【非特許文献】
【0018】
【非特許文献1】Whitesides, G. M., Mathias, J. P. & Seto, C. T., Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312-1319 (1991).
【非特許文献2】Gazit, E., Diversity for self-assembly, Nature Chem. 2, 1010-1011 (2010).
【非特許文献3】Sarikaya, M., Tamerler, C., Jen, A. K.-Y., Schulten, K. & Baneyx, F., Molecular biomimetics: nanotechnology through biology. Nature Mater. 2, 577-585 (2003).
【非特許文献4】Zhang, S., Fabrication of novel biomaterials through molecular self-assembly. Nature biotechnology 21, 1171-1178 (2003).
【非特許文献5】Hirst, A. R. et al., Biocatalytic induction of supramolecular order. Nature Chem. 2, 1089.1094 (2010).
【非特許文献6】Williams, R. J. et al., Enzyme-assisted self-assembly under thermodynamic control. Nature Nanotech. 4, 19-24 (2009).
【非特許文献7】Zhang, S. et al., A self-assembly pathway to aligned monodomain gels. Nature Mater. 9, 594-601 (2010).
【非特許文献8】Goerbitz, C.H., The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzhemer’s β-amyloid polypeptide. Chem. Commun. 2332-2334 (2006).
【非特許文献9】Goerbitz, C. H., Microporous organic materials from hydrophobic dipeptides. Chem. Euro. J. 13, 1022-1031 (2007).
【非特許文献10】Wang, M., Du, L., Wu, X., Xiong, S. & Chu, P. K., Charged diphenylalanine nanotubes and controlled hierarchical self-assembly. ACS Nano 5, 4448-4454 (2011).
【非特許文献11】Yan, X. & Moehwald, J. Li, H., Self-assembly of hexagonal microtubes and their optical wave guiding. Adv. Mater. 23, 2796-2801 (2011).
【非特許文献12】Wang, W. and Chau, Y., Self-assembled peptide nanorods as building blocks of fractal patterns. Soft Matter 5, 4893-4898 (2009).
【非特許文献13】Ge, J., Lei, J. & Zare, R. N., Protein-inorganic hybrid nanoflowers. Nature 11Nanotechnol. 7, 428-432 (2012).
【非特許文献14】Kiyonaka, S. et al., Semi-wet peptide/protein array using supramolecular hydrogel. Nature Mater. 3, 58-64 (2004).
【非特許文献15】Cui, Y., Kim, S. N., Naik, R. R. & Mcalpine, M. C., Biomimetic peptide nanosensors. Acc. Chem. Res. 45, 696-704 (2012).
【非特許文献16】Silva, G. A. et al., Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352-1355 (2004).
【非特許文献17】Noorduin, W. L., Grinthal, A., Mahadevan, L. & Aizenberg, J., Rationally designed complex, hierarchical microarchitectures. Science 340, 832-837 (2013).
【非特許文献18】Webber, M.J., Kessler, J.A. & Strupp, S.I., Emerging peptide nanomedicine to regenerate tissues and organs, J. Inter. Med. 267, 71-88 (2009).
【非特許文献19】Drain, C. M., Self-organization of self-assembled photonic materials into functional devices: Photo-switched conductors. Proc. Natl. Acad. Sci. USA 99, 5178-5182 (2002).
【非特許文献20】Reches, M. & Gazit, E., Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625-627 (2003).
【非特許文献21】Reches, M. & Gazit, E., Controlled patterning of aligned self-assembled peptide nanotubes. Nature Nanotech. 1, 195-200 (2006).
【非特許文献22】Abramovich, L. Adler et al., Self-assembled arrays of peptide nanotubes by vapor deposition. Nature Nanotech. 4, 849-854 (2009).
【非特許文献23】Yan, X., Zhu, P. & Li, J., Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 39, 1877-1890 (2010).
【非特許文献24】Hartgerink, J. D., Beniash, E. & Stupp, S. I., Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684-1688 (2001).
【非特許文献25】Ghadiri, M. R., Granja, J.R., Milligan, R.A., McRee, D.E. & Khazanovich, N., Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366, 324-327 (1993).12
【非特許文献26】Vauthe, S., Santoso, S., Gong, H., Watson, N. & Zhang, S., Molecular self-assembly of surfactant-like peptides to form naotubes and nanovesicles. Proc. Natl. Acad. Sci. USA 16, 5355-5360 (2002).
【非特許文献27】Fletcher, J. M. et al., Self-assembling cages from coiled-coil peptide modules. Science 340, 595-599 (2013).
【非特許文献28】Uijin, R. V. & Smith, A. M., Designing peptide based nanomaterials. Chem. Soc. Rev. 37, 664-675 (2008).
【非特許文献29】Amdursky, N., Molotskii, M., Gazit, E. & Rosenman, G., Elementary building blocks of self-assembled peptide nanotubes. J. Am. Chem. Soc. 132, 15632-15636 (2010).
【非特許文献30】Saito, Y., Statistical Physics of Crystal Growth (World Scientific, Singapore, 1996).
【非特許文献31】Huang, J., Stringfellow, T.C. & Yu, L., Glycine exists mainly as monomers, not dimers, in supersaturated aqueous solutions: implications for understanding its crystallization and polymorphism. J. Am. Chem. Soc. 130, 13973-13980 (2008).
【非特許文献32】Poulsen, N. & Kroeger, N., Silica morphogenesis by alternative processing of silaffins in the diatom Thalassiosira pseudonana. J. Bio. Chem. 279, 42993-42999 (2004).
【非特許文献33】Scheffela, A., Poulsena, N., Shianb, S. & Kroeger, N., Nanopatterned protein microrings from a diatom that direct silica morphogenesis. Proc. Natl. Acad. Sci. USA, 108, 3175.3180 (2011).
【非特許文献34】Marshall, K. E., Robinson, E. W., Hengel, S. M., Pasa.-Tolic, L. & Roesijadi, G., FRET imaging of diatoms expressing a biosilica-localized ribose sensor, PLoS ONE 7, e33771-1-8 (2012).