特開2016-223015(P2016-223015A)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱マテリアル株式会社の特許一覧
特開2016-223015円筒形ターゲットの製造方法及びその製造方法に用いる粉末焼結用モールド
<>
  • 特開2016223015-円筒形ターゲットの製造方法及びその製造方法に用いる粉末焼結用モールド 図000004
  • 特開2016223015-円筒形ターゲットの製造方法及びその製造方法に用いる粉末焼結用モールド 図000005
  • 特開2016223015-円筒形ターゲットの製造方法及びその製造方法に用いる粉末焼結用モールド 図000006
  • 特開2016223015-円筒形ターゲットの製造方法及びその製造方法に用いる粉末焼結用モールド 図000007
  • 特開2016223015-円筒形ターゲットの製造方法及びその製造方法に用いる粉末焼結用モールド 図000008
  • 特開2016223015-円筒形ターゲットの製造方法及びその製造方法に用いる粉末焼結用モールド 図000009
  • 特開2016223015-円筒形ターゲットの製造方法及びその製造方法に用いる粉末焼結用モールド 図000010
  • 特開2016223015-円筒形ターゲットの製造方法及びその製造方法に用いる粉末焼結用モールド 図000011
  • 特開2016223015-円筒形ターゲットの製造方法及びその製造方法に用いる粉末焼結用モールド 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2016-223015(P2016-223015A)
(43)【公開日】2016年12月28日
(54)【発明の名称】円筒形ターゲットの製造方法及びその製造方法に用いる粉末焼結用モールド
(51)【国際特許分類】
   C23C 14/34 20060101AFI20161205BHJP
   C04B 35/622 20060101ALI20161205BHJP
   B28B 3/02 20060101ALI20161205BHJP
   B22F 3/14 20060101ALI20161205BHJP
【FI】
   C23C14/34 A
   C04B35/00 E
   B28B3/02 K
   B22F3/14 C
【審査請求】未請求
【請求項の数】11
【出願形態】OL
【全頁数】16
(21)【出願番号】特願2016-110855(P2016-110855)
(22)【出願日】2016年6月2日
(31)【優先権主張番号】特願2015-112236(P2015-112236)
(32)【優先日】2015年6月2日
(33)【優先権主張国】JP
(71)【出願人】
【識別番号】000006264
【氏名又は名称】三菱マテリアル株式会社
(74)【代理人】
【識別番号】100101465
【弁理士】
【氏名又は名称】青山 正和
(72)【発明者】
【氏名】長尾 昌芳
(72)【発明者】
【氏名】浦山 恒太郎
【テーマコード(参考)】
4G030
4G054
4K018
4K029
【Fターム(参考)】
4G030AA16
4G030AA20
4G030BA21
4G030CA07
4G030GA22
4G030GA23
4G030GA29
4G054AA05
4G054AB07
4G054AC00
4G054BA02
4K018AA03
4K018AD09
4K018BA02
4K018BA11
4K018BA20
4K018EA03
4K018HA03
4K018KA29
4K029DC04
4K029DC05
4K029DC09
4K029DC13
(57)【要約】
【課題】焼結後の冷却時における円筒形ターゲットの割れやクラック等の発生を防止することができる円筒形ターゲットの製造方法及びその製造に用いる粉末焼結用モールドを提供する。
【解決手段】粉末焼結用モールド101は、スリーブ1をカーボン又はセラミックスにより形成し、芯棒3Aの長手方向において、少なくとも円筒形ターゲットと接する位置に配置される加圧部分を、円筒形ターゲットの熱膨張係数と同等以上の熱膨張係数の材料により形成しておき、リング状の空間部6内に投入した原料粉末7aを、押圧部材5によってスリーブ1と加圧部分との間で押圧した状態で焼結させて、円筒形ターゲットを製造する。
【選択図】 図1
【特許請求の範囲】
【請求項1】
筒状に形成されたスリーブと、該スリーブ内部の中央に配置された芯棒と、前記スリーブと前記芯棒とにより形成されるリング状の空間部に挿入可能に設けられた押圧部材とを備える粉末焼結用モールドを用い、原料粉末を前記空間部内に投入して前記押圧部材で前記スリーブの軸方向に押圧した状態で加熱する円筒形ターゲットの製造方法であって、
前記スリーブをカーボン又はセラミックスにより形成し、
前記芯棒の長手方向において、少なくとも前記円筒形ターゲットと接する位置に配置される加圧部分を、前記円筒形ターゲットの熱膨張係数と同等以上の熱膨張係数の材料により形成しておき、
前記空間部内に投入した前記原料粉末を、前記押圧部材によって前記スリーブと前記加圧部分との間で押圧した状態で焼結させて、前記円筒形ターゲットを製造することを特徴とする円筒形ターゲットの製造方法。
【請求項2】
前記芯棒の前記加圧部分の熱膨張係数が前記円筒形ターゲットの熱膨張係数の95%以上であることを特徴とする請求項1に記載の円筒形ターゲットの製造方法。
【請求項3】
前記芯棒は、熱膨張係数の異なる材料の小芯棒を長手方向に複数組み合わせて形成されることを特徴とする請求項1又は2に記載の円筒形ターゲットの製造方法。
【請求項4】
前記押圧部材は、前記原料粉末の焼結完了時において、前記芯棒の加圧部分に配置される第1小芯棒と、該第1小芯棒に隣接して配置される第2小芯棒との境界面に跨って配置されることを特徴とする請求項3に記載の円筒形ターゲットの製造方法。
【請求項5】
前記原料粉末の焼結完了時における前記第1小芯棒の最大径が、前記第2小芯棒の最大径以下とされることを特徴とする請求項4に記載の円筒形ターゲットの製造方法。
【請求項6】
前記押圧部材の下端部の内周部に面取り部が設けられていることを特徴とする請求項1から5のいずれか一項に記載の円筒形ターゲットの製造方法。
【請求項7】
筒状に形成されたスリーブと、該スリーブ内部の中央に配置された芯棒と、前記スリーブと前記芯棒とにより形成されるリング状の空間部に挿入可能に設けられた押圧部材とを備え、
前記空間部内に原料粉末を投入して前記押圧部材で前記スリーブの軸方向に押圧した状態で加熱して円筒形ターゲットを製造可能な粉末焼結用モールドであって、
前記スリーブがカーボン又はセラミックスにより形成され、
前記芯棒の長手方向において、少なくとも前記円筒形ターゲットと接する位置に配置される加圧部分が、前記スリーブの熱膨張係数よりも大きい熱膨張係数の材料により形成されていることを特徴とする粉末焼結用モールド。
【請求項8】
前記芯棒の前記加圧部分は、前記円筒形ターゲットの熱膨張係数と同等以上の熱膨張係数の材料により形成されていることを特徴とする請求項7に記載の粉末焼結用モールド。
【請求項9】
前記芯棒は、熱膨張係数の異なる材料の小芯棒を長手方向に複数組み合わせて形成されていることを特徴とする請求項7又は8に記載の粉末焼結用モールド。
【請求項10】
前記押圧部材は、前記原料粉末の焼結完了時において、前記芯棒の加圧部分に配置される第1小芯棒と、該第1小芯棒に隣接して配置される第2小芯棒との境界面に跨って配置可能に設けられていることを特徴とする請求項9に記載の粉末焼結用モールド。
【請求項11】
前記原料粉末の焼結完了時における前記第1小芯棒の最大径が、前記第2小芯棒の最大径以下に設けられていることを特徴とする請求項10に記載の粉末焼結用モールド。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、スパッタリング装置に用いられる円筒形ターゲットの製造方法及びその製造に用いられる粉末焼結用モールドに関する。
【背景技術】
【0002】
円筒形のターゲット材を回転させながらスパッタを行うスパッタリング装置が知られている。このスパッタリング装置においては、バッキングチューブの外周に円筒形ターゲットを形成し、バッキングチューブの内側に磁石を配置するとともに、冷却水を流すことにより、円筒形ターゲットを冷却しつつ、回転させながらスパッタを行ことができ、ターゲット材の使用効率を高めることができる。
【0003】
このような円筒形ターゲットの製造方法としては、例えば、特許文献1に記載されるように、ターゲットの金属粉末を円筒形に成形し、その得られた成形体を焼成することにより焼結体を得る方法が知られている。ところが、このように成形工程と焼結工程とを別々に行うと作業性が悪くなることから、特許文献2に記載されるように、ターゲットの金属粉末をホットプレス用モールドに入れて加圧と加熱を同時に行うことにより焼結体を得るホットプレス法が活用されている。
この特許文献2の記載の方法では円柱状の焼結体が得られることから、この焼結体の中心部分をくり抜く等の切削加工を施すことにより、所定形状の円筒形ターゲットに形成することができるが、予めプレスモールド内の中心部分にモールド芯棒を配置しておくことにより、後加工を施すことなく円筒形ターゲットを形成することもできる。
そして、このようにして形成された円筒形ターゲットは、バッキングチューブに接合され、その状態でスパッタリング装置において使用される。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2012‐126587号公報
【特許文献2】特開2013‐49883号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところが、円筒形ターゲットをホットプレス法で製造する場合、特に、熱膨張係数の大きいターゲット材を製造する場合には、焼結後の冷却時においてターゲット材と中央部のモールド芯棒との体積変化の差が大きくなって、ターゲット材がモールド芯棒から離型できなくなることがあり、円筒形ターゲットに割れやクラック等が発生することがある。
【0006】
本発明は、このような事情に鑑みてなされたもので、焼結後の冷却時における円筒形ターゲットの割れやクラック等の発生を防止することができる円筒形ターゲットの製造方法及びその製造に用いる粉末焼結用モールドを提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明は、筒状に形成されたスリーブと、該スリーブ内部の中央に配置された芯棒と、前記スリーブと前記芯棒とにより形成されるリング状の空間部に挿入可能に設けられた押圧部材とを備える粉末焼結用モールドを用い、原料粉末を前記空間部内に投入して前記押圧部材で前記スリーブの軸方向に押圧した状態で加熱する円筒形ターゲットの製造方法であって、前記スリーブをカーボン又はセラミックスにより形成し、前記芯棒の長手方向において少なくとも前記円筒形ターゲットと接する位置に配置される加圧部分を、前記円筒形ターゲットの熱膨張係数と同等以上の熱膨張係数の材料により形成しておき、前記空間部内に投入した前記原料粉末を、前記押圧部材によって前記スリーブと前記加圧部分との間で押圧した状態で焼結させて、前記円筒形ターゲットを製造する。
【0008】
スリーブがカーボン又はセラミックスの熱膨張係数の小さい材料により形成されているので、内側の円筒形ターゲットとなる原料粉末を強固に押圧し得るとともに、密度の高い円筒形ターゲットを製造することができる。
この場合、芯棒の少なくとも加圧部分において、その熱膨張係数が円筒形ターゲットの熱膨張係数と同等以上とされていることから、焼結後の冷却時において、円筒形ターゲットが冷却に伴って収縮しても、円筒形ターゲットに割れやクラック等が発生することがなく、また、円筒形ターゲットを芯棒の加圧部分から容易に離型させることができる。
【0009】
本発明の円筒形ターゲットの製造方法において、前記芯棒の前記加圧部分の熱膨張係数が前記円筒形ターゲットの熱膨張係数の95%以上であるとよい。
芯棒の加圧部分の熱膨張係数が円筒形ターゲットの熱膨張係数の95%以上であれば、焼結後の冷却時において、円筒形ターゲットと加圧部分との体積変化に差が生じても、材料(加圧部分)の変形能力によって割れやクラック等を発生させることなく円筒形ターゲットを製造することができる。
また、芯棒の加圧部分の熱膨張係数を円筒形ターゲットの熱膨張係数よりも大きくした場合には、焼結後の冷却時において加圧部分が円筒形ターゲットよりも大きく収縮するので、円筒形ターゲットとの間に隙間を形成することができ、容易に離型させることが可能となる。
【0010】
本発明の円筒形ターゲットの製造方法において、前記芯棒は、熱膨張係数の異なる材料の小芯棒を長手方向に複数組み合わせて形成されるとよい。
複数の小芯棒を組み合わせて芯棒を形成した場合においては、少なくとも加圧部分に配置される小芯棒を、円筒形ターゲットの熱膨張係数と同等以上に形成することで、焼結完了後の冷却時において、円筒形ターゲットが冷却に伴って収縮しても、円筒形ターゲットに割れやクラック等が発生することがなく、また、円筒形ターゲットを芯棒の加圧部分の小芯棒から容易に離型させることができる。
【0011】
本発明の円筒形ターゲットの製造方法において、前記押圧部材は、前記原料粉末の焼結完了時において、前記芯棒の加圧部分に配置される第1小芯棒と、該第1小芯棒に隣接して配置される第2小芯棒との境界面に跨って配置されるとよい。
押圧部材と第2小芯棒との間で、スリーブと第1小芯棒との間のリング状の空間部の上方を確実に閉塞しつつ、スリーブと第1小芯棒との間で原料粉末を押圧状態とすることができる。
【0012】
本発明の円筒形ターゲットの製造方法において、前記原料粉末の焼結完了時における前記第1小芯棒の最大径が、前記第2小芯棒の最大径以下とされるとよい。
第1小芯棒の周囲まで円滑に押圧部材を押し込んで配置することができ、スリーブと第1小芯棒との間で原料粉末を確実に押圧状態とすることができる。したがって、押圧部材の圧力を確実に原料粉末に加えることができるので、密度の高い円筒形ターゲットを製造することができる。
【0013】
本発明の円筒形ターゲットの製造方法において、前記押圧部材の下端部の内周部に面取り部を設けておくとよい。
第1小芯棒が第2小芯棒より僅かに拡径したとしても、押圧部材の面取り部により第1小芯棒との干渉を防止できるので、原料粉末を確実に押圧することができ、またモールドの破損を防止することができる。
【0014】
本発明は、筒状に形成されたスリーブと、該スリーブ内部の中央に配置された芯棒と、前記スリーブと前記芯棒とにより形成されるリング状の空間部に挿入可能に設けられた押圧部材とを備え、前記空間部内に原料粉末を投入して前記押圧部材で前記スリーブの軸方向に押圧した状態で加熱して円筒形ターゲットを製造可能な粉末焼結用モールドであって、前記スリーブがカーボン又はセラミックスにより形成され、前記芯棒の長手方向において、少なくとも前記円筒形ターゲットと接する位置に配置される加圧部分が、前記スリーブの熱膨張係数よりも大きい熱膨張係数の材料により形成される。
【0015】
本発明の粉末焼結用モールドにおいて、前記芯棒の前記加圧部分は、前記円筒形ターゲットの熱膨張係数と同等以上の熱膨張係数の材料により形成されている。
【0016】
本発明の粉末焼結用モールドにおいて、前記芯棒は、熱膨張係数の異なる材料の小芯棒を長手方向に複数組み合わせて形成されている。
【0017】
本発明の粉末焼結用モールドにおいて、前記押圧部材は、前記原料粉末の焼結完了時において、前記芯棒の加圧部分に配置される第1小芯棒と、該第1小芯棒に隣接して配置される第2小芯棒との境界面に跨って配置可能に設けられる。
【0018】
本発明の粉末焼結用モールドにおいて、前記原料粉末の焼結完了時における前記第1小芯棒の最大径が、前記第2小芯棒の最大径以下に設けられている。
【発明の効果】
【0019】
本発明によれば、焼結後の冷却時における円筒形ターゲットの割れやクラック等の発生を防止することができるとともに、密度の高い円筒形ターゲットを製造することができる。
【図面の簡単な説明】
【0020】
図1】本発明に係る円筒形ターゲットの製造に用いる粉末焼結用モールドの第1実施形態を示す断面図である。
図2図1に示す粉末焼結用モールドの上面図である。
図3図1に示す粉末焼結用モールドにおいて、焼結後の冷却時を説明する図である。
図4】本発明に係る円筒形ターゲットの製造に用いる粉末焼結用モールドの第2実施形態を示す断面図である。
図5】本発明に係る円筒形ターゲットの製造に用いる粉末焼結用モールドの第3実施形態を示す断面図である。
図6図5に示す粉末焼結用モールドにおいて、温度上昇時の下部芯棒の膨張を説明する図である。
図7図5に示す粉末焼結用モールドにおいて、焼結完了時を説明する図である。
図8図5に示す粉末焼結用モールドにおいて、焼結後の冷却時を説明する図である。
図9】本発明に係る円筒形ターゲットの製造に用いる粉末焼結用モールドのその他の実施形態を示す要部断面図である。
【発明を実施するための形態】
【0021】
以下、本発明に係る円筒形ターゲットの製造方法及びその製造に用いる粉末焼結用モールドの実施形態について説明する。
一実施形態の粉末焼結用モールド101は、図1から図3までに示すように、筒状のスリーブ1と、スリーブ1の外側に配置されてスリーブ1を保持する外枠2と、スリーブ1内部の中央に配置された円柱状の芯棒3Aと、これらスリーブ1と芯棒3Aとの底面を支えるベースプレート4と、ベースプレート4との間に原料粉末7aを挟んで押圧する押圧部材5とを備える。
【0022】
スリーブ1は、図2に示すように、垂直方向に沿う筒状に形成されている。
スリーブの内周面11aは、図1に示すように、作製する焼結体(円筒形ターゲット)の大きさに合わせて設けられており、外周面11bは、内周面11aを拡径した円周面に設けられている。
また、スリーブ1の外側に配置される外枠2の内周面21aは、スリーブ1の外周面11bと係合可能に、設けられている。
【0023】
押圧部材5は、リング状の平板に形成されたスペーサ51と、円筒状に形成されたパンチ52とにより構成される。そして、スペーサ51及びパンチ52は、スリーブ1の内周面11aと芯棒3Aとにより形成されるリング状の空間部6に挿入可能に設けられ、空間部6内に投入した原料粉末7aを、スペーサ51を介してパンチ52によってスリーブ1の軸方向(垂直方向)に押圧することができるようになっている。
【0024】
そして、粉末焼結用モールド101を構成するスリーブ1、外枠2、スペーサ51、パンチ52及びベースプレート4は、カーボン又はセラミックスにより形成される。本実施形態の粉末焼結用モールド101においては、例えば、1000℃以上の高温領域においても十分な機械強度を有する耐熱材料からなるカーボングラファイトにより形成されている。
【0025】
また、スリーブ1内部の中央に配置される円柱状の芯棒3Aは、スリーブ1の熱膨張係数よりも大きい熱膨張係数の材料により形成される。さらに、芯棒3Aは、円筒形ターゲット7bの熱膨張係数と同等以上の熱膨張係数の材料により形成される。なお、円筒形ターゲット7bと同等以上の熱膨張係数を有する材料とは、円筒形ターゲット7bの熱膨張係数の80%以上の熱膨張係数を有する材料とされる。詳述すると、材料の熱膨張係数は温度依存性を持つことから、円筒形ターゲット7bの焼結時における炉内最高到達温度の90%を円筒形ターゲット7bの焼結温度と想定し、芯棒3Aには、円筒形ターゲット7bの焼結温度における円筒形ターゲット7bの熱膨張係数に対して80%以上の熱膨張係数を有する材料を選択することとした。このように、芯棒3Aは、円筒形ターゲット7bの熱膨張係数の80%以上の熱膨張係数を有する材料により形成することが望ましく、さらには95%以上の熱膨張係数を有する材料により形成しておくことが最も望ましい。
【0026】
なお、円筒形ターゲット7bの熱膨張係数は、例えば、予め円筒形ターゲット7bと同材料の角柱状の焼結体を形成して、この焼結体の熱膨張係数を測定することにより決定できる。円筒形ターゲットを製造する場合においても、焼結体と同一の加熱温度及び圧力の条件で焼結工程を経ることで、この焼結体と同等の熱膨張係数を有する円筒形ターゲットが得られることから、焼結体を測定したデータに基づき、円筒形ターゲットの熱膨張係数を決定することができる。
【0027】
具体的には、本実施形態の粉末焼結用モールド101を使用し、芯棒3Aを用いることなく原料粉末7aを焼結させて円柱状の焼結体を形成した後、得られた円柱状の焼結体を平面サイズ5mm角で長さ20mm程度の角柱状に加工して角柱状の焼結体を形成し、この角柱状の焼結体の熱膨張係数を測定する。熱膨張係数の測定は、角柱状の焼結体を熱膨張係数測定装置(ブルカー・エイエックスエス社製TD5020型)にて、窒素雰囲気中、10(℃/分)の上昇条件で焼結温度を超えるまで昇温させることにより行い、この結果から、円筒形ターゲット7bの熱膨張係数を決定する。
例えば、TiOの円筒形ターゲットを形成する場合においては、TiOの角柱状の焼結体を形成し、この焼結体を測定することにより、TiOの円筒形ターゲットの熱膨張係数を決定する。この場合、TiOの円筒形ターゲットの焼結温度の熱膨張係数は、9.0×10−6/Kとされる。
【0028】
粉末焼結用モールド101では、例えば、TiOの円筒形ターゲット7bを形成するにあたって、芯棒3Aがステンレス(SUS304:熱膨張係数17×10−6/K)により形成される。この場合、芯棒3Aの熱膨張係数は、TiOの円筒形ターゲット7bの熱膨張係数の189%であり、円筒形ターゲット7bの熱膨張係数の95%以上である。
【0029】
次に、上記の粉末焼結用モールド101を用いて、原料粉末から円筒形ターゲットを製造する方法について説明する。
本実施形態においては、原料粉末7aとして、TiO粉を用いる。
まず、図1に示すように、原料粉末7aをスリーブ1と芯棒3Aとの間に形成される空間部6内に投入し、原料粉末7aを充填した状態でスペーサ51により空間部6の上部を閉鎖する。
次に、パンチ52によって押圧力を加える前に、又はパンチ52の押圧力が最大押圧力に達する前に、真空容器(図示略)内で加熱を開始する。この際、図3に示すように、芯棒3Aは、他のモールド部材を形成するカーボングラファイトよりも熱膨張係数の大きなSUS304により形成されているので、他のモールド部材よりも大きく膨張して、二点鎖線で示す常温時の状態から実線で示す状態に変化する。
【0030】
そして、原料粉末7aの焼結温度(1000〜1300℃)となった状態で、図3に白抜き矢印で示すように、パンチ52で垂直方向に所定圧力(10〜20MPa)をかけて加圧し、所定時間(1〜5h)保持することによって、原料粉末7aを焼結させる。 なお、図示は省略するが、加熱は、粉末焼結用モールド101の周囲に配置された加熱用のヒーターにより行われる。
【0031】
焼結後に、パンチ52によるプレス圧力を解放した状態で冷却することにより、円筒形ターゲット7bが製造される。また、このようにして製造された円筒形ターゲット7bを、粉末焼結用モールド101から取り出す際には、各モールド部材を順次分解し、円筒形ターゲット7bを取り出す。
【0032】
焼結体の焼結時においては、スリーブ1及び押圧部材5(スペーサ51、パンチ52)が熱膨張係数の小さい材料(カーボングラファイト)により形成されているので、内側の円筒形ターゲット7bとなる原料粉末7aを強固に押圧し得るとともに、密度の高い円筒形ターゲット7bを製造することができる。
【0033】
一方、焼結後の冷却時においては、芯棒3Aが、スリーブ1及び円筒形ターゲット7bよりも大きい熱膨張係数の材料(SUS304)により形成されていることから、円筒形ターゲット7bが冷却に伴って収縮しても、芯棒3Aが円筒形ターゲット7bよりも大きく収縮する。このため、円筒形ターゲット7bに割れやクラック等が発生することがなく、円筒形ターゲット7bを芯棒3Aから容易に離型させることができる。
【0034】
このように、本実施形態の粉末焼結用モールド101においては、芯棒3Aの円筒形ターゲット7bと接する位置に配置される加圧部分を含めて、芯棒3Aの全体が、スリーブ1及び円筒形ターゲット7bの熱膨張係数よりも大きい熱膨張係数の材料により形成されていることから、焼結後の冷却時における円筒形ターゲット7bの割れやクラック等の発生を防止することができる。
【0035】
なお、芯棒3Aとスリーブ1やスペーサ51との熱膨張係数の差が大きくなると、スリーブ1やスペーサ51の熱膨張に伴う内径変化に対して芯棒3Aの外径変化の方が大きくなる。このため、モールド部材同士の干渉による破損を避けるために、円筒形ターゲット7bの焼結完了時における芯棒3Aの最大径を見込んで、それよりも大きくスペーサ51の内径を形成しておく必要がある。この場合、常温時にはスペーサ51と芯棒3Aとの間に大きく隙間が生じ、空間部6内に充填した原料粉末7aが外部に飛散しやすくなる。そこで、この場合には、スペーサ51を工夫する必要がある。
【0036】
具体的には、例えば図4に示す第2実施形態の粉末焼結用モールド102のように、スペーサ55を、芯棒3Aと係合してスリーブ1から離間して配置される内周リング部材53と、スリーブ1と係合して芯棒3Aから離間して配置される外周リング部材54とをスリーブ1の軸方向に重ねて配置した構成とする。この場合、内周リング部材53は、芯棒3Aと同等の熱膨張係数を有する材料により形成し、外周リング部材54は、スリーブ1と同等の熱膨張係数を有する材料により形成しておく。これにより、常温時から円筒形ターゲットの焼結完了時に至るまで、芯棒3Aの外径変化に伴って内周リング部材53も熱膨張して、芯棒3Aと内周リング部材53との間に大きな隙間を生じさせることがない。また同様に、スリーブ1の内径変化にともなって外周リング部材54も熱膨張するので、スリーブ1と外周リング部材54との間に大きな隙間を生じさせることがない。このため、芯棒3Aとスペーサ55、スリーブ1との熱膨張率差により生じる隙間を吸収でき、空間部6の上部をスペーサ55により塞いた状態を維持できる。したがって、原料粉末7aが空間部6から外部に吹き出すことを防止でき、空間部6内に充填した原料粉末7aを、内周リング部材53と外周リング部材54とで構成されるスペーサ55によりスリーブ1の軸方向に強固に押圧できる。
【0037】
なお、図4では、内周リング部材53を外周リング部材54の上側に配置しているが、スペーサの構成はこれに限ったものではない。例えば、内周リング部材を外周リング部材の下側に配置したり、内周リング部材と外周リング部材とを同平面上に配置するようにしてスペーサを構成しても、第2実施形態のスペーサ55と同じ効果が得られる。
【0038】
以下、本発明のその他の実施形態について説明する。なお、以下の実施形態において、第1実施形態及び第2実施形態と共通する要素には同一符号を付して、説明を省略する。
第1実施形態及び第2実施形態では、芯棒3Aの全体を1つの材料で一体に形成していたが、芯棒の構成はこれに限定されない。
例えば、図5から図8までに示す第3実施形態の粉末焼結用モールド103のように、芯棒3Bを、熱膨張係数の異なる材料により形成された複数の小芯棒を、芯棒3の長手方向に組み合わせて構成することもできる。この場合の芯棒3Bは、図5から図8までに示すように、下側に配置される第1小芯棒31と、上側に配置される第2小芯棒32との2つの小芯棒31,32を組み合わせて構成されている。そして、円筒形ターゲット7bの加圧部分に配置される第1小芯棒31が、スリーブ1の熱膨張係数よりも大きく、さらに円筒形ターゲット7bの熱膨張係数と同等以上に形成される。また、これら第1小芯棒31と第2小芯棒32とは、ベースプレート4上に第1小芯棒31、第2小芯棒32の順に積み重ねられ、それぞれ適宜の芯合わせ機構によりスリーブ1の内部中央に位置決めされる。
【0039】
第2小芯棒32は、スリーブ1と同一材料により形成される。また、円筒形ターゲット7bと接する位置に配置される第1小芯棒31は、前述したように、スリーブ1の熱膨張係数よりも大きく、円筒形ターゲット7bの熱膨張係数と同等以上の熱膨張係数を有する材料により形成される。粉末焼結用モールド102においても、第1実施形態と同様に、円筒形ターゲット7bの焼結時における炉内最高到達温度の90%を円筒形ターゲット7bの焼結温度と想定し、第1小芯棒31には、円筒形ターゲット7bの焼結温度における円筒形ターゲット7bの熱膨張係数に対して80%以上の熱膨張係数を有する材料を選択することとした。このように、第1小芯棒31は、円筒形ターゲット7bの熱膨張係数の80%以上の熱膨張係数を有する材料により形成することが望ましく、さらには95%以上の熱膨張係数を有する材料により形成しておくことが最も望ましい。
【0040】
粉末焼結用モールド103においては、例えば、TiOの円筒形ターゲット7bを形成するにあたって、第2小芯棒32がカーボングラファイト(熱膨張係数4×10−6/K)により形成され、第1小芯棒31がステンレス(SUS304:熱膨張係数17×10−6/K)により形成される。この場合、第1小芯棒31の熱膨張係数は、TiOの円筒形ターゲット7bの熱膨張係数の189%であり、円筒形ターゲット7bの熱膨張係数の95%以上である。そして、第1小芯棒31の最大径は、常温時及び原料粉末7aの焼結時のいずれにおいても、第2小芯棒32の最大径以下となるように形成されている。
【0041】
このように構成される粉末焼結用モールド103を用いて、例えばTiOの円筒形ターゲット7bを製造するには、図5に示すように、原料粉末7aをスリーブ1と芯棒3Bとの間に形成される空間部6内に投入し、原料粉末7aを充填した状態でスペーサ51により空間部6の上部を閉鎖する。
次に、パンチ52によって押圧力を加える前に、又はパンチ52の押圧力が最大押圧力に達する前に、真空容器(図示略)内で加熱を開始する。この際、第1小芯棒31は、他のモールド部材を形成するカーボングラファイトよりも熱膨張係数の大きなSUS304により形成されているので、図6に示すように、他のモールド部材よりも大きく膨張して、二点鎖線で示す常温時の状態から実線で示す状態に変化する。
【0042】
そして、原料粉末7aの焼結温度(1000〜1300℃)となった状態で、図7に白抜き矢印で示すように、パンチ52で垂直方向に所定圧力(10〜20MPa)をかけて加圧し、所定時間(1〜5h)保持することによって、原料粉末7aを焼結させる。この際、第1小芯棒31の最大径が、第2小芯棒32の最大径以下となるように形成されていることから、焼結完了時においてスペーサ51を第2小芯棒32と第1小芯棒31との境界面に跨って配置することができる。
【0043】
このように、粉末焼結用モールド103においては、焼結完了時における第1小芯棒31の最大径を、第2小芯棒32の最大径以下となるようにしているので、図7に示すように、パンチ52による原料粉末7aの焼結完了時において、スペーサ51を第2小芯棒32と第1小芯棒31との境界面に跨って配置することができる。これにより、スペーサ51と第2小芯棒32との間でスリーブ1と第1小芯棒31との間の空間部6の上方を確実に閉塞しつつ、スリーブ1と第1小芯棒31との間で原料粉末7aを押圧状態として、パンチ52の圧力を確実に焼結体に加えることができる。
【0044】
一方、焼結後の冷却時においては、第1小芯棒31が、スリーブ1及び円筒形ターゲット7bよりも大きい熱膨張係数の材料(SUS304)により形成されていることから、図8に示されるように、円筒形ターゲット7bが冷却に伴って収縮しても、第1小芯棒31が円筒形ターゲット7bよりも大きく収縮する。このため、円筒形ターゲット7bに割れやクラック等が発生することがなく、円筒形ターゲット7bを第1小芯棒31から容易に離型させることができる。
【0045】
また、上記実施形態では、円筒形ターゲット7bの焼結完了時における第1小芯棒31の最大径を、第2小芯棒32の最大径以下となるように構成したが、図9に示すモールド構造とすることにより、焼結完了時における第1小芯棒31の最大径を、第2小芯棒32の最大径を超える構成とすることもできる。
すなわち、図9に示すように、スペーサ51の下端部の内周部に、その内周縁部を例えば45°の傾斜面で切欠きしてなる面取り部51aを設けておくことで、焼結完了時における第1小芯棒31の最大径が、第2小芯棒32の最大径より僅かに拡径したとしても、スペーサ51の面取り部51aにより、スペーサ51と第1小芯棒31との干渉を避けることができる。したがって、パンチ52の圧力を確実に焼結体に加えることができ、またモールド部材同士の干渉による破損を防止することができる。なお、面取り部51aは、焼結完了時における第1小芯棒31の最大径(熱膨張量)を見込んで、それよりも大きく切欠いて設けられる。
【0046】
なお、本発明は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態においては、芯棒3Aや第1小芯棒31を、円筒形ターゲット7b(TiO)の熱膨張係数よりも大きな材料(SUS304)により形成したが、これに限定されるものではない。
例えば、円筒形ターゲットをCu‐Ga合金(熱膨張係数:24.1×10−6/K)で形成する場合は、芯棒3Aや第1小芯棒31の材料をCu(熱膨張係数:19.67×10−6/K)で形成する等、円筒形ターゲットの熱膨張係数と同等以上の材料により芯棒3A及び第1小芯棒31を形成することで、円筒形ターゲットに割れやクラック等を生じさせることなく円筒形ターゲットを製造することができる。なお、Cu‐Ga合金の原料粉末の焼結温度は600〜900℃である。
【0047】
この場合、芯棒3Aや第1小芯棒31よりも円筒形ターゲットが大きく収縮しても、金属の変形能力により、円筒形ターゲットと芯棒3Aや第1小芯棒31との収縮差を吸収できるので、円筒形ターゲットに生じる割れやクラックを回避することができる。なお、芯棒3Aと第1小芯棒31は、円筒形ターゲットの冷却後に、例えば衝撃を与えることにより取り出すか、また衝撃によって取り出せない場合には、芯棒3A及び第1小芯棒31を削り出すことで円筒形ターゲットに割れやクラックを生じさせることなく、円筒形ターゲットから芯棒3A及び第1小芯棒31を取り出すことができる。
【0048】
また、上記第3実施形態では、芯棒3Bを第1小芯棒31と第2小芯棒32とを組み合わせて、2つの小芯棒31,32を芯棒3Bの長手方向に組み合わせる構成としていたが、3つ以上の小芯棒を組み合わせて芯棒を構成することも可能である。芯棒を複数の小芯棒を組み合わせて構成する場合においても、芯棒の長手方向において少なくとも円筒形ターゲットと接する位置に配置される加圧部分を、円筒形ターゲットの熱膨張係数と同等以上の熱膨張係数の材料により形成しておくことで、焼結後の冷却時における円筒形ターゲットの割れやクラック等の発生を防止することができる。
【実施例】
【0049】
次に、本発明の効果を確認するために行った実施例及び比較例について説明する。
Nb、TiO及びCu‐Ga合金の3種類の原料粉末を用意し、上記実施形態の粉末焼結用モールドにおいて使用する各原料粉末ごとに芯棒を変更して、実施例1〜3及び比較例1の4つの円筒形ターゲットを製造した。原料粉末ごとの焼結温度や、使用した芯棒の条件は、表1に示すとおりである。
【0050】
また、実施例1〜3及び比較例1の各種の円筒形ターゲットの熱膨張係数は、予め円筒形ターゲットと同材料の焼結体を形成し、この焼結体の熱膨張係数を測定することにより決定した。具体的には、粉末焼結用モールド101を使用し、芯棒3Aを用いることなく各原料粉末を焼結させて、それぞれ円柱状の焼結体を形成した。そして、得られた円柱状の焼結体を平面サイズ5mm角で長さ20mm程度の角柱状に加工し、この角柱状の焼結体を熱膨張係数測定装置(ブルカー・エイエックスエス社製TD5020型)にて、窒素雰囲気中、10(℃/分)の上昇条件で焼結温度を超えるまで昇温させて、熱膨張係数を測定した。そして、焼結体を測定したデータに基づき、表1に示すように、円筒形ターゲットの熱膨張係数を決定した。
【0051】
実施例1として、Nbの円筒形ターゲットを製造した。Nb焼結体(Nbの円筒形ターゲット)の焼結温度の熱膨張係数は、2.75×10−6/Kであるから、2.75×10−6/Kの80%は、2.20×10−6/Kとなる。実施例1では、Nbの円筒形ターゲットの熱膨張係数の80%以上の熱膨張係数を有するカーボングラファイト(熱膨張係数4×10−6/K)により、芯棒全体を一体で形成した。
【0052】
実施例2として、TiOの円筒形ターゲットを製造した。TiO焼結体(TiOの円筒形ターゲット)の焼結温度の熱膨張係数は、9.0×10−6/Kであるから、9.0×10−6/Kの80%以上は、7.2×10−6/Kとなる。実施例2では、芯棒を第1小芯棒と第2小芯棒とを組み合わせた構成とし、第1小芯棒をTiOの円筒形ターゲットの熱膨張係数の80%以上の熱膨張係数を有するSUS304(熱膨張係数17×10−6/K)で形成した。また、第2小芯棒をカーボングラファイト(熱膨張係数4×10−6/K)で形成した。
【0053】
実施例3として、Cu‐Ga合金の円筒形ターゲットを製造した。Cu‐Ga合金焼結体(Cu‐Ga合金の円筒形ターゲット)の焼結温度の熱膨張係数は、24.1×10−6/Kであるから、24.1×10−6/Kの80%以上は、19.28×10−6/Kとなる。実施例3では、芯棒を第1小芯棒と第2小芯棒とを組み合わせた構成とし、第1小芯棒をCu‐Ga合金の円筒形ターゲットの熱膨張係数の80%以上の熱膨張係数を有するCu(熱膨張係数19.67×10−6/K)で形成した。また、第2小芯棒をカーボングラファイト(熱膨張係数4×10−6/K)で形成した。
【0054】
比較例1として、Cu‐Ga合金の円筒形ターゲットを製造した。Cu‐Ga合金焼結体(Cu‐Ga合金の円筒形ターゲット)の焼結温度の熱膨張係数は、実施例3でも述べたように、24.1×10−6/Kであるから、24.1×10−6/Kの80%以上は、19.28×10−6/Kとなる。比較例1では、芯棒全体をカーボングラファイト(熱膨張係数4×10−6/K)により一体で形成した。なお、カーボングラファイトの熱膨張係数は、Cu‐Ga合金の円筒形ターゲットの熱膨張係数の80%未満である。
【0055】
【表1】
【0056】
実施例1及び実施例2では、冷却後に、粉末焼結用モールドから円筒形ターゲットを取り出す際に、芯棒が円筒形ターゲットよりも大きく収縮しており、芯棒を容易に抜くことができた。したがって、割れ等の無い円筒形ターゲットを製造することができた。また、実施例3では、冷却後において、円筒形ターゲットと芯棒が嵌め込まれた状態となっており、円筒形ターゲットから芯棒が抜けなかった。しかし、芯棒を切削することで、割れ等の無い円筒形ターゲットを製造することができた。
一方、比較例1では、芯棒を形成したカーボングラファイトよりもCu‐Ga合金の円筒形ターゲットの熱膨張係数が非常に大きく、円筒形ターゲットの冷却時の収縮により芯棒が外れず、また、円筒形ターゲットと芯棒との収縮差により、円筒形ターゲットには大きな応力が加わっており、最終的には割れが発生した。
【0057】
実施例1〜3のように、円筒形ターゲットと接する位置に配置される芯棒の加圧部分を、円筒形ターゲットの熱膨張係数の80%以上の熱膨張係数を有する材料で形成することにより、割れ等の無い円筒形ターゲットを製造できる。また、実施例1及び実施例2のように、円筒形ターゲットと接する位置に配置される芯棒の加圧部分を、円筒形ターゲットの熱膨張係数の95%以上の熱膨張係数を有する材料で形成することにより、焼結後の冷却時において、円筒形ターゲットの収縮よりも芯棒が大きく収縮して、芯棒を円筒形ターゲットから容易に離型させることができる。
【符号の説明】
【0058】
1 スリーブ
2 外枠
3A,3B 芯棒
31 第1小芯棒
32 第2小芯棒
4 ベースプレート
5 押圧部材
51 スペーサ
51a 面取り部
52 パンチ
6 空間部
7a 原料粉末
7b 円筒形ターゲット
101,102,103 粉末焼結用モールド
図1
図2
図3
図4
図5
図6
図7
図8
図9