特開2016-31352(P2016-31352A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

2016-31352粘性・弾性測定装置及び粘性・弾性測定方法
<>
  • 2016031352-粘性・弾性測定装置及び粘性・弾性測定方法 図000019
  • 2016031352-粘性・弾性測定装置及び粘性・弾性測定方法 図000020
  • 2016031352-粘性・弾性測定装置及び粘性・弾性測定方法 図000021
  • 2016031352-粘性・弾性測定装置及び粘性・弾性測定方法 図000022
  • 2016031352-粘性・弾性測定装置及び粘性・弾性測定方法 図000023
  • 2016031352-粘性・弾性測定装置及び粘性・弾性測定方法 図000024
  • 2016031352-粘性・弾性測定装置及び粘性・弾性測定方法 図000025
  • 2016031352-粘性・弾性測定装置及び粘性・弾性測定方法 図000026
  • 2016031352-粘性・弾性測定装置及び粘性・弾性測定方法 図000027
  • 2016031352-粘性・弾性測定装置及び粘性・弾性測定方法 図000028
  • 2016031352-粘性・弾性測定装置及び粘性・弾性測定方法 図000029
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2016-31352(P2016-31352A)
(43)【公開日】2016年3月7日
(54)【発明の名称】粘性・弾性測定装置及び粘性・弾性測定方法
(51)【国際特許分類】
   G01N 11/14 20060101AFI20160208BHJP
【FI】
   G01N11/14 C
【審査請求】未請求
【請求項の数】9
【出願形態】OL
【全頁数】26
(21)【出願番号】特願2014-155363(P2014-155363)
(22)【出願日】2014年7月30日
(71)【出願人】
【識別番号】801000049
【氏名又は名称】一般財団法人生産技術研究奨励会
(74)【代理人】
【識別番号】100064908
【弁理士】
【氏名又は名称】志賀 正武
(74)【代理人】
【識別番号】100108578
【弁理士】
【氏名又は名称】高橋 詔男
(74)【代理人】
【識別番号】100089037
【弁理士】
【氏名又は名称】渡邊 隆
(74)【代理人】
【識別番号】100094400
【弁理士】
【氏名又は名称】鈴木 三義
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(72)【発明者】
【氏名】酒井 啓司
(57)【要約】
【課題】検出対象の試料の物質の量が従来例に比較して少なくて済み、検出対象の物質を入れる試料容器を安価なものとして使い捨てを可能とし、かつ低粘度から高粘度までの広い領域にわたる試料物質の粘性を測定する粘性・弾性測定装置を提供する。
【解決手段】本発明の粘性・弾性測定装置は、一部或いは全体が導電性の材料で構成され、円板が回転軸に垂直に固定され、回転軸の軸先端が滑らかな凸状で形成された回転子と、粘性を検出する対象の試料が入れられ、円板が試料に接触した状態で回転子が配置された試料容器と、試料容器の周りに配置され、回転子に磁場を印加する磁石と、磁石を駆動して回転子に回転磁場を印加し、回転トルクを与えて回転させる回転制御部と、回転子の回転速度を検出する回転検出部と、回転子の回転速度数により、回転子に接する試料の粘性及び弾性を検出する粘性弾性検出部とを有し、回転子の円板の半径が所定の式により決定される。
【選択図】図1
【特許請求の範囲】
【請求項1】
一部あるいは全体が導電性を有する材料で構成され、円板が当該円板の面が回転軸に対して垂直に固定されたコマ形状をしており、前記回転軸の軸先端部が滑らかな凸状で形成された回転子と、
粘性を検出する対象の検出対象物質が入れられ、前記円板の面が該検出対象物質に接触した状態で前記回転子が配置された試料容器と、
該試料容器の周りに配置され、前記回転子に対して磁場を印加する磁石と、
該動磁場印加磁石を駆動して前記回転子に時間変動する磁場を印加し、前記回転子の前記円板内に誘導電流を誘起し、該誘導電流と該回転子に印加される磁場とのローレンツ相互作用により、該回転子に回転トルクを与えて回転させる回転制御部と、
前記回転子の回転速度を検出する回転検出部と、
前記回転子の回転速度数により、該回転子に接する前記検出対象物質の粘性及び弾性を検出する粘性弾性検出部と
を有し、
前記回転子の前記円板の半径が以下の式により決定されることを特徴とする粘性・弾性測定装置。
【数1】
:回転子下部の試料容器底との接触部分の接触半径
M:回転子の重量
V:回転子の試料に没する部分の体積
ρ:試料の比重
g:重力加速度
R:回転子の回転翼半径
η:検出対象物質の粘性
μ:回転子下部と試料容器底との動摩擦係数
d:回転子と試料容器に挟まれた試料の厚み
α:要求される粘性・弾性の測定精度
【請求項2】
前記回転子の前記回転軸の軸先端部の凸状部分が、前記試料容器の内面の底部に接している
ことを特徴とする請求項1に記載の粘性・弾性測定装置。
【請求項3】
粘性が既知である複数の物質内における前記回転子に加わる回転トルクと、当該回転子の回転数との関係を予め測定した標準データを記憶する記憶部をさらに有し、
前記粘性検出部が検出した検出対象物質の回転トルクと回転数との関係と、前記標準データを比較することにより、前記検出対象物質の粘性・弾性を求める
ことを特徴とする請求項1または請求項2に記載の粘性・弾性測定装置。
【請求項4】
前記回転子にマークが付されており、
前記回転検出部が前記マークの回転を検出することにより、前記回転子の回転数を検出する
ことを特徴とする請求項1から請求項3のいずれか一項に記載の粘性・弾性測定装置。
【請求項5】
前記回転子の前記円板に対してレーザを照射し、その反射光あるいは干渉パターンの変化を光学的に測定することにより、前記回転子の回転数を検出する
ことを特徴とする請求項1から請求項3のいずれか一項に記載の粘性・弾性測定装置。
【請求項6】
前記回転子と接する前記試料容器の内面の底部が滑らかな平面あるいは滑らかな曲面の凹形状に形成されている
ことを特徴とする請求項1から請求項5のいずれか一項に記載の粘性・弾性測定装置。
【請求項7】
前記試料容器に対し、当該試料容器の上部開口部を塞ぐ蓋が設けられており、
前記回転子の回転軸が、前記検出対象物質が充填された試料前記試料容器の内面の前記底部と前記蓋の内面との間において回転自在に設けられている
ことを特徴とする請求項1から請求項6のいずれか一項に記載の粘性・弾性測定装置。
【請求項8】
前記試料容器の内部の空間が、前記回転子の前記円板の直径方向に対し、前記回転軸からの距離に比例して厚くなるように形成されている
ことを特徴とする請求項1から請求項7のいずれか一項に記載の粘性・弾性測定装置。
【請求項9】
試料容器に粘性及び弾性を検出する対象の検出対象物質を充填し、該検出対象物質内に一部あるいは全体が導電性を有する材料で構成され、円板が当該円板の面が回転軸に対して垂直に固定されたコマ形状をしており、前記回転軸の軸先端部が滑らかな凸状で形成された回転子を前記検出対象物質が当該円板の面に接触するように配置する過程と、
前記試料容器の周りに配置された動磁場印加磁石を駆動して、前記回転子に時間変動する磁場を印加し、前記回転子の前記円板内に誘導電流を誘起し、該誘導電流と該回転子に印加される磁場とのローレンツ相互作用により、該回転子に回転トルクを与えて回転させる過程と、
前記回転子の回転数を検出する過程と、
前記回転数により、前記回転子に接する検出対象物質の粘性・弾性を検出する粘性検出過程と
を含み
前記回転子の前記円板の半径が以下の式により決定されることを特徴とする粘性・弾性測定方法。
【数2】
:回転子下部の試料容器底との接触部分の接触半径
M:回転子の重量
V:回転子の試料に没する部分の体積
ρ:試料の比重
g:重力加速度
R:回転子の回転翼半径
η:検出対象物質の粘性
μ:回転子下部と試料容器底との動摩擦係数
d:回転子と試料容器に挟まれた試料の厚み
α:要求される粘性・弾性の測定精度
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、物質の力学物性である粘性・弾性を測定するための粘性・弾性測定装置及び粘性・弾性測定方法に関する。
【背景技術】
【0002】
従来より、対象とする物質の力学物性を検出するため、粘性(以下の記載において、粘度と示すこともある)や弾性の測定が行われている(例えば、特許文献1参照)。
粘性・弾性測定は、医薬品、食品、塗料、インク、化粧品、化学製品、紙、粘着剤、繊維、プラスチック、ビール、洗剤、コンクリート混和剤、シリコン等の製造過程で、品質管理、性能評価、原料管理、研究開発に必要不可欠な測定技術である。
従来知られている粘性測定法には以下に示すような方法がある。
【0003】
(1)粘度管法、(2)振動子を接触させる方法、(3)表面弾性波を用いる方法、(4)回転子を用いる方法、(5)剛体球を落下させる方法、(6)動的光散乱法、(7)Zimm型粘度測定法、(8)EMS(Electro-Magnetically Spinning)粘度測定法、(9)ディスク浮上型EMS粘度測定法である。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特許第5093599号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、上述した方法の内、(1)の方法に関しては、測定に際してガラス製の毛細管内部を洗浄するなど多くの作業が必要であり、またガラス性の粘度計の保守が煩雑であるという欠点があった。
また、(2)〜(5)の方法に関しては、少なくとも10mPa・s(パスカル秒)以上の粘性でないと精度のよい計測が出来ないため、低粘度の材料の粘度を測定できないという欠点があった。
さらに(6)の方法について測定装置が大掛かりになるという欠点、また透明試料以外には適用できないという困難がある。
【0006】
また、(7)及び(9)の方法に関しては、浮力によって試料の表面(試料表面)に浮いた探蝕子(回転子)を回転させるため、試料表面のさざなみを起こすためのエネルギー損失が無視できなくなるという欠点がある。また、(7)及び(9)の方法に関しては、試料表面に分子吸着膜が形成される場合には、その膜の有する表面粘弾性によって測定誤差が生じるという欠点、さらには回転が物体の没している試料表面からの深さに依存するため試料物質の密度が既知である必要があるという制約があった。
また、(1)〜(7)のすべての方法において、試料容器が高価であり、使い回す必要があるため、測定後の試料容器の洗浄が必要である。また、この洗浄により完全に前回測定した試料が除去されないと直前の試料物質の影響が残り、測定対象の試料物質の粘弾性の測定が高精度に行えないという制約があった。
【0007】
また、(8)の方法に関しては、回転子の下部と試料容器が接しているために、その間の機械的な摩擦により粘性測定精度が制限されるという欠点がある。例えば、純水のような低い粘性を有する試料物質の粘性を測定した場合、機械的な摩擦の影響により粘性を1%より高い精度で測定することは困難である。この(8)の方法において、回転子として安価なアルミ球を用いた場合、最小径のアルミ球が直径1mmであるため、特許文献1に記載されているように、理論的な純粋の粘性の測定精度は10%に制限される。
また、これまで一般的に用いられている上述した粘弾性の測定方法では、一定精度を得るためにはある程度以上の量の試料物質が必要であるという欠点があった。
【0008】
また、粘性が10mPa・sより小さい試料物質に対しては測定精度が悪くなるという欠点があり、また回転型の粘度計や光散乱による計測では装置が大掛かりになり、簡便な計測が出来ないという制約があった。
上述した理由により、従来の原理に基づく方法においては、粘性・弾性といった液体や他のソフトマテリアルなどの試料物質について普遍的な物理量に関して、少量の試料物質で測定することが困難であるという制約がある。また、従来の原理に基づく方法においては、低粘度の試料物質について高精度で測定するということが困難であり、かつ上述したように、測定試料容器に付着した試料物質完全な洗浄が必要であるという制約もある。
【0009】
本発明は、このような事情に鑑みてなされたもので、検出対象の試料の物質の量が従来例に比較して少なくて済み、検出対象の物質を入れる試料容器を安価なものとして使い捨てを可能とし、かつ低粘度から高粘度までの広い領域にわたる試料物質の粘性を測定することができる粘性・弾性測定装置及び粘性・弾性測定方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
上述した課題を解決するために、本発明の粘性・弾性測定装置は、一部あるいは全体が導電性を有する材料で構成され、円板が当該円板の面が回転軸に対して垂直に固定されたコマ形状をしており、前記回転軸の軸先端部が滑らかな凸状で形成された回転子と、粘性を検出する対象の検出対象物質が入れられ、前記円板の面が該検出対象物質に接触した状態で前記回転子が配置された試料容器と、該試料容器の周りに配置され、前記回転子に対して磁場を印加する磁石と、該動磁場印加磁石を駆動して前記回転子に時間変動する磁場を印加し、前記回転子の前記円板内に誘導電流を誘起し、該誘導電流と該回転子に印加される磁場とのローレンツ相互作用により、該回転子に回転トルクを与えて回転させる回転制御部と、前記回転子の回転速度を検出する回転検出部と、前記回転子の回転速度数により、該回転子に接する前記検出対象物質の粘性及び弾性を検出する粘性弾性検出部とを有し、前記回転子の前記円板の半径が後述する(14)式により決定されることを特徴とする。
【0011】
本発明の粘性・弾性測定装置は、前記回転子の前記回転軸の軸先端部の凸状部分が、前記試料容器の内面の底部に接していることを特徴とする。
【0012】
本発明の粘性・弾性測定装置は、粘性が既知である複数の物質内における前記回転子に加わる回転トルクと、当該回転子の回転数との関係を予め測定した標準データを記憶する記憶部をさらに有し、前記粘性検出部が検出した検出対象物質の回転トルクと回転数との関係と、前記標準データを比較することにより、前記検出対象物質の粘性・弾性を求めることを特徴とする。
【0013】
本発明の粘性・弾性測定装置は、前記回転子にマークが付されており、前記回転検出部が前記マークの回転を検出することにより、前記回転子の回転数を検出することを特徴とする。
【0014】
本発明の粘性・弾性測定装置は、前記回転子の前記円板に対してレーザを照射し、その反射光あるいは干渉パターンの変化を光学的に測定することにより、前記回転子の回転数を検出することを特徴とする。
【0015】
本発明の粘性・弾性測定装置は、前記回転子と接する前記試料容器の内面の底部が滑らかな平面あるいは滑らかな曲面の凹形状に形成されていることを特徴とする。
【0016】
本発明の粘性・弾性測定装置は、前記試料容器に対し、当該試料容器の上部開口部を塞ぐ蓋が設けられており、前記回転子の回転軸が、前記検出対象物質が充填された試料前記試料容器の内面の前記底部と前記蓋の内面との間において回転自在に設けられていることを特徴とする。
【0017】
本発明の粘性・弾性測定装置は、前記試料容器の内部の空間が、前記回転子の前記円板の直径方向に対し、前記回転軸からの距離に比例して厚くなるように形成されていることを特徴とする。
【0018】
本発明の粘性・弾性測定方法は、試料容器に粘性及び弾性を検出する対象の検出対象物質を充填し、該検出対象物質内に一部あるいは全体が導電性を有する材料で構成され、円板が当該円板の面が回転軸に対して垂直に固定されたコマ形状をしており、前記回転軸の軸先端部が滑らかな凸状で形成された回転子を前記検出対象物質が当該円板の面に接触するように配置する過程と、前記試料容器の周りに配置された動磁場印加磁石を駆動して、前記回転子に時間変動する磁場を印加し、前記回転子の前記円板内に誘導電流を誘起し、該誘導電流と該回転子に印加される磁場とのローレンツ相互作用により、該回転子に回転トルクを与えて回転させる過程と、前記回転子の回転数を検出する過程と、前記回転数により、前記回転子に接する検出対象物質の粘性・弾性を検出する粘性検出過程とを含み前記回転子の前記円板の半径が後述する(14)式により決定されることを特徴とする。
【発明の効果】
【0019】
以上説明したように、本発明によれば、検出対象物と接して回転する回転子に印加する回転トルクと、回転数との関係から粘性及び弾性を測定するため、低粘度から高粘度にいたる広い領域にわたる粘性を、従来に比較して簡便な装置により測定することができる。
特に、本発明によれば、回転子の重量および試料容器底との接触部分の半径、ならびに回転子の回転半径を所定の式に対応して調整することにより、回転子の回転を阻害するいっさいの試料以外との機械的な摩擦の効果を任意に減少させ、測定精度を向上させることができるため、高精度な測定が行える。
また、本発明によれば、検出対象物を入れる試料容器に試験管などを利用することができ、大量生産が可能な回転子を採用することができるため、試料容器及び回転子を洗浄する手間が省け、作業を効率化させる使い捨てが可能となる。
【図面の簡単な説明】
【0020】
図1】本発明の一実施形態による粘性・弾性測定装置の構成例を示す概略構成図である。
図2】回転子1の試料容器2における配置を説明する試料容器2を側面から見た概念図である。
図3】磁石固定台7における回転磁界発生するために設けられた磁石の固定状態を示す平面図である。
図4】回転子1の回転軸11から、回転する回転翼12の外側方向に対して、回転翼12に対して磁石の発生する磁場を示す図である。
図5】複数の異なる粘性を有する標準試料における、モーター150の回転数ΩMと対応する標準試料での回転子110の回転数ΩD各々との関係を示す図である。
図6】ヨーク10と、このヨーク10から突出したティース10a、10b、10c及び10dとが基準2次元平面上に配置された電磁石を示す図である。
図7】試料100を充填する試料容器の新たな形態を表す模式図である。
図8】試料100を充填する試料容器の他の構成を表す模式図である。
図9】回転子の他の構成を表す模式図である。
図10】モーター4の回転速度ΩM(すなわち、回転トルク)と、浮き回転子1が停止する回転角度θとの関係を示す図である。
図11】弾性と、回転速度及び回転角度の比との関係を示す図である。
【発明を実施するための形態】
【0021】
以下、本発明の一実施形態による粘性・弾性測定装置を図面を参照して説明する。図1は本発明の一実施形態による粘性・弾性測定装置の構成例を示す概略構成図である。
この図において、本実施形態における粘性・弾性測定装置は、回転子1、試料容器2、第1磁石3_1、第2磁石3_2、第3磁石3_3、第4磁石3_4、モーター4、回転検出センサ5、試料台6、磁石固定台7、粘性測定部8を備えている。
【0022】
回転子1は、その一部または全部(全体)が導体(例えば、金属材料)にて構成されている。また、回転子1は、回転軸11及び円盤形状の部材、例えば金属材料で形成された回転翼12を有している。また、回転子1は、回転検出を行う(後述)ため、そのいずれかの表面(本実施形態においては回転翼12)に撮像素子などで検出可能な大きさのマークが設けられている。
【0023】
また、回転子1の一部分のみ(特に回転翼12の部分)がアルミニウムなどの導電体を用いており、他の部分はプラスチックやビニールなどの素材で構成することができる。回転翼12の部分は、例えばプラスチック製の円板の上面に市販のアルミ箔などを貼着させて作成しても良い。これにより、市販のプラスチックの円板と市販のアルム箔とから容易に安価な回転子1を形成することができる。
【0024】
試料容器2は、試料容器本体21と試料容器蓋22とから構成されている。また、試料容器2は、力学的物性としての粘性(すなわち、粘性係数)ηを測定する対象の検出対象物(以下、試料と称す)を収容する。試料容器本体21及び試料容器蓋22の各々は、例えば、ガラスあるいはプラスチックなどの材料で製造されている。試料容器本体21は、例えば小型のシャーレなどの円筒形状の試料容器である。この試料容器本体21の内径は、回転子1における回転翼12の直径よりわずかに大きければよい。
【0025】
試料容器蓋22は、中央部に回転子1の回転軸11が貫通する穴が開口されている。この試料容器2において、回転子1は、回転翼12が検出対象物である試料100に接するように、すなわち、一部または全部がこの検出対象物に没するように配置されている。試料容器2は、試料容器本体21及び試料容器蓋22の双方ともに、ガラスあるいはプラスチックを素材とした市販のシャーレなどを使用することができる。このため、試料容器2には、ディスポーザルな市販の試料容器を試料容器とすることができ、安価に準備することができる。
【0026】
上述したように、本実施形態は、回転子1及び試料容器2が安価とすることができる。このため、生体材料などが試料100となった場合、その廃棄に特段の注意を要する物質を測定対象としても、回転子1及び試料容器2を容易に廃棄することができる。
この結果、焼却及び減菌などの後処理の問題と同様に、他の医療器具の廃棄と同様に容易に行えることができる。
【0027】
図2は、回転子1の試料容器2における配置を説明する試料容器2を側面から見た概念図である。図2(a)は、回転子1の試料容器2における配置を説明する試料容器の側面を示している。図2(b)は、図2(a)の領域Aの部分の拡大図を示している。
回転子保持部50は、回転子1の回転軸11を地面に対して鉛直方向を向くように、回転軸11が貫通する回転軸保持穴51を有している。
回転軸保持穴51は、回転軸11と接する内面が摩擦が低減されるように滑らかに形成されている。また、回転子1の回転翼12は、表面12s上にマーク30が設けられている。
【0028】
ここで、回転軸11が倒れる方向へと加わる重力の効果は、回転軸11がほぼ鉛直方向に向いている限り極めて小さく、回転軸11と回転軸保持穴51内面との接触部における摩擦力は以下に示す議論により無視できる。
すなわち、回転軸保持穴51の実際の構造において、回転軸保持穴51の内径を、回転軸11の直径よりわずかに大きくすることにより、回転軸11は回転軸保持穴51の内面を転がるように運動する。このため、回転軸11と回転軸保持穴51内面との接触部における摩擦力は、転がり摩擦が主となり、回転軸11の回転に対する影響はさらに軽微である。
【0029】
また、試料容器蓋22には、回転軸11が貫通する貫通孔22hが、上面からの平面視にて回転軸保持穴51と重なる位置に設けられている。
試料容器本体21の内部の底面21sには、回転子1の回転軸11の下部11eが挿入される溝部21tが設けられている。この溝部21tは、上面からの平面視にて、貫通孔22h及び回転軸保持穴51の各々と重なる位置に設けられている。
溝部21tは、回転軸11の下部11eと接する内面が摩擦が低減されるように滑らかに形成されている。溝部21tには、回転軸11の下部11eが挿入されている。ここで、回転軸11の下部11eは、溝部21tと接する下面が摩擦が低減されるように滑らかに形成されている。このため、溝部21tの内面と回転軸11の下部11eの下面との接触部における摩擦力は、転がり摩擦が主となり、回転軸11の回転に対する影響はさらに軽微である。
【0030】
試料容器2には、試料100が試料容器本体21と試料容器蓋22とに挟まれた空間に充填されている。これにより、試料容器2内に配置された回転子1の回転に伴い、回転翼12と試料100との間に挟まれた試料100にずり流動が生じ、回転子1の回転に対して粘性抵抗トルクが生じる。この粘性抵抗トルクについては、後述する。
また、図2においては、試料容器本体21と試料容器蓋22とに挟まれた空間に試料100が充填されている。しかしながら、試料容器本体21と試料容器蓋22とに挟まれた空間に充填される程の試料100が準備できない場合、回転翼12全体が試料100に浸されていなくても、回転翼12の下面全体が試料100の液面に接するように、試料100が挿入されていれば良い。この場合、回転翼12の上面が試料100に対して接触していないために減少する粘性抵抗トルクを、試料100の充填状態から予測すれば良い。
【0031】
また、溝部21tに対して回転軸11の下部11eが挿入された状態で、回転子1が回転する。このため、回転翼12の下面と試料容器本体21の内部の底面21sとの間隔が、精度良く一定に保たれ、試料100中における回転翼12のずれ速度を安定して保つことができ、試料100の粘性測定の精度が向上する。
図2において、試料台6の上面に、試料100が充填された試料容器2が設けられている。この試料台6の下部には、モーター4のモーター軸4aが接続された磁石固定台7が試料台6と平行に設けられている。モーター4のモーター軸4aを回転させることにより、磁石固定台7が回転することになる。この磁石固定台7の上面には、第1磁石3_1(第3磁石3_3)、第2試料3_2(第4磁石3_4)が設けられている。
【0032】
図1に戻り、磁石固定台7は、回転磁場を発生させる磁石を固定する平板状の板部材である。例えば、磁石固定台7の上面には、第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石3_4の各々が固定して設けられている。この磁石固定台7は、回転翼12と平行となるように配置されている。第1磁石3_1及び第2磁石3_3の各々は、磁石固定台7の上面側にS極が接し、N極が回転翼12と対向するように設けられている。第2磁石3_2及び第4磁石3_4の各々は、磁石固定台7の上面側にN極が接し、S極が回転翼12と対向するように設けられている。
【0033】
したがって、第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石の各々は、隣接する磁石と互いに異なる極性の磁極が試料容器2の下面と対向する配置となっている。また、第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石の各々は、それぞれ直方体であり、上面の高さが同様となるように、上面が互いに平行に配置されている。
【0034】
図3は、磁石固定台7における回転磁界発生するために設けられた磁石の固定状態を示す平面図である。図3(a)は、第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石の各々の配置を示している。第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石3_4の各々は、磁石固定台7の回転軸に対して交互に対称に配置されている。一方、図3(b)は、第5磁石3_5及び第6磁石3_6の各々の配置を示している。
【0035】
本実施形態においては、第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石を用いているが、回転磁界を生成できれば、磁石はいくつでも構わない。すなわち、図示はしないが、複数個(N個、N=2n、nはn≧1の整数)の小型の磁石を試料容器2における回転子1の回転翼12の回転方向に沿って、磁石の上面の磁極がN極とS極とが交互になるように配置しても良い。また、磁石固定台7は、永久磁石の上面が水平面となるように、試料容器2に充填された試料100の液面と対向するように、試料容器2の上部に配置する構成としても良い。
【0036】
図4は、回転子1の回転軸11から、回転する回転翼12の外側方向に対して、回転翼12に対して磁石の発生する磁場を示す図である。
ここで、偏角θは、周回経路23上における1点を取り、この1点とz軸を回転軸として、x軸及びy軸からなる2次元座標系におけるx軸から、時計回り方向への回転子1の回転角度を示している。したがって、偏角θは、0から増加して2π[ラジアン]となり、この2πで周回経路23を一周したことになる。
【0037】
すなわち回転子1が反時計回り方向へ周回した場合、第1磁石3_1→第2磁石3_2→第4磁石3_4→第3磁石3_3の順に通過する。このとき、偏角θが0からπ/2まで、第1磁石3_1の配置領域となり、π/2からπまで、第2磁石3_2の配置領域となり、πから3π/2まで、第4磁石3_4の配置領域となり、3π/2からπまで、第3磁石3_3の配置領域となる。
【0038】
この図4において、z軸は、第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石3_4の各々の表面からなる平面(x軸及びy軸からなる2次元平面)の鉛直方向に平行な座標軸である。白抜きの矢印は、任意の高さz=z0における磁場の大きさと方向とからなる磁場ベクトルを表している。
ここで、モーター4により磁石固定台7を時計回り方向に回転させると、第1磁石3_1、第2磁石3_2、第4磁石3_4及び第3磁石3_3の各々も、時計回り方向に回転する。図4においては、第1磁石3_1、第2磁石3_2、第4磁石3_4及び第3磁石3_3の各々は、θが0から2πに向かって、すなわち図の右方向に向かって移動することになる。
【0039】
このとき、回転子1に印加される磁場は、z方向とθ方向の成分を持つ。回転子の厚みが直径に比べて十分に小さい場合には、磁場のθ方向の成分は回転子に発生するトルクに大きな寄与はしない。θ=0の位置において磁場のz方向成分は+z方向に増加しつつあり、この位置の周辺においては上方から、すなわち+z方向から見てローレンツ電流は時計回りに流れる。この電流と磁場とローレンツ相互作用により電流にはトルクが働く。さらに回転子全体に加わる回転軸周りのトルクの寄与の合計として、回転子には回転磁場に追随して回転しようとするトルクが生じる。このトルクの大きさの計算については後に詳述する。
【0040】
図1に戻り、試料台6は、試料100が充填された試料容器2を固定する平板状の板部材であり、上面が磁石固定台7の上面と平行となるように配置されている。
これにより、回転子1は、試料容器2内部の試料100中において、回転翼12と、第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石の各々が回転した際における、第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石それぞれの上面が形成する平面と平行となる。
上述した試料台6、磁石固定台7、第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石の各々の配置から、第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石それぞれにより、試料容器2における回転子1に対して垂直方向の磁場(垂直となる磁場成分でも良い)を発生させることができる。
【0041】
モーター4は、磁石固定台7を、磁石固定台7の表面に垂直なモーター軸4a方向で回転させる駆動機構であり、モーター軸4aが磁石固定台7の上面に対して垂直となるように固定されている。
また、平面視において、回転子1の回転翼12が試料容器2の内壁に接触せず、かつ試料100に接して回転する位置に、回転子1の回転軸11が配設されるように、試料容器2とモーター4とが配置されている。
すなわち、平面視において。試料容器2の底面の中心と、モーター4のモーター軸4aの軸方向とが重なる位置に、試料容器2とモーター4とが配置されている。
【0042】
また、試料容器2内に充填された試料100中における回転子1の回転翼12に対して回転磁場を与え、回転軸11を回転中心として回転させる際、磁石固定台7をモーター4により回転させる。これにより、第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石の各々が回転し、回転翼12に対して回転磁界が与えられる。このとき、回転翼12に対する回転磁場の印加状態により、回転子1の回転軸11が試料容器2の底面の中心からずれる場合がある。
ここで、平面視において、回転子1の回転翼12の面積に比較し、試料容器2の内部の底部の面積を大きく作製する。これにより、回転子1の回転軸11が試料容器2の底面の中心からずれても、試料容器2の内部の側壁に接触することはない。しかしながら、試料容器2を大きく作製するため、粘性ηの測定に必要な試料容器2内に充填する試料100の量が多くなる。
【0043】
このため、図2に示したように、本実施形態においては、試料容器2の底面21sの一部に滑らかな溝部(凹部)21tを設けている。この溝部21tを設けることにより、回転子1の回転時において、回転子1の回転軸11の下部(凸部)11eが溝部21tに中心を一致して接触するように、重力により配設される。
また、回転子1の回転軸11の上部を、回転子保持部50の回転軸保持穴51に貫通させることにより固定でき、回転子1の位置及び回転軸11がずれることを抑制することができる。このとき、上述したように、回転子保持部50の回転軸保持穴51と回転子1の回転軸11との接触部分に摩擦により発生する抵抗トルクは、回転子1の回転軸11の軸方向が試料容器2の底部に対して垂直方向に向いている場合、回転軸11と回転子保持部50の回転軸保持穴51内面との間の摩擦が転がり摩擦である。このため、回転軸11と回転子保持部50の回転軸保持穴51内面との間の摩擦は、滑り摩擦に比して十分に小さいことから、回転子1の回転抵抗に対する寄与は十分に小さくなる。
【0044】
図1においては、回転子1の回転軸11は棒状の形状であり、回転子保持部50は回転軸11を取り囲む回転軸保持穴51を有している。
しかしながら、必ずしもこの構造に限定されるものではなく、例えば、回転軸11を円筒として構成し、上部が開放されて中空穴を有するパイプ状に構成する。そして、回転軸の上部の開放された中空穴に対して、棒状の回転子保持部50を挿入し、回転子1を回転させる構造としても良い。この場合、回転軸11の中空穴の内面と回転子保持部50とが接触することにより発生する機械摩擦を低減するため、潤滑油を中空穴の内部に充填させても良い。また、回転軸11の下部11eについては、本実施形態においてすでに説明したように、円筒が閉じられた構造であり、かつ溝部21tとの機械的な摩擦を低減するため、滑らかな形状とする。
【0045】
図5は、複数の異なる粘性ηを有する標準試料における、モーター4の回転数ΩMと対応する標準試料での回転子1の回転数ΩD各々との関係を示す図である。図5において、縦軸は回転数ΩMと回転数ΩDとの回転差ΩMD(回転数ΩM−回転数ΩD)を示し、横軸は回転子1の回転数ΩDを示している。ここで使用した各標準試料の粘性ηは、例えば、それぞれ異なり、0.5(mP・s)、1.0(mP・s)、2.0(mP・s)である。そして、この図5から粘性ηの異なる標準試料毎の回転差ΩMDと回転数ΩDとの関係、すなわち傾きΩD/ΩMDの対応を示す直線を最低二乗法などにより求める。この傾きΩMD/ΩDは、各標準試料の粘性ηと比例するものである。
【0046】
図1に戻り、回転検出センサ5は、試料容器2の試料100中の回転子1の回転翼12の表面に設けられたマークが検出できる位置として、試料容器2の上部方向の位置に配置され、この回転翼12表面のマーク(図2(a)のマーク30)の位置を光学的に検出する。すなわち、回転検出センサ5は、光照射部からレーザ光を出射し、回転翼12の上面のマークからの反射光を受光部で入射し、入射光の強度に対応した検出電気信号を出力する。
【0047】
また、回転検出センサ5の代わりに、レンズとCCD(Charge Coupled Device)などの撮像素子を顕微鏡に付加した撮像装置を設け、回転子1の回転翼12におけるマークの移動状態を拡大して撮像した撮像画像を出力し、画像処理から回転数(すなわち、回転翼12のマークの周回数、マーク(図2(a)のマーク30)が一回転した場合に周回数は1)を検出するようにしても良い。
【0048】
また、回転子1の回転翼12の上面、あるいは回転軸11の下部11eに対して、レーザを照射し、回転による反射及び干渉パターンの変化を光学的に測定し、回転子1の回転数を検出する構成としても良い。
また、回転子1の回転翼12の一部を誘電体で置き換え、測定電極間に回転翼12が挟まれる電極対を、図1などの磁石固定台7の回転の邪魔にならない位置に配置し、コンデンサを構成する。そして、回転検出センサ5は、回転を検出するためのマークとしての誘電体(例えば、図2(a)のマーク30の位置に設ける。)が、配置した電極間を通過する際、検出電気信号を出力する。すなわち、回転検出部81は、マークとしての誘電体が電極間を通過する際、電極で構成したコンデンサの容量変化を検出し、所定の期間(たとえば、1秒)におけるこの容量変化の回数を検出し、回転子110の回転数を検出するように構成しても良い。
【0049】
ここで、モーター4で磁石固定台7を回転させることにより、第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石3_4の各々が回転し、時間的に変動する磁場として回転磁場が磁石固定台7の上面に空間に形成される。
この回転磁場により、回転子1の回転翼12に対してトルクを与えて、試料容器2における試料100中において回転子1を回転させ等速回転運動をさせる。そして、回転子1の試料100内における回転速度から試料100の粘性ηを計測する方法について、以下に説明する。
【0050】
粘性測定部8は、回転検出部81、粘性検出部82、回転磁場制御部83、標準データ記憶部84及び装置制御部85を有している。
回転検出部81は、回転検出センサ5から供給される検出電気信号により、回転子1の回転検出を行い、単位時間(例えば、1秒)当たりの検出回数を、単位時間当たりの回転数(rpm:revolutions per minute)として、回転数ΩDを求めて出力する。また、回転検出部81は、回転子1の回転数の検出において、回転検出センサ5の検出電気信号を用いるのではなく、撮像装置の撮像画像を用いる場合、撮像装置が撮像して出力する撮像画像から、回転子1の回転翼12のマークを画像処理により検出し、単位時間当たりの回転数ΩDを求めるようにしても良い。また、コンデンサの構成を用いた場合、回転検出部81は、検出電気信号により電極対で構成したコンデンサの容量変化を検出し、所定の期間(たとえば、1秒)におけるこの容量変化の回数を検出し、回転子1の回転数ΩDを検出するように構成しても良い。
【0051】
粘性検出部82は、上述した標準試料の場合と同様に、試料108における傾きΩD/ΩMD(=ΩM−ΩD)を求め、この傾きの逆数ΩMD/ΩDを求める。このとき、粘性検出部82は、回転磁場制御部83(後述)に対して、異なる複数の回転速度ΩMでモーター4を回転させる制御を行い、回転数を変更する毎に制御信号を回転検出部81へ出力する。回転検出部81は、粘性検出部82から制御信号が供給される毎に、回転速度ΩMにおいて試料容器2に入れた試料100中の回転子1の回転速度ΩDを回転検出センサ5から入力する。そして、回転検出部81は、検出した回転速度ΩDを、制御信号に対応して粘性検出部82へ出力する。
【0052】
そして、粘性検出部82は、標準データ記憶部84(後述)に記憶されている粘性検出テーブルから、試料100の逆数ΩMD/ΩDに対応する粘性η(mP・s)を読み出し、これを試料100の粘性η(mP・s)として出力する。ここで、標準データ記憶部84に実験式が記憶されている場合、粘性検出部82は、標準データ記憶部84から上記実験式を読み出し、この実験式に対して傾きの逆数ΩMD/ΩDを代入し、試料100の粘性η(mP・s)を算出して求める構成としても良い。
【0053】
回転磁場制御部83は、設定された回転数でモーター4が回転するように、モーター4に対する回転制御を行う。これにより、モーター軸4aを介して磁石固定台7が回転することになり、第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石3_4の各々により発生する磁場が回転し、回転子1を試料100中において等速回転させる回転磁場を発生させる。
【0054】
標準データ記憶部84は、図5における表から求めた粘性η(mP・s)と、傾きの逆数ΩMD/ΩDとの対応を示す粘性検出テーブルが記憶されている。
この粘性検出テーブルは、以下の様に作成されている。図5において説明したように、本実施形態の粘性測定装置において、粘度が予め判っている標準試料を試料容器2に入れ(充填し)、標準試料中に回転子1を入れ、予め設定した複数の回転数ΩMによりモーター4を回転させた場合に、各モーター4の回転数ΩMに対応した回転子1の回転数ΩDを、上述した回転検出部81により測定する。この標準試料に対する回転数ΩDの測定を、複数の異なる粘性ηを有する標準試料(予め粘性ηの判っている試料)に対して行う。
また、粘性検出テーブルではなく、粘性η(mP・s)と、傾きの逆数ΩMD/ΩDとの対応を示す実験式が記憶されていても良い。
装置制御部85は、粘性測定部8内の各部の動作の制御を行う。
【0055】
次に、回転子1の回転翼12に対して回転トルクを与える方法について説明する。図1において、第1磁石3_1のN極及び第4磁石3_4と、第2磁石3_2及び第4磁石3_3のS極とにより、ある基準面(回転翼12を含む平面)に対して垂直な磁場が発生する。この基準面を、x軸及びy軸からなる基準2次元平面とし、この2次元平面において回転する回転子1の回転翼12の回転軸11の軸方向をz軸とする。
以降、基準2次元平面あるいはその近傍の点(x,y,z)における磁場のz軸成分をBz(x,y)として示す。
【0056】
すでに述べたように、磁場は、基準2次元平面に対して垂直であるため、z軸に依存しないと仮定しているが、z軸に依存しても以下の説明に支障はない。また、基準2次元平面に対して垂直な磁場の成分があれば、他に基準2次元平面に対して垂直でない磁場の成分が存在しても、回転子1の回転翼12に対して回転トルクを与えることに支障とならない。
以下の説明において、回転翼12を金属で形成し、この回転翼12に加わる回転トルクを計算する。また、便宜的に最初は直交座標を採用し、回転翼12の鉛直上方を+z方向とし、回転翼12をx−y平面に起き、回転翼12の中心(回転軸11と回転翼12との交点)を原点とする。さらに、磁石固定台7が回転することにより、第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石3_4の生成する回転磁界を以下の(1)式により表す。
【0057】
【数1】
【0058】
上記(1)式において、rは回転軸からの距離を示し、Bはz軸方向の磁界を示し、B(r)は回転半径方向の磁界を示し、ωは回転角速度を示し、tは時間を示し、nは磁石の組の数を示し、θは磁石固定台7の回転角度を示している。図1に示す本実施形態の場合、試料台6に対向する磁極がN極及びS極との磁石の組が2組であるため、nは2である。
また、時間変動する磁場Bによって生じる電場Eは以下の(2)式で与えられる。磁場B及び電場Eはベクトルである。
【0059】
【数2】
【0060】
この(2)式において、磁場Bはz方向成分のみの磁場Bを有すると仮定するが、z軸方向以外の成分があっても以下の議論は成り立つ。
回転子1における導電性のディスク状の回転翼12内を流れる電流ベクトルiはi=σEであり、ここで、σは導電率である。i及びEはベクトルである。電流ベクトルiに対して発散は「0」なので、div i=0である。したがって、電場Eについて、以下の(3)式を満たす渦ポテンシャル(vortex potential)φが存在する。
【0061】
【数3】
【0062】
上記(3)式において、Eは2次元座標系におけるx軸方向の電場を示し、Eは2次元座標系におけるy軸方向の電場を示している。
上記(3)式を(2)式に代入し、以下の(4)式を得る。
【0063】
【数4】
【0064】
(2)式と(4)式とにより、以下の(5)式が得られる。
【0065】
【数5】
【0066】
(5)式を磁場の具体的な表式で表現すると、以下の(6)式として表される。
【0067】
【数6】
【0068】
上記(6)式において、B(r)は回転半径方向の磁界を示し、ωは回転角速度を示し、tは時間を示し、nは磁石の組の数を示し、θは磁石固定台7の回転角度を示し、φは渦ポテンシャルを示している。
【0069】
上記(6)式から以下の(7)式が得られる。
【0070】
【数7】
【0071】
上記(7)式において、J(kr)は第1種ベッセル関数を示し、kは式(7)の積分を実行する際の積分変数を示し、rは回転半径を示し、ωは回転角速度を示し、tは時間を示し、θは磁石固定台7の回転角度を示している。
また、上記(7)式において、係数A(k)はB(r)のHankel変換係数であり、以下の(8)式で表される。
【0072】
【数8】
【0073】
以下の説明は、3次元座標系から円筒座標系に移行する。(3)式で得られる電場Ex及び電場Eyの各々から、半径方向における電場Er及び動径方向における電場Eθをそれぞれ求めると、以下の(9)式のように表せる。(9)式において、θは磁石固定台7の回転角度を示し、rは回転半径を示している。
【0074】
【数9】
【0075】
上記(9)式において、電場と磁場とのローレンツ相互作用を考えると、ローレンツ力の半径方向の成分の全積分は対称性により自明に0となる。
また、動径方向の成分は、Fθ=σEで与えられる。この動径方向の成分は、(7)式及び(9)式により、以下の(10)式で表される。(10)式において、ωは回転角速度を示し、θは磁石固定台7の回転角度を示し、nは磁石の組の数を示し、係数A(k)はB(r)のHankel変換係数を示し、J(kr)は第1種ベッセル関数を示し、kは式(7)の積分を実行する際の積分変数を示し、rは回転半径を示している。
【0076】
【数10】
【0077】
上記(10)式において、簡単のために磁場の動径方向の分布がBessel関数で近似できるものとする。すなわち、B(r)=B(kr)のとき、回転磁場が回転翼12に与えるトルクTは、以下の(11)式で求めることができる。ここで、Bは磁場の強度を示している。(11)式において、nは磁石の組の数を示し、ωは回転角速度を示し、Bは式(7)の積分を実行する際の積分変数を示し、J(kr)は第1種ベッセル関数を示している。
【0078】
【数11】
【0079】
上述したように、回転する磁場により回転子1の回転翼12にトルクTが働くことが判った。実際の粘性・弾性測定装置においては、回転翼12に対して働くトルクTにより、回転子1が試料100中を回転するため、上記における回転磁場の回転数ΩMは、磁場の回転数ΩMと回転子1の回転翼12の回転数との差である回転数差ΩM−ΩDで置き換える。
この結果、回転子1の回転翼12の導電体に発生する渦電流が回転トルク(トルクT)を受けることにより、回転子1の回転翼12に対して回転トルクTが印加されることになる。回転子1の回転翼12に対して回転トルクが印加された結果、回転子1は、試料100中において回転トルクTの印加される方向に回転することになる。
【0080】
また、回転翼12の回転に伴い試料100の粘性ηに対応したずり流動による粘性抵抗トルクが、回転翼12に対して印加される。この粘性抵抗トルクのため、回転子1の回転数ΩDは、粘性抵抗トルクに比例した分、磁場の回転数ΩMには達しない。
したがって、回転子1の回転翼12に印加される回転トルクTの大きさは、回転磁場の回転数ΩM(モーター4の回転数と同様)と、回転子1の回転数ΩDとの差に比例することになる。すなわち、回転子1の回転数ΩDが一定となった場合、この一定となった回転数ΩDは、試料100の粘性ηに反比例の関係を有している。
【0081】
上述したように、回転子1の回転翼12に印加される回転トルクTと、試料100中において回転する回転子1の回転数ΩDと、回転子1の半径rと、回転翼12と試料容器本体21の内面の底との間の厚み、および回転翼12と試料容器蓋22との間の厚みとにより、試料100の粘性ηを求められることが判る。
ここで、試料100の粘性ηの測定において、回転子1の回転翼12に印加される回転トルクTは、予め粘性ηの判っている標準試料を用いて、すでに説明した図5に示したように、回転磁界の回転数ΩMと回転子1の回転数ΩDとの回転数差ΩMDの関数として求めておく。
【0082】
また、試料100を回転翼12から下部の空間にのみ充填する場合、すなわち試料100が試料容器本体21の内面の底と回転翼12の下面との間のみに充填される場合、試料が回転翼12の下面のみと接する。
このため、図5に示す粘性検出テーブルを作成する際、同様の条件にて標準試料の測定を行う必要がある。
また、予め粘性ηを測定する試料100の密度が判っていれば、この試料100の密度に対応して、共通サイズの試料容器2に試料100を挿入した場合、均一の深さとなる適当な試料100の量を、秤により秤量する。この処理により、密度の異なる試料100毎に、試料容器2に測定時に入れる試料100の深さを均一にすることができる。
【0083】
ここで、本実施形態の粘性・弾性測定装置における粘性測定の精度について述べる。本実施形態の粘性・弾性測定装置では、時間変動する磁場(回転数ΩMの回転磁界)により回転子1の回転翼12に対して、遠隔に既知のトルクTを印加し、その回転数ΩDを検出することで対象物質である試料100の粘性ηを測定する。
回転子1の回転翼12に印加するトルクTについては、与えられる磁場の大きさから上記(11)式により求めてもよい。また、既知の粘性ηを持つ標準試料を用いた測定をあらかじめ行って決定してもよい。ここから求まるトルクTの大きさの決定精度は、原理的には任意に向上させることができ、実際には0.1%以上の精度で決定することが可能である。
【0084】
一方、回転子1の回転数ΩDを決定する要因には、検出対象の試料100の粘性η以外にも、回転子1の回転軸11の下部11eと、試料容器本体21の内部の底面21sとの接触部における機械的な摩擦による回転トルクTが挙げられる。この回転トルクTは、以下の(12)式により示される程度であることが、理論的な計算及び実験的にも検証されている。
【0085】
【数12】
【0086】
上記(12)式において、Mは回転子1の重量を示し、ρは試料100の比重を示し、Vは回転子1の試料100に没する部分の体積を示し、gは重力加速度を示し、μは回転軸11の下部11eと試料容器本体21の底面21sとの動摩擦係数を示し、Rcは回転子1の回転軸11の下部11eと試料容器本体21の底面21sとの接触部分の接触半径を示している。
【0087】
また、回転子1における半径Rの円板型の回転翼12により、厚み(深さ)がdの試料100に対し、上面(回転翼12と接する面)での回転角度ω、下面(試料容器本体21の底面21sと接する面)での回転角速度0となるひずみを加えるのに必要なトルクTVISは、以下の(13)式により計算される。
【0088】
【数13】
【0089】
上記(13)式において、Rcは回転子下部の容器底との接触部分の接触半径を示し、Mは回転子1の重量を示し、Vは回転子1の試料100に没する部分の体積を示し、ρは試料100の比重を示し、gは重力加速度を示し、Rは回転子1の回転半径を示し、ηは検出対象物質である試料100の粘性を示し、μは回転子1の回転軸11の下部11eと試料容器本体21の底面21sとの動摩擦係数を示し、dは回転子1の回転翼12と試料容器本体21の底面21sとに挟まれた試料100の厚みを示している。
【0090】
また、αを要求される粘性・弾性の測定精度とする。例えば、要求される測定精度αが1%のとき、α=0.01である。(12)式から得られる回転トルクTが、(13)式から得られるトルクTVISのα倍よりも小さければ、すなわち、以下の(14)式が成り立てば要求される測定精度αを得ることができる。試料100の粘性によるトルクTVISは、回転子1と試料容器本体21の底面21sとの接触による機械的摩擦のトルクTを1/α倍以上の大きさで優越し、これによって精度αでの粘性計測が可能になる。
【0091】
【数14】
【0092】
この測定精度αは従来の手法においては10%程度であるが、より望ましくは1%程度が必要である。さらに、従来の手法では困難な精度である0.1%程度が得られることが望まれている。
上述したように、本実施形態によれば、検出対象の物質である試料100の量を、従来の測定に比較して少なくすることができる。
また、本実施形態によれば、回転磁界を生成する第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石3_4の各々を、試料容器2を配設する試料台6の下部方向に配置することができ、粘性・弾性測定装置を従来に比較して小型化することが可能である。
【0093】
また、回転磁場を生成する磁石は、図1においては、第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石3_4の2つの組み合わせを用いている。この場合、平面視において、2個のN極と2個のS極とが互い違いに配設された2組の組み合わせで、回転磁場を発生している。これに対して、(11)式によれば、回転子1の回転翼12にトルクを与える磁石の組の数は1組以上の任意でよく、たとえば平面視して正方形の磁石2個を、S極とN極が互い違いになるように配置しても構わない。
【0094】
また、上述した磁石固定台7を回転させ、第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石3_4により回転磁場を生成するのではなく、電磁石を用いて回転磁界を生成する構成としても良い。
図6は、ヨーク10と、このヨーク10から突出したティース10a、10b、10c及び10dとが基準2次元平面上に配置された電磁石を示す図である。ティース10aと10cとには各々異なる巻方向に巻線CL1が巻かれ、同様に、ティース10bと10dとには各々異なる巻方向に巻線CL2が巻かれて、電磁石を構成している。
図1におけるモーター4で磁石固定台7を回転させ、永久磁石である第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石3_4の放射する磁場から回転磁場を生成する替わりに、上述した図6に示す電磁石の構成を用いて回転磁場を生成しても良い。
【0095】
すなわち、巻線CL1及び巻線CL2に電流を流し、基準2次元平面に対して垂直な磁場を生成し、流す電流の向きを周期的に変化させ、基準2次元平面に対して垂直な磁場を回転させて回転磁場を形成しても良い。すなわち、円周上に配列された電磁石各々が隣接する他の電磁石と異なる極性となるように、それぞれの電磁石を駆動する。この電磁石を駆動させる際、時間的に各電磁石の極性を変化させることで、回転磁場を生成するように構成しても良い。
この場合、回転磁場制御部83が図6の電磁石における巻線CL1及びCL2に対して電流を流し、この流す電流の向きを周期的に変えて、回転磁場を生成させる処理を行う。
この回転磁場により、すでに磁石を用いた場合と同様に、回転子1の回転翼12に対してトルクを印加し、回転軸11を回転中心として回転翼12の回転運動を、試料100内で行わせて、試料100の粘性ηを求める。
【0096】
また、回転磁場制御部83は、回転子1の回転翼12に対し、印加する回転磁場の回転周期、および回転方向を任意に変化させるようにしても良い。
例えば、回転磁場の回転方向と、回転速度とを周期的に掃引することにより、回転子1に対して、周期的に変化する回転トルクを与えることができる。
【0097】
図7は、試料100を充填する試料容器の他の構成を表す模式図である。この図7の形態によれば、試料容器200を構成する試料容器本体201及び試料容器蓋202の各々の断面が三角形の形状になっている。すなわち、試料容器本体201及び試料容器蓋202の各々の断面は、中心部から外周部に向かうにつれ厚さが薄く形成されている。
これにより、回転翼12と、試料容器本体201の底面201s及び試料容器蓋202の各々との間に挟まれる試料100の厚みは、回転子1の回転軸11からの距離に比例して増加する。これにより、試料容器200に充填されている試料100内のいたるところで、一様なずり速度の変形を実現することができる。したがって、この試料容器200の形態は、ずり速度によって粘性の値が変化する非ニュートン流体の粘性及び弾性の測定に有効である。マーク19は回転軸11の回転を検出するためのマークである。
【0098】
図8は、回転子及び試料100を充填する試料容器の他の構成を表す模式図である。図8において、回転子401は、回転翼412とこの回転翼の回転軸としての凸部411とを備えている。
また、試料容器420は、試料容器本体421及び試料容器蓋422を備えている。試料100は、試料容器本体421及び試料容器蓋422の各々から形成される内部空間に充填されている。試料容器本体421の内部の底面421sは全面が平面である。すなわち、図9における試料容器本体421の底面421sには、図2に示す回転子1の回転軸11を挿入する溝部21tのような溝は設けられていない。
【0099】
回転子401において、回転翼412には、円盤状の部材であり、試料容器本体421の底面421sと対向する下面412sの中心に凸部411が設けられている。
試料容器本体421の底面421sと接触する回転子401の凸部411の底部411eは、凸部411の最下点であり、接触面における機械的な摩擦を低減するため、滑らかな形状で形成されている。また、凸部411の底部411eが試料容器本体421の底面421sとの接触する領域の曲率半径は、RTである。
また、試料100に没した状態において、回転子401の浮力まで考慮した上での重心位置RGと、回転子401の凸部411の底部411eとの距離は、hである。回転子401の凸部411は、RT<hの条件が満たされるように構成されている。
【0100】
上記条件を満たすとき、回転子401は、凸部411の底部411eを、試料容器本体421の底面421s(平面)に接触させた状態で、回転翼412を試料容器本体421の底面421sに対して水平を保つ姿勢が安定する。すなわち、回転子401を試料100中に没した状態で配置するのみで、回転翼412と試料容器本体421の底面421sとが平行にかつ水平面内に保たれる。
このため、回転子401の姿勢を微調整する必要がなく、試料100内の全体におけるずり速度を安定して一様とすることが可能となり、高い精度で粘性と弾性の測定を実現できる。また、図2の構成における回転軸11を挿入して回転子1の回転を安定させる回転子保持部50の回転軸保持穴51を設ける必要が無く、余分な機械的な接触を低減することが可能であり、測定精度を向上させることが期待できる。また、回転子保持部50を設ける必要がないため、粘性・弾性測定装置の構成を簡便にすることができる。
【0101】
図9は、回転子の他の構成を表す模式図である。図9において、試料容器20は、図2と同様な構成であるため説明を省略する。回転子1Aは、図2の回転子1の回転軸11の上部11tに部材11mを設けた構成をしている。この部材11mは、着磁性のある材料で形成されている。
また、回転軸11の軸方向の上部に、部材11mと対向するように、所定の距離の間隙を有して回転子保持部600が設けられている。回転子保持部600は磁石で形成されている。したがって、回転子保持部600が部材11mを、すなわち回転子1Aを上方に引き上げる力を印加する。ここで、回転子保持部600と試料容器本体21の底面21sに形成されている溝部21tとは、平面視において重なる位置に設けられている。この結果、回転軸11は常に上部に引き上げられる力が働くため、鉛直方向に保たれる。また、回転軸11の下部11eと、試料容器本体21の底面21sに形成されている溝部21tの内面とは、接触における機械的摩擦が低減するように、それぞれ滑らかに形成されている。
【0102】
回転子1Aは、回転軸11の下部11eを、試料容器本体21の底面21sの溝部21tの内面に接触させた状態で、回転翼12を試料容器本体21の底面21sに対して水平を保つ姿勢が安定する。すなわち、回転子1Aを試料100中に没した状態で配置するのみで、回転翼12と試料容器本体21の底面21sとが平行にかつ水平面内に保たれる。
このため、回転子1Aの姿勢を保持するため、図2の構成における回転軸11を挿入して回転子1の回転を安定させる回転子保持部50の回転軸保持穴51を設ける必要が無い。この結果、回転子1Aに対して余分な機械的な接触を低減することが可能であり、高い精度で粘性と弾性の測定を実現できる。また、回転子保持部50を設ける必要がないため、粘性・弾性測定装置の構成を簡便にすることができる。
【0103】
次に、本実施形態による粘性・弾性測定装置を用いた弾性の測定について説明する。図1及び図2の構成の粘性・弾性測定装置により説明する。
本実施形態によれば、液体のように粘性を求めるのではなく、ゲルやゴムなどのように弾性率を有する物質、あるいは粘性の緩和により弾性率が生じる高分子溶液のような物質に対し、一定トルクを与えた際の静止位置からの変位により、粘性率及び弾性率を同時に測定することが可能である。
【0104】
ここで、弾性率は、いわばバネ定数であり、試料100の回転変形に比例した復元力に対応している。
したがって、粘性に加えて弾性がある場合、弾性率による復元力は、歪の程度に比例して大きくなる。このため、回転子1は、回転開始してから、試料のバネ定数に比例した弾性力と、回転磁場による回転トルクが釣り合った回転角度θで回転を停止することになる。磁石固定台7が反時計回りに回転することにより、すでに述べたように、反時計回りの回転トルクが試料100中の回転子1に印加される。
【0105】
そして、回転子1に対して印加される回転トルクと弾性による反発力が釣り合う回転角度θの位置で、浮き回転子1の回転が停止する。
ここで、回転検出部81は、モーター4が回転しておらず、磁石固定台7が停止状態における回転子1の回転翼のマーク30の位置と、所定の回転数ΩMでモーター4が回転した後、回転が停止した際のマーク30の位置との各々の撮像画像から回転角度θを求める。この角度θから弾性を求めることができる。
【0106】
図10は、モーター4の回転速度ΩM(すなわち、回転トルク)と、回転子1が停止する回転角度θとの関係を示す図である。図10おいて、横軸がモーター4の回転数ΩMを示し、縦軸が回転子1の停止する回転角度θを示している。
すなわち、図1及び図2に示す粘性・弾性測定装置の場合、磁石固定台7がモーター4により回転することにより、この磁石固定台7に配置されている第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石3_4の各々の磁石が、モーター4の回転速度に対応した回転磁場を生成する。
【0107】
そして、回転磁場制御部83は、予め設定されたステップに従い、モーター4の回転速度を変化させ、回転速度毎の回転角度θを求めて、回転数ΩMと回転角度θとの関係を求めて図10に示すグラフを作成する。ここで、予め弾性が判っている複数の標準試料に対して、粘性と同様に、弾性が未知の試料100の弾性測定に用いる標準データ作成するため、上述した処理を行う。粘性の標準データの作成時と同様に、標準試料を試料容器2に入れて、上述した回転角度θの測定を行う。
【0108】
図11は、弾性と、回転速度及び回転角度の比との関係を示す図である。図13において横軸が弾性(弾性率:Pa)を示し、縦軸が回転速度ΩMと回転角度θとの比例係数を示している。ここで、粘性と回転角度θとは逆比例する。
この図11は、図10における各標準試料の傾き(回転速度ΩMと回転角度θとの比)と、対応する標準試料の粘性とを対応付けて作成した、弾性測定に用いる弾性の標準データである。
実際の未知の弾性の試料100の測定において、この測定対象の試料100を試料容器2に入れ、標準試料の場合と同様に、回転磁場制御部83がモーター4を予め設定した回転速度で回転させる。
【0109】
そして、回転検出部81は、各回転速度毎の回転角度θを求めて、粘性検出部82に対して出力する。
粘性検出部82は、回転検出部81から供給される回転速度ΩMと回転角度θとの比例係数を求め、この比例係数に対応する弾性のデータを、標準データ記憶部84の標準データから読み出し、読み出したデータを試料100の弾性として出力する。
【0110】
また、回転子1の回転翼12に加える回転トルクを時間的に変化させることにより、弾性と粘性とを同時に測定することも可能である。この場合、回転磁場を生成する磁石を、図6に示す電磁石で構成する。
例えば、電磁石に対して励磁電流を印加し、回転子1の回転翼12に対して所定の回転トルクを印加した後、この励磁電流の印加を停止し、停止した後の回転子1の回転状態を観察する。
【0111】
このとき、回転子1は、自身が接している試料100の弾性に応じて回転振動を起こすことになる。ここで、弾性に対して回転振動の周期及び振動時間が比例し、粘性に対して回転振動の振幅の減衰率が比例している。
したがって、予め粘性及び弾性の判っている複数の標準試料毎に、その回転振動の振幅の減衰率と、周期及び振動時間とを、回転子1の回転翼12に対して回転磁界を印加することにより測定し、標準データを作成して標準データ記憶部84に予め記憶させておく。
【0112】
次に、実際の未知の粘性及び弾性を有する測定対象の物質を測定する際、粘性検出部82は、測定対象の物質である試料100の振幅の減衰率と、周期及び振動時間とを回転子1により測定し、この測定した振幅の減衰率に対応する粘性と、周期及び振動時間とに対応する弾性とを、それぞれ標準データ記憶部84の標準データから読み出す。
そして、粘性検出部82は、標準データから読み取った粘性及び弾性を、測定対象の試料100の粘性及び弾性として出力する。
上述したように、本実施形態によれば、試料100の粘性及び弾性を一括して同時に測定することが可能となる。
【0113】
また、回転子1の回転翼12に印加する回転磁場の回転方向と、回転トルク(モーター4の回転数ΩM)とを周期的に掃引することにより、回転子1の回転翼12には周期的な回転トルクを印加することができる。
そして、この回転方向と回転トルクとを掃引する周期を変化させつつ、回転子1の回転振動の振幅と位相とを、回転翼12のマーク30を撮像した撮像画像から観察することにより、粘性と弾性とを独立して測定であることが可能となる。
すなわち、この回転振動の観察は、すでに述べた、磁場を消去した後の減衰振動を、周波数スペクトルとして検出するものであり、磁場を消去した後の粘性及び弾性の測定と原理的に同様である。
【0114】
次に、図1に示す粘性・弾性測定装置(力学物性測定装置)における具体的な応用例について説明する。
試料容器本体21は、内径が40mmであり、内部の側壁の高さ10mmのガラス製シャーレを用いた。そして、試料容器本体21に測定対象の物質である試料100を5mL入れた後、試料容器本体21を試料容器蓋22により封止した。ここで、例えば、試料100の温度は20℃とした。
予め粘性の判っている標準試料としては、図5に示すように、0.5(mPa・s)、1.0(mPa・s)、2.0(mPa・s)の3種類を用いた。
【0115】
そして、この標準試料の表面で回転子1の回転翼12に回転トルクを印加して、回転子1を回転させた。この場合、回転翼12の下面が試料100と接している。ここで、回転翼12は、直径28mm、厚さ0.1mmのアルミニウム板の円板に、回転軸11の下端に対して下部11eとして直径2mmのアルミ球を取り付けた。回転軸11は、直径1.6mm、長さ30mmのガラス管用いた。
【0116】
次に、回転磁場制御部83は、モーター4を駆動して、磁石固定台7を回転させる。
この結果、第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石3_4が生成する回転子1の回転翼12に垂直な磁場を、第1磁石3_1、第2磁石3_2、第3磁石3_3及び第4磁石3_4を回転させることにより、回転子1の回転翼12に対して回転磁場を印加する。この回転磁場により、回転子1の回転翼12は、回転トルクが印加され、印加された回転磁界の回転方向と同一方向に回転を行う。
そして、回転検出部81は、例えば、回転検出センサ(撮像素子)が撮像する、回転子1の回転翼12のマーク30の回転する動画像を撮像画像として自身内部の記憶部に記憶し、画像処理によりマーク30の回転周期を求め、このマークの回転周期から回転子1の回転数を求める。
【0117】
モーター4の回転数ΩMを変える毎に、対応する回転子1の回転数ΩDを求め、図5に示すように、粘性の異なる標準試料毎に、回転子1の回転数ΩDと、回転数ΩM及びΩMの差分との対応関係を求める。
図5において、各標準試料の回転子1の回転数ΩDと、回転数ΩM及びΩMの差分との関係を示す関係は、直線となっている。このため、図5は、回転子1の回転数と、回転子1に印加される回転トルクの関係のみから粘性を求めることが可能であることを示している。
この結果、標準データを用いることにより粘性を正確に測定できることが分かる。
【0118】
なお、本発明における図1の粘性・弾性測定装置の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより試料の粘性を求める処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。
【0119】
また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
【符号の説明】
【0120】
1,1A…回転子
2,200,420…試料容器
4…モーター
4a…モーター軸
5…回転センサ
6…試料台
7…磁石固定台
8…粘性測定部
11…回転軸
11m…部材
11t…下部
12…回転翼
21,201,421…試料容器本体
21s,421s…底面
21t…溝部
22,202,422…試料容器蓋
22h…貫通孔
30…マーク
3_1…第1電磁石
3_2…第2電磁石
3_3…第3電磁石
3_4…第4電磁石
50,600…回転子保持部
51…回転軸保持穴
81…回転検出部
82…粘性検出部
83…回転磁場制御部
84…標準データ記憶部
85…装置制御部
411…凸部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11