前記閾値は、前記PWM信号のパルス幅を前記スイッチ素子のスイッチング特性に基づく最小のオン時間に設定したときに前記DC−DC変換手段から出力される直流電力よりも大きい値である、請求項1に記載の高周波電源。
前記電力合成手段は、伝送トランスと電力消費用の抵抗を含むハイブリッド回路で構成され、前記複数の交流信号に位相差がある場合、各交流信号の振幅を当該位相差に応じた割合で合成して前記負荷に出力し、前記複数の交流信号の振幅の差分で前記負荷に電力消費をさせる、請求項1乃至5のいずれかに記載の高周波電源。
【背景技術】
【0002】
図19は、プラズマ処理システムに用いられる従来の高周波電源の内部構成の一例を示す図である。
【0003】
高周波電源100は、AC−DC変換部101、DC−DC変換部102、DC−RF変換部103、RF検出部104、制御部105、PWM信号生成部106及び高周波信号生成部107を含む。高周波電源100には負荷としてプラズマ処理装置200が接続される。
【0004】
高周波電源100は、DC−RF変換部103において高周波電力(RF電力)を生成し、RF検出部104を介してその高周波電力をプラズマ処理装置200に供給する。高周波電源100からプラズマ処理装置200に向かう高周波電力を進行波電力といい、プラズマ処理装置200側から反射されて高周波電源100に戻ってくる高周波電力を反射波電力という。DC−RF変換部103で生成され、RF検出部104を介してプラズマ処理装置200に出力される高周波電力は進行波電力に相当する。本明細書では、DC−RF変換部103から出力される高周波電力と高周波電圧をそれぞれ「進行波電力P
f」、「進行波電圧v
f」と表記し、プラズマ処理装置200側から反射されて高周波電源100に戻ってくる高周波電力を「反射波電力P
r」と表記することがある。
【0005】
AC−DC変換部101は、商用電源から所定の直流電圧V
ccを生成し、DC−DC変換部102は、AC−DC変換部101から出力される直流電圧V
ccを任意の直流電圧V
dcに変換して出力する。DC−DC変換部102は、トランジスタ等の半導体スイッチ素子をブリッジ接続したブリッジ回路を含み、入力される直流電圧V
ccを半導体スイッチ素子で断続することにより任意の直流電圧V
dcに変換する。
【0006】
DC−RF変換部103は、DC−DC変換部から出力される直流電圧V
dcを駆動用電源として高周波信号生成部107から入力される高周波信号vを増幅してプラズマ処理装置200に出力する。
【0007】
プラズマ処理装置200は、プラズマ処理中にプラズマの発生状態や半導体ウェハや液晶基板等の被加工物の状態が変化することによって高周波電源100から見た負荷インピーダンスZ
Lが変化する。負荷インピーダンスZ
Lが高周波電源100の出力インピーダンスZ
Gと整合していれば、高周波電源100から出力される進行波電力P
fは、プラズマ処理装置200に供給されるが、不整合の場合は、進行波電力P
fの一部がプラズマ処理装置200の入力端で反射されて高周波電源100側に戻ってくる。
【0008】
RF検出部104は、高周波電源100からプラズマ処理装置200に向かう進行波電力P
f及びプラズマ処理装置200側から戻ってくる反射波電力P
rを検出する機能を有する。RF検出部104は、進行波電力P
fの検出値又は進行波電力P
fから反射波電力P
rを減算した電力P
loadの検出値を、検出電力P
oとして制御部105に出力する。電力P
loadは、高周波電源100から出力される進行波電力P
fのうち、プラズマ処理装置200内に供給される電力である。RF検出部104の検出電力P
oを進行波電力P
fの検出値とするか、電力P
load(以下、「負荷供給電力P
load」という。)の検出値とするかは予め定めておく。以下では、検出電力P
oとして進行波電力P
fの検出値が出力される場合について説明する。
【0009】
制御部105は、DC−DC変換部102の出力電圧V
dcを制御して検出電力P
oが目標値(目標電力)P
cになるように制御する。制御部105は、所定の周期で目標電力P
cに対する検出電力P
oの偏差E=P
c−P
oに基づいて制御値C
oを算出し、その制御値C
oをPWM信号生成部106に出力する。PWM信号生成部106は、DC−DC変換部102内の半導体スイッチ素子のオン・オフ動作を制御するPWM(Pulse Width Modulatin)信号(パルス幅変調信号)を生成する。PWM信号生成部106は、例えば、制御部105から入力される制御値C
oと鋸波のキャリア信号S
Cのレベルを比較してS
C≦C
oの期間をパルス幅とするPWM信号S
PWMを生成し、DC−DC変換部102に出力する。
【0010】
負荷インピーダンスZ
Lは、実用上DC−RF変換部103から負荷側を見たインピーダンスに等しいと見なすことができるので、DC−RF変換部103に接続されている負荷のインピーダンスを「Z
L」とし、DC−RF変換部103の動作状態によって決まる係数を「K」とすると、DC−DC変換部102の出力電圧V
dcとDC−RF変換部103の出力電力P
f(進行波電力P
f)との間には、
P
f=K×(V
dc2/|Z
L|)…(1)
の関係がある。負荷インピーダンスZ
Lが固定であれば、DC−RF変換部103の出力電力P
fは、(1)式よりDC−DC変換部102の出力電圧V
dcの2乗に比例するので、DC−DC変換部102の出力電圧V
dcを制御することによってDC−RF変換部103の出力電力P
fを制御することができる。
【0011】
従って、高周波電源100は、P
c<P
oであれば、PWM信号S
PWMのパルス幅を小さくしてDC−DC変換部102の出力電圧V
dcを低下させ、P
o<P
cであれば、PWM信号S
PWMのパルス幅を広くしてDC−DC変換部102の出力電圧V
dcを上昇させて検出電力P
oが目標電力P
cとなるように制御する。
【発明を実施するための形態】
【0033】
以下、本発明の好ましい実施の形態を、添付図面を参照して具体的に説明する。特に、プラズマ処理システムに適用される高周波電源を例に説明する。
【0034】
図1は、本発明に係る高周波電源の内部構成を示すブロック図である。
【0035】
高周波電源1は、AC−DC変換部2、DC−DC変換部3、DC−RF変換部4、RF合成部5、RF検出部6、RF電力制御部7、直流電圧計8及び直流電流計9を含む。DC−RF変換部4には同一構成の2つのDC−RF変換部4A,4Bが設けられている。第1のDC−RF変換部4Aから出力される電力P
1と第2のDC−RF変換部4Bから出力される電力P
2がRF合成部5で合成されて高周波電源1の出力端に接続されるプラズマ処理装置(図示省略)に出力される。DC−RF変換部4とRF合成部5を含む部分は負荷に高周波電力を出力する高周波生成部Uを構成し、プラズマ処理装置は高周波電源1に対する負荷に相当している。
【0036】
高周波電源1は、プラズマ処理が開始されると、RF合成部5から高周波電力を出力し、RF検出部6を介してプラズマ処理装置(負荷)に供給する。プラズマ処理装置のインピーダンス(負荷インピーダンスZ
L)はプラズマ処理中に変動するから、高周波電源1とプラズマ処理装置のインピーダンス不整合によりRF合成部5から出力される高周波電力の一部がプラズマ処理装置で反射されて高周波電源1に戻ってくる。
【0037】
なお、高周波電源1からプラズマ処理装置に向かう高周波電力を進行波電力P
fといい、プラズマ処理装置で反射されて高周波電源1に戻ってくる高周波電力を反射波電力P
rという。RF合成部5から出力される高周波電力は進行波電力P
fに相当するので、本明細書では、RF合成部5から出力される高周波電力を「進行波電力P
f」と表現する。
【0038】
AC−DC変換部2は、商用電源からDC−DC変換部3への入力電圧(直流電圧)V
ccを生成する回路ブロックである。AC−DC変換部2は、例えば、
図2に示す4個の半導体整流素子Dをブリッジ接続した整流回路201と平滑回路202とからなる周知の電源回路で構成される。
【0039】
DC−DC変換部3は、AC−DC変換部2から入力される直流電圧V
ccを任意の電圧値の直流電圧V
dcに変換してDC−RF変換部4に入力する回路ブロックである。DC−DC変換部3は、DC−RF変換部4内の第1,第2のDC−RF変換部4A,4Bからそれぞれ出力される高周波電力P
1,P
2を制御する機能を果たす。
【0040】
DC−DC変換部3は、例えば、
図3に示す、インバータに整流回路を組み合わせた周知のDC−DCコンバータで構成される。
図3の回路例は、4個の半導体スイッチ素子Q
Aをブリッジ接続したフル・ブリッジ回路からなるインバータ301を、トランスT1を介して整流回路302に接続した回路である。整流回路302は、4個の半導体整流素子D
Aをブリッジ接続し、その出力に平滑用のコンデンサCを接続した回路である。半導体スイッチ素子Q
Aには、バイポーラトランジスタ、電界効果型トランジスタ、IGBT等が用いられ、半導体整流素子D
Aにはダイオードが用いられる。
【0041】
トランスT1の一次巻線が接続されるインバータ301の出力ラインには、フェーズ・シフト・フル・ブリッジPWM制御方式によりインバータ301のソフトスイッチングを実現するために、インダクタL1が挿入されている。このため、トランスT1の一次巻線の両端の電圧レベルは、出力端子a,a’の出力レベルからインダクタL1の両端の電圧レベルの分だけ低下する。負荷インピーダンスZ
Lの変動によってトランスT1の一次巻線に流れる負荷電流は変動するから、インバータ301の出力端子a,a’から出力される矩形波のレベルが一定であってもトランスT1の一次巻線の両端の電圧レベルは負荷インピーダンスZ
Lの変動によって変動し、DC−DC変換部3の出力電圧V
dcも変動する。
【0042】
DC−DC変換部3の出力電圧V
dcは、RF電力制御部7で生成されるPWM信号S
PWMによってインバータ301の4個の半導体スイッチ素子Q
Aのオン・オフ動作を制御することにより、制御される。本実施形態では、PWM信号S
PWMのパルス幅T
ON(ハイレベル期間)は、半導体スイッチ素子Q
Aのオン最小時間T
minよりも小さくならないように制御される。従って、DC−DC変換部3の出力電圧V
dcの制御が不安定になることはない。
【0043】
本実施形態では、フェーズ・シフト・フル・ブリッジPWM制御方式によりインバータ301をソフトスイッチングするために、インバータ301とトランスT1の間にインダクタL1を挿入しているが、インダクタL1を除いた回路でもよい。
【0044】
DC−RF変換部4は、DC−DC変換部3から入力される直流電力を予め設定された周波数の交流電力に変換する回路ブロックである。予め設定された周波数は、2.0MHz、13.56MHz、40.68MHzなどのプラズマ処理用に規定された周波数である。
【0045】
第1のDC−RF変換部4Aは、
図4に示すハーフ・ブリッジ型のスイッチング・アンプで構成される。第2のDC−RF変換部4Bも第1のDC−RF変換部4Aと同一構成のスイッチング・アンプで構成される。
図4に示すスイッチング・アンプは、一対の電源端子b,b’の間に2つの同一タイプの半導体スイッチ素子Q
Bの直列回路を接続したスイッチング回路と、そのスイッチング回路に駆動信号を入力するドライブ回路と、そのスイッチング回路から出力される高周波信号を外部に出力する出力回路とで構成される。
【0046】
ドライブ回路は、一次巻線に互いに逆方向に巻かれた2つの二次巻線を結合したトランスT2で構成される。トランスT2の一次巻線には、RF電力制御部7から出力される高周波信号v
a(電圧信号)が入力され、トランスT2の一方の二次巻線(
図4では上側の巻線)から高周波信号v
aと同相の高周波信号v
a’が出力され、トランスT2の他方の二次巻線(
図4では下側の巻線)から高周波信号v
aと逆相の高周波信号−v
a’が出力される。
【0047】
出力回路は、キャパシタC
1とインダクタが直列接続された共振回路と、インダクタとキャパシタC
2がL型接続されたインピーダンス変換回路とを接続したフィルタ回路401で構成される。
図4のインダクタLは、共振回路のインダクタとインピーダンス変換回路のインダクタを合成したものである。フィルタ回路401は、スイッチング回路からパルス出力される高周波信号から直流成分と不要な高周波成分(ノイズ成分)を除去する。フィルタ回路401から出力されるた高周波信号v
1が負荷に出力される。
【0048】
一方の電源端子bにDC−DC変換部3から出力される直流電圧V
dcが入力され、他方の電源端子b’は接地されている。本実施形態では、他方の電源端子b’を接地しているが、DC−DC変換部3から出力される直流電圧V
dcの逆極性の電圧−V
dcを他方の電源端子b’に入力するようにしてもよい。一対の半導体スイッチ素子Q
BにはNチャネル型のMOSFETが用いられるが、バイポーラトランジスタ等の他の種類のトランジスを用いることができる。また、一対の半導体スイッチ素子Q
BをNチャネル型とPチャネル型を組み合わせたコンプリメンタリ型にしてもよい。この場合は、トランスT2を省いて高周波信号v
aをそれぞれNチャネル型のMOSFETとPチャネル型のMOSFETのゲートに入力してもよい。
【0049】
第1,第2のDC−RF変換部4A,4Bの各トランスT2の一次巻線に入力される高周波信号v
a,v
bは、RF電力制御部7で生成される。高周波信号v
a,v
bの生成方法については後述する。
【0050】
第1のDC−RF変換部4Aでは、高周波信号v
aがトランスT2の一次巻線に入力されると、トランスT2の一方の二次巻線から同相の高周波信号v
a’が出力され、トランスT2の他方の二次巻線から逆相の高周波信号−v
a’が出力される。同相の高周波信号v
a’は、一方の半導体スイッチ素子Q
B(
図4では上側の半導体スイッチ素子Q
B)に入力され、逆相の高周波信号−v
a’は、他方の半導体スイッチ素子Q
B(
図4では下側の半導体スイッチ素子Q
B)に入力される。2つの半導体スイッチ素子Q
Bは、Nチャネル型MOSFETであるから、一方の半導体スイッチ素子Q
Bは、高周波信号v
a’のハイレベル期間にオン動作をし、他方の半導体スイッチ素子Q
Bは、高周波信号−v
a’のハイレベル期間にオン動作をする。すなわち、2つの半導体スイッチ素子Q
Bは、高周波信号v
a’の半周期毎に交互にオン・オフ動作を繰り返す。
【0051】
2つの半導体スイッチ素子Q
Bが交互にオン・オフ動作を繰り返すことによって接続点nの電圧はv
a’>0の期間に「V
dc」となり、v
a’≦0の期間に接地レベルとなるように矩形波状に変化し、その矩形波がフィルタ回路401で直流分とスイッチングノイズが除去されて出力端子c,c’から出力される。出力端子c,c’から出力される電圧v
aは、高周波信号v
1の振幅を増幅した電圧に相当している。出力電圧v
aの振幅は、電源端子bに入力される直流電圧V
dcによって決まるから、DC−DC変換部3の出力電圧V
dcの変化に応じて出力電圧v
aの振幅は変化する。
【0052】
第2のDC−RF変換部4Bでは、入力される高周波信号v
bが高周波信号v
aに対して位相差θ(θ=0を含む)を有する点が異なるだけで、上述した第1のDC−RF変換部4Aと同様の動作を行う。
【0053】
なお、本実施形態では、第1,第2のDC−RF変換部4A,4Bをハーフ・ブリッジ型のスイッチング・アンプで構成しているが、フル・ブリッジ型やプッシュ・プル型のスイッチング・アンプで構成してもよい。また、第1,第2のDC−RF変換部4A,4Bは、スイッチング・アンプに限定されず、A級、B級、C級、D級、E級等のアンプの方式にも限定されない。
【0054】
RF合成部5は、DC−RF変換部4から出力される2つの高周波電力P
1,P
2を合成する回路ブロックである。RF合成部5は、第1のDC−RF変換部4Aから出力される高周波電圧v
1と第2のDC−RF変換部4Bから出力される高周波電圧v
2とに位相差θがあると、入力電力(P
1+P
2)のうち位相差θに応じた一部の電力P
Rを内部の抵抗Rで熱消費し、残りの電力P
f(=P
1+P
2−P
R)を出力する機能を有する。
【0055】
RF合成部5は、例えば、
図5に示す伝送トランスT3と抵抗Rとからなるハイブリッド回路によって構成される。ハイブリッド回路は、1つの出力ポートN
Sと2つの入力ポートN
A,N
Bを有し、ハイブリッド回路内の抵抗Rは、入力電力(P
1+P
2)のうち位相差θに応じた一部の電力P
Rを熱消費するための電力消費素子として機能する。高周波電源1の伝送系の特性インピーダンスを「R
o」(例えば、50[Ω])とすると、入力ポートN
A,N
BのインピーダンスR
A,R
Bと出力ポートN
SのインピーダンスR
Sと抵抗RのインピーダンスR
Rは、R
A=R
B=R
o、R
R=2・R
o、R
S=R
o/2の関係を満たすように設計されている。
【0056】
図5に示すように、第1のDC−RF変換部4Aの出力電圧v
1は、一方の入力ポートN
Aに入力され、第2のDC−RF変換部4Bの出力電圧v
2は、他方の入力ポートN
Bに入力され、出力ポートN
Sから出力電圧v
1と出力電圧v
2を合成した電圧v
fが出力される。
【0057】
出力ポートN
Sに接続される負荷のインピーダンスが「R
o/2」の場合(RF合成部5と負荷とがインピーダンス整合をしている場合)のRF合成部5の電力合成動作は、出力電圧v
1,v
2をそれぞれv
1=V・sin(ω・t)、v
2=V・sin(ω・t+θ)とすると、下記のようになる。
【0058】
抵抗Rの両端の電圧v
Rは、
v
R=v
1−v
2=V・[sin(ω・t)−sin(ω・t+θ)] …(2)
であり、入力ポートN
A,N
Bから伝送トランスT3に流れ込む電流i
1,i
2と抵抗Rを流れる電流i
Rは、
i
1=v
1/R
o=V・sin(ω・t)/R
o…(3)
i
2=v
2/R
o=V・sin(ω・t+θ)/R
o…(4)
i
R=v
R/(2・R
o)=V・[sin(ω・t)−sin(ω・t+θ)]/(2・R
o)…(5)
である。
【0059】
従って、伝送トランスT3の一次巻線と二次巻線に流れる電流i
L1,i
L2は、
i
L1=i
1−i
R=V・[sin(ω・t)+sin(ω・t+θ)]/(2・R
o)…(6)
i
L2=i
2+i
R=V・[sin(ω・t)+sin(ω・t+θ)]/(2・R
o)…(7)
で表わされ、出力ポートN
Sから出力される電流i
outと電圧v
outは、
i
f=i
L1+i
L2=V・[sin(ω・t)+sin(ω・t+θ)]/R
o …(8)
v
f=i
f・(R
o/2)=V・[sin(ω・t)+sin(ω・t+θ)]/2
=V・cos(θ/2)・sin(ω・t+θ/2)] …(9)
となる。
【0060】
出力ポートN
Sから出力される電力P
fと抵抗Rで消費される電力P
Rを求めると、
P
f=v
f2/(R
o/2)=2v
f2/R
o
=V
2・[sin(ω・t)+sin(ω・t+θ)]
2/(2・R
o)…(10)
=2・[V・cos(θ/2)]
2・sin
2(ω・t+θ/2)/R
o…(10’)
P
R=v
R2/(2・R
o)
=V
2・[sin(ω・t)−sin(ω・t+θ)]
2/(2・R
o)…(11)
=2・[V・sin(θ/2)]
2・cos
2(ω・t+θ/2)/R
o…(11’)
となる。
【0061】
入力ポートN
A,N
Bから入力される電力P
1,P
2は、P
1=V
2・sin
2(ω・t)/R
o、P
2=V
2・sin
2(ω・t+θ)/R
oであるから、RF合成部5に入力される電力P
inは、
P
in=P
1+P
2=V
2・[sin
2(ω・t)+sin
2(ω・t+θ)]/R
o
である。一方、RF合成部5から出力される電力P
fと抵抗Rで熱消費される電力P
Rの合計電力P
sumは、
P
sum=V
2・[sin(ω・t)+sin(ω・t+θ)]
2/(2・R
o)
+V
2・[sin(ω・t)−sin(ω・t+θ)]
2/(2・R
o)
=V
2・[sin
2(ω・t)+sin
2(ω・t+θ)]/R
o
であるから、P
in=P
sumである。
【0062】
従って、θ=0であれば、P
R=0より、入力電力P
inがそのままRF合成部5から出力され、θ≠0であれば、入力電力P
1,P
2を位相差θに応じた所定の割合η(θ)で合成した電力P
fがRF合成部5から出力されることになる。
【0063】
位相差θに応じた所定の割合η(θ)は、(10’)式に示されるようにcos
2(θ/2)であり、この特性は、
図6の特性(イ)に示すようになる。位相差θをゼロから増加させると、電力の合成割合η(θ)は、cos
2(θ/2)の特性で単調に減少し、位相差θ=180[deg]でゼロになる。従って、位相差θをゼロから180[deg]の範囲で変化させることにより、RF合成部5から出力される電力P
fの大きさを制御することができる。
【0064】
なお、特性(イ)は、出力ポートN
Sに接続される負荷のインピーダンスが「R
o/2」の場合の例であるが、出力ポートN
Sに接続される負荷のインピーダンスが「R
o/2」と異なる場合でも位相差θをゼロから180[deg]の範囲で変化させることにより、RF合成部5から出力される電力P
fの大きさを制御することができる。
【0065】
RF合成部5に用いるハイブリッド回路は、
図5に示した回路構成に限られない。例えば、
図7に示す回路構成のハイブリッド回路をRF合成部5に用いることができる。
図7に示すハイブリッド回路は、伝送トランスT3の一次巻線と二次巻線の両端をそれぞれコンデンサC’で接続した回路構成を有し、一次巻線の両端と二次巻線の両端の4つの端子が不平衡の入出力端子となっている。RF合成部5として用いる場合は、一次巻線の一方の端子p1が合成電力の出力端子となり、一次巻線の他方の端子p2と二次巻線の一方の端子p3が入力端子となり、二次巻線の他方の端子p4は熱消費用の抵抗Rを接続する端子となる。
【0066】
図5に示す回路構成では位相差θが「0°」の場合は抵抗Rでの消費電力P
Rがゼロになったが、
図7に示す回路構成では、位相差θが「90°」の場合に抵抗Rでの消費電力P
Rがゼロになり、位相差θが「90°」からずれると、そのずれ分に応じた電力P
Rが抵抗Rで消費される。すなわち、
図7に示す回路構成の場合は、電力の合成割合η(θ)が
図5に示す回路構成に対して90[deg]遅れるので、
図6の特性(ロ)に示すように、cos
2(θ/2−π/2)=sin
2(θ/2)の特性になる。
【0067】
RF合成部5は、ハイブリッド回路と同様の機能を果たすものであれば、他の回路であってもよい。例えば、特開2008−28923号公報に記載の高周波電力合成器や実開平4−48715号公報に記載の出力合成回路を用いることができる。
【0068】
RF検出部6は、RF合成部5から負荷(プラズマ処理装置)に向かう進行波電力P
fと負荷(プラズマ処理装置)側から戻ってくる反射波電力P
rを検出する機能を有する。そして、進行波電力P
fの検出値を進行波電力P
oとして検出する。または、進行波電力P
fの検出値から反射波電力P
rの検出値を減算した負荷供給電力P
load(=P
f−P
r)の検出値を検出電力P
oとして出力する。検出電力P
oはRF電力制御部7に入力される。進行波電力P
fの検出値を検出電力P
oとするか、負荷供給電力P
loadの検出値を検出電力P
oとするかは、予め定めておく。本実施形態では、進行波電力P
fの検出値を検出電力P
oとして出力する例を示す。なお、進行波電力P
fの検出値を検出電力P
oとして出力する場合は、反射波電力P
rを検出しなくてもよい。
【0069】
RF電力制御部7は、フィードバック制御によりRF検出部6で検出される電力P
o(高周波電力P
f)が目標電力P
cとなるように制御する。目標電力P
cは、予め設定されている出力電力のプロファイルに基づいてプラズマ処理中にRF電力制御部7に設定される。RF電力制御部7は、DC−DC変換部3の出力電力P
dcが予め設定された閾値P
thよりも大きくなる場合と出力電力P
dcが閾値P
th以下となる場合とでRF合成部5から出力される高周波電力P
fの制御方法を切り換える。高周波電力P
fの制御方法を切り換える閾値P
th(以下、「切換閾値P
th」という。)は、PWM信号S
PWMのパルス幅T
ONを半導体スイッチ素子Q
Aのオン最小時間T
minに設定した場合にDC−DC変換部3から出力される直流電力P
dcよりも大きい値に設定されている。
【0070】
RF電力制御部7は、DC−DC変換部3の出力電力P
dcを監視し、出力電力P
dcが切換閾値P
thよりも大きければ、第1のDC−RF変換部4Aに入力する高周波信号v
aと第2のDC-RF変換部4Bに入力する高周波信号v
bの位相差θをゼロにし、PWM信号S
PWMのパルス幅T
ONを変化させて(DC−DC変換部3の出力電圧V
dcを変化させて)RF検出部6から出力される高周波電力P
fを目標電力P
cに制御する。この出力制御(以下、「第1の出力制御」という。)は、DC−DC変換部3の出力電圧V
dcだけを変化させてRF検出部6から出力される高周波電力P
fを目標電力P
cに制御する方法である。
【0071】
一方、RF電力制御部7は、DC−DC変換部3の出力電力P
dcが切換閾値P
th以下の場合は、PWM信号S
PWMのパルス幅T
ONを出力電力P
dcが切換閾値P
thよりも小さい値に変化する直前の値T
thに固定し、高周波信号v
aと高周波信号v
bとの位相差θを変化させて(RF合成部5での高周波電力P
1,P
2の合成割合η(θ)を変化させて)RF検出部6から出力される高周波電力P
fを目標電力P
cに制御する。この出力制御(以下、「第2の出力制御」という。)は、RF合成部5の電力合成割合η(θ)だけを変化させてRF検出部6から出力される高周波電力P
fを目標電力P
cに制御する方法である。
【0072】
RF電力制御部7は、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)を備えるマイクロコンピュータによって構成される。CPUがROMに記憶された所定の制御プログラムを実行することにより、第1の出力制御若しくは第2の出力制御による高周波電力P
fの制御が行われる。
【0073】
次に、RF電力制御部7による高周波電源1の出力制御について説明する。
【0074】
負荷インピーダンスZ
L(プラズマ処理装置のインピーダンス)の値は、一定ではなく、プロセスの進行に伴い変動する。負荷インピーダンスZ
Lが変動すると、フィルタ回路401を構成する素子や配線における電圧降下の度合いが変動するため、仮に第1,第2のDC−RF変換部4A,4B内の2つの半導体スイッチ素子Q
Bの接続点nにおける電圧値(矩形波なので平均値などで表した電圧値)が一定であっても、第1,第2のDC−RF変換部4A,4Bの各出力端における電圧値が変動する。そのため、DC−RF変換部4から出力される2つの電力P
1,P
2も変動する。従って、第1の出力制御だけでRF合成部5から出力される高周波電力P
fを制御した場合、その高周波電力P
fの制御範囲は負荷インピーダンスZ
Lの値によって異なる。
【0075】
図8は、高周波電源に接続される負荷のインピーダンスが変動した場合のDC−DCコンバータの出力電流と出力電圧の関係をシミュレーションした一例である。シミュレーションは、
図1の回路構成でDC−RF変換部4には同相の高周波信号v
a,v
bを入力し、DC−DC変換部3に入力するPWM信号S
PWMのパルス幅を変化させてRF検出部6の検出電力P
oを目標電力P
cに一致させる制御(第1の出力制御)をした場合のDC−DC変換部3の出力電圧V
dcと出力電流I
dcを、A〜Iの負荷インピーダンスについて調べたものである。
【0076】
A〜Iの負荷インピーダンスは、
図8に示すスミスチャート上の点A〜Iにプロットされるインピーダンスで、高周波電源1の出力インピーダンス(特性インピーダンスR
o)に対して、(反射係数Γ,位相ψ[deg])がA=(0.00,不定)、B=(0.99,±180),C=(0.99,+135),D=(0.99,+90),E=(0.99,+45),F=(0.99,±0),G=(0.99,−45),H=(0.99,−90),I=(0.99,−135)となるインピーダンスである。
【0077】
各特性曲線に付した符号A〜Iは、上記の負荷インピーダンスA〜Iに対応している。特性曲線Aは、負荷インピーダンスが高周波電源1の出力インピーダンスと整合している場合のシミュレーション結果で、目標電力P
cを減少させるのに応じてPWM信号S
PWMのパルス幅を減少させると、DC−DC変換部3の出力電圧V
dcと出力電流I
dcが特性曲線Aの右端から当該特性曲線Aに沿って変化することを示している。特性曲線B〜Iについても同様である。
【0078】
また、特性曲線Aの左端は、PWM信号S
PWMのパルス幅がオン最小時間T
minになる点である。PWM信号S
PWMのパルス幅はオン最小時間T
minよりも小さく制御できないので、特性曲線Aの左端(「●」の点)より左側の領域は、第1の出力制御では出力制御ができない領域である。特性曲線Aの左端に付した数値「100」は、PWM信号S
PWMのパルス幅をオン最小時間T
minに設定したときに高周波電源1から負荷に出力される出力電力P
min[W](以下、「最小制御電力P
min」という。)を示している。特性曲線B〜Iについても同様である。
【0079】
プラズマ処理装置のインピーダンス(負荷インピーダンスZ
L)はプラズマ処理中に大きく変動するが、目標電力P
cが負荷インピーダンスA〜Iの各特性曲線の左端(「●」の点)を結んだ曲線αより右側の領域にある場合は、第1の出力制御によって高周波電力P
fを目標電力P
cに制御することは可能である。しかし、目標電力P
cが曲線αより左側の領域になると、第1の出力制御では高周波電力P
fを目標電力P
cに制御することはできない。例えば、目標電力P
cが100[W]に設定されているとき、負荷インピーダンスZ
LがCの特性であれば、第1の出力制御によって高周波電力P
fを目標電力P
cに制御することはできるが、負荷インピーダンスZ
LがDの特性に変化すると、第1の出力制御で高周波電力P
fを制御できる下限値は153[W]であるから、目標電力P
cに制御することはできない。
【0080】
そこで、本実施形態に係る高周波電源1では、負荷インピーダンスZ
Lの変動によって第1の出力制御で高周波電力P
fを目標電力P
cに制御できない領域になると、第2の出力制御に切り換えて高周波電力P
fを目標電力P
cに制御できるようにしている。
【0081】
第1の出力制御を第2の出力制御に切り換える制御切換点について検討すると、RF検出部6の検出電力P
oは、負荷インピーダンスZ
Lによって変動するから、検出電力P
oに対して負荷インピーダンスZ
Lの影響を受けない切換閾値P
thを設定しようとすると、
図8の特性の場合では400[W]以上にする必要がある。しかし、この方法では、PWM信号S
PWMのパルス幅T
ONを半導体スイッチ素子Q
Aのオン最小時間T
minに設定したときの最小制御電力P
minが400[W]よりも小さい負荷インピーダンスA,B,C等の場合ではRF合成部5で不必要に電力をロスさせることになるので、効率が悪くなるという問題が生じる。
【0082】
負荷インピーダンスA,B,C等の場合は、
図9に示すように、DC−DC変換部3の出力電圧V
dcを下げて負荷への出力電力P
outが400[W]になると、DC−DC変換部3の出力電圧を固定し、位相差θを変化させて目標電力P
c(<400[W])に制御することになるので、最小制御電力P
minから400[W]の領域WではRF合成部5内の抵抗Rで位相差θに応じた電力消費が生じる。この電力消費は、位相差θをゼロにして出力電圧V
dcを低下させて目標電力P
cに制御した場合には生じないから、不必要な電力消費である。
【0083】
図8に示す特性によれば、曲線αは、各負荷インピーダンスA〜Iの最小制御電力P
minは異なるが、DC−DC変換部3の出力電力P
dc=V
dc×I
dcは略160[W]となるラインである。これは、半導体スイッチ素子Q
Bのオン最小時間T
minとDC−DC変換部3の出力電力P
dcとの間に相関関係があることを示している。すなわち、DC−DC変換部3の出力電力P
dcをモニタし、その出力電力P
dcが所定の出力電力に低下すると、半導体スイッチ素子Q
Aのオン時間がオン最小時間T
minにまで低下していると推定することができる。
【0084】
従って、半導体スイッチ素子Q
Aのオン最小時間T
minに対応するDC−DC変換部3の出力電力P
dc若しくはPWM信号S
PMWのパルス幅T
ONがオン最小時間T
minとなるDC−DC変換部3の出力電力P
dcを切換閾値P
thに設定し、出力電力P
dcが切換閾値P
thよりも大きい場合は、第1の出力制御によって高周波電源1から出力される高周波電力P
fを目標電力P
cに制御できるが、出力電力P
dcが切換閾値P
th以下となる場合は、第1の出力制御とは異なる制御方法で高周波電源1から出力される高周波電力P
fを目標電力P
cに制御しなければならないことが分かる。
【0085】
そこで、本実施形態に係る高周波電源1では、曲線βで示される170[W]を切換閾値P
thに設定し、DC−DC変換部3の出力電力P
dcがP
th<P
dcであれば、第1の出力制御で高周波電源1から出力される高周波電力P
fを制御し、負荷インピーダンスZ
Lの変動などによってP
dc≦P
thに変化した場合は、第2の出力制御に切り換えて高周波電源1から出力される高周波電力P
fを制御するようにしている。
【0086】
切換閾値P
thは、曲線αに対応する出力電力P
dc以上であれば、任意の値に設定できるが、曲線αから離れすぎると、
図9で説明したように、負荷インピーダンスZ
LによってRF合成部5で不必要な電力ロスを生じるので、曲線αに近い値に設定するのが望ましい。PWM信号S
PWMのパルス幅T
ONが一定でもDC−DC変換部3の出力電力P
dcはDC−DC変換部3よりも後段側のインピーダンスの変動によって僅かに変動するので、本実施形態では、曲線αに対応するDC−DC変換部3の出力電力P
dcよりも僅かに大きい値を有する曲線βに対応するDC−DC変換部3の出力電力P
dcを切換閾値P
thとしている。
【0087】
なお、第1の出力制御から第2の出力制御に切り換える切換閾値P
th1と第2の出力制御から第1の出力制御に戻す切換閾値P
th2を異ならせ、第1の出力制御と第2の出力制御との間の切換制御にヒステリシス特性を持たせるようにしてもよい。すなわち、曲線βに対応するDC−DC変換部3の出力電力P
dcを切換閾値P
th1に設定し、この切換閾値P
th1よりも大きい出力電力P
dcを切換閾値P
th2に設定し、P
th1<P
dcであれば、第1の出力制御で高周波電力1から出力される高周波電力P
fを制御し、この第1の出力制御中にP
dc≦P
th1になると、高周波電力P
fの制御を第2の出力制御に切り換え、この第2の出力制御中にP
th2<P
dcになると、高周波電力P
fの制御を第1の出力制御に戻すようにするとよい。
【0088】
第1の出力制御と第2の出力制御との間の切換制御にヒステリシス特性を持たせれば、DC−DC変換部3よりも後段側のインピーダンスの変動によって第1の出力制御と第2の出力制御との切換制御でチャタリング状態が生じることを抑制することができる。
【0089】
RF電力制御部7には、上記の方法によって出力電力P
outを制御するために、偏差演算部701、制御値演算部702、制御指令値出力部703、第1の制御信号生成部704及び第2の制御信号生成部705が含まれる。また、高周波電源1には、DC−DC変換部3とDC−RF変換部4との間に直流電圧計8と直流電流計9とが設けられ、直流電圧計8の検出電圧V
dcと直流電流計9の検出電流I
dcが制御指令値出力部703に入力される。
【0090】
偏差演算部701には所定の出力電力のプロファイルに基づいて目標電力P
cが設定される。偏差演算部701は、目標電力P
cに対するRF検出部6の検出電力P
oの偏差E
A=P
c−P
oを演算する。制御値演算部702は、偏差演算部701で演算された偏差E
Aに基づいて所定の演算を行って制御値C
Aを演算し、一時、メモリ(RAM)に保存する。
【0091】
制御指令値出力部703には切換閾値P
thが設定されている。制御指令値出力部703には制御値演算部702で演算された制御値C
Aが入力される。制御指令値出力部703は、直流電圧計8の検出電圧V
dcと直流電流計9の検出電流I
dcを乗じてDC−DC変換部3の出力電力P
dcを算出し、その出力電力P
dcと切換閾値P
thを比較する。
【0092】
制御指令値出力部703は、P
th<P
dcであれば、制御値C
Aを第1制御指令値C
S1に設定するとともに、「0」を第2制御指令値C
S2に設定し、第1制御指令値C
S1を第1の制御信号生成部704に出力し、第2制御指令値C
S2を第2の制御信号生成部705に出力する。制御指令値出力部703は、P
dc≦P
thであれば、切換閾値P
thと算出したDC−DC変換部3の出力電力P
dcとの偏差E
B=P
th−P
dcを演算し、その偏差E
B基づいて所定の演算を行って制御値C
Bを演算する。そして、RF電力制御部7は、制御値C
Bを第2制御指令値C
S2に設定するとともに、P
th<P
dcからP
dc≦P
thに変化する直前で演算され、メモリに保存されている制御値C
Aを第1制御指令値C
S1に設定し、第1制御指令値C
S1を第1の制御信号生成部704に出力し、第2制御指令値C
S2を第2の制御信号生成部705に出力する。
【0093】
第1の制御信号生成部704は、三角波比較法によりDC−DC変換部3の駆動を制御するPWM信号S
PWMを生成し、そのPWM信号S
PWMをDC−DC変換部3に出力する。第2の制御信号生成部705は、第1のDC−RF変換部4A内の半導体スイッチ素子Q
Bの駆動を制御する高周波信号v
1と第2のDC−RF変換部4B内の半導体スイッチ素子Q
Bの駆動を制御する高周波信号v
2を生成し、高周波信号v
1を第1のDC−RF変換部4Aに出力し、高周波信号v
2を第2のDC−RF変換部4Bに出力する。
【0094】
図10は、第1の制御信号生成部704の内部構成とPWM信号の生成方法を示す図であり、
図11は、第2の制御信号生成部705の内部構成と正弦波信号の生成方法を示す図である。
【0095】
第1の制御信号生成部704には、例えば、鋸波のキャリア信号S
cを発生するキャリア信号発生回路704aと、そのキャリア信号S
cと制御指令値出力部703から入力される第1制御指令値C
S1のレベルを比較してS
c≦C
S1の期間をパルス幅T
ONとするPWM信号S
PWMを生成するPWM信号生成回路704bとが含まれる。キャリア信号発生回路704aは、例えば、ダイレクト・ディジタル・シンセサイザー(Direct Digital Synthesizer)で構成される。
【0096】
キャリア信号発生回路704aは、
図10(b)に示すように、[n・T〜(n+1)・T](n=0,1,2,…)の波形がS
c=a・t(a:係数)で表わされるキャリア信号S
cを生成する。従って、PWM信号生成回路704bで生成されるPWM信号S
PWMのパルス幅T
ONは、T
ON=C
S1/aで表わされる。
【0097】
第2の制御信号生成部705には、正弦波の高周波信号v
1を発生する第1の正弦波発生回路705aと、制御指令値出力部703から入力される第2制御指令値C
S2を用いて高周波信号v
1に対して位相差θを有する正弦波の高周波信号v
2を発生する第2の正弦波発生回路705bとが含まれる。第1の正弦波発生回路705aと第2の正弦波発生回路705bもダイレクト・ディジタル・シンセサイザー(Direct Digital Synthesizer)で構成される。
【0098】
第1の正弦波発生回路705aには、高周波信号v
aの振幅A、周波数f及び初期位相φ
1の情報が入力される。これらの情報は予め設定された固定の情報で、周波数fは、上述したようにプラズマ処理システムに規定された2.0MHz、13.56MHz、40.68MHz等の周波数である。初期位相φ
1は任意の値に設定可能であるが、本実施形態では、「0」に設定される。第2の正弦波発生回路705bにも高周波信号v
bの振幅A、周波数f及び初期位相φ
2の情報が入力されるが、θ=φ
2−φ
1、φ
1=0より、制御指令値出力部703から出力される第2制御指令値C
S2が初期位相φ
2=θの情報として入力される。φ
1≠0に設定した場合は、制御指令値出力部703から出力される第2制御指令値C
S2に初期位相φ
1を加算した値(C
S2+φ
1)が初期位相φ
2の情報として入力される。振幅A及び周波数fの情報は、第1の正弦波発生回路705aに入力される振幅A及び周波数fの情報と同一である。
【0099】
第1の正弦波発生回路705aは、振幅A、周波数f及び初期位相φ
1の情報を用いてA・sin(2πf・t)で表わされる正弦波信号v
a(
図11(b)のv
a参照)を生成する。同様に、第2の正弦波発生回路705bは、振幅A、周波数f及び第2制御指令値C
S2の情報を用いてA・sin(2πf・t+θ) (θ=C
S2=C
B)で表わされる正弦波信号v
b(
図11(b)のv
b参照)を生成する。
【0100】
次に、RF電力制御部7による高周波電源1の検出電力P
oの制御動作について、
図12に示すフローチャートを用いて説明する。
【0101】
図12に示すフローチャートは、高周波電源1にプラズマ処理装置を接続したプラズマ処理システムのプラズマ処理中におけるRF電力制御部7の制御手順を示すフローチャートである。RF電力制御部7は、予め設定された周期で
図12に示す処理手順を繰り返し行う。
【0102】
RF電力制御部7は、プラズマ処理用に予め設定された出力電力のプロファイルに基づいて目標電力P
cを設定し(S1)、RF検出部6から出力される検出電力P
o(=P
f)を読み込むとともに(S2)、直流電圧計8の検出電圧V
dcと直流電流計9の検出電流I
dcを読み込む(S3)。続いて、RF電力制御部7は、両検出値V
dc,I
dcを乗じてDC−DC変換部3の出力電力P
dcを算出するとともに(S4)、切換閾値P
thを読込み(S5)、算出した出力電力P
dcを切換閾値P
thと比較する(S6)。
【0103】
RF電力制御部7は、P
th<P
dcであれば(S6:YES)、ステップS7〜S9,S13の処理に移行して第1の出力制御を行い、P
dc≦P
thであれば(S6:NO)、ステップS10〜S13に移行して第2の出力制御を行う。
【0104】
RF電力制御部7は、第1の出力制御に移行すると、検出電力P
oの目標電力P
cに対する偏差E
A=P
c−P
oを演算し(S7)、その偏差E
Aに基づいて所定の演算を行って制御値C
Aを算出し、RAMに一時保存する(S8)。そして、RF電力制御部7は、その制御値C
Aを第1制御指令値C
S1に設定するとともに第2制御指令値C
S2に「0」を設定し(S9)、更に第1制御指令値C
S1を第1の制御信号生成部704に出力するとともに第2制御指令値C
S2を第2の制御信号生成部705に出力した後(S13)、ステップS1に戻る。
【0105】
一方、RF電力制御部7は、第2の出力制御に移行すると、切換閾値P
thに対する出力電力P
dcの偏差E
B=P
th−P
dc演算し(S10)、その偏差E
Bに基づいて所定の演算を行って制御値C
Bを算出する(S11)。そして、RF電力制御部7は、その制御値C
Bを第2制御指令値C
S2に設定するとともに前回のステップS8の処理で算出し、RAMに保存されている制御値C
A(直前の制御値C
A)を第1制御指令値C
S1に設定し(S12)、更に第1制御指令値C
S1を第1の制御信号生成部704に出力するとともに第2制御指令値C
S2を第2の制御信号生成部705に出力した後(S13)、ステップS1に戻る。
【0106】
P
th<P
dcの場合(S1〜S9,S13のループ処理の場合)、第1の制御信号生成部704は、キャリア信号S
cの瞬時値k・tと第1制御指令値C
S1=C
Aとを比較してS
c≦C
Aのときはハイレベルとなり、C
A<S
cのときはローレベルとなるPWM信号S
PWMを生成する。また、第2の制御信号生成部705は、振幅A、周波数f及び初期位相φ
1=0の情報を用いて正弦波信号v
a=A・sin(2πf・t)の瞬時値を生成するとともに、振幅A、周波数f及び第2制御指令値C
S2=0の情報を用いて正弦波信号v
b=A・sin(2πf・t)の瞬時値を生成する。この処理により、P
th<P
dcの場合は、第1の出力制御によりDC−DC変換部3の出力電圧V
dcが変化して負荷に供給される出力電力P
outが目標電力P
cに制御される。
【0107】
一方、P
th<P
dcの状態からP
dc≦P
thの状態に変化すると(S1〜S6,S10〜S13のループ処理に変化した場合)、第1の制御信号生成部704は、変化時の第1制御指令値C
S1をC
A’とすると、S
c≦C
A’のときはハイレベルとなり、C
A’<S
cのときはローレベルとなるパルス幅固定のPWM信号S
PWMを生成する。また、第2の制御信号生成部705は、振幅A、周波数f及び初期位相φ
1=0の情報を用いて正弦波信号v
a=A・sin(2πf・t)の瞬時値を生成するとともに、振幅A、周波数f及び第2制御指令値C
S2=C
Bの情報を用いて正弦波信号v
b=A・sin(2πf・t+C
B)の瞬時値を生成する。この処理により、P
dc≦P
thの場合は、第2の出力制御によりDC−DC変換部3の出力電力P
outが固定され、RF合成部5から負荷に出力される高周波電力P
fの大きさが位相差C
Bに応じて変化して目標電力P
cに制御される。
【0108】
プラズマ処理システムに用いられる高周波電源1では、プラズマ処理中に高周波電源1から出力される高周波電力P
fを予め設定された出力電力のプロファイルに基づき広い範囲で変化する目標電力P
cに制御するが、本実施形態によれば、P
th<P
dcの場合は、RF合成部5での電力合成時の電力ロスをゼロにし、PWM信号S
PWMのパルス幅T
ONだけを変化させて高周波電力P
fを目標電力P
cに制御し、P
dc≦P
thに変化すると、PWM信号S
PWMのパルス幅T
ONを変化時のパルス幅に固定し、切換閾値P
thに対する出力電力P
dcの偏差E
Bに基づく制御値C
BでRF合成部5での電力合成の割合η(θ)を変化させて高周波電力P
fを目標電力P
cに制御するので、高周波電力P
fの制御範囲にPWM信号S
PWMのパルス幅T
ONだけでは制御できない低出力の範囲が含まれる場合でも高周波電力P
fを安定して適切に目標電力P
cに制御することができる。
【0109】
また、
図8に示したように不安定な出力範囲(最小制御電力P
minよりも小さい範囲)は、高周波電源1に対する負荷インピーダンスによって変化するが、本実施形態によれば、プラズマ処理装置のインピーダンスが変動しても(負荷インピーダンスが変動しても)、P
dc≦P
thとなる場合(
図8の曲線βよりも左側の領域になる場合)に位相差θによってRF合成部5での電力合成の割合η(θ)を調整して高周波電力P
fを目標電力P
cに制御するので、
図9で説明したようにRF合成部5で不必要に電力ロスをすることがない。
【0110】
上記実施形態では、DC−RF変換部4として同一構成の第1のDC−RF変換部4Aと第2のDC―RF変換部4Bを設け、両DC−RF変換部4A,4Bの出力電力P
1,P
2をRF合成部5で合成する構成としていたが、3個以上のDC−RF変換部を設け、各DC−RF変換部の出力電力を合成する構成にしてもよい。
【0111】
図13,
図14は、高周波生成部U’に同一構成の3個のDC−RF変換部を設ける場合のDC−RF変換部4’とRF合成部5’の回路構成を示す図である。DC−RF変換部4’には第1,第2のDC−RF変換部4A,4Bと同一構成の第3のDC−RF変換部4Cが追加され、RF合成部5’にはRF合成部5と同一構成の第1のRF合成部5Aと第2のRF合成部5Bが設けられている。
【0112】
図13,
図14の回路構成は、
図1に示すDC−RF変換部4とRF合成部5に第3のDC−RF変換部4Cと第2のRF合成部5Bを追加し、RF合成部5の出力電力と第3のDC−RF変換部4Cの出力電力を第2のRF合成部5Bで合成する構成と見ることができる。
【0113】
同一構成の3個のDC−RF変換部を設ける場合の第2の出力制御は、DC−RF変換部4’内の第1,第2のDC−RF変換部4A,4Bの出力電圧v
1,v
2を位相差θ=0で駆動し、第3のDC−RF変換部4Cの出力電圧v
3を出力電圧v
1,v
2に対して位相差θを設けて駆動するように制御する第1の位相差制御方法と、第2のDC−RF変換部4Bの出力電圧v
2を第1のDC−RF変換部4Aの出力電圧v
1に対して位相差θ
1を設けて駆動し、第3のDC−RF変換部4Cの出力電圧v
3を第1のRF合成部5Aの出力電圧v
4に対して位相差θ
2を設けて駆動するように制御する第2の位相差制御方法が考えられる。
【0114】
図13は、第1の位相差制御方法で第2の出力制御を行う場合のDC−RF変換部4’とRF合成部5’の回路構成を示し、
図14は、第2の位相差制御方法で第2の出力制御を行う場合のDC−RF変換部4’とRF合成部5’の回路構成を示している。
【0115】
図13に示す第1の位相差制御方法は、第1,第2のDC−RF変換部4A,4Bと第1のRF合成部5Aの部分を等価な1つのDC−RF変換部に置き換えることができるので、第2の出力制御での位相差θの制御内容は上述した位相差θの制御内容と実質的に同じとなる。すなわち、第1のRF合成部5Aは第1のDC−RF変換部4Aの出力電力P
1と第2のDC−RF変換部4Bの出力電力P
2をそのまま合成する機能を果たし、第2のRF合成部5Bが負荷への出力電力P
fを位相差θに応じて調整する機能を果たす。
【0116】
第1,第2,第3のDC−RF変換部4A,4B,4Cに入力する高周波信号v
A,v
B,v
Cの波形をv
A=A
1・sin(ω・t+φ
1)、v
B=A
2・sin(ω・t+φ
2)、v
C=A
3・sin(ω・t+φ
3)とすると、
図13に示す第1の位相差制御方法では、第1,第2のDC−RF変換部4A,4Bに、例えば、v
a=A・sin(ω・t)(A
1=A
2=A、φ
1=φ
2=0)の高周波信号が入力される。
【0117】
RF合成部5A,5Bの入力ポートと出力ポートが整合しているとすると、第1,第2のDC−RF変換部4A,4Bの出力電圧v
1,v
2は、v
1=v
2=V・sin(ω・t)で表されるから、第1のRF合成部5Aの出力電圧v
4は、(9)式より、
v
4=V・[sin(ω・t)+sin(ω・t)]/2
=V・sin(ω・t)
で表される。従って、第3のDC−RF変換部4Cにv
b=A・sin(ω・t+θ)(A
3=A、φ
3=θ)の高周波信号を入力し、第3のDC−RF変換部4Cからv
3=V・sin(ω・t+θ)を出力させると、第2のRF合成部5Bから、
v
f=V・[sin(ω・t)+sin(ω・t+θ)]/2
=V・cos(θ/2)・sin(ω・t+θ/2)
の高周波電圧v
fが出力される。
【0118】
第1,第2のDC−RF変換部4A,4Bの出力電力P
1,P
2は第1のRF合成部5Aで熱消費されることなく合成されるから、第1のRF合成部5Aから(P
1+P
2)の電力P
4が出力されるが、第2のRF合成部5Bではその出力電力P
4と第3のDC−RF変換部4Cの出力電力P
3が(10’)式に示す合成式により合成され、
P
f=2・[V・cos(θ/2)]
2・sin
2(ω・t+θ/2)/R
o
で表される高周波電力P
fが出力される。
【0119】
従って、
図13に示す回路構成では、第2の出力制御において、第1,第2のDC−RF変換部4A,4Bの出力電力P
1,P
2の合計電力P
4=(P
1+P
2)と第3のDC−RF変換部4Cの出力電力P
3との合成量を位相差θによって調整することにより、高周波電源1から出力される高周波電力P
fが制御される。
【0120】
一方、
図14に示す第2の位相差制御方法は、第1のRF合成部5Aと第2のRF合成部5Bの両方で高周波電源1から出力される高周波電力P
fが調整される。第1,第2のDC−RF変換部4A,4Bにそれぞれv
a=A・sin(ω・t)(φ
1=0)とv
b=A・sin(ω・t+θ)(φ
2=θ)の高周波電圧を入力し、第1,第2のDC−RF変換部4A,4Bからそれぞれv
1=V・sin(ω・t)、v
2out=V・sin(ω・t+θ)の高周波電圧が出力されるとすると、第1のRF合成部5Aから出力される高周波電圧v
4は、(9)式より
v
4=V・cos(θ/2)・sin(ω・t+θ/2)
で表される。
【0121】
第3のDC−RF変換部4Cに位相差θに応じて振幅A
3を調整したv
c=V・cos(θ/2)・sin(ω・t+θ/2+ψ)(A
3=V・cos(θ/2)、φ
3=θ/2+ψ)の高周波電圧を入力し、第3のDC−RF変換部4CからV・cos(θ/2)・sin(ω・t+θ/2+ψ)の高周波電圧v
3を出力させるように制御すれば、第2のRF合成部5Bから
v
f=V・cos(θ/2)・sin(ω・t+θ/2+ψ/2)
で表される高周波電圧v
fが出力され、
P
f=2・[V・cos(θ/2)・cos(ψ/2)]
2・sin
2(ω・t+θ/2+ψ/2)/R
o
で表される高周波電力P
fが出力される。
【0122】
従って、
図14に示す第2の位相差制御方法では、第2の出力制御において、位相差θに基づく第1のRF合成部5Aでの出力電力P
1と出力電力P
2の合成量と位相差ψに基づく第2のRF合成部5Bでの出力電力P
4と出力電力P
3の合成量を調整することにより高周波電源1から出力される高周波電力P
fが制御される。
【0123】
図15,
図16は、高周波生成部U”に同一構成の4個のDC−RF変換部を設ける場合のDC−RF変換部4”とRF合成部5”の回路構成を示す図である。DC−RF変換部4”には第1,第2のDC−RF変換部4A,4Bと同一構成の第3のDC−RF変換部4Cと第4のDC−RF変換部4Dが追加され、RF合成部5”にはRF合成部5と同一構成の第1のRF合成部5Aと第2のRF合成部5Bと第3のRF合成部5Cが設けられている。
【0124】
RF合成部5”内の第1のRF合成部5Aは、DC−RF変換部4”内の第1のDC−RF変換部4Aの出力電力P
1と第2のDC−RF変換部4Bの出力電力P
2を合成し、第2のRF合成部5Bは、DC−RF変換部4”内の第3のDC−RF変換部4Cの出力電力P
3と第4のDC−RF変換部4Dの出力電力P
4を合成する。また、RF合成部5”内の第3のRF合成部5Cは、第1のRF合成部5Aの出力電力P
5と第2のRF合成部5Bの出力電力P
6を合成する。
【0125】
同一構成の4個のDC−RF変換部を設ける場合の第2の出力制御でも2つの位相差制御方法が考えられる。第1の位相差制御方法は、第1のDC−RF変換部4Aから出力される高周波電圧v
1と第2のDC−RF変換部4Bから出力される高周波電圧v
2との間に位相差θ
1を設けるとともに、第3のDC−RF変換部4Cから出力される高周波電圧v
3と第4のDC−RF変換部4Dから出力される高周波電圧v
4との間に位相差θ
2を設け、その位相差θ
2を制御して第2の出力制御における負荷への高周波電力P
fを制御する方法である。第1の位相差制御方法は、
図1に示すDC−RF変換部4とRF合成部5の構成を2つ設け、両構成から出力される2つの高周波電力P
fを第3のRF合成部5Cで合成する方法に相当する。
【0126】
図15は、第1の位相差制御方法で第2の出力制御を行う場合のDC−RF変換部4”とRF合成部5”の回路構成を示している。
図15では、制御を簡単にするため、第1乃至第4のDC−RF変換部4A,4B,4C,4Dに入力する高周波信号v
A,v
B,v
C,v
Dの波形をv
a=A・sin(ω・t)(A
1=A,φ
1=0)、v
b=A・sin(ω・t+θ)(A
2=A,φ
2=θ)、v
s=A・sin(ω・t)(A
3=A,φ
3=0)、v
b=A・sin(ω・t+θ)(A
4=A,φ
4=θ)としている。
【0127】
図15に示す回路構成では、第2の出力制御において、第1のRF合成部5Aで第1のDC−RF変換部4Aの出力電力P
1と第2のDC−RF変換部4Bの出力電力P
2とが位相差θに基づく所定の割合で合成され、第2のRF合成部5Bで第3のDC−RF変換部4Cの出力電力P
3と第4のDC−RF変換部4Dの出力電力P
4とが位相差θに基づく所定の割合で合成される。
【0128】
RF合成部5A,5B,5Cの入力ポートが整合しているとすると、第1のRF合成部5Aから出力される高周波電力P
5と第2のRF合成部5Bから出力される高周波電力P
6は、(10’)式より
P
5=P
6=2・[V・cos(θ/2)]
2・sin
2(ω・t+θ/2)/R
o
で表される。そして、第3のRF合成部5Cでは高周波電力P
5と高周波電力P
6が熱消費されることなく合成されるから、第3のRF合成部5Cからは、
P
f=P
5+P
6=4・[V・cos(θ/2)]
2・sin
2(ω・t+θ/2)/R
o
の高周波電力P
fが負荷に出力される。
【0129】
図15に示す回路構成では、位相差θによって高周波電力P
1,P
2の合成量が調整され、位相差θによって高周波電力P
3,P
4の合成量が調整されるので、きめ細かい制御が可能になる。
【0130】
第2の位相差制御方法は、第1のDC−RF変換部4Aから出力される高周波電圧v
1と第2のDC−RF変換部4Bから出力される高周波電圧v
2を同一の位相で制御し、第3のDC−RF変換部4Cから出力される高周波電圧v
3と第4のDC−RF変換部4Dから出力される高周波電圧v
4を同一の位相で制御し、第1のRF合成部5Aから出力される高周波電圧v
5と第2のRF合成部5Bから出力される高周波電圧v
6との間に位相差θを設ける方法である。
【0131】
図16は、第2の位相差制御方法で第2の出力制御を行う場合のDC−RF変換部4”とRF合成部5”の回路構成を示している。
図16に示す回路構成では、第2の出力制御において、第1のRF合成部5Aで第1のDC−RF変換部4Aから出力される高周波電力P
1と第2のDC−RF変換部4Bから出力される高周波電力P
2とがそのまま合成され、第2のRF合成部5Bで第3のDC−RF変換部4Cから出力される高周波電力P
3と第4のDC−RF変換部4Dから出力される高周波電力P
4とがそのまま合成される。そして、第3のRF合成部5Cで第1のRF合成部5Aから出力される高周波電力P
5と第2のRF合成部5Bから出力される高周波電力P
6とが位相差θに基づく所定の割合で合成される。
【0132】
例えば、第1,第2のDC−RF変換部4A,4Bに入力する高周波信号の波形をv
a=A・sin(ω・t)(A
1=A
2=A,φ
1=φ
2=0)とすると、第1のRF合成部5Aから出力される高周波電圧v
5は、
v
5=V・[sin(ω・t)+sin(ω・t)]/2
=V・sin(ω・t)
で表される。また、第3,第4のDC−RF変換部4C,4Dに入力する高周波信号の波形をv
b=A・sin(ω・t+θ)(A
3=A
4=A,φ
3=φ
4=θ)とすると、第2のRF合成部5Bから出力される高周波電圧v
6は、
v
6=V・[sin(ω・t+θ)+sin(ω・t+θ)]/2
=V・sin(ω・t+θ)
で表される。
【0133】
従って、第3のRF合成部5Cからは、(9)式より、
v
f=V・cos(θ/2)・sin(ω・t+θ/2)]
の高周波電圧v
fが出力され、(10’)式より、
P
f=2・[V・cos(θ/2)]
2・sin
2(ω・t+θ/2)/R
o
の高周波電力P
fが負荷に出力される。
【0134】
図16に示す回路構成では、位相差θだけで第1のRF合成部5Aの出力電力P
5(=P
1+P
2)と第2のRF合成部5Bの出力電力P
6(=P
3+P
4)の合成量が調整されるので、合成量の調整が簡単になる。
【0135】
図1に示した実施形態では、第1のDC−RF変換部4Aから出力される高周波電圧v
1の初期位相φ
1を固定し、第2のDC−RF変換部4Bから出力される高周波電圧v
2の初期位相φ
2を変化させることによって位相差θ=φ
2−φ
1を変化させるようにしたが、初期位相φ
2を固定し、初期位相φ
1を変化させることによって位相差θ=φ
2−φ
1を変化させるようにしてもよい。また、初期位相φ
1,φ
2の両方を変化させることによって位相差θ=φ
2−φ
1を変化させるようにしてもよい。
【0136】
初期位相φ
1を固定し、初期位相φ
2を変化させる方法では、RF合成部5から出力される高周波電圧v
fは(9)式より2・V・cos(θ/2)・sin(ω・t+θ/2)で表わされるので、高周波電圧v
fの位相(ω・t+θ/2)も変化することになるが、初期位相φ
1,φ
2の両方を変化させて位相差θ=φ
2−φ
1を変化させる方法では、高周波電圧v
fの位相が位相差θの影響を受けないようにすることができる利点がある。
【0137】
すなわち、
v
f=2・V・cos(θ/2)・sin(ω・t+θ/2)
=2・V・cos[(φ
2−φ
1)/2]・sin[ω・t+(φ
1−φ
2)/2]
であるから、第1,第2のDC−RF変換部4A,4Bからそれぞれ出力される高周波電圧v
1,v
2の初期位相φ
1,φ
2を互いに逆方向に同一の大きさで変化させると、φ
1=−φ
2、θ=φ
2−φ
1=−2・φ
1となり、v
f=2・V・cos(φ
1)・sin(ω・t)となるから、RF合成部5から出力される高周波電圧v
fの位相を位相差θ=φ
2−φ
1の影響を受けないようにすることができる。
【0138】
上記実施形態では、RF合成部5が2つのRF電力を合成する回路構成の場合について説明したが、RF合成部5を3つ以上のRF電力を合成する回路で構成してもよい。3つ以上のRF電力を合成する回路としては、例えば、
図17に示す回路を用いることができる。
【0139】
例えば、
図17(b)の電力合成回路を用いて3つのRF電力を合成する場合、入力端子1,2,3にそれぞれ入力される入力電圧v
A,v
B,v
Cをv
A=A・sin(ω・t+φ
a)、v
B=B・sin(ω・t+φ
b)、v
C=C・sin(ω・t+φ
c)、実効値をV
Arms,v
Brms,v
Crmsとすると、電力合成回路には、入力電力P
A=V
Arms2/R、P
B=V
Brms2/R、P
C=V
Crms2/Rが入力される。v
A=v
B=v
Cでなければ、回路内の3個の抵抗Rには差分電圧v
AB=v
A−v
B、v
BC=v
B−v
C、v
CA=v
C−v
Aがそれぞれ生じるので、差分電圧v
AB、v
BC、v
CAの実効値をV
ABrms、V
BCrms、V
CArmsとすると、3つの抵抗RでそれぞれP
AB=V
ABrms2/R、P
BC=V
BCrms2/R、P
CA=V
CArms2/Rの電力が熱消費される。
【0140】
従って、入力電圧v
A,v
B,v
Cの間で相互に位相差θ
AB,θ
BC,θ
CAを設けることにより、電力合成回路から入力電力P
in=P
A+P
B+P
Cの一部の電力(P
AB+P
BC+P
CA)を熱消費させ、残りの電力P
in−(P
AB+P
BC+P
CA)を負荷に出力させることができる。4つ以上のRF電力を入力する場合についても同様である。
【0141】
上記実施形態では、DC−DC変換部3から出力される直流電圧V
dcと直流電流I
dcを検出し、直流電圧V
dcと直流電流I
dcを乗算してDC−DC変換部3の出力電力P
dcを算出していたが、直流電圧計8及び直流電流計9に代えて直流電力計を設け、出力電力P
dcを直接、検出するようしてもよい。
【0142】
上記実施形態では、高周波電源1に負荷としてプラズマ処理装置を接続したプラズマ処理システムを例に高周波電源1の出力制御を説明したが、本発明は、
図18に示すように、高周波電源1とプラズマ処理装置10との間にインピーダンス整合装置11を設けた場合にも適用することができる。
【0143】
インピーダンス整合装置11を設ける場合は、プラズマ処理装置10のインピーダンス(負荷インピーダンス)が変動してもインピーダンス整合装置11によって高周波電源1とプラズマ処理装置10とのインピーダンス整合が行われるが、インピーダンス整合装置11がインピーダンス整合処理をしている過渡的な期間は不整合状態であるから、インピーダンス整合装置11を備えたプラズマ処理システムでも本発明に係る高周波電源1の出力制御方法は、有効である。