【非特許文献】
【0054】
【非特許文献1】Klitzing, K. v., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494-497 (1980).
【非特許文献2】Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045-3067 (2010).
【非特許文献3】Qi, X.-L. & Zhang S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057-1110 (2011).
【非特許文献4】Thouless, D. J., Kohmoto, M., Nightingale, M. P. & Nijs, M. d. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett. 49, 405-408 (1982).
【非特許文献5】Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959-2007 (2010).
【非特許文献6】Haldane, F. D. M. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”. Phys. Rev. Lett. 61, 2015 (1988).
【非特許文献7】Kane, C. L. & Mele E. J. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett. 95, 226801 (2005).
【非特許文献8】Bernevig, B. A., Hughes, T. L. & Zhang S.-C. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. Science 314, 1757-1761 (2006).
【非特許文献9】Hsieh, D., Qian, D., Wray, L., Xia, Y., Hor, Y. S., Cava, R. J. & Hasan M. Z. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970-974 (2008).
【非特許文献10】Yu, R., Zhang, W., Zhang, H.-J., Zhang, S.-C., Dai, X. & Fang, Z. Quantized Anomalous Hall Effect in Magnetic Topological Insulators. Science 329, 61-64 (2010).
【非特許文献11】Chang, C.-Z. et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. Science 340, 167-170 (2013).
【非特許文献12】Liang, Q.-F., Wu, L-.H. & Hu, X. Electrically tunable topological state in [111] perovskite materials with an antiferromagnetic exchange field. New J. Phys. 15, 063031 (2013).
【非特許文献13】Pesin, D. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nature Mater. 11, 409-416 (2012).
【非特許文献14】Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083-1159 (2008).
【非特許文献15】Stanescu, T. D., & Tewari, S. Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment. J. Phys.: Condens. Matter 25, 233201 (2013).
【非特許文献16】Beenakker, C. W. J. Search for Majorana Fermions in Superconductors. Annu. Rev. Condens. Matter Phys. 4, 113-136 (2013).
【非特許文献17】Wu, L.-H., Liang, Q.-F. & Hu, X. New scheme for braiding Majorana fermions. Sci. Technol. Adv. Mater. 15, 064402 (2014).
【非特許文献18】Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett. 58, 2059-2062 (1987).
【非特許文献19】Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart W. J. Magnetism from Conductors and Enhanced Nonlinear Phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075-2084 (1999).
【非特許文献20】Haldane, F. D. M. & Raghu, S. Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry. Phys. Rev. Lett. 100, 013904 (2008).
【非特許文献21】Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Soljacic, M. Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal. Phys. Rev. Lett. 100, 013905 (2008).
【非特許文献22】Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772-775 (2009).
【非特許文献23】Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nature Photon. 6, 782-787 (2012).
【非特許文献24】Khanikaev, A. B. et al. Photonic topological insulators. Nature Mater. 12, 233-239 (2013).
【非特許文献25】Ma, T., Khanikaev, A. B., Mousavi, S. H. & Shvets, G. Topologically protected photonic transport in bianisotropic meta-waveguides. arXiv: 1401.1276 (2014).
【非特許文献26】Liang, G. Q. & Chong, Y. D. Optical Resonator Analog of a Two-Dimensional Topological Insulator. Phys. Rev. Lett. 110, 203904 (2013).
【非特許文献27】Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196-200 (2013). 6
【非特許文献28】He, C., Sun, X.-C., Liu, X.-P., Lu, M.-H., Chen, Y., Feng, L. & Chen, Y.-F. Photonic analogue of quantum spin Hall effect. arXiv: 1405.2869 (2014).
【非特許文献29】Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nature Phys. 7, 907-912 (2011).
【非特許文献30】Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nature Photon. 7, 1001-1005 (2013).
【非特許文献31】Ochiai, T. Photonic realization of the (2+1)-dimensional parity anomaly. Phys. Rev. B 86, 075152 (2012); ibid Broken Symmetry and Topology in Photonic Analog of Graphene. Int. J. Mod. Phys. B. 28, 1441004 (2013).
【非特許文献32】Lu, L., Joannopoulos, J. D. & Soljacic, Topological photonics. Nature Photon. 8, 821-829 (2014).
【非特許文献33】Fu, L. Topological Crystalline Insulators. Phys. Rev. Lett. 106, 106802 (2011).
【非特許文献34】Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light (Princeton UniversityPress, New Jersey, 2008).
【非特許文献35】Dresselhaus, M. S., Dresselhaus, G. & Jorio, A. Group theory: Application to the physics of condensed matter. (Springer-Verlag, Berlin, Heidelberg, 2008).
【非特許文献36】Sakoda, K. Double Dirac cones in triangular-lattice metamaterials. Opt. Express 20, 9925-9939 (2012).
【非特許文献37】Sakoda, K. Dirac cone in two- and three-dimensional metamaterials. Opt. Express 20, 3898-3917 (2012).
【非特許文献38】Girvin, S. M. The Quantum Hall Effect: Novel Excitations and Broken Symmetries. (Springer-Verlag, Berlin, Heidelberg, 1999).