特開2015-78835(P2015-78835A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社リガクの特許一覧

<>
  • 特開2015078835-X線回折装置 図000003
  • 特開2015078835-X線回折装置 図000004
  • 特開2015078835-X線回折装置 図000005
  • 特開2015078835-X線回折装置 図000006
  • 特開2015078835-X線回折装置 図000007
  • 特開2015078835-X線回折装置 図000008
  • 特開2015078835-X線回折装置 図000009
  • 特開2015078835-X線回折装置 図000010
  • 特開2015078835-X線回折装置 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2015-78835(P2015-78835A)
(43)【公開日】2015年4月23日
(54)【発明の名称】X線回折装置
(51)【国際特許分類】
   G01N 23/207 20060101AFI20150327BHJP
【FI】
   G01N23/207
【審査請求】未請求
【請求項の数】14
【出願形態】OL
【全頁数】17
(21)【出願番号】特願2012-8400(P2012-8400)
(22)【出願日】2012年1月18日
(71)【出願人】
【識別番号】000250339
【氏名又は名称】株式会社リガク
(74)【代理人】
【識別番号】110000154
【氏名又は名称】特許業務法人はるか国際特許事務所
(72)【発明者】
【氏名】栗林 勝
(72)【発明者】
【氏名】松下 一之
(72)【発明者】
【氏名】渡邉 好章
【テーマコード(参考)】
2G001
【Fターム(参考)】
2G001AA01
2G001BA18
2G001CA01
2G001DA09
2G001EA02
2G001EA03
2G001EA20
2G001GA13
2G001JA05
2G001JA06
2G001LA01
(57)【要約】
【課題】共通する環境下で、複数種類の特性X線によるX線回折測定を可能とするX線回折装置の提供。
【解決手段】複数種類の特性X線を放射する、X線源と、前記X線源が放射するX線から前記複数種類の特性X線を選択的に反射する多層膜ミラーを含むとともに該多層膜ミラーが反射するX線を試料へ入射させる、光学系と、前記試料より発生する回折X線を検出する、X線検出器と、を備える、X線回折装置であって、前記多層膜ミラーは、前記複数種類の特性X線にそれぞれ対応する複数種類の多層膜を備え、前記複数種類の多層膜は順に積層されて湾曲反射面を構成し、前記各多層膜は対応する特性X線を選択的に反射する格子面間隔を有し、かつ、前記湾曲反射面の入射面との交線に沿って該格子面間隔が傾斜している。
【選択図】図3
【特許請求の範囲】
【請求項1】
所定の領域から所定の測定期間に複数種類の特性X線をそれぞれ放射する、X線源と、
前記X線源が前記所定の領域から放射するX線から前記複数種類の特性X線を選択的に反射する多層膜ミラーを含むとともに該多層膜ミラーが反射するX線を試料へ入射させる、光学系と、
前記試料より発生する回折X線を検出する、X線検出器と、
を備える、X線回折装置であって、
前記多層膜ミラーは、前記複数種類の特性X線にそれぞれ対応する複数種類の多層膜を備え、
前記複数種類の多層膜は順に積層されて湾曲反射面を構成し、前記各多層膜は対応する特性X線を選択的に反射する格子面間隔を有し、かつ、前記湾曲反射面の入射面との交線に沿って該格子面間隔が傾斜している、
ことを特徴とする、X線回折装置。
【請求項2】
前記湾曲反射面の入射面との交線は楕円曲線である、
ことを特徴とする、請求項1に記載のX線回折装置。
【請求項3】
前記湾曲反射面の入射面との交線は楕円曲線であり、前記湾曲反射面の一方の焦点に前記X線の前記所定の領域が配置され、前記湾曲反射面の他方の焦点に前記試料が配置される、
ことを特徴とする、請求項1に記載のX線回折装置。
【請求項4】
前記湾曲反射面の入射面との交線は放物線である、
ことを特徴とする、請求項1に記載のX線回折装置。
【請求項5】
前記湾曲反射面の入射面との交線は放物線であり、前記湾曲反射面の焦点に前記X線の前記所定の領域が配置される、
ことを特徴とする、請求項1に記載のX線回折装置。
【請求項6】
前記複数種類の多層膜は、選択的に反射する特性X線の波長の短い方から順に、積層される、
ことを特徴とする、請求項1に記載のX線回折装置。
【請求項7】
前記X線源は、外周表面に電子が衝突される対陰極回転体を有し、
電子が走査する方向と垂直に原子番号が異なる複数種類の金属が順に並ぶとともに、電子が走査する方向に沿って前記外周表面に連続して配置される、
ことを特徴とする、請求項1乃至6のいずれかに記載のX線回折装置。
【請求項8】
前記X線源は、外周表面に電子が衝突される対陰極回転体を有し、
前記外周表面に、電子が走査する方向に沿って、原子番号が異なる複数種類の金属が周期的に並んで配置される、
ことを特徴とする、請求項1乃至6のいずれかに記載のX線回折装置。
【請求項9】
前記X線源は、外周表面に電子が衝突される対陰極回転体を有し、
前記外周表面に、原子番号が異なる複数種類の金属の合金が形成される、
ことを特徴とする、請求項1乃至6のいずれかに記載のX線回折装置。
【請求項10】
前記X線検出器は、前記複数種類の特性X線の波長それぞれに対応して、受光するX線の強度を検出する、波長分別型検出器である、
ことを特徴とする、請求項1乃至9のいずれかに記載のX線回折装置。
【請求項11】
前記X線検出器が検出するX線の情報を、X線の波長に分別し、波長に応じたX線の強度の情報を出力する、分析部と、
前記分析部が出力する前記X線の強度の情報に基づいて、データ解析を行うデータ処理部と、
前記データ処理部の解析結果のデータを保存する解析データ保存部と、
をさらに備える、請求項10に記載のX線回折装置。
【請求項12】
前記対陰極回転体の回転情報を入手し、該回転情報に基づいて、前記複数種類の金属それぞれが放射するX線に対応して、X線の強度をそれぞれ検出するよう、前記X線検出器の検出を制御する、同期制御手段を、さらに備える、
ことを特徴とする、請求項8に記載のX線回折装置。
【請求項13】
前記多層膜ミラーと前記試料との間に配置され、連続X線に起因する散乱X線を吸収する、フィルタを、
さらに備える、請求項12に記載のX線回折装置。
【請求項14】
前記多層膜ミラーは、
前記複数種類の多層膜の間の少なくとも1つに、連続X線に起因する散乱X線を吸収する、フィルタ層を含む、
ことを特徴とする、請求項12に記載のX線回折装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、X線回折装置に関し、特に、複数種類の特性X線を用いてX線回折測定が可能なX線回折装置に関する。
【背景技術】
【0002】
X線回折装置において、ある試料に対して波長が異なる複数種類の特性X線を用いて測定を行う必要が生じる場合がある。例えば、タンパク質の構造解析において用いられるMAD法(多波長異常分散法)等において、波長が異なった複数種類のX線がX線回折測定に用いられる。
【0003】
複数種類の金属をターゲットとして用いることにより、複数種類の特性X線を発生するX線発生装置について、すでに開示がなされている。X線管の対陰極を側面にターゲットとなる金属が形成されている回転体(ローターターゲット)とし、回転体の側面に、複数種類の金属を配置することにより、複数種類のX線を発生させることが出来るX線発生装置がある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平5−152091号公報
【特許文献2】特開2003−14894号公報
【特許文献3】特開2002−39970号公報
【特許文献4】特開昭62−014043号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
複数種類のX線を発生させることが出来るX線発生装置をX線源として用いた場合であっても、通常のX線回折測定の場合、発生するX線を分光結晶や多層膜ミラーなどの分光器によって、所望の特性X線を選別する必要がある。分光結晶や多層膜ミラーを分光器として用いる場合、所望の特性X線ごとに分光器を変更する必要が生じてしまう。特許文献1に、回転体の側面に周期的に複数種類の金属を配置し、回転体の回転に同期して、シャッターを回転させることにより、所望の金属からのX線を発生することが可能となるX線発生装置が開示されている。しかし、この場合であっても、所望の特性X線ごとに分光器が必要である。
【0006】
特許文献2に、複数のX線源それぞれからのX線を、1個の多層膜ミラーで分光する技術が開示されている。所定の湾曲反射面を有する多層膜ミラーの場合、異なる波長のX線に対しては、焦点位置が異なる。それゆえ、回転体の外周面に、大径部分と小径部分を設け、それぞれに異なる金属を配置させることにより、2個のX線源をそれぞれの波長の焦点位置に置くことが出来、1個の多層膜ミラーで2種類の金属が発するX線を同時に分光することを可能にしている。この場合、波長によって異なる2個の焦点位置が、回転体の外周面の大径部分と小径部分に来るように、回転体の外周面の形状や多層膜ミラーの湾曲で調整する必要があり、装置規模やコストの増大に加えて、その調整に時間が必要となり、測定時間の増大を招くこととなる。また、特許文献2には、2つのX線源が同じ位置にある場合に、X線源の位置が選別する波長の焦点となるように、多層膜ミラーの湾曲を調整する技術が開示されている。これにより、1個の多層膜ミラーで2種類の金属が発する特定X線を別々に分光することが可能となるが、異なる波長の測定のたびに、多層膜ミラーの湾曲を調整する必要があり、やはり、測定時間の増大を招くこととなる。
【0007】
特許文献3に、複数のX線発生装置別々に備え、異なる角度で試料へX線を入射させるX線装置について開示されている。この場合、試料へ入射させるX線が別々の光学経路によって実現されており、波長によってX線回折測定の測定環境が異なることとなり、測定精度の観点から望ましくない。又は、より測定精度を上げるために、複数のX線発生装置の光軸調整をより高い精度で行う必要が生じ、測定時間の増大を招くこととなる。さらに、複数のX線発生装置を備えることにより、試料からの回折X線を検出する検出器の配置場所や移動範囲にも制限がかかることとなり、望ましくない。
【0008】
より高い精度のX線回折測定のため、また、測定時間の短縮のために、共通する環境下で、異なる波長の特性XによるX線回折測定を行うことが出来るX線回折装置が望まれる。特許文献4に、多層膜を用いた多重波長X線分散装置について開示がある。かかる多層には、異なる波長に対する分散特性をそれぞれ持たせる異なる多層の間隔が存在している。しかし、特許文献4に開示の多重波長X線分散装置の反射面は平面となっており、多重波長X線分散装置を用いて、X線を試料に入射させる場合、試料に入射するX線には十分な輝度が得られず、測定精度の低下や測定時間の増大を招くこととなる。
【0009】
本発明は、このような課題を鑑みてなされたものであり、共通する環境下で、複数種類の特性X線によるX線回折測定を可能とするX線回折装置の提供を目的とする。
【課題を解決するための手段】
【0010】
(1)上記課題を解決するために、本発明に係るX線回折装置は、所定の領域から所定の測定期間に複数種類の特性X線をそれぞれ放射する、X線源と、前記X線源が前記所定の領域から放射するX線から前記複数種類の特性X線を選択的に反射する多層膜ミラーを含むとともに該多層膜ミラーが反射するX線を試料へ入射させる、光学系と、前記試料より発生する回折X線を検出する、X線検出器と、を備える、X線回折装置であって、前記多層膜ミラーは、前記複数種類の特性X線にそれぞれ対応する複数種類の多層膜を備え、前記複数種類の多層膜は順に積層されて湾曲反射面を構成し、前記各多層膜は対応する特性X線を選択的に反射する格子面間隔を有し、かつ、前記湾曲反射面の入射面との交線に沿って該格子面間隔が傾斜している、ことを特徴とする。
【0011】
(2) 上記(1)に記載のX線回折装置であって、前記湾曲反射面の入射面との交線は楕円曲線であってもよい。
【0012】
(3) 上記(1)に記載のX線回折装置であって、前記湾曲反射面の入射面との交線は楕円曲線であり、前記湾曲反射面の一方の焦点に前記X線の前記所定の領域が配置され、前記湾曲反射面の他方の焦点に前記試料が配置されてもよい。
【0013】
(4) 上記(1)に記載のX線回折装置であって、前記湾曲反射面の入射面との交線は放物線であってもよい。
【0014】
(5) 上記(1)に記載のX線回折装置であって、前記湾曲反射面の入射面との交線は放物線であり、前記湾曲反射面の焦点に前記X線の前記所定の領域が配置されてもよい。
【0015】
(6) 上記(1)に記載のX線回折装置であって、前記複数種類の多層膜は、選択的に反射する特性X線の波長の短い方から順に、積層されてもよい。
【0016】
(7) 上記(1)乃至(6)のいずれかに記載のX線回折装置であって、前記X線源は、外周表面に電子が衝突される対陰極回転体を有し、電子が走査する方向と垂直に原子番号が異なる複数種類の金属が順に並ぶとともに、電子が走査する方向に沿って前記外周表面に連続して配置されてもよい。
【0017】
(8) 上記(1)乃至(6)のいずれかに記載のX線回折装置であって、前記X線源は、外周表面に電子が衝突される対陰極回転体を有し、前記外周表面に、電子が走査する方向に沿って、原子番号が異なる複数種類の金属が周期的に並んで配置されてもよい。
【0018】
(9) 上記(1)乃至(6)のいずれかに記載のX線回折装置であって、前記X線源は、外周表面に電子が衝突される対陰極回転体を有し、前記外周表面に、原子番号が異なる複数種類の金属の合金が形成されてもよい。
【0019】
(10) 上記(1)乃至(9)のいずれかに記載のX線回折装置であって、前記X線検出器は、前記複数種類の特性X線の波長それぞれに対応して、受光するX線の強度を検出する、波長分別型検出器であってもよい。
【0020】
(11) 上記(10)に記載のX線回折装置であって、前記X線検出器が検出するX線の情報を、X線の波長に分別し、波長に応じたX線の強度の情報を出力する、分析部と、前記分析部が出力する前記X線の強度の情報に基づいて、データ解析を行うデータ処理部と、前記データ処理部の解析結果のデータを保存する解析データ保存部と、をさらに備えてもよい。
【0021】
(12)上記(8)に記載のX線回折装置であって、前記対陰極回転体の回転情報を入手し、該回転情報に基づいて、前記複数種類の金属それぞれが放射するX線に対応して、X線の強度をそれぞれ検出するよう、前記X線検出器の検出を制御する、同期制御手段を、さらに備えてもよい。
【0022】
(13)上記(12)に記載のX線回折装置であって、前記多層膜ミラーと前記試料との間に配置され、連続X線に起因する散乱X線を吸収する、フィルタを、さらに備えてもよい。
【0023】
(14)上記(12)に記載のX線回折装置であって、前記多層膜ミラーは、前記複数種類の多層膜の間の少なくとも1つに、連続X線に起因する散乱X線を吸収する、フィルタ層を含んでもよい。
【発明の効果】
【0024】
本発明により、共通する環境下で、複数種類の特性X線によるX線回折測定を可能とするX線回折装置が提供される。
【図面の簡単な説明】
【0025】
図1】本発明の第1の実施形態に係るX線回折装置の構造を示す模式図である。
図2】本発明の第1の実施形態に係るX線源の構造を示す模式図である。
図3】本発明の第1の実施形態に係る多層膜ミラーの構造を示す模式図である。
図4】本発明の第1の実施形態に係るX線検出器の構造を示す模式図である。
図5】本発明の第2の実施形態に係るX線源の構造を示す模式図である。
図6】本発明の第2の実施形態に係る入射X線の強度を示す図である。
図7】本発明の第2の実施形態に係る同期制御手段を説明する模式図である。
図8】本発明の実施形態に係るX線源の他の例の構造を示す模式図である。
図9】本発明の実施形態に係るX線源の他の例の構造を示す模式図である。
【発明を実施するための形態】
【0026】
以下、本発明の実施形態を図面に基づいて詳細に説明する。ただし、以下に示す図は、あくまで、当該実施形態の実施例を説明するものであって、図に示す縮尺と実施例記載の縮尺は必ずしも一致するものではない。
【0027】
[第1の実施形態]
図1は、本発明の第1の実施形態に係るX線回折装置1の構造を示す模式図である。当該実施形態に係るX線回折装置1は、複数種類の特定X線を用いて、試料100のX線回折測定を行うことが可能であるX線回折装置である。ここでは、試料100を単結晶としているが、それに限定されることがないのは言うまでもない。X線回折装置1は、複数種類の特性X線を含むX線を放射するX線源2と、多層膜ミラー3を含むとともに多層膜ミラー3が反射するX線を試料100へ入射させる光学系4と、試料100を支持する試料台5と、試料100より発生する回折X線を検出するX線検出器6と、X線検出器6を試料100に対して角度移動させる回転駆動系7と、X線回折測定を制御するとともに測定データの解析を行う制御解析部9と、を備えている。なお、制御解析部9は、X線検出器6が検出した回折X線のエネルギーを分析する分析部8を備えている。
【0028】
当該実施形態に係るX線回折装置1の特徴は、X線源2が放射するX線から複数種類の特性X線を多層膜ミラー3が選択的に反射し、多層膜ミラー3が反射するX線を光学系4が試料100へ入射させていることにある。それにより、共通する環境下で、複数種類の特性X線を用いて、X線回折測定が可能となる。なお、本明細書において、所定の波長のX線を「選択的に反射する」とは、所定の角度からミラーへ入射するX線の中で、当該所定の波長のX線の反射率が、他のX線の反射率と比較して、特異的に高いことをいうものとする。すなわち、入射するX線に上記複数種類の一部又は全部の特性X線が含まれている場合に、多層膜ミラー3が反射するX線は、当該一部又は全部の特性X線である。
【0029】
以下、当該実施形態に係るX線回折装置1の構成について説明する。
【0030】
図2は、当該実施形態に係るX線源2の構造を示す模式図である。X線源2は、原子番号が異なる複数種類の金属をターゲットとして、複数種類のX線を放射する。ここでは、対陰極に原子番号が異なる2種類の金属がターゲットとして形成されている。回転体11は対陰極であり、回転体11の外周側面に、2種類の金属T1,T2が形成されている。ここで、2種類の金属T1,T2は、それぞれCu(銅)とCr(クロム)であるが、この2種類に限定されることはないのは言うまでもなく、たとえば、Mo(モリブデン)、Co(コバルト)、W(タングステン)などが用いられる。フィラメント12は陰極であり、フィラメント12が電子を放出し、対陰極である回転体11の外周表面に電子が衝突される。回転体11は図の矢印方向に駆動系(図示せず)により回転しており、電子の走査方向は、図の矢印方向と逆向きとなる。
【0031】
電子が回転体11の外周表面に衝突する領域がX線放射領域BSであり、回転体11の外周表面のX線放射領域BS(所定の領域)から全方向へX線が放射される。フィラメント12の形状から、X線放射領域BSは、電子の走査方向に垂直に伸びる帯形状をしている。外周表面のX線放射領域BSに垂直な面内であって、帯形状の中心線と所定の角度をなす方向の先に、回転体11を包囲している隔壁(図示せず)に設けられたX線窓13があり、そこからX線S1が外部へ放射される。このX線S1が光学系4の多層膜ミラー3へ入射する。
【0032】
回転体11の外周表面に、電子が走査する方向と垂直に(図の横方向)に複数種類の金属が順に並ぶとともに、電子が走査する方向に沿って連続して配置されている。ここでは、電子が走査する方向と垂直に(図の横方向に)、2種類の金属T1,T2が順に並んでおり、電子が走査する方向に沿って、回転体11の外周表面に連続して配置されており、2種類の金属T1,T2それぞれが形成される領域は、ともに、外周表面を周回するリング(環)形状である。なお、X線発生効率の観点からはリング形状が望ましいが、他の理由によって外周表面の周縁の一部にのみ金属が形成されている形状もあり得る。
【0033】
X線放射領域BSのうち、金属T1が形成されている領域(ここでは、Cu)からは、金属T1の特性X線を含むX線が、金属T2が形成されている領域(ここでは、Cr)からは、金属T2の特性X線を含むX線が、それぞれ放射されており、X線窓13より出射するX線S1は、複数種類の特性X線を含んでいる。ここで複数種類の特性X線とは、例えば、CuKα線(波長1.542Å)とCrKα線(2.291Å)である。すなわち、ここで、X線源2は、複数種類の特性X線を同時に放射しており、よって、所定の測定時間に所定の領域から複数種類の特性X線をそれぞれ放射している。
【0034】
図3は、当該実施形態に係る多層膜ミラー3の構造を示す模式図である。図3(a)は、多層膜ミラー3の入射面における断面図である。多層膜ミラー3は、Si(シリコン)からなる基板21の表面に、多重構造多層膜22が積層されたものである。多重構造多層膜22が湾曲反射面となっており、湾曲反射面の入射面との交線が楕円曲線(楕円の一部)である。湾曲反射面は2個の焦点P1,P2を有している。焦点P1にX線の発生源を配置すると、多層膜ミラー3で反射したX線は、焦点P2で集光される。それゆえ、多層膜ミラー3の焦点P1(一方の焦点)に、回転体11の外周表面のX線放射領域BSが配置されるのが望ましい。X線源2は、X線放射領域BSからX線を放射している。さらに、多層膜ミラー3の焦点P2(他方の焦点)に試料100が配置されるよう、試料台5が試料100を支持しているのが望ましい。なお、必要に応じて、多層膜ミラー3と試料100の間に、フィルタ26を配置してもよい。フィルタ26は金属層を含んでおり、かかる金属層により、フィルタ26は、X線源2が放射するX線のうち、連続X線に起因する散乱X線を吸収することが出来る。
【0035】
図3(b)は、多層膜ミラー3の多重構造多層膜22の断面を示す模式図である。ここで、断面とは、多重構造多層膜22の入射面との断面である。多重構造多層膜22は、順に積層される複数種類の多層膜を含んでおり、複数種類の多層膜は湾曲反射面を構成している。ここで、複数種類の多層膜は、複数種類の特性X線にそれぞれ対応しており、各多層膜は、入射するX線から対応する特性X線の波長のX線を選択的に反射する。各多層膜が、対応する特性X線の波長のX線をそれぞれ選択的に反射することにより、多層膜ミラー3は、入射するX線から、複数種類の特性X線すべてを選択的に反射することが出来る。よって、入射するX線に、複数種類の特性X線の一部又は全部が含まれている場合、多層膜ミラー3が反射するX線は、一部又は全部の特性X線となる。図には、2種類の多層膜L1,L2が示されている。
【0036】
各多層膜において、重元素層23と軽元素層24とが交互に繰り返されて積層されている。各多層膜では、重元素層23と軽元素層24を1対の層として、繰り返し積層されているが、200対の層以上が積層されているのが望ましい。また、より下方に配置される多層膜へのX線の透過を考慮すると、1000対の層以下が積層されているのが望ましい。隣り合う2対の層の間隔を多層間隔dとする。多層間隔dとは、例えば、隣り合う2層の重元素層23の上表面それぞれとの間の距離である。各多層膜において、X線の反射面を入射側から反射側へ進行するのに伴って、すなわち、図3(b)に示す断面の左側から右側にかけて(図の横方向に)、多層間隔dは徐々に変化している。言い換えると、湾曲反射面の入射面との交線に沿って、多層間隔dは徐々に変化している。多層膜L1の多層間隔dは、図に示す断面の左端ではd1であり右端ではd2であり、多層間隔dは図の左側から右側にかけて大きくなっており、d2はd1より大きい(d1<d2)である。多層膜L2の多層間隔dは、図に示す断面の左端ではD1であり右端ではD2であり、同様に、D2はD1より大きい(D1<D2)。厳密に言えば、多層間隔dは積層方向に沿って徐々に変化している。
【0037】
X線回折の観点から言えば、多層間隔dは結晶の格子面間隔に相当し、上述のように、多層間隔dが場所によって変化する多層膜は、「傾斜格子面間隔」の多層膜と呼ばれている。各位置における多層間隔dは、湾曲反射面の形状と、選別する光の波長と、によって決定される。すなわち、各多層膜は、対応する特性X線の波長のX線を選択的に反射する格子面間隔を有しており、各多層膜は、横方向に格子面間隔が傾斜して変化している。理想的には、各々の重元素層23の上表面の入射面との交線が2個の焦点P1,P2を焦点とする楕円曲線となっているのが望ましい。
【0038】
また、複数種類の多層膜それぞれが対応する特性X線の波長はそれぞれ異なっているので、複数種類の多層膜の格子面間隔もそれぞれ異なっている。多重構造多層膜22において、積層方向に沿って、複数種類の多層膜が順に積層されている。多重構造多層膜22の格子面間隔を積層方向に沿って観測すると、ある多層膜においては格子面間隔は徐々に変化するもののほぼ一定の値をとり、そして、隣接する多層膜に進行すると、格子面間隔は不連続に大きく変化する。すなわち、多層膜毎に、格子面間隔は不連続に大きく変化することとなる。このような状態を、積層方向に格子面間隔が勾配していると呼んでもよい。
【0039】
ここで、多層膜ミラー3が、X線から異なる2つの波長のX線を選択的に反射するものとすると、その波長それぞれのX線を選択的に反射する多層膜が2個必要である。図2には、2個の多層膜L1,L2が示されているが、例えば、多層膜L1はCrKα線の波長のX線を、多層膜L2はCuKα線の波長のX線を選択的に反射できるとすると、多層膜ミラー3は、X線源2が放射するX線から、CuKα線とCrKα線という2種類の特性X線を選択的に反射することが出来ており、多層膜ミラー3を含む光学系4は、CuKα線とCrKα線という2種類の特性X線を集光して試料100へ入射させることが出来る。一般に、X線の波長が長くなるほど、X線の透過の度合いが低下する。それゆえ、複数種類の多層膜を配置する際、反射する波長の長い多層膜が、多層膜ミラー3の反射表面に、より近くなるよう基板21よりもより上方に配置されるのが望ましい。すなわち、複数種類の多層膜は、選択的に反射する波長の短い方から長い方へ順に積層されるのが望ましい。反射表面(湾曲反射面)から下方へ配置されるのが望ましい。ここでは、CrKα線の波長の方がCuKα線の波長より長く、CrKα線を反射する多層膜L1の下方に、CuKα線を反射する多層膜L2が配置されている。なお、CrKα線の波長の方がCuKα線の波長より長いので、多層膜L1の多層間隔dは多層膜L2の多層間隔dより、同じ場所において長くなっている。すなわち、図の左端においてはd1>D1、右端においてはd2>D2となっている。ここで、CrKα線を反射する多層膜L1の重元素層23は
V(バナジウム)で形成され、軽元素層24はC(炭素)で形成される。また、CuKα線を反射する多層膜L2の重元素層23はNi(ニッケル)で形成され、軽元素層24はC(炭素)で形成される。しかし、これらの組み合わせに限定されることはなく、選択するX線の波長に応じて適当な材料を選択すればよく、重元素層23と軽元素層24とにそれぞれ形成される物質は、例えば、W(タングステン)とBC(炭化ホウ素)でもよいし、Mo(モリブデン)とSi(シリコン)でもよい。
【0040】
なお、図3(a)に示すフィルタ26を配置する代わりに、必要に応じて、所定の金属からなるフィルタ層27を、隣接する多層膜の間に配置してもよい。ここでは、例えば、多層膜L1,L2の間に、Niからなるフィルタ層27を積層させる。また、多重構造多層膜22の上表面にも、例えばVからなるフィルタ層(図示せず)を積層させるとなおよい。かかるフィルタ層は、X線源2が放射するX線のうち、連続X線に起因する散乱X線を吸収することが出来る。
【0041】
光学系4が多層膜ミラー3を含むことにより、多層膜ミラー3が、X線源2が放射するX線から、所望の複数種類の特性X線を選択的に反射し、多層膜ミラー3で反射されたX線を集光して、試料台5が支持する試料100へ入射させることが可能となっている。これにより、例えば、単位面積当たりのX線量が10kW/mmといった高輝度なX線に増加させて試料に入射させることが出来、より高い精度のX線回折測定を行うことが出来る。なお、多層膜ミラー3の湾曲反射面は図3に示すものに限定されることはなく、湾曲反射面の入射面との交線が放物線となっているものでもよい。
【0042】
図4は、当該実施形態に係る多層膜ミラー3の他の例の構造を示す模式図であり、多層膜ミラー3の入射面における断面を表している。図4に示す多層膜ミラー3の湾曲反射面は、P1を焦点とする放物曲線の一部である。放物線の焦点位置に、回転体11の外周表面のX線放射領域BSを配置することにより、所望の複数種類の特性X線を選択的に反射し平行X線とすることが出来る。ここで得られる平行X線を、光学系4に備えられる他の光学部材によって集光して試料へ入射させればよい。また、平行X線を試料に入射させることにより、X線反射率の測定などにも利用することが出来る。
【0043】
図1に示す試料台5は、針状のサンプルホルダーと、1又は複数の回転駆動系と、を備えており、針状のサンプルホルダーの先端には単結晶である試料100が装着され、試料100はサンプルホルダーに支持される。サンプルホルダーは、光学系4から入射される複数種類の特性X線が試料100に照射されるように、配置される。さらに、回転駆動系にサンプルホルダーの他端が固定され、回転駆動系により、試料100を3次元的に方向転換させることが可能となっている。試料100の種類に応じて、試料台5のサンプルホルダーの形状は選択される。
【0044】
X線検出器6は、例えば、波長分別型2次元ピクセル検出器であり、受光するX線を波長(エネルギー)によって分別し、波長に応じて、X線の強度を検出することが出来る。光学系4により、所望の複数種類の特性X線が試料100に照射され、試料100より、複数種類の特性X線それぞれの回折X線が発生する。X線検出器6は、複数種類の特性X線を分別し、複数種類それぞれの特性X線の回折像を検出することが出来る。
【0045】
図5は、当該実施形態に係るX線検出器6の構造を示す模式図である。X線検出器6は、平面状X線検出部30と、平面状X線検出部30の背面に設けられる信号処理部(図示せず)とを有し、平面状X線検出部30には、規則的に配列された複数のピクセル31が設けられている。各ピクセル31に設けられる半導体(例えば、Si)にX線が到達すると、電荷が発生する。信号処理部は、各ピクセル31に対応する波高分別回路を複数備えており、検出した電荷を各波高分別回路が分別することにより、X線の波長(エネルギー)に応じて、X線の強度を検出することが出来る。
【0046】
図1に示す通り、X線検出器6は、試料100を中心に角度移動をすることが出来る回転駆動系7の上に配置されている。試料台5の回転駆動系と、回転駆動系7により、X線検出器6は、試料100の回折像全体を検出することが可能である。
【0047】
制御解析部9は、X線源2の制御及びX線回折測定の制御を行うとともに、得られた測定データの解析を行う。制御解析部9は、X線源2の回転体11を駆動させるとともに、陰極と対陰極の間に所定の電圧を印加することにより、X線源2からX線を発生させる。また、制御解析部9は、試料台5の回転駆動系及びX線検出器6が配置されている回転駆動系7の駆動制御を行い、さらにX線検出器6の検出制御を行い、X線検出器6が検出する回折像に係る情報を複数収集し、それにより複数種類の特性X線それぞれの回折像全体の測定データを取得する。その際、制御解析部9に備えられる分析部8は、多重波高分析器(Multi-Channel pulse height Analyzer:マルチチャンネル・アナライザー,MCA)であり、波高ピーク値を測定し波高ピーク値スペクトラムを生成することが出来る。X線検出器6で検出されたX線の情報を、分析部8は、X線の波長(エネルギー)に分別し、波長に応じたX線の強度の情報を出力する。さらに、制御解析部9は、分析部8の分析データに基づいて、試料100の単結晶構造のデータ解析を行うデータ処理部(図示せず)と、データ処理部の解析結果のデータを保存する解析データ保存部(図示せず)とを備えている。
【0048】
当該実施形態に係るX線回折装置1において、X線源2は、所定の領域から所定の測定時間に複数種類の特性X線を同時に含むX線を放射することが出来る。多層膜ミラー3を含む光学系4が、X線源2が放射するX線から、所望の複数種類の特性X線を選択的に反射するとともに集光して、試料100へ所望の複数種類の特性X線を入射させる。光学系4により、所望の複数種類の特性X線からなる高輝度なX線が、同時に試料100に照射されることが可能となる。1個の多層膜ミラー3が所望の複数種類の特性X線を選択して反射することが出来るので、波長に応じて分光器を変更したり、分光器が分光する波長を変更するよう湾曲反射面を変更したりする必要がない。よって、装置規模を増大させることなく、複数の波長によるX線回折測定にかかる時間を短縮することが出来る。X線が照射され試料100から回折X線が発生するが、光学系4によって高輝度なX線が試料100に照射されているので、高いS/N比を有する回折像が得られ、測定時間の短縮が実現出来る。
【0049】
試料100に複数種類の特性X線が同時に照射されているので、回折X線は、複数種類の波長それぞれの回折X線を含んでいる。しかし、X線検出器6が、波長分別型検出器であり、制御解析部9の分析部8が、測定される回折X線の情報を複数種類の波長それぞれに分別することが出来ており、同時に、複数種類の波長それぞれの回折像の情報を得ることが出来る。さらに、制御解析部9のデータ処理部が、複数種類の波長それぞれの回折像の情報より、試料のデータ解析を行うことが出来る。これにより、複数種類の波長によるX線回折測定を、別々に行う必要がなく同時に行え、さらに、データ解析を併せて行うことが出来るので、測定時間及びデータ解析時間をさらに大幅に短縮することが出来る。
【0050】
複数種類の特性X線は、X線源2のX線放射領域BSより放射され、光学系4より試料100へ入射しているので、試料100への経路は同一である。これにより、複数種類の特性X線を用いて、共通の環境下で同時にX線回折測定が出来ているので、測定時間の短縮のみならず、高い品質の測定データが得られている。特に、変質しやすい試料の短時間測定や、環境変化をさせながら行う測定(例えば、温度を変化させながら測定する場合)などに、顕著な効果を奏する。
【0051】
従来において、異なる波長のX線回折測定を別々に行っており、この場合に、経時劣化が早い不安定な物質においては、試料を小分けにして、小分けされた試料を用いて、各波長のX線回折測定を行う必要が生じていた。その場合、あるX線回折測定を行ってから、他の波長のX線回折測定をするために、分光器などの交換に加えて、試料をセッティングする必要が生じており、準備を含めて測定時間が増大してしまっていた。さらに、分光器など光学系の測定環境が異なる上に、測定する試料も同一ではなく、測定されるデータの信頼性が低下せざるを得なかった。共通する環境下で、複数種類の特性X線を用いて、共通の環境下で同時にX線回折測定を可能とすることにより、かかる問題を解決している。特に、タンパク質のように変質しやすい試料、医薬品など温度や湿度の変化に敏感な試料、一度に作製する量が限られていたり高価な試料などを測定することに対して、本発明の効果は顕著となる。
【0052】
さらに、複数種類の特性X線を用いて、共通の環境下で同時にX線回折測定を行うことにより、複数種類の特性X線を用いる場合の利点を併せて利用することが出来る。例えば、試料の結晶の格子間隔(d値)が大きい領域についての回折X線の情報については、波長の長い特性X線の測定データより角度分解能がよい情報が得られる。試料の結晶の格子間隔(d値)が小さい領域についての回折X線の情報は、波長の短い特性X線の測定データより得られる。
【0053】
また、X線源2が放射するX線には、所望の特性X線以外の特性X線や連続X線が含まれており、これらX線も試料100に照射される場合には、これらX線からも回折X線が発生する。これらX線に、所望の特性X線の波長の近傍の波長を有するX線が含まれていると、X線検出器6が波長を分別する際に、所望の特性X線からの回折X線のみならずこのX線からの回折X線を一緒に検出してしまう場合があり得る。これを防ぐためには、X線検出器6の波長分解能(エネルギー分解能)を向上させる必要がある。しかし、当該実施形態に係るX線回折装置1では、多層膜ミラー3により、光学系4が所望の特性X線を選択して試料100へ入射させている。すなわち、所望の特性X線以外のX線は多層膜ミラー3によって除外されており、所望の特性X線以外のX線が試料100に到達するのが大幅に抑制されており、X線検出器6に高い波長分解能は必要とせず、コスト増大を低減させるとともに高品質な測定データが得られる。
【0054】
当該実施形態に係るX線回折装置1は、例えば、タンパク質の構造解析に好適である。タンパク質のX線構造解析では、結晶構造因子の位相情報を決定するために、MAD法が用いられている。MAD法は、タンパク質中に含まれる特定原子の吸収端近傍での異常分散効果を利用して位相決定行うものであり、複数の波長のX線の回折像の測定データを使用する。
【0055】
なお、1種類の金属から複数の特性X線が放射される。それゆえ、例えば、ある金属から1種類の特性X線を選択し、別の金属から2種類の特性X線を選択して、3種類の特性X線を所望の特性X線としてもよい。この場合、X線源2の回転体11にターゲットとして形成される金属の種類数より、多層膜ミラー3に形成される多層膜の種類数が大きくなる。さらに、1種類の金属から所望の複数種類の特性X線が得られる場合もある。この場合は、図2に示すように、複数の金属に電子を衝突させてX線を発生させる必要はなく、回転体11の外周表面に1種類の金属が形成されていればよい。対陰極に形成される金属が固定される(固定ターゲット)X線源でもよい。
【0056】
[第2の実施形態]
本発明の第2の実施形態に係るX線回折装置1は、以下の点において、第1の実施形態に係るX線回折装置1と異なるが、それ以外の構成については同じである。第1の点として、X線源2の回転体11にターゲットとして形成される複数種類の金属の形状が異なっている。第2の点として、X線検出器6が、波長分別機能を有していない2次元検出器である。第3の点として、制御解析部9の分析部8は、必ずしもX線の波長に分別することが出来る多重波高分析器である必要はなく、さらに、制御解析部9は同期制御手段10を有している。
【0057】
図6は、当該実施形態に係るX線源2の構造を示す模式図である。前述の通り、回転体11の外周表面に形成される複数種類の金属の形状が異なっている。回転体11の外周表面に、電子が走査する方向に沿って、複数種類の金属が周期的に並んで配置される。ここでは、電子が走査する方向に沿って、回転体11の外周表面を、2種類の金属T1,T2が周期的に並んでおり、2種類の金属T1,T2が形成される各領域の、電子が走査する方向の長さは等しい。金属T2が形成される領域の図の横方向の幅は、X線放射領域BSの幅より長くなっている。それゆえ、回転体11の回転に伴い、電子が衝突するX線放射領域BS(所定の領域)に形成されている金属は、周期的に2種類の金属T1,T2を繰り返すこととなる。その結果、X線窓13より出射するX線S1は、金属T1から放射されるX線と、金属T2から放射されるX線とを、交互に繰り返している。金属T1をCu、金属T2をCrとして、所望の2種類の特性X線をCuKα線とCrKα線とするとき、X線源2は、CuKα線を含むX線と、CrKα線を含むX線とを、周期的に放射している。すなわち、X線源2は、所定の測定期間において所定の領域から交互にCuKα線とCrKα線を放射している。ここで、所定の測定期間とは、例えば、X線検出器6がある位置に配置されて、その位置においてX線検出器6がX線の検出を行う期間のことであり、かかる期間の間に、X線源2は複数種類の特性X線をそれぞれ放射している。当該実施形態において、かかる期間の間に、X線源2は交互にCuKα線とCrKα線をそれぞれ多数回放射しているが、かかる期間のタイムスケールで考えると、X線源2は実質的に同時にCuKα線とCrKα線を放射しているとみなすことが出来る。
【0058】
多層膜ミラー3は、所望の複数種類の特性X線を選択的に反射する。ここでは、CuKα線を含むX線と、CrKα線を含むX線とが、周期的に繰り返して、多層膜ミラー3へ入射する。よって、多層膜ミラー3は、CuKα線を含むX線からCuKα線を、CrKα線を含むX線からCrKα線を、周期的に繰り返して、選択的に反射し、光学系4によって、試料100へ入射される。
【0059】
図7は、当該実施形態に係る入射X線の強度を示す図である。試料100へ入射するX線の強度の時間変化を表しており、図7(a)は、金属T1の特性X線(CuKα線)を、図7(b)は、金属T2の特性X線(CrKα線)を表している。図7に示す通り、金属T1の特性X線は強度Iで、金属T2の特性X線は強度Iで、周期的に繰り返している。ここで、金属Tの特性X線が強度Iとなる期間を奇期間Todd、金属Tの特性X線が強度Iとなる期間を偶期間Tevenとすると、奇期間Toddに試料100から発生する回折X線は、金属T1の特性X線によるもの、偶期間Tevenに試料100から発生する回折X線は、金属T2の特性X線によるものとなり、奇期間Toddと偶期間Tevenとで、発生する回折X線の波長が分離出来ている。
【0060】
第1の実施形態においては、試料100に複数種類の特性X線が同時に照射されているので、回折X線は、複数種類の波長それぞれの回折X線を含んでおり、X線検出器6は、波長分別型検出器を用いる必要があった。しかし、当該実施形態においては、奇期間Toddと偶期間Tevenとに同期して、X線検出器6が受光するX線を分離して検出出来るよう、同期制御手段10を備えることにより、波長分別機能を有していない検出器でも、金属T1の特性X線からの回折X線と、金属T2の特性X線からの回折X線とを分離して、検出することが出来る。すなわち、同期制御手段10は、X線源2の回転体11の回転情報を入手し、該回転情報に基づいて、複数種類の金属それぞれが放射するX線に対応して、X線の強度をそれぞれ検出するよう、X線検出器6の検出を制御する。
【0061】
図8は、当該実施形態に係る同期制御手段10を説明する模式図である。同期制御手段10は、制御解析部9に備えられる。同期制御手段10は、X線源2と接続され、X線源2から回転体11の回転情報を入手する。例えば、回転体が1秒間に100回転し、回転体11の外周表面に、金属T1が5枚、金属T2が5枚、交互に形成されているとすると、1個の奇期間Todd及び偶期間Tevenそれぞれは、1msとなる。回転情報とは、例えば、回転体11上の所定の点が、どの位置にいるかを示す情報である。かかる情報と、回転体11の外周表面の形状とを考慮して、同期制御手段10は同期信号を生成する。
【0062】
同期制御手段10は、X線検出器6と接続される。ここで、X線検出器6は、CCD、CMOSセンサー、TFTセンサーなど、2次元検出器である。これら2次元検出器は、規則的に配列された複数のピクセルを有し、複数のピクセルそれぞれで受光するX線の強度を検出する。上述の通り、当該実施形態において、X線検出器6は波長分別機能を有する必要はなく、所定の時間(奇期間Todd、偶期間Tevenなど)に検出する情報を加算することが出来ればよい。同様に、制御解析部9の分析部8は波長分別機能を有する必要はなく、波長によらず受光するX線の強度の情報を出力出来ればよい。同期制御手段10は生成した同期信号をX線検出器6へ出力する。X線検出器6における積算時間を、1個の奇期間Todd及び偶期間Tevenより短く設定することにより、各期間に、回折X線の強度を検出することが出来るので、所望の特性X線に対応して、X線の強度をそれぞれ検出する。X線検出器6は、X線の強度の検出結果を同期制御手段10へ出力する。同期制御手段10を備える制御解析部9は、入手した検出結果を加算することにより、金属T1の特性X線からの回折像の測定データと、金属T2の特性X線からの回折像の測定データとを、得る。
【0063】
なお、金属が放出するX線には、特定X線と連続X線とがある。例えば、金属T1(Cu)からのX線を、多層膜ミラー3で選択的に反射した場合、金属T1の特性X線(CuKα線)とともに、金属T1の連続X線から、金属T2の特性X線(CrKα線)の波長のX線が多層膜ミラー3で反射され、光学系4により試料100へ入射される。図7には、奇期間Toddにおいて、金属T2の特性X線に強度ΔIが、偶期間Tevenにおいて、金属T1の特性X線に強度ΔIが示されている。一般に、連続X線の強度は特性X線の強度と比べて十分に小さいので、図7に示す通り、奇期間Toddに金属T2の特性X線と同じ波長のX線が、偶期間Tevenに金属T1の特性X線と同じ波長のX線が、微小に含まれていても、回折X線の測定への影響は大きくない。金属T1(T2)の特性X線における回折像の測定データには、微小な金属T2(T1)の特性X線における回折像が微小に含まれているが、必要があれば、両方の回折像の測定データを比較して補正することにより、微小なX線強度の影響を低減させることが可能である。
【0064】
また、図3及び図4に示す通り、多層膜ミラー3と試料100の間にフィルタ26を配置させるか、多層膜ミラー3にフィルタ層27を積層させるとよい。これらフィルタ(フィルタ層)が連続X線に起因する散乱X線を吸収することにより、例えば、奇期間Toddにおける、金属T2の特性X線に強度ΔIが、偶期間Tevenにおける、金属T1の特性X線に強度ΔIが、それぞれ低減されることとなり、これらの影響を抑制することが出来ており、さらなる効果が奏する。
【0065】
当該実施形態に係るX線回折装置1において、第1の実施形態と同様に、X線源2は、複数種類の特性X線を放射することが出来る。しかし、第1の実施形態において、所望の複数種類の特性X線が同時に、X線窓13より出射されるX線S1に含まれているのに対して、当該実施形態において、所望の複数種類の特性X線が、周期的に繰り返して、別々に、X線窓13より出射されており、所望の複数種類の特性X線を分離することが出来ている。これにより、所望の複数種類の特性X線が、高輝度なX線として、試料100へ周期的にかつ別々に照射されることが可能となる。当該実施形態に係るX線回折装置1は、同期制御手段10を備えることにより、第1の実施形態とは異なり、波長分別型検出器を用いることなく、所望の複数種類の特性X線の回折像の測定データをそれぞれ得ることが出来ている。その他、第1の実施形態の構成と同じ点については、当該実施形態においても、同様の効果が得られており、共通の環境下で同時にX線回折測定が出来ているので、測定時間の短縮のみならず、高い品質の測定データが得られている。
【0066】
[その他の実施形態]
以上、好ましい実施形態を挙げて本発明を説明したが、本発明はそれらに限定されることはないのは言うまでもない。
【0067】
図9は、本発明の実施形態に係るX線源の他の例の構造を示す模式図である。図9(a)には、回転体11の外周表面に、原子番号が異なる複数種類の金属の合金T3が形成されている。これにより、X線窓13より出射されるX線S1は、複数種類の特性X線を含んでおり、図2に示すX線源2と同様に、複数種類の特性X線を同時に放出している。図9(b)に示すX線源の対陰極は回転体ではなく、固定対陰極15であり、固定対陰極15の表面には、原子番号が異なる複数種類の金属の合金T3が形成されている。これにより、X線源が放射するX線は、複数種類の特性X線を含んでおり、図2に示すX線源2と同様に、複数種類の特性X線を同時に放出している。
【0068】
図9に示すX線源は、同時に所望の複数種類の特性X線を放出している。よって、第1の実施形態に係るX線回折装置1のX線源2をこれらX線源に変更し、他の構成は同じであるとしても、本発明の効果は得られている。すなわち、X線検出器6を波長分別型検出器とすることにより、共通する環境下で、複数種類の特性X線によるX線回折測定が可能である。
【0069】
本発明の実施形態に係るX線検出器6は、規則的に配列された複数のピクセルを有する2次元検出器としたが、1列に並ぶピクセルを有する1次元検出器であってもよい。測定時間低減の観点からは2次元検出器が望ましいが、測定の目的に応じて、選択すればよい。
【符号の説明】
【0070】
1 X線回折装置、2 X線源、3 多層膜ミラー、4 光学系、5 試料台、6 X線検出器、7 回転駆動系、8 分析部、9 制御解析部、10 同期制御手段、11 回転体、12 フィラメント、13 X線窓、15 固定対陰極、21 基板、22 多重構造多層膜、23 重元素層、24 軽元素層、30 平面状X線検出部、31 ピクセル、100 試料、BS X線放射領域、L1,L2 多層膜、P1,P2 焦点、S1 X線、T1,T2,金属、T3 合金、Teven 偶期間、Todd 奇期間。
図1
図2
図3
図4
図5
図6
図7
図8
図9