特開2016-226208(P2016-226208A)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ オムロン株式会社の特許一覧
<>
  • 特開2016226208-蓄電池制御装置 図000003
  • 特開2016226208-蓄電池制御装置 図000004
  • 特開2016226208-蓄電池制御装置 図000005
  • 特開2016226208-蓄電池制御装置 図000006
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2016-226208(P2016-226208A)
(43)【公開日】2016年12月28日
(54)【発明の名称】蓄電池制御装置
(51)【国際特許分類】
   H02J 7/35 20060101AFI20161205BHJP
   H02J 3/38 20060101ALI20161205BHJP
   H02M 3/00 20060101ALI20161205BHJP
   H01M 10/44 20060101ALI20161205BHJP
   H01M 10/48 20060101ALI20161205BHJP
【FI】
   H02J7/35 B
   H02J3/38 150
   H02M3/00 H
   H01M10/44 P
   H01M10/48 P
【審査請求】未請求
【請求項の数】4
【出願形態】OL
【全頁数】10
(21)【出願番号】特願2015-112143(P2015-112143)
(22)【出願日】2015年6月2日
(71)【出願人】
【識別番号】000002945
【氏名又は名称】オムロン株式会社
(74)【代理人】
【識別番号】100085006
【弁理士】
【氏名又は名称】世良 和信
(74)【代理人】
【識別番号】100100549
【弁理士】
【氏名又は名称】川口 嘉之
(74)【代理人】
【識別番号】100096873
【弁理士】
【氏名又は名称】金井 廣泰
(74)【代理人】
【識別番号】100123319
【弁理士】
【氏名又は名称】関根 武彦
(74)【代理人】
【識別番号】100125357
【弁理士】
【氏名又は名称】中村 剛
(74)【代理人】
【識別番号】100123098
【弁理士】
【氏名又は名称】今堀 克彦
(74)【代理人】
【識別番号】100138357
【弁理士】
【氏名又は名称】矢澤 広伸
(72)【発明者】
【氏名】山口 佳彦
(72)【発明者】
【氏名】大橋 誠
(72)【発明者】
【氏名】打田 修
(72)【発明者】
【氏名】竹嶌 昭宏
(72)【発明者】
【氏名】北村 高志
【テーマコード(参考)】
5G066
5G503
5H030
5H730
【Fターム(参考)】
5G066HB06
5G066HB09
5G503AA06
5G503BA01
5G503BB01
5G503CA10
5G503CA11
5G503GB03
5G503GB06
5G503GD03
5G503GD06
5H030AA01
5H030AS03
5H030AS05
5H030BB07
5H030BB09
5H030BB22
5H030FF41
5H030FF52
5H730AA11
5H730AS08
5H730AS17
5H730EE58
5H730EE59
5H730FD01
5H730FD31
5H730FG12
(57)【要約】
【課題】蓄電池と共に既存の太陽光発電システムに組み合わせることによって、当該太陽光発電システムのPCSの入力電力を、MPPT制御に支障を来さない形で、目標値近傍の値に制御できる蓄電池制御装置を提供する。
【解決手段】蓄電池制御装置10は、電力線40と蓄電池20との間で電力を授受させるためのDC/DCコンバータ12と、PCS32の入力の電圧値又は電流値に基づき、PCS32によって山登り法を用いた最大電力点追従制御が行われている期間中であるか否かを判別し、山登り法を用いた最大電力点追従制御が行われている期間中には、PCS32の入力の電圧値及び電流値に基づき、PCS32の入力電力が目標値となるように蓄電池20の充放電電力の大きさを調整し、山登り法を用いた最大電力点追従制御が行われていない期間中には、充放電電力の大きさを、当該期間開始時の前記充放電電力の大きさに維持する制御部14とを備える。
【選択図】図1
【特許請求の範囲】
【請求項1】
太陽電池と最大電力点追従制御を行うパワーコンディショナーとの間を接続する電力線と、蓄電池とに接続される蓄電池制御装置において、
前記電力線と前記蓄電池との間で電力を授受させるためのDC/DCコンバータと、
前記DC/DCコンバータを制御することにより、前記DC/DCコンバータを介して前記電力線と前記蓄電池との間で授受される充放電電力の大きさを調整する制御部と、
を備え、
前記制御部は、前記パワーコンディショナーの入力の電圧値又は電流値に基づき、前記パワーコンディショナーによって山登り法を用いた最大電力点追従制御が行われている期間中であるか否かを判別し、山登り法を用いた最大電力点追従制御が行われている期間中には、前記パワーコンディショナーの入力の電圧値及び電流値に基づき、前記パワーコンディショナーの入力電力が目標値となるように前記充放電電力の大きさを調整し、山登り法を用いた最大電力点追従制御が行われていない期間中には、前記充放電電力の大きさを、当該期間開始時の前記充放電電力の大きさに維持する
ことを特徴とする蓄電池制御装置。
【請求項2】
前記山登り法を用いた最大電力点追従制御が行われていない期間中とは前記パワーコンディショナーによって前記太陽電池のIV特性のスキャンが行われている期間である
ことを特徴とする請求項1に記載の蓄電池制御装置。
【請求項3】
前記制御部は、パワーコンディショナーの山登り法を用いた最大電力点追従制御における前記太陽電池の出力電圧の変更周期を特定し、山登り法を用いた最大電力点追従制御が行われている期間中の前記充放電電力の大きさの調整周期を、特定した変更周期以下の周期に変更する機能を有する
ことを特徴とする請求項1または2に記載の蓄電池制御装置。
【請求項4】
太陽電池と最大電力点追従制御を行うパワーコンディショナーとの間を接続する電力線と、蓄電池とに接続される蓄電池制御装置において、
前記電力線と前記蓄電池との間で電力を授受させるためのDC/DCコンバータと、
前記DC/DCコンバータを制御することにより、前記DC/DCコンバータを介して前記電力線と前記蓄電池との間で授受される充放電電力の大きさを調整する制御部と、
を備え、
前記制御部は、前記パワーコンディショナーの入力の電圧値又は電流値に基づき、前記パワーコンディショナーによって前記太陽電池のIV特性のスキャンが行われている期間中であるか否かを判別し、前記太陽電池のIV特性のスキャンが行われていない期間中には、前記パワーコンディショナーの入力の電圧値及び電流値に基づき、前記パワーコンディショナーの入力電力が目標値となるように前記充放電電力の大きさを調整し、前記太陽電池のIV特性のスキャンが行われている期間中には、前記充放電電力の大きさを、当該期間開始時の前記充放電電力の大きさに維持する
ことを特徴とする蓄電池制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、蓄電池制御装置に関する。
【背景技術】
【0002】
近年、太陽電池とパワーコンディショナーとを組み合わせた太陽光発電システムを、系統(商用電力系統)及び負荷(電力使用機器群)に接続することが盛んに行われている。
【0003】
太陽光発電システム用のパワーコンディショナー(以下、PCSとも表記する)は、通常、最大電力点追従制御(以下、MPPT(Maximum Power Point Tracking)制御とも表記する)を行う機能を有している。従って、一般に使用されている太陽光発電システムは、PCSによって太陽電池から最大電力を取り出すことが可能なものとなっている。ただし、PCSの入力電力が大きく変動すると、太陽電池により発電された電力を全て利用できないことが生じ得る。
【0004】
そのため、太陽光発電システムに、蓄電池を追加して、当該蓄電池の充放電電力の調整によりPCSの入力電力を目標値近傍の値に制御することが考えられている(例えば、特許文献1参照)のであるが、太陽光発電システムに追加した蓄電池の充放電電力を調整するという制御は、PCSが行うMPPT制御と干渉し得る制御である。そして、PCSが行うMPPT制御の内容は、メーカーにより異なっており、公開もされていない。そのため、既存の太陽光発電システムのパワーコンディショナーの入力電力を、MPPT制御に支障を来さない形で、目標値近傍の値に制御できる蓄電池制御装置は未だ開発されていないのが現状である。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2013−138530号公報
【特許文献2】特許第4294346号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の課題は、蓄電池と共に既存の太陽光発電システムに組み合わせることによって、当該太陽光発電システムのパワーコンディショナーの入力電力を、MPPT制御に支障を来さない形で、目標値近傍の値に制御できる蓄電池制御装置を提供することにある。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本発明の第1の態様の蓄電池制御装置は、太陽電池と最大電力点追従制御を行うパワーコンディショナーとの間を接続する電力線と、蓄電池とに接続される装置であって、前記電力線と前記蓄電池との間で電力を授受させるためのDC/DCコンバータと、前記DC/DCコンバータを制御することにより、前記DC/DCコンバータを介して前記電力線と前記蓄電池との間で授受される充放電電力の大きさを調整する制御部とを備え、前記制御部は、前記パワーコンディショナーの入力の電圧値又は電流値に基づき、前記パワーコンディショナーによって山登り法を用いた最大電力点追従制御が行われている期間中であるか否かを判別し、山登り法を用いた最大電力点追従制御が行われている期間中には、前記パワーコンディショナーの入力の電圧値及び電流値に基づき、前記パワーコンディショナーの入力電力が目標値となるように前記充放電電力の大きさを調整し、山登り法を用いた最大電力点追従制御が行われていない期間中には、前記充放電電力の大きさを、当該期間開始時の前記充放電電力の大きさに維持する構成を有する
【0008】
すなわち、パワーコンディショナーが行うMPPT制御(最大電力点追従制御)は、山登り法を用いたMPPT制御と、山登り法を用いたMPPT制御を停止した制御(例えば太陽電池のIV特性のスキャン)とを組み合わせたものとなっていることが多い。そして、山登り法を用いたMPPT制御時以外の制御時に蓄電池の充放電電力を変更すると、動作点が電力が減る方向に移動してしまうことがあり得るが、山登り法を用いたMPPT制御時に蓄電池の充放電電力を変更してもMPPT制御に大きな悪影響を与えることはない。従って、上記構成を有する本発明の第1の態様の蓄電池制御装置によれば、既存の太陽光発電システムのパワーコンディショナーの入力電力を、MPPT制御に支障を来さない形で、目標値近傍の値に制御することが出来る。
【0009】
本発明の第1の態様の蓄電池制御装置の制御部は、充放電電力の調整(変更)周期が固定されているものであっても良い。ただし、充放電電力の調整周期が、山登り法による太陽電池の出力電圧の変更周期以下である方が、パワーコンディショナーの入力電力の変動幅を小さくすることが出来る。従って、制御部に、『パワーコンディショナーの山登り法を用いた最大電力点追従制御における前記太陽電池の出力電圧の変更周期を特定し、山登り法を用いた最大電力点追従制御が行われている期間中の前記充放電電力の大きさの調整周期を、特定した変更周期以下の周期に変更する機能』を付与しておいても良い。
【0010】
また、本発明の第2の態様の蓄電池制御装置は、太陽電池と最大電力点追従制御を行うパワーコンディショナーとの間を接続する電力線と、蓄電池とに接続される装置であって、前記電力線と前記蓄電池との間で電力を授受させるためのDC/DCコンバータと、前記DC/DCコンバータを制御することにより、前記DC/DCコンバータを介して前記電力線と前記蓄電池との間で授受される充放電電力の大きさを調整する制御部と、を備え、前記制御部は、前記パワーコンディショナーの入力の電圧値又は電流値に基づき、前記パワーコンディショナーによって前記太陽電池のIV特性のスキャンが行われている期間中であるか否かを判別し、前記太陽電池のIV特性のスキャンが行われていない期間中には、前記パワーコンディショナーの入力の電圧値及び電流値に基づき、前記パワーコンディショナーの入力電力が目標値となるように前記充放電電力の大きさを調整し、前記太陽電池のIV特性のスキャンが行われている期間中には、前記充放電電力の大きさを、当該期間開始時の前記充放電電力の大きさに維持する構成を有する。
【0011】
すなわち、パワーコンディショナーの中には、太陽電池のIV特性を短時間のうちにスキャンして、IV特性のスキャン結果から求めた最大電力点に動作点を移動させるMPPT制御(以下、スキャン型MPPT制御と表記する)を行うもの(特許文献2参照)が存在している。また、パワーコンディショナーの中には、スキャン型MPPT制御と他法(山登り法等)によるMPPT制御とを組み合わせたMPPT制御を行うものも存在している。そして、太陽電池のIV特性のスキャン中に蓄電池の充放電電力が変更されると、実際には最大電力点ではない動作点が最大電力点として求められてしまうことが多いが、スキャンが行われていない期間に蓄電池の充放電電力を変更しても、MPPT制御に大きな悪影響を及ぼすことはない。従って、上記構成を有する本発明の第2の態様の蓄電池制御装置によっても、既存の太陽光発電システムのパワーコンディショナーの入力電力を、MPPT制御に支障を来さない形で、目標値近傍の値に制御することが出来る。
【発明の効果】
【0012】
本発明の蓄電池制御装置を用いれば、既存の太陽光発電システムのパワーコンディショナーの入力電力の変動幅を、MPPT制御に支障を来さない形で、目標値近傍の値に制御することが出来る。
【図面の簡単な説明】
【0013】
図1図1は、本発明の第1実施形態に係る蓄電池制御装置が用いられた電力供給システムの概略構成図である。
図2図2は、第1実施形態に係る蓄電池制御装置の制御部が実行する蓄電池制御処理の流れ図である。
図3図3は、山登り法を用いたMPPT制御時におけるDCラインの電圧値VDCの時間変化パターンの説明図である。
図4図4は、本発明の第2実施形態に係る蓄電池制御装置の制御部が実行する蓄電池制御処理の説明図である。
【発明を実施するための形態】
【0014】
以下、図面を参照して本発明の実施の形態について説明する。
【0015】
《第1実施形態》
まず、図1を用いて、本発明の第1実施形態に係る蓄電池制御装置10の構成及び使用形態を説明する。尚、この図1は、蓄電池制御装置10を用いて構築された電力供給システムの概略構成図である。
【0016】
本実施形態に係る蓄電池制御装置10は、負荷34及び系統36とに接続されたパワーコンディショナー32と太陽電池30とをDCライン40で接続した既存の太陽光発電システムに、蓄電池20と共に追加される装置である。また、図示してあるように、蓄電池制御装置10は、DC/DCコンバータ12と制御部14とを主要構成要素とした装置となっている。
【0017】
DC/DCコンバータ12は、制御部14による制御下、DCライン40(太陽電池30)からの電力で蓄電池20を充電するための電圧変換処理や、蓄電池20に蓄えられている電力をDCライン40に出力するための電圧変換処理を行うユニットである。
【0018】
制御部14は、蓄電池20の充放電電力(蓄電池20への充電電力、蓄電池20からの放電電力)が所望値(詳細は後述)となるように、DC/DCコンバータ12を制御するユニットである。この制御部14は、CPUと、CPUが実行するプログラム(ファームウェア)等を記憶したROM、作業領域として使用されるRAM、各部へのインタフェース回路等から構成されている。
【0019】
図示してあるように、制御部14には、DCライン40の電圧を測定するための電圧センサ16からの信号、及び、パワーコンディショナー32の入力電流を測定するための電流センサ42からの信号が入力されている。また、制御部14には、各種設定を行うための操作パネル(図示略)が電気的に接続されている。
【0020】
以下、蓄電池制御装置10の機能を説明する。
【0021】
蓄電池制御装置10の制御部14は、蓄電池制御装置10の電源が投入されると、図2に示した手順の蓄電池制御処理を開始するように、構成(プログラミング)されている。
【0022】
すなわち、蓄電池制御装置10の電源が投入されたため、この蓄電池制御処理を開始した制御部14は、まず、変数CNTに“0”を設定する(ステップS101)。
【0023】
そして、制御部14は、ステップS102〜S108のループ処理を、ΔtSAM周期で実行する状態となる。ここで、ΔtSAMとは、一般的な山登り法によるMPPT制御における太陽電池20の出力電圧の変更周期よりも十分に短くなるように(当該周期でD
Cライン40の電圧値等を測定すれば、パワーコンディショナー32が行っているMPPT制御の種別/内容が判別できるように)、予め定められている値(時間)のことである。
【0024】
図示してあるように、ステップS102〜S108のループ処理を開始した制御部14は、まず、DCライン40の電圧値と電流値とを測定する(ステップS102)。すなわち、制御部14は、電圧センサ16と電流センサ42とから、DCライン40の電圧値と電流値とを取得する処理を行う。
【0025】
次いで、制御部14は、パワーコンディショナー32が、山登り法を用いたMPPT制御を行っている期間中であるか否かを判別するためのMPPT制御種別判別処理(ステップS103)を行う。
【0026】
制御部14が行うMPPT制御種別判別処理は、DCライン40の電圧値の測定履歴(DCライン40の電圧値の過去及び今回の測定結果)に基づき、DCライン40の電圧値がステップ状に変化しているか否かを判定することにより、山登り法を用いたMPPT制御が行われているか否かを判別する処理である。尚、『DCライン40の電圧値がステップ状に変化している』とは、ほぼ同じ電圧値が連続して測定された後に、当該電圧値とは異なる電圧値が連続して測定される,ということである。
【0027】
すなわち、パワーコンディショナー32によって山登り法を用いたMPPT制御が行われている場合、DCライン40の電圧値VDCは、図3に示したように、周期的にステップ状に変化する。一方、山登り法を用いたMPPT制御を停止して、他の制御が行われている場合には、DCライン40の電圧値の変化量が、山登り法を用いたMPPT制御における1回分の電圧変化量ΔVDCよりも大きくなったり、DCライン40の電圧値が単調増加したり単調減少したりする。従って、DCライン40の電圧値の測定履歴に基づき、山登り法を用いたMPPT制御が行われているか否かを判定することが出来る。
【0028】
山登り法を用いたMPPT制御が行われていると判断した場合(ステップS104;YES)、制御部14は、CNT値が規定数未満であるか否かを判断する(ステップS105)。
【0029】
CNT値が規定数未満であった場合(ステップS105;YES)、制御部14は、CNT値を“1”インクリメント(ステップS106)してから、ステップS102以降の処理を再び開始する。そして、制御部14は、山登り法を用いたMPPT制御が行われている期間中に(ステップS104;YES)、CNT値が規定数以上となった場合(ステップS105;NO)には、パワーコンディショナー32の入力電力(図2では、PCS入力電圧)が目標値となるように、蓄電池20の充放電電力(蓄電池20への充電電力、蓄電池20からの放電電力)を調整する(ステップS107)。
【0030】
すなわち、パワーコンディショナー32の入力電力は、太陽電池30からの電力の一部を蓄電池20の充電に使用すれば減少し、蓄電池20に蓄えられている電力をDCライン40上に放電すれば上昇する。ステップS107の処理では、ステップS102の処理で測定した電圧値及び電流値からパワーコンディショナー32の入力電力が求められる。そして、パワーコンディショナー32の入力電力が目標値となるように、DC/DCコンバータ12の制御により、蓄電池20の充放電電力が調整される。
【0031】
尚、蓄電池20の容量やPV30の最大発電電力によって目標値の適正値は異なる。そのため、本実施形態に係る蓄電池制御装置10は、操作パネルの操作により、時間(時刻)に応じて変化しない目標値や時間に応じて変化する目標値として設定できる装置として
構成されている。
【0032】
また、CNT値が規定数以上となった場合だけに充放電電力が調整されるようにしているのは、山登り法を用いたMPPT制御が行われているか否かを判定するためには、比較的に短い周期で電圧値等を測定することが必要とされるが、蓄電池20の充放電電力の調整周期を電圧値等を測定周期と同程度の周期としておけなくても、パワーコンディショナー32の入力電力を目標値近傍の値に制御できるためである。ただし、パワーコンディショナー32の入力電力の変動幅を低減するという観点からは、蓄電池20の充放電電力の調整周期は、MPPT制御における太陽電池20の出力電圧の変更周期よりも短い方が好ましい。そのため、本実施形態に係る制御部14は、MPPT制御種別判別処理時にパワーコンディショナー32が山登り法を用いたMPPT制御を行っていると判定した場合、当該MPPT制御における太陽電池20の出力電圧の変更周期ΔtMPPTを特定して、規定数・ΔtSAM>ΔtMPPTが成立していた場合には、規定数・ΔtSAM≦ΔtMPPTが成立するように、規定数の値を変更する処理も行うように構成されている。
【0033】
制御部14は、山登り法を用いたMPPT制御が行われている期間中は、上記した内容のステップS105〜S108の処理(つまり、パワーコンディショナー32の入力電力が目標値となるように充放電電力を調整/変更する処理)を繰り返す。
【0034】
一方、山登り法を用いたMPPT制御が行われていないと判断した場合(ステップS104;NO)、制御部14は、ステップS105〜S108の処理を行うことなく、ステップS102以降の処理を開始する。すなわち、パワーコンディショナー32が山登り法を用いたMPPT制御が行っていない期間中、制御部14は、蓄電池20の充放電電力の大きさを、当該期間開始時の充放電電力の大きさに維持する。
【0035】
そして、制御部14は、山登り法を用いたMPPT制御が再び開始された場合(ステップS104;YES)に、ステップS105〜S108の処理を行う状態に戻る。
【0036】
以上、説明したように、本実施形態に係る蓄電池制御装置10の制御部14は、山登り法を用いたMPPT制御が行われている期間中には、パワーコンディショナー32の入力の電圧値及び電流値に基づき、パワーコンディショナー32の入力電力が目標値となるように蓄電池20の充放電電力の大きさを調整する。また、制御部14は、山登り法を用いたMPPT制御が行われていない期間中には、蓄電池20の充放電電力の大きさを、当該期間開始時の充放電電力の大きさに維持する。
【0037】
そして、山登り法以外の方法を用いたMPPT制御時に蓄電池の充放電電力を変更すると、電力が減る方向に動作点が移動してしまうことがあり得るが、山登り法を用いたMPPT制御時に蓄電池20の充放電電力を変更してもMPPT制御に大きな悪影響を与えなることはない。従って、この第1実施形態に係る蓄電池制御装置10を用いておけば、既存の太陽光発電システムのパワーコンディショナーの入力電力を、MPPT制御に支障を来さない形で、目標値近傍の値に制御することが出来る。
【0038】
《第2実施形態》
以下、第1実施形態の蓄電池制御装置10の説明時に用いたものと同じ符号を用いて、本発明の第2実施形態に係る蓄電池制御装置10について説明する。
【0039】
本実施形態に係る蓄電池制御装置10(以下、第2蓄電池制御装置10とも表記する)は、図4に示した手順の蓄電池制御処理を行うように、第1実施形態の蓄電池制御装置10(以下、第1蓄電池制御装置10とも表記する)を変形した装置である。
【0040】
この蓄電池制御処理のステップS201、S202、S205〜S208の処理は、それぞれ、第1蓄電池制御装置10が行う蓄電池制御処理(図2)のステップS101、S102、S105〜S108の処理と同内容の処理である。
【0041】
ステップS203にて行われるMPPT制御種別判別処理は、ステップS103にて行われるMPPT制御種別判別処理と同様に、パワーコンディショナー32が行っているMPPT制御の種別(種類、内容)を判別する処理である。ただし、ステップS203のMPPT制御種別判別処理では、パワーコンディショナー32の入力の電流値の時間変化パターンに基づき、太陽電池30のIV特性のスキャンが行われている期間中であるか否かが判別される。
【0042】
そして、第2蓄電池制御装置10が行う蓄電池制御処理では、図示してあるように、太陽電池30のIV特性のスキャンが行われていない期間中(ステップS204;NO)には、パワーコンディショナー32の入力電力が目標値となるように蓄電池20の充放電電力の大きさが調整され、太陽電池30のIV特性のスキャンが行われている期間中(ステップS204;YES)には、蓄電池20の充放電電力の大きさが、当該期間開始時の充放電電力の大きさに維持される。
【0043】
MPPT制御関連の処理で、蓄電池20の充放電電力の変更により最も支障が生じ易い処理は、スキャン型MPPT制御(特許文献2参照)時に行われる、太陽電池のIV特性を短時間のうちにスキャンする処理である。従って、この第2実施形態に係る蓄電池制御装置10によっても、既存の太陽光発電システムのパワーコンディショナーの入力電力を、MPPT制御に支障を来さない形で、目標値近傍の値に制御することが出来る。
【0044】
《変形形態》
上記した第1、第2実施形態に係る蓄電池制御装置10は、各種の変形を行えるものである。例えば、第1実施形態に係る蓄電池制御装置10は、山登り法を用いたMPPT制御が行われている期間中であるか否かを、VDCの時間変化パターンから判別する装置であったが、蓄電池制御装置10を、山登り法を用いたMPPT制御が行われている最中であるか否かを、他の情報(例えば、パワーコンディショナー32への入力電流の時間変化パターンや、パワーコンディショナー32への入力電流及び入力電圧の時間変化パターン)から判別する装置に変形しても良い。同様に、第2実施形態に係る蓄電池制御装置10を、太陽電池30のIV特性のスキャンが行われている期間中であるか否かを、パワーコンディショナー32への入力電圧の時間変化パターンや、パワーコンディショナー32への入力電流及び入力電圧の時間変化パターンから判別する装置に変形しても良い。
【0045】
さらに、各実施形態に係る蓄電池制御装置10を、蓄電池20の充放電電力の調整周期が固定されている装置に変形しても良いことや、蓄電池制御処理の開始条件が上記したものとは異なる装置(例えば、発電電力が一定値以上となったときに蓄電池制御処理の開始する装置)に変形しても良いことなどは、当然のことである。
【符号の説明】
【0046】
10・・・蓄電池制御装置
12・・・DC/DCコンバータ
14・・・制御部
16・・・電圧センサ
20・・・蓄電池
30・・・太陽電池
32・・・パワーコンディショナー
34・・・負荷
36・・・系統
40・・・DCライン
42・・・電流センサ
図1
図2
図3
図4