特開2016-222245(P2016-222245A)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ジェイテクトの特許一覧
<>
  • 特開2016222245-電動パワーステアリング装置 図000003
  • 特開2016222245-電動パワーステアリング装置 図000004
  • 特開2016222245-電動パワーステアリング装置 図000005
  • 特開2016222245-電動パワーステアリング装置 図000006
  • 特開2016222245-電動パワーステアリング装置 図000007
  • 特開2016222245-電動パワーステアリング装置 図000008
  • 特開2016222245-電動パワーステアリング装置 図000009
  • 特開2016222245-電動パワーステアリング装置 図000010
  • 特開2016222245-電動パワーステアリング装置 図000011
  • 特開2016222245-電動パワーステアリング装置 図000012
  • 特開2016222245-電動パワーステアリング装置 図000013
  • 特開2016222245-電動パワーステアリング装置 図000014
  • 特開2016222245-電動パワーステアリング装置 図000015
  • 特開2016222245-電動パワーステアリング装置 図000016
  • 特開2016222245-電動パワーステアリング装置 図000017
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2016-222245(P2016-222245A)
(43)【公開日】2016年12月28日
(54)【発明の名称】電動パワーステアリング装置
(51)【国際特許分類】
   B62D 6/00 20060101AFI20161205BHJP
   B62D 5/04 20060101ALI20161205BHJP
   B62D 101/00 20060101ALN20161205BHJP
   B62D 119/00 20060101ALN20161205BHJP
【FI】
   B62D6/00
   B62D5/04
   B62D101:00
   B62D119:00
【審査請求】有
【請求項の数】3
【出願形態】OL
【全頁数】20
(21)【出願番号】特願2016-194244(P2016-194244)
(22)【出願日】2016年9月30日
(62)【分割の表示】特願2013-507698(P2013-507698)の分割
【原出願日】2012年3月28日
(31)【優先権主張番号】特願2011-72995(P2011-72995)
(32)【優先日】2011年3月29日
(33)【優先権主張国】JP
(31)【優先権主張番号】特願2011-72994(P2011-72994)
(32)【優先日】2011年3月29日
(33)【優先権主張国】JP
(71)【出願人】
【識別番号】000001247
【氏名又は名称】株式会社ジェイテクト
(74)【代理人】
【識別番号】100105957
【弁理士】
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【弁理士】
【氏名又は名称】恩田 博宣
(72)【発明者】
【氏名】玉泉 晴天
(72)【発明者】
【氏名】益 啓純
(72)【発明者】
【氏名】喜多 政之
(72)【発明者】
【氏名】並河 勲
【テーマコード(参考)】
3D232
3D333
【Fターム(参考)】
3D232CC08
3D232DA04
3D232DA10
3D232DA15
3D232DA23
3D232DA63
3D232DA64
3D232DC02
3D232DC03
3D232DC08
3D232DC09
3D232DC11
3D232DD01
3D232DD06
3D232DD07
3D232DD08
3D232DD17
3D232DD18
3D232DE09
3D232EB11
3D232EC23
3D333CB02
3D333CB13
3D333CE16
3D333CE30
3D333CE36
3D333CE49
(57)【要約】
【課題】回転角フィードバック制御を停止すべき状況にあると推定する電動パワーステアリング装置を提供する。
【解決手段】アシスト指令値演算部(23)は、アシスト勾配に基づいてトルク微分値に基づくトルク微分制御量を増減しつつ、操舵トルクに基づく基本アシスト制御量にトルク微分制御量を加算した値を基礎として第1のアシスト成分を演算する。また、アシスト指令値演算部(23)は、ピニオン角F/B制御部(40)を備えている。ピニオン角F/B制御部(40)は、操舵トルク及び第1のアシスト成分に基づき転舵輪の舵角に換算可能なピニオン角指令値を演算して回転角フィードバック制御を実行する。アシスト指令値演算部(23)は、ピニオン角F/B制御部(40)により演算される第2のアシスト成分を第1のアシスト成分に加算した値に基づいて、アシスト指令値を演算する。
【選択図】図10
【特許請求の範囲】
【請求項1】
操舵力補助装置と制御手段とを備えた電動パワーステアリング装置であって、
前記操舵力補助装置は、モータを駆動源として備えると共に操舵系にアシスト力を付与し、
前記制御手段は、ステアリングシャフトに伝達される操舵トルクに基づいて第1のアシスト成分を決定し、
前記制御手段は、前記操舵トルク及び第1のアシスト成分に基づき転舵輪の舵角に換算可能な回転軸の回転角指令値を演算し、
前記制御手段は、前記回転角指令値と前記回転軸の実回転角との間の回転角偏差に基づき前記回転角指令値に前記実回転角を追従させる回転角フィードバック制御を実行して第2のアシスト成分を演算し、
前記制御手段は、前記第1のアシスト成分に前記第2のアシスト成分を加算した値を基礎とするアシスト指令値に基づいて、前記操舵力補助装置の作動を制御し、
前記制御手段は、前記回転角偏差が所定値よりも大きい場合、前記回転角フィードバック制御を停止すべき状況にあると推定することを特徴とする電動パワーステアリング装置。
【請求項2】
請求項1に記載の電動パワーステアリング装置において、
前記制御手段は、前記回転角フィードバック制御を停止すべき状況にあると推定した場合、前記回転角フィードバック制御を無効とすることを特徴とする電動パワーステアリング装置。
【請求項3】
請求項2に記載の電動パワーステアリング装置において、
前記制御手段は、前記第2のアシスト成分を低減するロードインフォメーション補償成分を演算するロードインフォメーション補償手段を備え、
前記ロードインフォメーション補償成分の大きさに応じて、前記第2のアシスト成分の大きさが調整可能であり、
前記制御手段は、前記回転角フィードバック制御を停止すべき状況にあると推定した場合、前記ロードインフォメーション補償成分を、前記第2のアシスト成分を相殺する大きさとすることで、前記回転角フィードバック制御を無効とすることを特徴とする電動パワーステアリング装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電動パワーステアリング装置に関する。
【背景技術】
【0002】
従来、モータを駆動源として備えた電動パワーステアリング装置(EPS)が知られている。EPSでは、高い制御性を利用して、優れた操舵フィーリングを実現するための様々な技術が提案されている。
【0003】
例えば、特許文献1に記載のEPSは、操舵トルク変化に対するアシスト力変化の割合であるアシスト勾配に基づいて、各種補償制御の特性を最適化する。即ち、操舵トルクの微分値に基づく補償成分であるトルク微分制御量を演算する。そして、その補償成分を、目標アシスト力に対応するアシスト指令値の基礎成分に加算する。これにより、操舵トルク変化に対するアシスト力付与の応答性を高めることができる。よって、アシスト力付与の応答遅れが抑えられるため、ステアリングホイールの切り始めに生じる引っ掛かり感や、切り終わりに生じる流れ感等を回避できる。また、転舵輪からの逆入力振動を効果的に抑制することもできる。
【0004】
一方、アシスト勾配の大きな領域では、僅かな操舵トルク変化に対してアシスト力が大きく変化する。このような領域では、位相進み特性を有するトルク微分制御量が大きくなり過ぎる。これにより、ステアリングホイール操作時の手応え感が減少するため、操舵フィーリングが低下する虞がある。
【0005】
しかしながら、上記従来技術により、アシスト勾配の増大に応じてトルク微分制御量を低減することで、幅広い制御領域に亘り、トルク微分制御量を最適化することができる。これにより、優れた操舵特性を有し且つ逆入力振動の影響の少ない良好な操舵フィーリングを実現することができる。
【0006】
また、特許文献2に記載のEPSは、操舵角に基づき目標操舵トルクを定める第1の規範モデル、及び操舵トルクに基づき操舵系の目標舵角(目標転舵角)を定める第2の規範モデルを備えている。これら両規範モデル(理想モデル)に基づいて、モータの作動が制御される。即ち、目標操舵トルクに実操舵トルクを追従させるべくトルクフィードバック制御を実行して得られる第1のアシスト成分によって、操舵トルクを常に最適な値にすることができる。また、目標舵角に実舵角を追従させる舵角フィードバック制御を実行して得られる第2のアシスト成分によって、転舵輪からの逆入力振動を打ち消すこともできる。つまり、第1及び第2のアシスト成分の加算値に基づきモータの作動を制御すれば、優れた操舵特性を有し且つ逆入力振動の影響の少ない操舵フィーリングを実現することができる。
【0007】
近年、車両には、より高い水準の静粛性が求められている。しかしながら、特許文献1に開示の従来技術では、逆入力振動の抑制と優れた操舵特性の実現とを両立させることが困難である。具体的には、直進制動時等に生じる小さな逆入力振動、即ち比較的周波数の高い振動成分の低減が求められている。この要求を満たすためにトルク微分制御量を増大すれば、操舵特性が損なわれる。
【0008】
これに対し、特許文献2に開示の従来技術を採用すれば、理論上、全ての逆入力振動を抑制することができる。しかしながら、二つの規範モデルが干渉する可能性を考慮すれば、各規範モデルの双方に対して実際の操舵状態を一致させることはできない。よって、高い水準で逆入力振動の抑制と優れた操舵特性とを両立させることは困難である。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2006−131191号公報
【特許文献2】特許第4453012号明細書
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明の目的は、回転角フィードバック制御を停止すべき状況にあると推定する電動パワーステアリング装置を提供することにある。
【課題を解決するための手段】
【0011】
請求項1に記載の発明は、操舵力補助装置と制御手段とを備えた電動パワーステアリング装置であって、前記操舵力補助装置は、モータを駆動源として備えると共に操舵系にアシスト力を付与し、前記制御手段は、ステアリングシャフトに伝達される操舵トルクに基づいて第1のアシスト成分を決定し、前記制御手段は、前記操舵トルク及び第1のアシスト成分に基づき転舵輪の舵角に換算可能な回転軸の回転角指令値を演算し、前記制御手段は、前記回転角指令値と前記回転軸の実回転角との間の回転角偏差に基づき前記回転角指令値に前記実回転角を追従させる回転角フィードバック制御を実行して第2のアシスト成分を演算し、前記制御手段は、前記第1のアシスト成分に前記第2のアシスト成分を加算した値を基礎とするアシスト指令値に基づいて、前記操舵力補助装置の作動を制御し、前記制御手段は、前記回転角偏差が所定値よりも大きい場合、前記回転角フィードバック制御を停止すべき状況にあると推定する。
【0012】
請求項2に記載の発明は、請求項1に記載の電動パワーステアリング装置において、前記制御手段は、前記回転角フィードバック制御を停止すべき状況にあると推定した場合、前記回転角フィードバック制御を無効とする。
【0013】
請求項3に記載の発明は、請求項2に記載の電動パワーステアリング装置において、前記制御手段は、前記第2のアシスト成分を低減するロードインフォメーション補償成分を演算するロードインフォメーション補償手段を備え、前記ロードインフォメーション補償成分の大きさに応じて、前記第2のアシスト成分の大きさが調整可能であり、前記制御手段は、前記回転角フィードバック制御を停止すべき状況にあると推定した場合、前記ロードインフォメーション補償成分を、前記第2のアシスト成分を相殺する大きさとすることで、前記回転角フィードバック制御を無効とする。
【発明の効果】
【0014】
本発明によれば、回転角フィードバック制御を停止すべき状況にあると推定できる。
【図面の簡単な説明】
【0015】
図1】電動パワーステアリング装置(EPS)の概略構成図。
図2】本発明の第1実施形態に係るEPSの構成を示すブロック図。
図3】基本アシスト制御演算及びアシスト勾配の概要を示すグラフ。
図4】アシスト勾配に基づく位相補償制御の最適化を示すグラフ。
図5】トルク微分値とトルク微分基礎制御量との関係を示すグラフ。
図6】アシスト勾配とアシスト勾配ゲインとの関係を示すグラフ。
図7】ピニオン角F/B制御部の構成を示すブロック図。
図8】ピニオン角指令値演算部の構成を示すブロック図。
図9】バネ特性制御演算部の構成を示すブロック図。
図10】本発明の第2実施形態に係るEPSの構成を示すブロック図。
図11】ロードインフォメーションF/B制御部の構成を示すブロック図。
図12】2入力2出力モデルのブロック図。
図13】モデル負荷特性、実負荷特性、及び制御負荷特性を複素平面上に示すグラフ。
図14】ゲイン切替判定の処理手順を示すフローチャート。
図15】ゲイン切替制御の処理手順を示すフローチャート。
【発明を実施するための形態】
【0016】
(第1実施形態)
以下、本発明の電動パワーステアリング装置(EPS)を具体化した第1実施形態について図1図9を参照して説明する。なお、第1実施形態は参考例として記載するものである。
【0017】
図1に示すように、ステアリングホイール2は、ステアリングシャフト3に固定されている。ステアリングシャフト3は、ラックアンドピニオン機構4を介してラック軸5に連結されている。ステアリングホイール2の操作に伴い、ステアリングシャフト3が回転する。ステアリングシャフト3の回転は、ラックアンドピニオン機構4により、ラック軸5の往復直線運動に変換される。ステアリングシャフト3は、互いに連結されたコラムシャフト3a、インターミディエイトシャフト3b、及びピニオンシャフト3cからなる。ラック軸5の往復直線運動は、ラック軸5の両端に連結されたタイロッド6を介して、図示しないナックルに伝達される。これにより、転舵輪7の舵角、即ち車両の進行方向が変更される。
【0018】
EPS1は、操舵力補助装置としてのEPSアクチュエータ10と、EPSアクチュエータ10の作動を制御する制御手段としてのECU11とを備えている。EPSアクチュエータ10は、ステアリングホイール2の操作を補助するためのアシスト力を操舵系に付与する。
【0019】
EPSアクチュエータ10は、駆動源であるモータ12を備えたコラム型のEPSアクチュエータである。モータ12は、減速機構13を介してコラムシャフト3aに連結されている。モータ12は、三相(U,V,W)の駆動電力に基づき回転するブラシレスモータである。EPSアクチュエータ10は、モータ12の回転を減速してからコラムシャフト3aに伝達する。これにより、操舵系には、モータトルクがアシスト力として付与される。
【0020】
ECU11には、トルクセンサ14が接続されている。トルクセンサ14は、コラムシャフト3aに設けられたトーションバー15の捻れに基づいて、ステアリングシャフト3に伝達される操舵トルクThを演算する。ECU11には、車速センサ16が接続されている。ECU11は、各センサにより検出される操舵トルクTh(及び操舵トルク微分値dTh)及び車速Vに基づいて、モータ12に駆動電力を供給する。こうして、ECU11は、EPSアクチュエータ10の作動、即ち操舵系に付与するアシスト力を制御する。
【0021】
次に、EPS1によるアシスト制御について図2を参照して説明する。
図2に示すように、ECU11は、モータ制御信号を出力するマイコン21と、モータ制御信号に基づいてモータ12に駆動電力を供給する駆動回路22とを備えている。以下に示す制御ブロックは、マイコン21が実行するコンピュータプログラムにより実現される。マイコン21は、所定のサンプリング周期で各状態量を検出する。そして、マイコン21は、所定周期毎に以下の各制御ブロックに示される各演算処理を実行して、モータ制御信号を生成する。
【0022】
マイコン21は、アシスト指令値演算部23と、電流指令値演算部24とを備えている。アシスト指令値演算部23は、操舵トルクTh及び車速Vに基づいてモータ12に発生させるべきアシストトルク、即ち、目標アシスト力に対応したアシスト指令値Ta*を演算する。電流指令値演算部24は、アシスト指令値Ta*に対応した電流指令値I*を演算する。マイコン21は、電流指令値I*にモータ12の実電流値Iを追従させる。モータ制御信号生成部25は、電流偏差ΔIに基づく電流フィードバック制御を実行する。これにより、モータ制御信号生成部25は、モータ制御信号を生成し、駆動回路22に出力する。
【0023】
電流指令値演算部24は、電流指令値I*としてd/q座標系のq軸電流指令値を演算する(d軸電流指令値はゼロ)。モータ制御信号生成部25には、電流指令値I*と共に、電流センサ26により実電流値Iとして検出される三相の相電流値(Iu,Iv,Iw)、及びモータレゾルバ(回転角センサ)27により検出されるモータ回転角θmが入力される。電流指令値演算部24は、各相電流値を、モータ回転角θmに従う回転座標としてのd/q座標にそれぞれ写像する。電流指令値演算部24は、d/q座標系において電流フィードバック制御を実行し、モータ制御信号を生成する。
【0024】
アシスト指令値演算部23は、アシスト指令値Ta*の基礎成分として基本アシスト制御量Tas*を演算する基本アシスト制御部31を備えている。アシスト指令値演算部23は、操舵トルクThの位相を遅らせる位相補償制御部32を備えている。基本アシスト制御部31は、位相補償制御部32による位相補償後の操舵トルクTh´及び車速Vに基づいて、基本アシスト制御量Tas*を演算する。
【0025】
図3に示すように、基本アシスト制御部31は、操舵トルクTh´の絶対値が大きいほど、車速Vが小さいほど、より大きな絶対値となる基本アシスト制御量Tas*を演算する。特に操舵トルクTh´との関係では、操舵トルクTh´が大きいほど、操舵トルクTh´の変化に対する基本アシスト制御量Tas*の変化の割合が大きくなる。即ち、操舵トルクTh´が大きいほど、接線L1,L2の傾きで表されるアシスト勾配Ragが大きくなる。
【0026】
図2に示すように、基本アシスト制御部31は、操舵トルクTh´(及び車速V)に応じたアシスト勾配Ragを位相補償制御部32に出力する。位相補償制御部32は、アシスト勾配Ragに基づいて、位相補償制御の特性(フィルタ係数)を変更する。
【0027】
図4に示すように、位相補償制御部32は、アシスト勾配Ragの上昇に応じて、ゲインを低減させるように、位相補償の特性を変更する。第1実施形態では、モータ制御信号生成部25による電流フィードバック制御により、振動の発生が抑えられ、制御の安定性を確保しつつ、電流制御の応答性が高められて、良好な操舵フィーリングが実現されている。
【0028】
図2に示すように、アシスト指令値演算部23は、操舵トルクThの微分値(トルク微分値dTh)に基づき補償成分としてのトルク微分制御量Tdt*を演算するトルク微分制御部33を備えている。
【0029】
図5に示すように、トルク微分制御部33は、トルク微分値dThに応じてトルク微分基礎制御量εdtを演算する。このとき、トルク微分値dThの絶対値が大きいほど、トルク微分基礎制御量εdtの絶対値は大きくなる。また、トルク微分制御部33には、アシスト勾配Ragも入力される。図6に示すように、トルク微分制御部33は、アシスト勾配Ragに従ってアシスト勾配ゲインKagを演算する(Kag=1.0〜0)。このとき、アシスト勾配Ragの絶対値が大きいほど、アシスト勾配ゲインKagはより小さくなる。トルク微分制御部33は、トルク微分基礎制御量εdt及びアシスト勾配ゲインKagを乗算した値をトルク微分制御量Tdt*として出力する(Tdt*=εdt×Kag)。
【0030】
図2に示すように、基本アシスト制御量Tas*及びトルク微分制御量Tdt*は、加算器34にそれぞれ入力される。アシスト指令値演算部23は、基本アシスト制御量Tas*及びトルク微分制御量Tdt*を加算した値を基礎とした第1のアシスト成分Ta1*を演算する。
【0031】
マイコン21は、モータ回転角θmに基づいてピニオンシャフト3cの回転角(ピニオン角θp)を演算するピニオン角演算部39を備えている。ピニオン角θpは、転舵輪7の舵角に換算可能な回転軸の回転角として用いられる。アシスト指令値演算部23は、ピニオン角θpに基づく回転角フィードバック制御を実行して第2のアシスト成分Ta2*を演算するピニオン角F/B制御部40を備えている。
【0032】
図7に示すように、ピニオン角F/B制御部40は、トルク指令値演算部41、ピニオン角指令値演算部42、及びF/B演算部58を備えている。
トルク指令値演算部41は、第1のアシスト成分Ta1*(Ta1**)及び操舵トルクThを加算して、トルク指令値Tp*の基礎値Tp_b*を演算する。トルク指令値演算部41は、ピニオン角速度ωpに基づいて摩擦トルク成分Tfr*を演算する摩擦トルク演算部44を備えている。トルク指令値演算部41は、摩擦トルク成分Tfr*を基礎値Tp_b*から減算してトルク指令値Tp*を算出し、ピニオン角指令値演算部42に出力する。トルク指令値Tp*は、ピニオンシャフト3cに伝達される入力トルクに対応する。
【0033】
ピニオン角指令値演算部42は、トルク指令値Tp*の入力トルクにより回転するピニオンシャフト3cの理想モデル(入力トルク・回転角モデル)に基づいて、ピニオン角指令値θp*を演算する。ピニオン角指令値θp*は、転舵輪7の舵角に換算可能な回転軸の回転角指令値として演算される。また、「入力トルク・回転角モデル」は、ピニオンシャフト3cの回転角(ピニオン角指令値θp*)に基づくバネ項、ピニオンシャフト3cの回転角速度(ピニオン角速度ωp*)に基づく粘性項、並びに、慣性項により表される。慣性項は、バネ項及び粘性項の各制御出力であるバネ成分及び粘性成分を入力トルク(トルク指令値Tp*)から減じた値に基づくものである。図8に示すように、ピニオン角指令値演算部42は、慣性項に対応する慣性制御演算部45、粘性項に対応する粘性制御演算部46、及びバネ項に対応するバネ特性制御演算部47を備えている。
【0034】
ピニオン角指令値演算部42では、トルク指令値演算部41から出力されるトルク指令値Tp*が、粘性制御演算部46から出力される粘性成分Tvi*、及びバネ特性制御演算部47から出力されるバネ成分Tsp*と共に、減算器48に入力される。減算器48は、トルク指令値Tp*から粘性成分Tvi*及びバネ成分Tsp*を減算して値(Tp**)を生成し、慣性制御演算部45に出力する。慣性制御演算部45は、値(Tp**)に基づいて、ピニオンシャフト3cの角加速度指令値、即ちピニオン角加速度指令値αp*を演算する。
【0035】
ピニオン角指令値演算部42は、ピニオン角加速度指令値αp*を積分することによりピニオン角速度指令値ωp*を演算する積分器49を備えている。粘性制御演算部46は、ピニオン角速度指令値ωp*に基づいて、粘性成分Tvi*を演算する。更に、ピニオン角指令値演算部42では、積分器50が、ピニオン角速度指令値ωp*を積分することによりピニオン角指令値θp*を演算する。バネ特性制御演算部47は、ピニオン角指令値θp*に基づいてバネ成分Tsp*を演算する。
【0036】
ここで、入力トルクに対するピニオンシャフト3cの回転角(ピニオン角θp)の理想モデルである「入力トルク・回転角モデル」について説明する。「入力トルク・回転角モデル」は、ステアリングシャフト3やモータ12等、EPS1を構成する各要素の特性に依存するEPS側理想モデルと、EPS1が搭載される車両側の特性に依存する車両側理想モデルとに分けられる。通常、操舵特性に影響を与える車両側の特性は、例えば、サスペンションやホイールアライメントの仕様、及び転舵輪7のグリップ力等により決定される。EPS側理想モデルは、慣性項及び粘性項により構成され、車両側理想モデルは、バネ項により構成される。
【0037】
即ち、ピニオン角指令値演算部42では、EPS側理想モデルが、慣性制御演算部45及び粘性制御演算部46により具体化され、車両側理想モデルが、バネ特性制御演算部47により具体化されている。ピニオン角指令値演算部42は、「入力トルク・回転角モデル」のバネ特性を変更して車両側の特性を任意に設定可能なバネ特性変更機能を備えている。
【0038】
図9に示すように、バネ特性制御演算部47には、ピニオン角指令値θp*とともに、ピニオン角速度指令値ωp*及びピニオン角加速度指令値αp*がそれぞれ入力される。バネ特性制御演算部47は、各次元(角度、速度及び角速度)の指令値に基づいてバネ成分Tsp*を演算する車両特性フィルタ51を備えている。
【0039】
車両特性フィルタ51は、各次元の指令値にそれぞれ対応する周波数特性フィルタ53a〜53cを備えている。車両特性フィルタ51は、更に、フィルタ処理後のピニオン角指令値θp**、ピニオン角速度指令値ωp**及びピニオン角加速度指令値αp**に対しそれぞれ対応するゲインを乗ずるゲイン乗算部54a〜54cを備えている。車両特性フィルタ51は、各ゲイン乗算部54a〜54cから出力される各次元の制御量(バネ制御量εsp、粘性制御量εvi、及び慣性制御量εin)を加算してバネ成分Tsp*を生成し、減算器48に出力する。
【0040】
バネ特性制御演算部47は、車両特性設定部55を備えている。車両特性設定部55は、車速Vに応じて変化するフィルタ係数A,B、バネゲインKsp、粘性ゲインKvi、及び慣性ゲインKinをそれぞれ演算する。車両特性設定部55は、車速Vと各フィルタ係数A,Bとの関係がそれぞれ記録された係数マップ56a,56bを備えている。車両特性設定部55は、更に、車速VとバネゲインKspとの関係が記録されたゲインマップ57a、車速Vと粘性ゲインKviとの関係が記録されたゲインマップ57b、車速Vと慣性ゲインKinとの関係が記録されたゲインマップ57cを備えている。車両特性設定部55は、各マップを参照することにより、車速Vに応じた各フィルタ係数A,B、バネゲインKsp、粘性ゲインKvi、及び慣性ゲインKinをそれぞれ演算する。
【0041】
車両特性フィルタ51では、各周波数特性フィルタ53a〜53cが、車両特性設定部55により演算される各フィルタ係数A,Bに基づいて、フィルタ処理をそれぞれ実行する。各ゲイン乗算部54a〜54cもまた、車両特性設定部55により演算されるバネゲインKsp、粘性ゲインKvi、及び慣性ゲインKinの乗算をそれぞれ実行する。
【0042】
即ち、車両特性設定部55により、理想モデルとしての「入力トルク・回転角モデル」のバネ特性を変更可能な設定手段が構成されている。バネ特性制御演算部47は、各係数マップ56a,56b及び各ゲインマップ57a〜57cの設計、即ち各フィルタ係数(A,B)及び各ゲイン(Ksp,Kvi,Kv)と車速Vとの関係を変更することにより、「入力トルク・回転角モデル」のバネ特性を変更する。こうして、操舵特性に影響する車両側の特性を任意に設定することができる。
【0043】
図7に示すように、ピニオン角指令値演算部42により演算されたピニオン角指令値θp*は、ピニオン角演算部39により検出された実回転角としてのピニオン角θpと共に、F/B演算部58に入力される。F/B演算部58は、ピニオン角指令値θp*とピニオン角θpとの間の偏差に基づく回転角フィードバック制御として、比例・積分・微分制御(PID制御)を実行する。こうして、F/B演算部58は、第2のアシスト成分Ta2*を生成する。
【0044】
図2に示すように、ピニオン角F/B制御部40には、ピニオン角演算部39によるピニオン角θpの検出が正常か否かを示す状態信号Strが入力される。正常なピニオン角θpを検出できなくなる場合として、例えば、相対角として検出されるモータ回転角θmを絶対角であるピニオン角θpに換算する際、その中点(ゼロ点)が不明となった場合等が挙げられる。状態信号Strが正常なピニオン角θpを検出できない旨を示す場合、ピニオン角F/B制御部40は、第2のアシスト成分Ta2*の演算を停止する。
【0045】
第2のアシスト成分Ta2*は、第1のアシスト成分Ta1*と共に加算器59に入力される。また、アシスト指令値演算部23は、ピニオン角速度ωpに基づいて位相進み特性を有するフィードフォワード成分Tff*を演算するF/F補償制御部60を備えている。加算器59には、F/F補償制御部60から出力されるフィードフォワード成分Tff*も入力される。アシスト指令値演算部23は、第1及び第2のアシスト成分Ta1*,Ta2*、並びにフィードフォワード成分Tff*を加算した値に基づいてアシスト指令値Ta*を生成し、電流指令値演算部24に出力する。
【0046】
即ち、第1実施形態によれば、入力トルクに対するピニオン角θpの理想モデル(入力トルク・回転角モデル)に基づきピニオン角指令値θp*が演算され、ピニオン角指令値θp*に基づく回転角フィードバック制御の実行により第2のアシスト成分Ta2*が演算される。これにより、例えば、直進制動時等に生ずる比較的周波数の高い成分を含む転舵輪7からの逆入力振動を効果的に打ち消すことができる。よって、逆入力振動の低減機能を考慮することなく、操舵特性に重点を置いて、第1のアシスト成分Ta1*を演算する際のトルク微分制御(トルク微分制御部33)を含むアシスト勾配Ragに基づく各種補償制御特性の最適化制御を設計することができる。アシスト指令値Ta*の演算に用いる理想モデルは、「入力トルク・回転角モデル」一つのみである。このため、第1のアシスト成分Ta1*と第2のアシスト成分Ta2*とが干渉することはない。
【0047】
更に、ピニオン角θpの微分値であるピニオン角速度ωpに基づいて、位相進み特性を有するフィードフォワード成分Tff*を演算する。これにより、回転角フィードバック制御の応答性が向上する。特に、正常なピニオン角θpを検出できない場合、ピニオン角F/B制御部40は、第2のアシスト成分Ta2*の演算を停止する。このため、演算停止時には、アシスト指令値Ta*の減少によりトルク変動が生ずる可能がある。しかしながら、第1実施形態によれば、フィードフォワード成分Tff*を並行して演算することで、アシスト指令値Ta*の落ち込みを緩和することができる。
【0048】
また、図2及び図7に示すように、ピニオン角F/B制御部40には、モータ制御信号生成部25にて電流フィードバック制御を実行する際に演算される電流偏差ΔI(ΔI=I*−I)が入力される。また、ピニオン角F/B制御部40は、電流偏差ΔIに基づいて第1のアシスト成分Ta1*を補正する電流偏差補正演算部61を備えている。トルク指令値演算部41は、補正後の第1のアシスト成分Ta1**に基づいてトルク指令値Tp*の演算を実行する。
【0049】
以上、第1実施形態によれば、以下のような効果を得ることができる。
(1)アシスト指令値演算部23は、アシスト勾配Ragに基づいて、トルク微分値dThに基づくトルク微分制御量Tdt*を増減しつつ、トルク微分制御量Tdt*を操舵トルクThに基づく基本アシスト制御量Tas*に加算した値を基礎として第1のアシスト成分Ta1*を演算する。
【0050】
また、アシスト指令値演算部23は、ピニオン角F/B制御部40を備えている。ピニオン角F/B制御部40は、操舵トルクTh及び第1のアシスト成分Ta1*に基づき、転舵輪7の舵角に換算可能なピニオン角指令値θp*を演算する。そして、ピニオン角F/B制御部40は、ピニオン角指令値θp*に基づいて回転角フィードバック制御を実行する。更に、アシスト指令値演算部23は、ピニオン角F/B制御部40により演算された第2のアシスト成分Ta2*を第1のアシスト成分Ta1*に加算した値に基づいてアシスト指令値Ta*を演算する。
【0051】
即ち、ピニオン角F/B制御部40は、ピニオンシャフト3cに伝達される入力トルクに対するピニオン角θpの理想モデル(入力トルク・回転角モデル)に基づいて、ピニオン角指令値θp*を演算することができる。そして、ピニオン角指令値θp*に基づく回転角フィードバック制御を実行して第2のアシスト成分Ta2*を演算する。これにより、直進制動時等に生ずる比較的周波数の高い成分も含む転舵輪7からの逆入力振動を効果的に打ち消すことができる。これにより、逆入力振動の低減機能を考慮することなく、操舵特性に重点を置いて、トルク微分制御、及びトルク微分制御を含むアシスト勾配Ragに基づく各種補償制御特性の最適化制御を設計することができる。また、アシスト指令値Ta*の演算に用いる理想モデルは、「入力トルク・回転角モデル」一つのみである。このため、第1のアシスト成分Ta1*と第2のアシスト成分Ta2*とが干渉することはない。従って、より高い水準で逆入力振動を抑制しつつ、優れた操舵特性を実現することができる。
【0052】
(2)ピニオン角F/B制御部40は、トルク指令値演算部41を備えている。トルク指令値演算部41は、操舵トルクTh及び第1のアシスト成分Ta1*に基づいて、ピニオンシャフト3cに伝達される入力トルクに対応したトルク指令値Tp*を演算する。また、ピニオン角F/B制御部40は、「入力トルク・回転角モデル」に基づいてピニオン角指令値θp*を演算するピニオン角指令値演算部42を備えている。ピニオン角指令値演算部42は、理想モデルのバネ特性を変更可能なバネ特性変更機能を備えている。
【0053】
即ち、理想モデルとしての「入力トルク・回転角モデル」は、ピニオンシャフト3cの回転角(ピニオン角指令値θp*)に基づくバネ項、ピニオンシャフト3cの回転角速度(ピニオン角速度ωp*)に基づく粘性項、並びに、バネ成分及び粘性成分を入力トルク(トルク指令値Tp*)から減じた値に基づく慣性項により表される。また、「入力トルク・回転角モデル」は、更に、EPS側理想モデルと、車両側理想モデルとに分けられる。EPS側理想モデルは、慣性項及び粘性項により構成され、車両側理想モデルは、バネ項により構成される。
【0054】
この構成によれば、「入力トルク・回転角モデル」のバネ特性が変更可能であるため、操舵特性に影響する車両側の特性を任意に設定することができる。即ち、実際の特性に依らず、制御により任意の特性を形成できるため、設計自由度が向上する。従って、搭載車両に関わらず、操舵特性を共通の設定にすることができ、汎用性が高められる。
【0055】
(3)アシスト指令値演算部23は、ピニオン角速度ωpに基づいてフィードフォワード成分Tff*を演算する。アシスト指令値演算部23は、第1及び第2のアシスト成分Ta1*,Ta2*、並びにフィードフォワード成分Tff*を加算した値に基づいて、アシスト指令値Ta*を演算する。このように、ピニオン角θpの微分値であるピニオン角速度ωpに基づいて位相進み特性を有するフィードフォワード成分Tff*を演算することにより、回転角フィードバック制御の応答性が向上する。また、正常なピニオン角θpを検出できない場合、第2のアシスト成分Ta2*の演算を停止せざるを得ない。この場合、演算停止によりアシスト指令値Ta*が減少するため、トルク変動が生ずる虞がある。しかしながら、この構成によれば、フィードフォワード成分Tff*がアシスト指令値Ta*の落ち込みを緩和して、操舵フィーリングに与える影響を抑えることができる。
【0056】
(4)マイコン21は、アシスト指令値Ta*に対応する電流指令値I*に基づいて電流フィードバック制御を実行し、モータ制御信号を生成する。ピニオン角F/B制御部40は、電流指令値I*と実電流値Iとの間の電流偏差ΔIに基づいて、ピニオン角指令値θp*(トルク指令値Tp*)の演算に用いる第1のアシスト成分Ta1*の値を補正する。即ち、車載電源(バッテリー等)を用いるEPS1では、駆動回路22が出力可能な電圧には限りがある。このため、高速操舵時等にアシストトルクが不足する虞がある。これにより、回転角フィードバック制御における偏差が拡大し、アシスト不足が助長される虞がある。この点、この構成によれば、電流偏差ΔIが適正範囲を超えて拡大した場合、電流偏差ΔIに応じてピニオン角指令値θp*の演算に用いる第1のアシスト成分Ta1*の値を低減する。これにより、回転角フィードバック制御における偏差の拡大を抑えることができる。
【0057】
(5)マイコン21は、操舵トルクThの位相補償を実行する位相補償制御部32と、位相補償後の操舵トルクTh´に基づいて基本アシスト制御量Tas*を演算する基本アシスト制御部31とを備えている。基本アシスト制御部31は、操舵トルクTh´(及び車速V)に応じたアシスト勾配Ragを位相補償制御部32に出力する。位相補償制御部32は、アシスト勾配Ragに基づいて、位相補償制御の特性を変更する。即ち、この構成によれば、アシスト勾配Ragの上昇に応じて位相補償制御の特性を変更すると共に、モータ制御信号生成部25により実行される電流フィードバック制御を設計する。これにより、振動の発生が抑えられ、制御が安定化し、電流制御の応答性が高められ、良好な操舵フィーリングが得られる。
【0058】
(第2実施形態)
以下、本発明の第2実施形態を図10図15を参照して説明する。なお、第2実施形態における第1実施形態と同様の部分についてはその詳細な説明を省略する。
【0059】
図10に示すように、アシスト指令値演算部123は、ロードインフォメーションF/B制御部160を備えている。ロードインフォメーションF/B制御部160は、第2のアシスト成分Ta2*に基づいて、第2のアシスト成分Ta2*を低減するロードインフォメーション制御量Trif*を演算する。また、アシスト指令値演算部123は、加算器34よりも下流側に減算器161を備えている。減算器161は、ロードインフォメーション制御量Trif*を第1のアシスト成分Ta1*に重畳(減算)する。
【0060】
図11に示すように、ロードインフォメーションF/B制御部160は、ロードIFゲインKrifを演算するロードIFゲイン演算部162と、乗算器163とを備えている。乗算器163は、第2のアシスト成分Ta2*に対してロードIFゲインKrifを乗ずることにより、ロードインフォメーション制御量Trif*を演算する。
【0061】
ここで、入力トルクに対するピニオン角θpの理想モデル(入力トルク・回転角モデル)に基づく回転角フィードバック制御を実行し、ピニオン角指令値θp*に実回転角であるピニオン角θpを追従させると、転舵輪7からの逆入力振動を効果的に打ち消すことができる。しかしながら、運転者は、操舵系を介してステアリングホイール2に伝達される逆入力トルクから、路面状態や転舵輪7のグリップ力等、走行中の車両に関する多くの情報を取得する。このため、ロードインフォメーションの全てを打ち消してしまうと、操舵フィーリングの低下を招く虞がある。
【0062】
この点を踏まえ、アシスト指令値演算部123は、第2のアシスト成分Ta2*を低減するロードインフォメーション制御量Trif*を第1のアシスト成分Ta1**に重畳する。アシスト指令値演算部123は、第1のアシスト成分Ta1**に基づいてアシスト指令値Ta*を演算する。具体的には、図10に示すように、重畳後の第1のアシスト成分Ta1**に基づいて、ピニオン角F/B制御部40が「理想モデルに基づく回転角フィードバック制御」を実行する。次に、重畳後の第1のアシスト成分Ta1**に、ピニオン角F/B制御部40により演算された第2のアシスト成分Ta2*が加算される。続いて、ロードIFゲインKrifに示される倍率(Krif=1〜0)で、ピニオン角F/B制御部40により実行される「理想モデルに基づく回転角フィードバック制御」が無効化される。これにより、転舵輪7からの逆入力トルクが、ロードインフォメーションとしてステアリングホイール2に伝達される(ロードインフォメーション補償制御)。
【0063】
一般的なEPSの場合、ステアリングシャフト3には、トーションバー15が設けられている。この場合の操舵感性能は、「操舵トルク(Th)」「転舵輪からの逆入力(F)」を入力とし、「ステアリングホイールの舵角(θh)」「転舵輪の舵角に換算可能の回転角(θp)」を出力としたモデル(2入力2出力モデル)により評価することができる。「操舵感性能」は、各状態量の相関関係により表現される4項目、即ち、「操舵応答性(θh&Th)」「車両一体感(Th&θp)」「耐外乱性能(F&θh)」「ロードインフォメーション(F&Th)」により構成されている。ロードインフォメーション補償制御を実行する場合、「2入力2出力モデル」は、図12に示すブロック線図により表される。
【0064】
図12中、「Gh」は、トーションバー15及びステアリングホイール2間の伝達関数(TB上側伝達関数)であり、「Gp」は、トーションバー15及び転舵輪7間の伝達関数(TB下側伝達関数)である。「ks」は、トーションバー15のバネ定数、「Ts」は、トーションバー15下側の伝達トルク、「Ta」は、アシストトルクである。
【0065】
更に、理想モデル(入力トルク・回転角モデル)におけるTB下側伝達関数を「Gpm」とし、実際の車両におけるTB下側伝達関数を「Gpr」とする。また、理想モデルの負荷特性(モデル負荷特性)に対する車両の負荷特性(実負荷特性)の位相差を「θ0」とし、理想モデルの負荷特性(モデル負荷特性)に対するロードインフォメーション補償制御実行時の負荷特性(制御負荷特性)の位相差を「θ1」とする。図13に示すように、各負荷特性を複素平面上に表すことで、「制御負荷特性」は、「モデル負荷特性(Krif=0)」と「実負荷特性(Krif=1)」との間の特性となる。
【0066】
ロードインフォメーションF/B制御部160は、ロードIFゲインKrifの設定により、「制御負荷特性」を、「モデル負荷特性(Krif=0)」と「実負荷特性(Krif=1)」との間で自在に制御することができる。EPS1は、理想モデルとの間の負荷特性の差による逆入力トルクを、ロードインフォメーションとしてステアリングホイール2に伝達させることができる。これにより、転舵輪7から入力されるノイズとしての振動が抑制されることに加え、必要なロードインフォメーションを取得することができる。
【0067】
図11に示すように、ロードIFゲイン演算部162は、車速Vに基づいてロードIFゲインKrifを演算する。ロードIFゲイン演算部162は、車速Vが速いほど、ロードIFゲインKrifがより小さくなるように演算する。停車状態に対応する車速V1以下の領域では、ロードIFゲインKrifが一定の値となる(Krif=1)。直進制動時等に生ずる逆入力振動は、車速Vと共に増大する。従って、車速Vに応じてロードIFゲインKrifを変更すれば、ノイズとなる逆入力振動を効果的に抑制したうえで、より多くのロードインフォメーションをステアリングホイール2に伝達することができる。
【0068】
また、ロードインフォメーションF/B制御部160は、ロードIFゲインKrifとして「1」を演算する異常時ゲイン演算部164と、切替制御部165とを備えている。切替制御部165は、異常時ゲイン演算部164又はロードIFゲイン演算部162の各演算値の何れか一方のみをロードIFゲインKrifとして乗算器63に出力する。
【0069】
ロードIFゲインKrifを「1」とすることにより、ロードインフォメーションF/B制御部160から出力されるロードインフォメーション制御量Trif*は、第2のアシスト成分Ta2*を相殺する値になる(Trif*=Ta2*)。つまり、ピニオン角F/B制御部40により実行される「理想モデルに基づく回転角フィードバック制御」が全て無効化される。そして、図13に示すように、ロードインフォメーションF/B制御部160は、特定条件成立時の「制御負荷特性」を「実負荷特性」に等しくする。
【0070】
ロードインフォメーションF/B制御部160は、ゲイン切替判定部166を備えている。切替制御部165の作動は、ゲイン切替判定部166により制御される。図11に示すように、ゲイン切替判定部166には、ピニオン角演算部39によるピニオン角θpの検出が正常か否かを示す状態信号Strが入力される。正常なピニオン角θpを検出できなくなる場合として、相対角として検出されるモータ回転角θmを絶対角であるピニオン角θpに換算する際、その中点(ゼロ点)が不明となった場合等が挙げられる。状態信号Strが「正常なピニオン角θpを検出できない状態にあること」を示す場合、ゲイン切替判定部166は、乗算器163に出力されるロードIFゲインKrifの値を、異常時ゲイン演算部164の演算値である「1」に切り替える。
【0071】
また、ゲイン切替判定部166には、ピニオン角指令値θp*とピニオン角θpとの間の回転角偏差Δθp、及びピニオン角速度指令値ωp*とピニオン角速度ωpとの間の回転角速度偏差Δωpがそれぞれ入力される。回転角偏差Δθp及び回転角速度偏差Δωpに基づいて理想モデルから乖離した状態にあると推定される場合にも、ゲイン切替判定部166は、乗算器163に出力されるロードIFゲインKrifの値を、異常時ゲイン演算部164の演算値である「1」に切り替える。
【0072】
図14に示すように、ゲイン切替判定部166は、先ず、状態信号Strに基づきピニオン角θpの検出が正常か否かを判定する(ステップ101)。次に、ステップ101において、ピニオン角θpの検出が正常であると判定した場合(ステップ101:YES)、ゲイン切替判定部166は、回転角偏差Δθp(の絶対値)が所定値A以下であるか否かを判定する(ステップ102)。ステップ102において、回転角偏差Δθpが所定値A以下であると判定した場合(|Δθp|≦A、ステップ102:YES)、ゲイン切替判定部166は、回転角速度偏差Δωp(の絶対値)が所定値B以下であるか否かを判定する(ステップ103)。回転角速度偏差Δωpが所定値B以下であると判定した場合(|Δωp|≦B、ステップ103:YES)、ゲイン切替判定部166は、車速Vに応じて変化するロードIFゲイン演算部162の演算値をロードIFゲインKrifとして出力すべき旨を判定する(通常出力、ステップ104)。
【0073】
一方、正常なピニオン角θpを検出できないと判定した場合(ステップ101:NO)、ゲイン切替判定部166は、異常時ゲイン演算部164の演算値である「1」をロードIFゲインKrifとして出力すべき旨を判定する(異常時出力、ステップ105)。回転角偏差Δθpが所定値Aよりも大きいと判定した場合(|Δθp|>A、ステップ102:NO)、又は回転角速度偏差Δωpが所定値Bより大きいと判定した場合(|Δωp|>B、ステップ103:NO)も、ゲイン切替判定部166は、ステップ105を実行して、ロードIFゲインKrifとして「1」を出力すべき旨を判定する。
【0074】
即ち、正常なピニオン角θpを検出できなければ、回転角フィードバック制御を正しく実行することはできない。また、回転角フィードバック制御の実行時、回転角偏差Δθp(及び回転角速度偏差Δωp)が著しく拡大した状態にある場合は、理想モデルに基づき演算されるピニオン角指令値θp*に実回転角であるピニオン角θpを追従させることができない状態、即ち、理想モデルから乖離した状態にあると推定される。尚、回転角偏差Δθpや回転角速度偏差Δωpが著しく拡大する状況として、例えば、縁石衝突時やステアリングエンドを超えた切り込み操舵時、或いは電源電圧に基づく電流制御の限界を超えた場合等が挙げられる。このような状況下で回転角フィードバック制御を継続すると、アシスト不足が助長され、制御の不安定化を招く虞がある。
【0075】
「理想モデルに基づく回転角フィードバック制御を停止すべき状況」に対応する特定条件が成立した場合、ロードインフォメーションF/B制御部160は、ロードIFゲインKrifの値を「1」に設定して、第2のアシスト成分Ta2*を相殺するようなロードインフォメーション制御量Trif*を演算する。こうして演算されたロードインフォメーション制御量Trif*により、理想モデルに基づく回転角フィードバック制御を全て無効化することによって、速やかなフェールセーフが行われる。
【0076】
以上、第2実施形態によれば、以下のような効果を得ることができる。
(6)アシスト指令値演算部123は、ロードインフォメーションF/B制御部160を備えている。ロードインフォメーションF/B制御部160は、理想モデルに基づく回転角フィードバック制御を実行して得られる第2のアシスト成分Ta2*にロードIFゲインKrifを乗ずる。これにより、第2のアシスト成分Ta2*を低減するロードインフォメーション制御量Trif*が演算される。この構成によれば、ロードIFゲインKrifの設定により、制御上の負荷特性(制御負荷特性)を、理想モデルの負荷特性(モデル負荷特性:Krif=0)と実際の車両の負荷特性(実負荷特性:Krif=1)との間で自在に制御することができる。そして、理想モデルとの間の負荷特性の差により表面化する逆入力トルクを、ロードインフォメーションとしてステアリングホイール2に伝達させることができる。これにより、転舵輪7から入力されるノイズとしての振動を抑制しつつ、必要なロードインフォメーションを取得することができる。
【0077】
(7)ロードインフォメーション補償手段としてのロードインフォメーションF/B制御部160は、車速Vに基づいてロードIFゲインKrifを演算するロードIFゲイン演算部162を備えている。ロードIFゲイン演算部162は、車速Vが速いほどロードIFゲインKrifの値がより小さくなるように演算する。即ち、直進制動時等に生ずる逆入力振動は、車速Vと共に増大する。従って、この構成によれば、車速Vに応じてロードIFゲインKrifを変更し、「理想モデルに基づく回転角フィードバック制御」の実行による振動抑制作用を有効に機能させる。その結果、ノイズとなる逆入力振動を効果的に抑制しつつ、より多くのロードインフォメーションがステアリングホイール2に伝達される。
【0078】
(8)状態信号Strが「正常なピニオン角θpの検出ができない状態にあること」を示す場合、ロードインフォメーションF/B制御部160は、ロードIFゲインKrifの値を「1」に設定して、第2のアシスト成分Ta2*を相殺するようなロードインフォメーション制御量Trif*を演算する。
【0079】
(9)回転角偏差Δθp及び回転角速度偏差Δωpの少なくとも何れかに基づいて理想モデルから乖離した状態にあると推定される場合、ロードインフォメーションF/B制御部160は、ロードIFゲインKrifの値を「1」として第2のアシスト成分Ta2*を相殺するようなロードインフォメーション制御量Trif*を演算する。
【0080】
一般に、正常なピニオン角θpを検出できなければ、正しく回転角フィードバック制御を実行することができない。また、回転角フィードバック制御の実行時、回転角偏差Δθp(及び回転角速度偏差Δωp)が著しく拡大した状態にある場合は、理想モデルに基づき演算されるピニオン角指令値θp*に実回転角であるピニオン角θpを追従させることができない状態、即ち、理想モデルから乖離した状態にあると推定される。このような状況下で回転角フィードバック制御を継続すると、アシスト不足が助長されるため、制御が不安定になる虞がある。この点、(8)(9)の構成により、理想モデルに基づく回転角フィードバック制御を全て無効化することで、「理想モデルに基づく回転角フィードバック制御を停止すべき状況」にある場合に、速やかにフェールセーフを図ることができる。その結果、より高い信頼性を確保することができる。
【0081】
尚、第1及び第2実施形態は、以下のように変更してもよい。
・本発明を、ピニオン型やラックアシスト型等のEPSに適用してもよい。
・転舵輪7の舵角に換算可能な回転軸は、コラムシャフト3a、インターミディエイトシャフト3bであってよく、モータ回転軸であってもよい。
【0082】
・トルク微分制御及び操舵トルクThの位相補償制御について、他の補償制御の実行と共に、アシスト勾配Ragに基づき、制御特性を最適化してもよい。また、他の補償制御についてもアシスト勾配Ragに基づき、制御特性を最適化してもよい。
【0083】
・トルク微分制御部33では、アシスト勾配ゲインKagに応じて増減する値をトルク微分制御量Tdt*(Tdt*=εdt×Kag)として演算したが、トルク微分制御部33の外部でアシスト勾配ゲインKagに基づきトルク微分制御量Tdt*を補正してもよい。
【0084】
・ピニオン角演算部39は、モータレゾルバ(回転角センサ)27により検出されるモータ回転角θmに基づいてピニオン角θpを検出していたが、回転角センサにより実測してもよい。
【0085】
・トルク指令値演算部41は、ピニオン角速度ωpに基づいて摩擦トルク成分Tfr*を演算する摩擦トルク演算部44を備え、第1のアシスト成分Ta1*及び操舵トルクThの加算値から摩擦トルク成分Tfr*を減算しトルク指令値Tp*を生成していたが、第1のアシスト成分Ta1*及び操舵トルクThの加算値を基礎とするものに摩擦トルク成分Tfr*以外の成分を加えてもよい。また、摩擦トルク成分Tfr*の演算を省略してもよい。
【0086】
・電流偏差補正演算部61は、電流偏差ΔIに基づいて、ピニオン角指令値θp*(トルク指令値Tp*)の演算に用いる第1のアシスト成分Ta1*を補正していたが、ピニオン角指令値演算部42により演算されたピニオン角指令値θp*を補正してもよい。また、ピニオン角F/B制御部40により演算された第2のアシスト成分Ta2*を低減するように補正してもよい。この場合も、回転角フィードバック制御における偏差の拡大を抑えることができる。但し、第1のアシスト成分Ta1*を補正する構成は、入力トルクに対する回転角の理想モデルのかたちを崩すことなくアシスト指令値Ta*を低減できるとの利点を有している。
【0087】
・また、電流偏差ΔIが適正範囲を超えて拡大した場合に限らず、電流偏差ΔIに応じて、電流偏差ΔIに基づく補正を低減してもよい。また、電流偏差ΔIが適正範囲を超えた場合、回転角フィードバック制御に用いる第1のアシスト成分Ta1*を所定値以下に制限してもよい。
【0088】
・車速Vに応じて、ロードインフォメーション補償成分としてのロードIFゲインKrifを変更したが、制動時には、ロードインフォメーション制御量Trif*が小さくなるようにロードIFゲインKrifを変更してもよい。具体的には、図15のフローチャートに示すように、制動中であるか否かを判定し(ステップ201)、制動中でない場合(ステップ201:NO)、車速Vに応じたロードIFゲインKrifを演算する(ステップ202)。ステップ201において、制動中であると判定した場合(ステップ201:YES)、より小さなロードIFゲインKrifを演算する(ステップ203)。即ち、制動時には、ノイズとして認識され易い比較的周波数の高い振動が発生する。この場合、ロードインフォメーション制御量Trif*を小さくして、「理想モデルに基づく回転角フィードバック制御」の実行による振動抑制作用を有効に機能させる。その結果、ノイズとなる逆入力振動を効果的に抑制しつつ、より多くのロードインフォメーションをステアリングホイール2に伝達することができる。
【0089】
・回転角偏差Δθp又は回転角速度偏差Δωpの少なくとも何れかが著しく拡大し、理想モデルから乖離した状態にあると推定される場合、ロードIFゲインKrifの値を「1」として、第2のアシスト成分Ta2*を相殺するようなロードインフォメーション制御量Trif*を演算したが、以下のように変更してもよい。即ち、回転角偏差Δθp又は回転角速度偏差Δωpの少なくとも何れかに基づいて理想モデルからの乖離度(乖離の程度)を推定し、乖離度に基づいてロードIFゲインKrifを変更してもよい。通常は、回転角偏差Δθp及び回転角速度偏差Δωpが拡大するほど、理想モデルからの乖離度が高いと推定される。この場合、乖離度が高いほど、ロードインフォメーション制御量Trif*が大きくなるようにロードIFゲインKrifを変更して、「理想モデルに基づく回転角フィードバック制御」を無効化すれば、制御が安定化する。
【0090】
・ロードインフォメーションF/B制御部160では、ロードIFゲインKrifの値を自動的に変更したが、運転者が設定手段を操作することでロードIFゲインKrifの値を変更可能としてもよい。例えば、路面凍結時等、低μ路を走行する場合、より多くのロードインフォメーションを取得できることが望ましい。この場合、設定手段を設定して取得可能なロードインフォメーションの量を設定できれば、操舵フィーリングを向上させることができる。
【0091】
・基本アシスト制御量Tas*及びトルク微分制御量Tdt*を加算する加算器34よりも下流側に設けられた減算器161において、ロードインフォメーション制御量Trif*を第1のアシスト成分Ta1*に重畳(減算)したが、ピニオン角F/B制御部40の上流及び加算器59の上流のそれぞれにおいて、第1のアシスト成分Ta1*にロードインフォメーション制御量Trif*を重畳してもよい。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15