【実施例】
【0033】
以下、本発明を実施例、比較例及び参考例にて説明するが、本発明はこれらに限定されるものではない。
【0034】
作成例1.コインセル型リチウムイオン二次電池の作成
正極活物質としてコバルト酸リチウム(LiCoO
2)を用い、これに導電助剤としてアセチレンブラック、バインダーとしてポリフッ化ビニリデン(PVDF)をLiCoO
2:アセチレンブラック:PVDF=86:7:7となるように配合し、1−メチル−2−ピロリドンを用いてスラリー化したものをアルミ製集電体上に一定の膜厚で塗布し、乾燥させて正極を得た。負極活物質としては天然球状グラファイトを用い、バインダーとしてPVDFをグラファイト:PVDF=9:1となるように配合し、1−メチル−2−ピロリドンを用いてスラリー化したものを銅製集電体上に一定の膜厚で塗布し、乾燥させて負極を得た。
【0035】
セパレータは無機フィラー含有ポリオレフィン多孔質膜を用いた。以上の構成要素を用いて、
図1に示した構造のコイン型セルを用いたリチウムイオン二次電池を作成した。リチウムイオン二次電池はセパレータ8を挟んで正極1、負極5を対向配置し、負極ステンレス製キャップ4にステンレス製板バネ7を設置し、負極5、セパレータ8および正極1からなる積層体をコイン型セル内に収納した。この積層体に非水電解液を注入した後、ガスケット9を配置後、正極ステンレス製キャップ3をかぶせ、コイン型セルケースをかしめることで作成した。
【0036】
作成例2.コインセル型リチウムイオン二次電池の作成
正極活物質としてリチウムニッケルマンガンコバルト複合酸化物(LiNi
1/3Mn
1/3Co
1/3O
2)を用い、これに導電助剤としてアセチレンブラック、バインダーとしてポリフッ化ビニリデン(PVDF)をLiNi
1/3Mn
1/3Co
1/3O
2:アセチレンブラック:PVDF=86:7:7となるように配合し、1−メチル−2−ピロリドンを用いてスラリー化したものをアルミ製集電体上に一定の膜厚で塗布し、乾燥させて正極を得た。負極活物質としては天然球状グラファイトを用い、バインダーとしてPVDFをグラファイト:PVDF=9:1となるように配合し、1−メチル−2−ピロリドンを用いてスラリー化したものを銅製集電体上に一定の膜厚で塗布し、乾燥させて負極を得た。
【0037】
セパレータは無機フィラー含有ポリオレフィン多孔質膜を用いた。以上の構成要素を用いて、
図1に示した構造のコイン型セルを用いたリチウムイオン二次電池を作成した。リチウムイオン二次電池はセパレータ8を挟んで正極1、負極5を対向配置し、負極ステンレス製キャップ4にステンレス製板バネ7を設置し、負極5、セパレータ8および正極1からなる積層体をコイン型セル内に収納した。この積層体に非水電解液を注入した後、ガスケット9を配置後、正極ステンレス製キャップ3をかぶせ、コイン型セルケースをかしめることで作成した。
【0038】
試験例1.コインセル型リチウムイオン二次電池の充放電試験
コバルト酸リチウム(LiCoO
2)正極と炭素負極によって作成したコインセル型リチウムイオン二次電池を25℃の恒温条件下、0.1Cの充電電流で上限電圧を4.2Vとして充電し、続いて0.1Cの放電電流で3.0Vとなるまで放電した。
この操作を3回行った後に65℃の恒温条件下、0.2Cの充電電流で4.2Vの定電流‐低電圧充電を行い、0.2Cの放電電流で終止電圧3.0Vまで定電流放電を行った。このときの放電容量を初期放電容量とし、この操作を50回繰り返した際の放電容量を測定し、50サイクル後の放電容量/初期放電容量比を容量維持率として比較を行った。
【0039】
試験例2.コインセル型リチウムイオン二次電池の充放電試験
リチウムニッケルマンガン複合酸化物(LiNi
1/3Mn
1/3Co
1/3O
2)正極と炭素負極によって作成したコインセル型リチウムイオン二次電池を25℃の恒温条件下、0.1Cの充電電流で上限電圧を4.5Vとして充電し、続いて0.1Cの放電電流で3.0Vとなるまで放電した。
この操作を3回行った後に65℃の恒温条件下、0.2Cの充電電流で4.5Vの定電流‐低電圧充電を行い、0.2Cの放電電流で終止電圧3.0Vまで定電流放電を行った。このときの放電容量を初期放電容量とし、この操作を50回繰り返した際の放電容量を測定し、50サイクル後の放電容量/初期放電容量比を容量維持率として比較を行った。
【0040】
次に、実施例に用いたアリール基含有含フッ素リン酸エステルの合成法について参考例によって説明する。
アリール基含有含フッ素リン酸エステルの同定には、以下の分析方法を用いた。
1H−NMR及び
19F−NMRの測定には、Bruker 400 ULTRASHIELD AVANCE II(400MHzおよび376MHz)を用いた。
1H−NMRは、重クロロホルム(CDCl
3)を測定溶媒とし、内部標準物質としてテトラメチルシラン(TMS)を用いて測定した。
19F−NMRは、重クロロホルム(CDCl
3)を測定溶媒とし、内部標準物質としてベンゾトリフルオリドを用いて測定した。質量分析は、SHIMADZU社製 GCMS−QP2010 PLUSを用いて行った。融点は、ビュッヒ社製 B-545を用いて測定した。
【0041】
[参考例1]
リン酸ビス(2,2,2−トリフルオロエチル)フェニルの合成
【0042】
【化4】
【0043】
窒素雰囲気下、フラスコにジクロロリン酸フェニル(500g,2.37mol)及び塩化マグネシウム(6.77g,0.0711mol)を加え、70℃まで昇温した。さらに2,2,2−トリフルオロエタノール(711g,7.11mmol)を滴下し、95℃にて26時間撹拌した。反応終了後、有機層を5%炭酸水素ナトリウム水溶液及び水で洗浄した。有機層を減圧蒸留精製することで目的のリン酸ビス(2,2,2−トリフルオロエチル)フェニルを無色液体として得た(703g,88%)。
1H−NMR(400MHz,CDCl
3):δ4.46(q,J=8.0Hz,4H),7.20−7.40(m,5H).
19F−NMR(376MHz,CDCl
3):δ−75.8(t,J=8.0Hz,6F).
MS(EI):m/z(%)=338(M
+,100),319(19),298(77),94(76),77(85).
【0044】
[参考例2]
リン酸ジフェニル(2,2,2−トリフルオロエチル)の合成
【0045】
【化5】
【0046】
窒素雰囲気下、フラスコにクロロリン酸ジフェニル(200g,0.745mol)、クロロホルム(400ml)及び2,2,2−トリフルオロエタノール(78.2g,0.782mol)を加え0℃に冷却した。続いて、トリエチルアミン(89.2g,0.882mol)を滴下し、0℃で1時間、さらに室温下で19時間撹拌した。反応終了後、有機層を1%水酸化ナトリウム水溶液、5%硫酸水溶液及び水で洗浄し、有機層を硫酸ナトリウムで乾燥した。乾燥剤をろ別後、ろ液を減圧濃縮し、粗生成物を得た。粗生成物を減圧蒸留精製する事により、目的のリン酸ジフェニル(2,2,2−トリフルオロエチル)を無色液体として得た(138g,56%)。
1H−NMR(400MHz,CDCl
3):δ4.50(qd,J=8.0Hz,J=8.0Hz,4H),7.20−7.39(m,10H).
19F−NMR(376MHz,CDCl
3):δ−75.7(t,J=8.0Hz,3F).
MS(EI):m/z(%)=332(M
+,87),170(25),94(38),77(100),65(34).
【0047】
[参考例3]
リン酸ビス(2,2,2−トリフルオロエチル)(3−フルオロフェニル)の合成
【0048】
【化6】
【0049】
窒素雰囲気下、フラスコにクロロリン酸ビス(2,2,2−トリフルオロエチル)(Journal of Fluorine Chemistry,2002年,113巻,65−78頁に従い合成:208g,0.743mol)、塩化マグネシウム(2.83g,0.0297mol)及び3−フルオロフェノール(100g,0.892mol)を加え、80℃にて24時間撹拌した。反応終了後、有機層を2%水酸化ナトリウム水溶液及び水で洗浄した。有機層を減圧蒸留精製することで目的のリン酸ビス(2,2,2−トリフルオロエチル)(3−フルオロフェニル)を無色液体として得た(186g,70%)。
1H−NMR(400MHz,CDCl
3):δ4.46(qd,J=9.4Hz,J=5.6Hz,4H),6.95−7.38(m,4H).
19F−NMR(376MHz,CDCl
3):δ−75.8(t,J=9.4Hz,6F),δ−109.9(q,J=7.5Hz,1F).
MS(EI):m/z(%)=356(M
+,83),337(21),316(63),112(100),95(79).
【0050】
[参考例4]
リン酸ビス(2,2,2−トリフルオロエチル)(3−メトキシフェニル)の合成
【0051】
【化7】
【0052】
窒素雰囲気下、フラスコに3−メトキシフェノール(38.7g,0.311mol)、クロロホルム(150ml)及びトリエチルアミン(37.8g,0.311mol)を加え、室温下で撹拌した。さらにクロロリン酸ビス(2,2,2−トリフルオロエチル)(90.6g,0.323mol)を滴下し、60℃にて19時間撹拌した。反応終了後、有機層を2%水酸化ナトリウム水溶液、5%硫酸水溶液及び水で洗浄した後、有機層を減圧濃縮し、粗生成物を得た。粗生成物を減圧蒸留で精製することで目的のリン酸ビス(2,2,2−トリフルオロエチル)(3−メトキシフェニル)を無色液体として得た(86.6g,76%)。
1H−NMR(400MHz,CDCl
3):δ3.80(s,3H),4.46(q,J=8.0Hz,4H),6.74−7.38(m,4H)
19F−NMR(376MHz,CDCl
3):δ−75.8(t,J=9.4Hz,6F),−109.9(q,J=7.5Hz,1F)
MS(EI):m/z(%)=368(M
+,100),349(8),328(35),299(15),76(53).
【0053】
[参考例5]
リン酸ビス(2,2,2−トリフルオロエチル)(3−シアノフェニル)の合成
【0054】
【化8】
【0055】
窒素雰囲気下、フラスコに3−シアノフェノール(70.0g,0.588mol)、トルエン(470ml)及びトリエチルアミン(101g,0.999mol)を加え、60℃まで加熱した。さらにクロロリン酸ビス(2,2,2−トリフルオロエチル)(214g,0.764mol)を滴下し、110℃にて47時間撹拌した。反応終了後、有機層を水洗し、有機層を硫酸ナトリウムで乾燥した。乾燥剤をろ別後、ろ液を減圧濃縮し、粗生成物を得た。粗生成物を減圧蒸留することで目的のリン酸ビス(2,2,2−トリフルオロエチル)(3−シアノフェニル)を無色液体として得た(110g,52%)。
1H−NMR(400MHz,CDCl
3):δ4.49(qd,J=8.0Hz,J=8.0Hz,4H),7.47−7.58(m,4H).
19F−NMR(376MHz,CDCl
3):δ−75.8(t,J=8.0Hz,6F).
MS(EI):m/z(%)=363(M
+,66),344(24),323(74),165(47),119(100).
【0056】
[参考例6]
リン酸ビス(2,2,2−トリフルオロエチル)(4−シアノフェニル)の合成
【0057】
【化9】
【0058】
窒素雰囲気下、フラスコに4−シアノフェノール(73.0g,0.613mol)、トルエン(450ml)及びトリエチルアミン(105g,1.04mol)を加え、60℃まで加熱した。さらにクロロリン酸ビス(2,2,2−トリフルオロエチル)(206g,0.735mol)を滴下し、105℃にて44時間撹拌した。反応終了後、有機層を10%水酸化ナトリウム水溶液、2.5%硫酸水溶液及、飽和食塩水及び水で洗浄した後、有機層を硫酸ナトリウムで乾燥した。乾燥剤をろ別後、ろ液を減圧濃縮し、粗生成物を得た。有機層の単蒸留を行い、粗生成物を得た。粗生成物をジエチルエーテル/ヘキサンから再結晶精製を行うことにより、目的のリン酸ビス(2,2,2−トリフルオロエチル)(4−シアノフェニル)を白色固体として得た(56.3g,25%)。
1H−NMR(400MHz,CDCl
3):δ4.49(qd,J=8.0Hz,J=8.0Hz,4H),7.34(d,J=8.0Hz,2H),7.71(d,J=8.0Hz,2H)
19F−NMR(376MHz,CDCl
3):δ−75.8(t,J=8.0Hz,6F)
MS(EI):m/z(%)=363(M
+,83),344(26),323(79),165(54),119(100).
融点:43〜45℃.
【0059】
[参考例7]
リン酸ビス(3−シアノフェニル)(2,2,2−トリフルオロエチル)の合成
【0060】
【化10】
【0061】
窒素雰囲気下、フラスコに3−シアノフェノール(35.0g,0.294mol)、トルエン(240ml)及びトリエチルアミン(62.5g,0.617mol)を加え、60℃まで加熱した。窒素雰囲気下、ジクロロリン酸(2,2,2−トリフルオロエチル)(Journal of Fluorine Chemistry,2000年,104巻,215−223頁に従い合成:31.1g,0.143mol)を滴下し、105℃で19時間撹拌した。反応終了後、有機層を5%炭酸水素ナトリウム水溶液、5%硫酸水溶液及び水で洗浄し、有機層を硫酸ナトリウムで乾燥した。乾燥剤をろ別後、ろ液を減圧濃縮し、粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル/クロロホルム)および減圧蒸留精製する事により、目的のリン酸ビス(3−シアノフェニル)(2,2,2−トリフルオロエチル)を無色液体として得た(47.2g,42%)。
1H−NMR(400MHz,CDCl
3):δ4.55(qd,J=8.0Hz,J=8.0Hz,2H),7.49−7.59(m,8H).
19F−NMR(376MHz,CDCl
3):δ−75.6(t,J=8.0Hz,3F).
MS(EI):m/z(%)=382(M
+,59),244(12),220(57),119(30),102(100).
【0062】
[実施例1]
溶媒としてエチレンカーボネート(以下ECと略す)、ジメチルカーボネート(以下DMCと略す)を重量比50:50の割合で混合し、この混合溶媒に対し、参考例1に示す方法で合成したリン酸ビス(2,2,2−トリフルオロエチル)フェニルを重量比で2%添加した。次いで、電解質塩として六フッ化リン酸リチウム(LiPF
6)を1.0mol/Lの濃度で溶解させ非水電解液を調製した。
【0063】
この非水電解液を用いて上述の作成例1に従いコインセル型リチウムイオン二次電池を作成し、上述の試験例1に従って50サイクルの充放電試験を実施した。結果を表1に示す。
【0064】
[実施例2]
実施例1と同様の操作で非水電解液を調製し、上述の作成例2に従いコインセル型リチウムイオン二次電池を作成し、上述の試験例2に従って50サイクルの充放電試験を実施した。結果を表1に示す。
【0065】
[実施例3]
DMCに代え、リン酸トリス(2,2,2−トリフルオロエチル)(以下TFEPと略す)を用いたこと以外は実施例1と同様の操作で非水電解液を調製し、実施例2と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表1に示す。
【0066】
[実施例4]
リン酸ビス(2,2,2-トリフルオロエチル)フェニルに代えて、リン酸ビス(2,2,2−トリフルオロエチル)(4−フルオロフェニル)を重量比で2%添加したこと以外は、実施例3と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表1に示す。
【0067】
[実施例5]
リン酸ビス(2,2,2-トリフルオロエチル)フェニルに代えて、参考例2に示す方法で合成したリン酸ジフェニル(2,2,2−トリフルオロエチル)を重量比で2%添加したこと以外は、実施例3と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表1に示す。
【0068】
[実施例6]
リン酸ビス(2,2,2−トリフルオロエチル)フェニルに加え、更にビニレンカーボネート(以下VCと略す)を重量比で2%添加したこと以外実施例3と同様の操作で非水電解液を調製し、実施例2と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表1に示す。
【0069】
[比較例1]
リン酸ビス(2,2,2−トリフルオロエチル)フェニルを添加しなかったこと以外は実施例1と同様の操作で非水電解液を調製し、実施例1と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表1に示す。
【0070】
[比較例2]
リン酸ビス(2,2,2−トリフルオロエチル)フェニルを添加しなかったこと以外は実施例2と同様の操作で非水電解液を調製し、実施例2と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表1に示す。
【0071】
[比較例3]
リン酸ビス(2,2,2−トリフルオロエチル)フェニルを添加しなかったこと以外は実施例3と同様の操作で非水電解液を調製し、実施例3と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表1に示す。
【0072】
[比較例4]
リン酸ビス(2,2,2−トリフルオロエチル)フェニルに代えてVCを重量比で2%添加したこと以外実施例3と同様の操作で非水電解液を調製し、この非水電解液を用いて上述の作成例2に従いコインセル型リチウムイオン二次電池を作成し、上述の試験例2に従って50サイクルの充放電試験を実施した。結果を表1に示す。
【0073】
[比較例5]
リン酸ビス(2,2,2-トリフルオロエチル)フェニルに代えて、エステル側鎖にフッ素原子を有さないリン酸ジエチルフェニルを重量比で2%添加したこと以外は、実施例1と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表1に示す。
【0074】
[比較例6]
リン酸ビス(2,2,2-トリフルオロエチル)フェニルに代えて、エステル側鎖にフッ素原子を有さないリン酸ジエチルフェニルを重量比で2%添加したこと以外は、実施例3と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表1に示す。
【0075】
【表1】
【0076】
表1から、非水溶媒としてEC−DMC混合溶媒を用い、添加剤としてアリール基含有含フッ素リン酸エステルを含有する本発明に係る非水電解液を用いた実施例1は、4.2Vでの充放電条件において、添加剤を含まない比較例1または添加剤としてリン酸ジエチルフェニルを含む比較例5に比べ高い容量維持率を示した。
【0077】
さらに、正極に4.5V以上の電位を発現する正極活物質を用いた試験では、EC−DMC混合溶媒を用い添加剤としてアリール基含有含フッ素リン酸エステルを含有する本発明に係る非水電解液を用いた実施例2は、添加剤を含まない比較例2に比べ、高い容量維持率を示した。非水溶媒2として、含フッ素リン酸エステルであるTFEPを用いた実施例3〜5は、添加剤を含まない比較例3、添加剤としてVCを用いた比較例4、及び添加剤としてリン酸ジエチルフェニルを用いた比較例6に比べ、高い容量維持率を示した。なお、4.5Vでの充放電条件では、溶媒2としてTFEPを用いた実施例3〜5は、DMCを用いた実施例2よりも高い容量維持率を示した。この機構は明らかではないが、アリール基含有含フッ素リン酸エステルがTFEPと相補的な被膜を形成する等、特異的に相互作用することで寿命が向上したと考えられる。なお、アリール基含有含フッ素リン酸エステルとVCの双方を添加した実施例6は更に高い容量維持率を示すことから、アリール基含有含フッ素リン酸エステルとVCは作用機構が異なり、相乗効果を発現することで電池寿命を向上していると考察できる。
【0078】
[実施例7]
リン酸ビス(2,2,2−トリフルオロエチル)フェニルの添加量をECとTFEPを重量比50:50で混合し、この混合溶媒に対し、リン酸ビス(2,2,2−トリフルオロエチル)フェニルを重量比で0.1%添加した。この混合電解液を実施例2と同様の方法で充放電試験を実施した。結果を表2に示す。
【0079】
[実施例8]
リン酸ビス(2,2,2−トリフルオロエチル)フェニルを重量比で5%添加した以外は、実施例6と同様の方法で充放電試験を実施した。結果を表2に示す。
【0080】
[実施例9]
リン酸ビス(2,2,2−トリフルオロエチル)フェニルを重量比で10%添加した以外は、実施例6と同様の方法で充放電試験を実施した。結果を表2に示す。
【0081】
【表2】
【0082】
表2には、参考として、比較例3で実施した添加剤を含まない場合の試験結果を併記する。
【0083】
実施例7〜9では、アリール基含有含フッ素リン酸エステルの添加量を変更して検討を行った。その結果、アリール基含有含フッ素リン酸エステルを重量比で0.1%添加すると非添加に比べて容量維持率が向上することが判った。ただし、表1で記載した、実施例3に比べると、明らかに容量が低下していることから、0.1%未満では十分な効果は得られないと推察できる。
【0084】
[実施例10]
電解質塩としてリチウムビス(トリフルオロスルホニル)イミド(LiN(CF
3SO
2)
2、以下、表中ではLiTFSAと略す)を用いた以外は実施例3と同様の方法で充放電試験を実施した。結果を表3に示す。
【0085】
[実施例11]
TFEPに代え、リン酸トリエチル(以下TEPと略す)を用いたこと以外は実施例9と同様の方法で充放電試験を実施した。結果を表3に示す。
【0086】
[実施例12]
TFEPに代え、リン酸ビス(2,2,2−トリフルオロエチル)エチル(以下BFEPと略す)を用いたこと以外は実施例9と同様の方法で充放電試験を実施した。結果を表3に示す。
【0087】
[実施例13]
TFEPに代え、リン酸ビス(2,2,2−トリフルオロエチル)メチル(以下BFMPと略す)を用いたこと以外は実施例9と同様の方法で充放電試験を実施した。結果を表3に示す。
【0088】
[比較例7]
リン酸ビス(2,2,2−トリフルオロエチル)フェニルを添加しなかったこと以外は実施例9と同様の方法で充放電試験を実施した。結果を表3に示す。
【0089】
【表3】
【0090】
実施例10〜13、比較例7では、電解質として有機酸リチウム塩の一種であるLiTFSAを用いた。その結果、アリール基含有含フッ素リン酸エステルは、LiPF
6の様な無機酸リチウム塩だけでなく、LiTFSAの様な有機酸リチウム塩でも同様に容量維持率が向上することが確認された。
【0091】
なお、実施例11〜13では非フッ素系リン酸エステルであるTEPや含フッ素エステル側鎖と非フッ素エステル側鎖の共存したBFEPやBFMPを主溶媒として用いた場合にも同様の効果があることが判った。
【0092】
[実施例14]
溶媒としてEC、DMCを重量比50:50の割合で混合し、この混合溶媒に対し、参考例3に示す方法で合成したリン酸ビス(2,2,2−トリフルオロエチル)(3−フルオロフェニル)を重量比で2%添加した。次いで、電解質塩として六フッ化リン酸リチウム(LiPF
6)を1.0mol/Lの濃度で溶解させ非水電解液を調製した。
【0093】
この非水電解液を用いて上述の作成例2に従いコインセル型リチウムイオン二次電池を作成し、上述の試験例2に従って50サイクルの充放電試験を実施した。結果を表4に示す。
【0094】
[実施例15]
リン酸ビス(2,2,2−トリフルオロエチル)(3−フルオロフェニル)の代わりに、参考例4に示す方法で合成したリン酸ビス(2,2,2−トリフルオロエチル)(3−メトキシフェニル)を用いた以外は、実施例14と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表4に示す。
【0095】
[実施例16]
リン酸ビス(2,2,2−トリフルオロエチル)(3−フルオロフェニル)の代わりに、参考例5に示す方法で合成したリン酸ビス(2,2,2−トリフルオロエチル)(3−シアノフェニル)を用いた以外は、実施例14と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表4に示す。
【0096】
[実施例17]
リン酸ビス(2,2,2−トリフルオロエチル)(3−フルオロフェニル)の代わりに、参考例6に示す方法で合成したリン酸ビス(2,2,2−トリフルオロエチル)(4−シアノフェニル)を用いた以外は、実施例14と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表4に示す。
【0097】
[実施例18]
溶媒としてEC、TFEPを重量比50:50の割合で混合し、この混合溶媒に対し、リン酸ビス(2,2,2−トリフルオロエチル)(3−フルオロフェニル)を重量比で2%添加した。次いで、電解質塩として六フッ化リン酸リチウム(LiPF
6)を1.0mol/Lの濃度で溶解させ非水電解液を調製した。
【0098】
この非水電解液を用いて上述の作成例2に従いコインセル型リチウムイオン二次電池を作成し、上述の試験例2に従って50サイクルの充放電試験を実施した。結果を表4に示す。
【0099】
[実施例19]
リン酸ビス(2,2,2−トリフルオロエチル)(3−フルオロフェニル)の代わりに、リン酸ビス(2,2,2−トリフルオロエチル)(3−メトキシフェニル)を用いた以外は、実施例18と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表4に示す。
【0100】
[実施例20]
リン酸ビス(2,2,2−トリフルオロエチル)(3−フルオロフェニル)の代わりに、リン酸ビス(2,2,2−トリフルオロエチル)(3−シアノフェニル)を用いた以外は、実施例18と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表4に示す。
【0101】
[実施例21]
リン酸ビス(2,2,2−トリフルオロエチル)(3−フルオロフェニル)の代わりに、リン酸ビス(2,2,2−トリフルオロエチル)(4−シアノフェニル)を用いた以外は、実施例18と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表4に示す。
【0102】
[実施例22]
リン酸ビス(2,2,2−トリフルオロエチル)(3−フルオロフェニル)の代わりに、参考例7に示す方法で合成したリン酸ビス(3−シアノフェニル)(2,2,2−トリフルオロエチル)を用いた以外は、実施例18と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表4に示す。
【0103】
[実施例23]
溶媒としてEC、TFEPを重量比50:50の割合で混合し、この混合溶媒に対し、リン酸ビス(2,2,2−トリフルオロエチル)(3−メトキシフェニル)を重量比で2%添加し、更にVCを重量比で2%添加した。次いで、電解質塩として六フッ化リン酸リチウム(LiPF
6)を1.0mol/Lの濃度で溶解させ非水電解液を調製した。
【0104】
この非水電解液を用いて上述の作成例2に従いコインセル型リチウムイオン二次電池を作成し、前記試験例2に従って50サイクルの充放電試験を実施した。結果を表4に示す。
【0105】
【表4】
【0106】
表4には、参考として、実施例2〜6の試験結果を併記する。
実施例14〜17と実施例2の比較、実施例4及び18〜22と実施例3の比較、実施例23と実施例6の比較から、アリール基上に置換基を持つアリール基含有含フッ素リン酸エステルは、無置換アリール基含有含フッ素リン酸エステルより容量維持率が向上することが確認された。この結果は、先に本文に述べた結果を支持しており、アリール基にリチウムと相互作用を示す置換基を導入する事で、リチウム透過性の高い保護被膜を形成する事ができ、容量維持率が向上したと推定される。
【0107】
[実施例24]
溶媒としてEC、TFEPを重量比50:50の割合で混合し、この混合溶媒に対し、リン酸ビス(2,2,2−トリフルオロエチル)(3−メトキシフェニル)を重量比で0.1%添加した。次いで、電解質塩として六フッ化リン酸リチウム(LiPF
6)を1.0mol/Lの濃度で溶解させ非水電解液を調製した。
【0108】
この非水電解液を用いて上述の作成例2に従いコインセル型リチウムイオン二次電池を作成し、上述の試験例2に従って50サイクルの充放電試験を実施した。結果を表5に示す。
【0109】
[実施例25]
リン酸ビス(2,2,2−トリフルオロエチル)(3−メトキシフェニル)を重量比で5%添加した以外は、実施例24と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表5に示す。
【0110】
[実施例26]
リン酸ビス(2,2,2−トリフルオロエチル)(3−メトキシフェニル)を重量比で10%添加した以外は、実施例24と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表5に示す。
【0111】
【表5】
【0112】
表5には、参考として、実施例7〜9及び比較例3の試験結果を併記する。
実施例24〜26と比較例3の比較から、置換されたアリール基含有含フッ素リン酸エステルを重量比で0.1%添加すると非添加に比べて容量維持率が向上することが判った。さらに実施例7〜9の試験結果との比較から、置換されたアリール基含有含フッ素リン酸エステルは、無置換アリール基含有含フッ素リン酸エステルより、効果が高い事も確認された。
【0113】
[実施例27]
溶媒としてEC、TFEPを重量比50:50の割合で混合し、この混合溶媒に対し、リン酸ビス(2,2,2−トリフルオロエチル)(3−メトキシフェニル)を重量比で2%添加した。次いで、電解質塩としてLiTFSAを1.0mol/Lの濃度で溶解させ非水電解液を調製した。
【0114】
この非水電解液を用いて上述の作成例2に従いコインセル型リチウムイオン二次電池を作成し、上述の試験例2に従って50サイクルの充放電試験を実施した。結果を表6に示す。
【0115】
[実施例28]
溶媒にTFEPの代わりにTEPを用いた以外は、実施例27と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表6に示す。
【0116】
[実施例29]
溶媒にTFEPの代わりにBFEPを用いた以外は、実施例27と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表6に示す。
【0117】
[実施例30]
溶媒にTFEPの代わりにBFMPを用いた以外は、実施例27と同様の方法でコインセル型リチウムイオン二次電池を作成し、充放電試験を実施した。結果を表6に示す。
【0118】
【表6】
【0119】
表6には、参考として、実施例10〜13及び比較例7の試験結果を併記する。
実施例27〜30と実施例10〜13及び比較例7の比較から、置換されたアリール基含有含フッ素リン酸エステルは、無置換アリール基含有リン酸エステルと同様に、非フッ素系リン酸エステルであるTEPや含フッ素エステル側鎖と非フッ素エステル側鎖の共存したBFEPやBFMPを主溶媒として用いた場合にも容量維持率が向上し、無置換アリール基含有リン酸エステルより、効果が高い事が判った。
【0120】
[実施例31]
溶媒としてEC、エチルメチルカーボネートを重量比30:70の割合で混合し、この混合溶媒に対し、リン酸ビス(2,2,2−トリフルオロエチル)フェニルを重量比で10%添加した。次いで、電解質塩として六フッ化リン酸リチウム(LiPF
6)を0.2mol/Lの濃度で溶解させ、非水電解液を調製した。
【0121】
この非水電解液に作用電極として白金、基準電極としてリチウム箔、対極としてリチウム箔を挿入し、電圧を5mV/sの走査速度にて3から6V(vs.Li/Li
+)まで上げ、リニアスィープボルタンメトリー測定を行った。装置は、マルチチャンネルポテンショスタット/ガルバノスタット(VMP−3)を用いて行った。測定の結果から、電流密度が0.1mA/cm
2の時の電位を、酸化分解電位とした。結果を表7に、リニアスィープボルタノグラムを
図2に示す。
【0122】
[実施例32]
リン酸ビス(2,2,2−トリフルオロエチル)フェニルの代わりに、リン酸ビス(2,2,2−トリフルオロエチル)(3−メトキシフェニル)を用いた以外は、実施例31と同様の方法でリニアスィープボルタンメトリー測定を行った。測定結果から、電流密度が0.1mA/cm
2の時の電位を、酸化分解電位とした。結果を表7に、リニアスィープボルタノグラムを
図2に示す。
【0123】
[比較例8]
溶媒としてEC、エチルメチルカーボネートを重量比30:70の割合で混合した。混合溶媒に対し、電解質塩として六フッ化リン酸リチウム(LiPF
6)を0.2mol/Lの濃度で溶解させ、非水電解液を調製した。
【0124】
この非水電解液に作用電極として白金、基準電極としてリチウム箔、対極としてリチウム箔を挿入し、電圧を5mV/sの走査速度にて3から6.7V(vs.Li/Li
+)まで上げ、リニアスィープボルタンメトリー測定を行った。測定の結果から、電流密度が0.1mA/cm
2の時の電位を、酸化分解電位とした。結果を表7に、リニアスィープボルタノグラムを
図2に示す。
【0125】
【表7】
【0126】
アリール基含有の含フッ素リン酸エステルを含む電解液によって、サイクル特性が向上した要因は明らかではないが、実施例31及び実施例32と比較例8の比較から、アリール基含有の含フッ素リン酸エステルを含む非水電解液が、含まない非水電解液よりも酸化分解電位が低くなっていることが分かる。つまり、アリール基含有の含フッ素リン酸エステルが、溶媒(ECとエチルメチルカーボネート)より低い電位で分解することで正極上に被膜を形成し、これらの被膜が、それ以上の溶媒の分解を抑制する等の効果により電池性能が向上したのではないかと推察される。特に、メトキシ基が結合したアリール基含有含フッ素リン酸エステルは、無置換アリール基含有含フッ素リン酸エステルより酸化分解電位が低い事がわかる。従って、メトキシ基が結合したアリール基含有含フッ素リン酸エステルの方が、より低い電位で正極に被膜を形成し、より溶媒の分解を抑制する効果が高いと推察される。