに、この実施例6では、結晶成長に先立って黒鉛製フェルトの熱処理も行った。実施例4については、実施例2と同様の条件である2500℃で黒鉛製フェルトの熱処理を行った。
【0068】
また、この実施例6では、結晶成長条件は実施例1と同様であるが、二重石英管8に設置した黒鉛坩堝の周りを取り囲む周辺空間の雰囲気ガス中にはHeガスを混合させた。Heガスの含有率は16vol%である。実施例6でも、実施例4と同じ目的で設計された坩堝と、実施例4と同条件で熱処理された黒鉛製フェルトが使用されている。さらに、雰囲気ガスを高熱伝導化することにより、さらなる温度勾配の低減化を図った。こうして得られたSiC単結晶インゴットは、口径が108.7mm、高さは56.3mmであった。
【0069】
得られたインゴットは、実施例1と同様のインゴット内の相対位置を有する鏡面ウェハ8枚に加工し(種結晶側から順に数えて61〜68番)、品質の評価を行った。評価結果を表6に示す。63番〜68番のウェハが、BPD密度と、BPDとTSDの合計密度でも本発明範囲の特性であり、その中でも66番〜68番のウェハはBPDとTSDの合計密度でも500個/cm
2を下回っており、極めて良好である。実施例4に比較すると、やや転位密度は高い結果となったが、ラマン指数が示す通り、弾性歪の非常に小さなウェハを製造することができた。坩堝構造とガス組成、結晶成長条件を総合して最適化することにより、さらに低転位密度、かつ低弾性歪のSiC単結晶ウェハも製造可能になると考えられる。
【0070】
【表6】
【0071】
(比較例1)
次に、比較例1について説明する。比較例1では、2000℃で熱処理された市販の黒鉛製フェルトを1式用いて成長を行った。坩堝の構造は実施例1と同一である。比較例1の結晶成長方法も、実施例1とほぼ同様である。比較例1では、一般的な黒鉛フェルトと黒鉛坩堝が使用されているため、単結晶インゴット側面からの入熱変動は抑制されず、低転位密度と低弾性歪を両立するSiC単結晶ウェハを製造することはできない。こうして得られたSiC単結晶インゴットは、口径が107.4mm、高さは35.2mmであった。
【0072】
得られたインゴットは、実施例1と同様のインゴット内の相対位置を有する鏡面ウェハ8枚に加工し(種結晶側から順に数えて71〜78番)、品質の評価を行った。評価結果を表7に示す。評価項目毎にウェハの性質を見ていくと、71番のウェハを除けば、ラマン指数は本発明範囲の値を有している。しかしながら、転位密度がすべてのウェハにおいて高く、特にBPD密度が高い。このため、本発明範囲の特性を有するウェハは1枚も得ることができていない。
【0073】
そして、78番のウェハのSi面には、実施例6と同じ条件にて、ホモ・エピタキシャル成長を実施し、厚さ約5μmの活性層を成長させた。エピタキシャル膜の表面は、バンチング等の表面モフォロジー乱れが観察され、キャロット等のエピ欠陥も多く見られた。このエピタキシャルウェハ上にMOSFET構造を作製し、ゲート絶縁膜の耐圧を測定したところ、およそ270Vであった。
【0074】
【表7】
【0075】
(比較例2)
次に、比較例2について説明する。比較例2では、2000℃で熱処理された市販の黒鉛製フェルトを1式用いて成長を行った。坩堝の構造の概略は実施例1と同一である。比較例2の結晶成長は、実施例1とほぼ同様の準備を行い、得られたSiC単結晶インゴットは、口径が103.1mm、高さは16.5mmであった。比較例2も比較例1と同様であり、一般的な黒鉛フェルトと黒鉛坩堝が使用されているため、単結晶インゴット側面からの入熱変動は抑制されない。成長条件の違いにより、低転位密度、あるいは低弾性歪のどちらかを部分的に実現する場合もあるが、それらを両立するSiC単結晶ウェハを製造することはできない。
【0076】
得られたインゴットは高さが低いので、81番、88番に相当するウェハの作製は困難であった。このため、82番から87番の相対位置を有する鏡面ウェハ6枚に加工し、品質の評価を行った。評価結果を表8に示す。表8の中で、84番から87番のウェハが基底面転位密度に関しては本発明範囲の値を有している。しかしながら、ラマン指数がすべてのウェハで高く、本発明範囲の特性を有するウェハは1枚も得ることができていない。
【0077】
そして、87番のウェハのSi面に、実施例6と同じ条件にて、ホモ・エピタキシャル成長を実施し、厚さ約5μmの活性層を成長させた。エピタキシャル膜の表面には、キャロット等のエピ欠陥は、実施例5の58番のウェハよりは多いが、比較例1の78番のウェハに比較すればかなり少なかった。しかしながら、バンチング等の表面モフォロジー乱れは高密度で観察された。これは、弾性歪によりウェハの表面ステップ状態が乱れていたことが原因と考えられる。このエピタキシャルウェハ上にMOSFET構造を作製し、ゲート絶縁膜の耐圧を測定したところ、およそ340Vであった。
【0078】
【表8】
【0079】
(比較例3)
次に、比較例3について説明する。比較例3では、2000℃で熱処理された市販の黒鉛製フェルトを1式用いて、口径150mmのウェハの作製を行った。口径150mmウェハ用インゴットの成長に用いた坩堝と断熱材の構造は実施例1で用いた坩堝と断熱材の相似形であり、口径150mmインゴットに対応したサイズを有している。比較例3の結晶成長方法も、実施例1とほぼ同様である。比較例3では、一般的な黒鉛フェルトと黒鉛坩堝が使用されてため、単結晶インゴット側面からの入熱変動は抑制されず、低転位密度と低弾性歪を両立するSiC単結晶ウェハを製造することはできない。こうして得られたSiC単結晶インゴットは、口径が158.5mm、高さは33.2mmであった。
【0080】
得られたインゴットは、実施例1と同様のインゴット内の相対位置を有する鏡面ウェハ8枚に加工し(種結晶側から順に数えて91〜98番)、品質の評価を行った。評価結果を表9に示す。評価項目毎にウェハの性質を見ていくと、TSDは本発明範囲の値を有している。しかしながら、BPDが全てのウェハにおいて高く、尚且つラマン指数も総じて高い。このため、本発明範囲の特性を有するウェハは1枚も得ることができていないことが分かる。
【0081】
【表9】