【課題】簡易な構成でありながら、大口径比で、高画素、高感度化が進んだ固体撮像素子に対応可能な高い光学性能を備え、特に可視光域から近赤外域までの広範な波長の光に対して発生する諸収差を全変倍域に亘って良好に補正できること。
請求項1〜13のいずれか一つに記載のズームレンズと、該ズームレンズによって形成された光学像を電気的信号に変換する固体撮像素子と、を備えたことを特徴とする撮像装置。
【発明を実施するための形態】
【0040】
以下、本発明にかかるズームレンズおよび撮像装置の好適な実施の形態を詳細に説明する。
【0041】
高画素、高感度化が進んだ固体撮像素子を備えた撮像装置では、従来は問題とされなかったわずかな収差が発生しても画質の低下を招きやすい。そこで、本発明では、簡易な構成でありながら、大口径比で、高画素、高感度化が進んだ固体撮像素子を備えた撮像装置であっても画質の低下を招くことがない、高い光学性能を備えたズームレンズを提供しようとするものである。特に、監視カメラ等昼夜を問わず使用される撮像装置にも用いることができるように、可視光域のみならず近赤外域までの広範な波長の光に対して発生する諸収差を全変倍域に亘って良好に補正することが可能な、高い光学性能を備えたズームレンズを提供することを目的としている。そこで、かかる目的を達成すべく、本発明では、以下に示すような各種条件を設定している。
【0042】
本発明にかかるズームレンズは、物体側から順に配置された、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正または負の屈折力を有する第3レンズ群と、から構成される。そして、少なくとも第1レンズ群および第2レンズ群を光軸に沿って移動させて、各レンズ群の光軸上の間隔を変えることにより広角端から望遠端への変倍を行う。また、第1レンズ群を光軸に沿って移動させることにより、無限遠物体合焦状態から最至近距離物体合焦状態へのフォーカシングを行う。
【0043】
本発明では、第2レンズ群より像側に第3レンズ群を設けることで、より高い収差補正効果が得られ、非常に高い解像度を有するズームレンズを実現することが可能である。また、第3レンズ群は、少なくとも1枚の正レンズと、少なくとも1枚の負レンズと、を備えている。第3レンズ群は、正レンズと負レンズを最低1枚ずつ備えていることが必要である。この要件を満足しさえすれば、複数枚の正レンズと1枚の負レンズ、1枚の正レンズと複数枚の負レンズ、または複数枚の正レンズと複数枚の負レンズを備えた構成になってもよい。第3レンズ群が少なくとも1枚の正レンズと、少なくとも1枚の負レンズと、を備えていることにより、正レンズの正の屈折力と負レンズの負の屈折力とで球面収差、像面湾曲と軸上色収差、倍率色収差の補正を行い、中心と周辺像高の諸収差のバランスを整えることができる。
【0044】
なお、本発明では、レンズの実質枚数は、ほとんど屈折力を有していない光学フィルターや平行平面板や、収差補正能力をほとんど有していない焦点距離の長いレンズを除いて数えることとする。また、球面レンズに非球面形状の樹脂やフィルムを貼設することによって片面または両面に非球面が形成された複合レンズは1枚のレンズと考える。2枚のレンズが接合されている接合レンズは2枚のレンズと考える。
【0045】
本発明にかかるズームレンズでは、上記構成を前提に、第1レンズ群の焦点距離をf1、広角端における無限遠物体合焦状態のレンズ全系の焦点距離をfw、広角端における無限遠物体合焦状態の前記第2レンズ群と前記第3レンズ群との合成焦点距離をf23wとするとき、次の条件式を満足することが好ましい。
(1) 1.2≦|f1/fw|≦2.5
(2) 2.0≦f23w/fw≦3.4
【0046】
条件式(1),(2)を満足することにより、簡易な構成でありながら、大口径比で、高画素の固体撮像素子に対応可能な高い光学性能を備え、特に可視光域から近赤外域までの広範な波長の光に対して発生する諸収差を全変倍域に亘って良好に補正することが可能な、小型のズームレンズを実現することができる。
【0047】
条件式(1)は、広角端における無限遠合焦時のレンズ全系の焦点距離と、第1レンズ群の焦点距離との比の絶対値を規定するものである。条件式(1)を満足することで、第1レンズ群の焦点距離を適切に設定し、球面収差、像面湾曲を適切に補正して明るいレンズ系を得ることができる。
【0048】
条件式(1)においてその下限を下回ると、第1レンズ群の焦点距離が短くなりすぎて、第1レンズ群において球面収差や像面湾曲の発生が顕著になり、明るく良好な光学性能を備えたレンズ系の実現が困難になる。一方、条件式(1)においてその上限を上回ると、第1レンズ群の焦点距離が長くなりすぎて、各収差の補正が不足し、またレンズ口径が拡大するとともにレンズ全長が長くなって、小型で高性能のレンズ系を得ることが困難になる。
【0049】
なお、上記条件式(1)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(1a) 1.3≦|f1/fw|≦2.2
【0050】
また、上記条件式(1a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(1b) 1.5≦|f1/fw|≦2.0
【0051】
また、条件式(2)は、広角端における無限遠合焦時のレンズ全系の焦点距離と、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離との比を規定するものである。条件式(2)を満足することで、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離を適切に設定し、小型で、広角端において明るいレンズ系が得られるとともに、球面収差、コマ収差、像面湾曲、軸上色収差を適切に補正することができる。
【0052】
条件式(2)においてその下限を下回ると、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離が短くなりすぎて、広角端において球面収差、コマ収差、像面湾曲の補正が過剰になるため、適切な収差補正を行うことが困難になる。一方、条件式(2)においてその上限を上回ると、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離が長くなりすぎて、広角端において球面収差、コマ収差、像面湾曲、軸上色収差が補正不足になるとともにレンズ系の全長が長くなり、小型で良好な光学性能を得ることが困難になる。
【0053】
なお、上記条件式(2)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(2a) 2.2≦f23w/fw≦3.3
【0054】
また、上記条件式(2a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(2b) 2.4≦f23w/fw≦2.7
【0055】
さらに、本発明にかかるズームレンズでは、第1レンズ群と第2レンズ群との間に開口絞りを配置する。そして、広角端から望遠端への変倍の際に、開口絞りおよび第3レンズ群は固定されることが好ましい。このようにすることで、変倍時に移動するのは第1レンズ群と第2レンズ群のみになり、変倍機構の簡略化が可能になるとともに、レンズ系の全長を短く維持することができる。
【0056】
さらに、本発明にかかるズームレンズでは、第3レンズ群の焦点距離をf3、広角端における無限遠物体合焦状態のレンズ全系の焦点距離をfwとするとき、次の条件式を満足することが好ましい。
(3) 10≦|f3/fw|≦200
【0057】
条件式(3)は、広角端における無限遠物体合焦状態のレンズ全系の焦点距離と、第3レンズ群の焦点距離との比の絶対値を規定するものである。条件式(3)を満足することで、第3レンズ群の屈折力の範囲を適切に設定し、球面収差、像面湾曲、軸上色収差を良好に補正することができる。
【0058】
条件式(3)においてその下限を下回ると、第3レンズ群の焦点距離が短くなりすぎて、球面収差、像面湾曲の補正が過剰になり、良好な光学性能を得ることが困難になる。一方、条件式(3)においてその上限を上回ると、第3レンズ群の焦点距離が長くなりすぎて、球面収差、像面湾曲、軸上色収差の補正が不足し、良好な光学性能を得ることが困難になる。加えて、第3レンズ群の焦点距離が長くなりすぎることでレンズ系の全長が伸び、レンズ系の小型化が困難になる。
【0059】
なお、上記条件式(3)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(3a) 20≦|f3/fw|≦170
【0060】
また、上記条件式(3a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(3b) 50≦|f3/fw|≦100
【0061】
さらに、本発明にかかるズームレンズでは、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離をf23w、第1レンズ群の焦点距離をf1とするとき、次の条件式を満足することが好ましい。
(4) 1.1≦|f23w/f1|≦2.1
【0062】
条件式(4)は、第1レンズ群の焦点距離と、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離との比の絶対値を規定するものである。条件式(4)を満足することで、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離を適切に設定して、第1レンズ群で発生する球面収差、非点収差、軸上色収差を第2レンズ群および第3レンズ群で適切に補正することができる。
【0063】
条件式(4)においてその下限を下回ると、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離が短くなりすぎて、球面収差、非点収差、軸上色収差の補正が過剰になるため、適切な収差補正を行うことが困難になる。一方、条件式(4)においてその上限を上回ると、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離が長くなりすぎて、球面収差、非点収差、軸上色収差の補正が不足するため、良好な光学性能を得ることが困難になる。加えて、広角端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離が長くなることでレンズ系の全長が伸び、レンズ系の小型化が困難になる。
【0064】
なお、上記条件式(4)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(4a) 1.2≦|f23w/f1|≦1.8
【0065】
また、上記条件式(4a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(4b) 1.3≦|f23w/f1|≦1.6
【0066】
さらに、本発明にかかるズームレンズでは、第3レンズ群に含まれる、少なくとも1枚の正レンズのd線(587.56nm)に対するアッベ数をνd3P、第3レンズ群に含まれる、少なくとも1枚の負レンズのd線に対するアッベ数をνd3nとするとき、次の条件式を満足することが好ましい。
(5) 5.0≦|νd3P−νd3n|
【0067】
条件式(5)は、第3レンズ群に含まれる、少なくとも1枚の正レンズのd線に対するアッベ数と、第3レンズ群に含まれる、少なくとも1枚の負レンズのd線に対するアッベ数との差の絶対値を規定するものである。条件式(3)を満足することで、第3レンズ群において、全変倍域に亘って、可視光域のみならず近赤外域までの広範な波長の光に対して発生する軸上色収差、倍率色収差を良好に補正することができる。
【0068】
条件式(5)においてその下限を下回ると、軸上色収差、倍率色収差の補正が不足し、良好な光学性能を得ることが困難になる。
【0069】
条件式(5)においてあえて上限を設けていないのは、一般的な硝材でレンズを形成すれば、条件式(5)の上限値が大きくなりすぎることによる不都合が発生するおそれが極めて少ないためである。しかし、特殊な硝材を選択して第3レンズ群内に配置する正レンズと負レンズを形成する場合には、第3レンズ群に含まれる正レンズと負レンズのd線に対するアッベ数の差が大きくなりすぎる、すなわち条件式(5)の値が極めて大きくなってしまうこともあり得る。この場合、広い波長域の光に対する軸上色収差、倍率色収差の補正が過剰になって、良好な光学性能を得ることが困難になることが危惧される。
【0070】
そこで、上記条件式(5)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(5a) 10.0≦|νd3P−νd3n|≦50.0
【0071】
また、上記条件式(5a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(5b) 12.0≦|νd3P−νd3n|≦20.0
【0072】
また、本発明にかかるズームレンズにおいて、第3レンズ群を、物体側から順に配置された、正レンズと、負レンズと、からなる接合レンズで構成すると、少ないレンズ枚数で効果的に軸上色収差、倍率色収差の補正を行うことができる。また、当該接合レンズの接合面が像面側に凸形状になるようにすることで、ゴーストの発生を効果的に抑制することができる。
【0073】
第3レンズ群は、接合レンズを用いて構成した方がレンズ系の小型化には好ましい。しかし、1枚の正レンズと1枚の負レンズとを含んでいることを前提に、間に空気層がある3枚もしくは4枚のレンズで第3レンズ群を構成しても良好な光学性能が得られる。さらに、第3レンズ群を構成するレンズの少なくとも1面に非球面を形成することにより、明るいレンズ系において球面収差と像面湾曲の補正をより効果的に行うことが可能になる。
【0074】
以上のように第3レンズ群を構成することにより、第1レンズ群と第2レンズ群で発生する諸収差を第3レンズ群で良好に補正することができ、良好な性能が得られる。
【0075】
さらに、本発明にかかるズームレンズでは、第2レンズ群の最も物体側に正レンズを配置することで、第2レンズ群のレンズ口径を小さくすることができる。加えて、当該第2レンズ群に含まれる、全ての正レンズのd線に対するアッベ数の平均値をνd2P_aveとするとき、次の条件式を満足することが好ましい。
(6) 65.0≦νd2P_ave
【0076】
条件式(6)は、第2レンズ群に含まれる、すべての正レンズのd線に対するアッベ数の平均値を規定するものである。条件式(6)を満足することで、第2レンズ群において、全変倍域に亘って、可視光域から近赤外域の波長の光に対する軸上色収差および倍率色収差を良好に補正することができる。
【0077】
条件式(6)においてその下限を下回ると、第2レンズ群中の正レンズの分散が大きくなりすぎて、全変倍域で可視光域から近赤外域の波長に光に対する軸上色収差、倍率色収差の発生が顕著になり、良好な光学性能を得ることが困難になる。
【0078】
条件式(6)においてあえて上限を設けていないのは、一般的な硝材でレンズを形成すれば、条件式(6)の上限値が大きくなりすぎることによる不都合が発生するおそれが極めて少ないためである。しかし、特殊な硝材を選択して第2レンズ群内に配置する正レンズを形成する場合には、第2レンズ群に含まれるすべての正レンズのd線に対するアッベ数の平均値が大きくなりすぎる、すなわち条件式(6)の値が極めて大きくなってしまうこともあり得る。この場合、広い波長域の光に対する軸上色収差、倍率色収差の補正が過剰になって、良好な光学性能を得ることが困難になることが危惧される。
【0079】
そこで、上記条件式(6)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(6a) 65.0≦νd2P_ave≦100.0
【0080】
また、上記条件式(6a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(6b) 70.0≦νd2P_ave≦85.0
【0081】
なお、本発明にかかるズームレンズにおいて、第2レンズ群の最も物体側に配置される正レンズの少なくとも1面に非球面を形成することで、球面収差、コマ収差、像面湾曲をより良好に補正することができる。また、第2レンズ群に少なくとも1組の接合レンズを備えることで、軸上色収差、倍率色収差の補正効果がさらに向上する。さらに、第2レンズ群を、少なくとも3枚の正レンズと、少なくとも1枚の負レンズを備えて構成すれば、諸収差をより適切に補正して高解像化を実現することができる。
【0082】
ところで、レンズ系において、長波長領域の光に対する光学性能を維持するために最も危惧されるのは色収差である。色収差は、レンズ硝材の分散が原因となって色ズレとして発生する収差であり、長波長領域の光に対して良好な色収差補正を行うためには、長波長領域の光に対する部分分散比を適切に設定する必要がある。
【0083】
部分分散比とは、部分分散を主分散で割った値である。主分散とは基準となる2つの波長での屈折率の差のことを云い、部分分散とは他の2つの波長の屈折率の差のことを云う。
【0084】
ここで、各スペクトル線とその波長をt線(1013.98nm)、C線(656.27nm)、d線(587.56nm)、F線(486.13nm)、g線(435.84nm)とし、任意の文字x,yを各スペクトル線に対応させたとき、x線,y線に対するそれぞれの屈折率をnx,nyと定義する。たとえば、d線に対する屈折率はnd、F線に対する屈折率はnFと表される。さらに、x線とy線に対する部分分散比をPxyとするとき、Pxy=(nx−ny)/(nF−nC)と定義する。たとえば、C線とt線に対する部分分散比PCtは、PCt=(nC−nt)/(nF−nC)と表される。
【0085】
さらに、長波長領域の光に対する色収差補正を向上させるためには、各レンズ群に含まれる負レンズの長波長領域の光に対する異常分散性を適切に設定するとよい。一般の光学素子において、アッベ数を横軸に、部分分散比を縦軸にとったグラフを作成すると、ある直線上に乗る性質があるが、直線上に乗らないものを異常分散性という。
【0086】
ここで、C線とt線に対する異常分散性について説明する。
図1は、C線とt線に対する異常分散性について説明するためのグラフである。
図1に示すように、まず、XY座標平面上において、d線に対するアッベ数νdをX軸、C線とt線に対する部分分散比PCtをY軸に取る。そして、C線とt線に関する2つの基準硝材に対して座標平面上の2点を定め、その2点を結ぶ直線を「C線とt線に関する標準線Ct」と定義する。本発明では、標準線Ctを傾き0.00467、切片0.546の直線として 「標準線Ct:Pct=0.546+0.00467×νd」と定める。これにより、C線とt線に関する異常分散性を、与えられた硝材の(νd,PCt)に対して、標準線CtからのPCtの偏差ΔPCtが異常分散性の値と定義できる。たとえば、任意の硝材iのd線に対するアッベ数をνd_i、C線とt線に対する部分分散比PCt_iとするとき、任意の硝材iのC線とt線に関する異常分散性ΔPCt_iは、ΔPCt_i=PCt_i−(0.546+0.0047×νd_i) と計算できる。このように定義したΔPCt_iが、C線とt線に関する異常分散性を表す。
【0087】
近赤外域の色収差補正まで考えたレンズ系の場合、各レンズ群で使用する負レンズの異常分散性に関して、ΔPCt=PCt−(0.546+0.00467×νd)≧0の硝材を用いることが望ましい。ΔPCt≧0の硝材は、νdが比較的大きな低分散側でC線からt線までの分散(nC−nt)が小さくなる傾向があるため、負レンズで発生するC線からt線までの色収差が抑えられ、色収差を補正するために配置する正レンズに適切な異常分散性をもたせることで可視光域から近赤外域までの広範囲の波長の光に対して色収差の補正が可能になるからである。
【0088】
そこで、本発明にかかるズームレンズでは、第2レンズ群が少なくとも1枚の負レンズを備えていることを前提に、第2レンズ群に含まれる、少なくとも1枚の負レンズのC線とt線に関する部分分散比をPCt_2n_i、該PCt_2n_iの値が算出された負レンズのd線に対するアッベ数をνd_2n_iとするとき、次の条件式を満足することが好ましい。
(7) 0.000≦PCt_2n_i−(0.546+0.00467×νd_2n_i)
【0089】
条件式(7)は、第2レンズ群に含まれる、負レンズのC線とt線に対する異常分散性を規定するものである。条件式(7)を満足することで、第2レンズ群においてC線からt線までの近赤外域を含む波長域の光に対する軸上色収差、倍率色収差を良好の補正することができる。なお、第2レンズ群が複数枚の負レンズを含んでいる場合は、いずれか1枚の負レンズを選択し、当該負レンズに対して算出したPCt_2n_i,νd_2n_iの値が条件式(7)を満足していればよい。
【0090】
条件式(7)においてその下限を下回ると、第2レンズ群に含まれる負レンズの異常分散性が小さくなりすぎ、t線を含む波長域の光に対する軸上色収差、倍率色収差の発生が顕著になるため、近赤外域を含む波長域の光に対して良好な光学性能を得ることが困難になる。
【0091】
条件式(7)においてあえて上限を設けていないのは、一般的な硝材でレンズを形成すれば、条件式(7)の上限値が大きくなりすぎることによる不都合が発生するおそれが極めて少ないためである。しかし、特殊な硝材を選択して第2レンズ群に含まれる負レンズを形成する場合には、当該負レンズの異常分散性が大きくなりすぎる、すなわち条件式(7)の値が極めて大きくなってしまうこともあり得る。この場合、t線を含む波長域の光に値する色収差の補正が過剰になって、近赤外域を含む波長域の光に対して良好な光学性能を得ることが困難になることが危惧される。
【0092】
そこで、上記条件式(7)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(7a) 0.001≦PCt_2n_i−(0.546+0.00467×νd_2n_i)≦0.05
【0093】
また、上記条件式(7a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(7b) 0.0015≦PCt_2n_i−(0.546+0.00467×νd_2n_i)≦0.04
【0094】
また、上記条件式(7b)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(7c) 0.002≦PCt_2n_i−(0.546+0.00467×νd_2n_i)≦0.03
【0095】
さらに、本発明にかかるズームレンズでは、第1レンズ群が、少なくとも1枚の正レンズと、少なくとも2枚の負レンズと、を備えていることを前提に、第1レンズ群に含まれる、少なくとも1枚の正レンズのd線に対するアッベ数をνd1p、第1レンズ群に含まれる、少なくとも1枚の負レンズのC線とt線に関する部分分散比をPCt_1n_i、該PCt_1n_iの値が算出された負レンズのd線に対するアッベ数をνd_1n_iとするとき、次の条件式を満足することが好ましい。
(8) νd1p≦40.0
(9) 0.000≦PCt_1n_i−(0.546+0.00467×νd_1n_i)
【0096】
条件式(8)は、第1レンズ群に含まれる、少なくとも1枚の正レンズのd線に対するアッベ数を規定するものである。条件式(8)を満足することで、主に可視光域の波長の光に対する軸上色収差、倍率色収差を良好に補正することができる。第1レンズ群が複数枚の正レンズを備えている場合は、いずれか1枚が条件式(8)を満足していればよい。
【0097】
条件式(8)においてその下限を下回ると、可視光域の波長の光に対する軸上色収差、倍率色収差の発生が顕著になり、特に変倍の際に発生する色収差を抑えることが難しく、良好な光学性能を得ることが困難になる。
【0098】
条件式(8)においてあえて下限を設けていないのは、一般的な硝材でレンズを形成すれば、条件式(8)の下限値が小さくなりすぎることによる不都合が発生するおそれが極めて少ないためである。しかし、特殊な硝材を選択して第1レンズ群に含まれる正レンズを形成する場合には、当該正レンズのd線に対するアッベ数が小さくなりすぎる、すなわち条件式(8)の値が極めて小さくなってしまうこともあり得る。この場合、可視光域の波長の光に対する軸上色収差、倍率色収差の補正が過剰になって、良好な光学性能を得ることが困難になることが危惧される。
【0099】
そこで、上記条件式(8)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(8a) 10.0≦νd1p≦38.0
【0100】
また、上記条件式(8a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(8b) 17.0≦νd1p≦36.0
【0101】
条件式(9)は、第1レンズ群に含まれる、負レンズのC線とt線に対する異常分散性を規定するものである。条件式(9)を満足することで、第1レンズ群においてC線からt線までの近赤外域を含む波長域の光の軸上色収差、倍率色収差を良好に補正することができる。なお、第1レンズ群は少なくとも2枚の負レンズを備えているので、いずれか1枚の負レンズを選択し、当該負レンズに対して算出したPCt_1n_i、νd_1n_iの値が条件式(9)を満足していればよい。
【0102】
条件式(9)においてその下限を下回ると、第1レンズ群に含まれる負レンズのC線とt線に対する異常分散性が小さくなりすぎて、t線を含む波長域の光に対する軸上色収差、倍率色収差の発生が顕著になるため、近赤外域を含む波長域の光に対して良好な光学性能を得ることが困難になる。
【0103】
条件式(9)においてあえて上限を設けていないのは、一般的な硝材でレンズを形成すれば、条件式(9)の上限値が大きくなりすぎることによる不都合が発生するおそれが極めて少ないためである。しかし、特殊な硝材を選択して第1レンズ群に含まれる負レンズを形成する場合には、当該負レンズの異常分散性が大きくなりすぎる、すなわち条件式(9)の値が極めて大きくなってしまうこともあり得る。この場合、t線を含む波長域の光に対する色収差の補正が過剰になって、近赤外域を含む波長域の光に対して良好な光学性能を得ることが困難になることが危惧される。
【0104】
そこで、上記条件式(9)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(9a) 0.001≦PCt_1n_i−(0.546+0.00467×νd_1n_i)≦0.05
【0105】
また、上記条件式(9a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(9b) 0.0015≦PCt_1n_i−(0.546+0.00467×νd_1n_i)≦0.04
【0106】
また、上記条件式(9b)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(9c) 0.002≦PCt_1n_i−(0.546+0.00467×νd_1n_i)≦0.03
【0107】
本発明にかかるズームレンズでは、第1レンズ群が、最低、1枚の正レンズと、2枚の負レンズと、を備えていれば、前述の効果が十分得られるが、3枚以上の負レンズを備えることでより良好な色収差の補正効果が得られる。
【0108】
さらに、本発明にかかるズームレンズでは、第3レンズ群に含まれる、少なくとも1枚の負レンズのC線とt線に関する部分分散比をPCt_3n_i、該PCt_3n_iの値が算出された負レンズのd線に対するアッベ数をνd_3n_iとするとき、次の条件式を満足することが好ましい。
(10) 0.000≦PCt_3n_i−(0.546+0.00467×νd_3n_i)
【0109】
条件式(10)は、第3レンズ群に含まれる、負レンズのC線とt線に対する異常分散性を規定するものである。条件式(10)を満足することで、第3レンズ群においてC線からt線までの近赤外域を含む波長域の光に対する軸上色収差、倍率色収差を良好に補正することができる。なお、第3レンズ群が複数枚の負レンズを含んでいる場合は、いずれか1枚の負レンズを選択し、当該負レンズに対して算出したPCt_3n_i、νd_3n_iの値が条件式(10)を満足していればよい。
【0110】
条件式(10)においてその下限を下回ると、第3レンズ群に含まれる、負レンズのC線とt線に対する異常分散性が小さくなりすぎて、t線を含む波長域の光に対する軸上色収差、倍率色収差の発生が顕著になり、近赤外域を含む波長域の光に対して良好な光学性能を得ることが困難になる。
【0111】
条件式(10)においてあえて上限を設けていないのは、一般的な硝材でレンズを形成すれば、条件式(10)の上限値が大きくなりすぎることによる不都合が発生するおそれが極めて少ないためである。しかし、特殊な硝材を選択して第3レンズ群に含まれる負レンズを形成する場合には、当該負レンズの異常分散性が大きくなりすぎる、すなわち条件式(10)の値が極めて大きくなってしまうこともあり得る。この場合、t線を含む波長域の光に対する色収差の補正が過剰になって、近赤外域を含む波長域の光に対して良好な光学性能を得ることが困難になることが危惧される。
【0112】
そこで、上記条件式(10)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(10a) 0.001≦PCt_3n_i−(0.546+0.00467×νd_3n_i)≦0.05
【0113】
また、上記条件式(10a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(10b) 0.0015≦PCt_3n_i−(0.546+0.00467×νd_3n_i)≦0.04
【0114】
また、上記条件式(10b)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(10c) 0.002≦PCt_3n_i−(0.546+0.00467×νd_3n_i)≦0.03
【0115】
さらに、本発明にかかるズームレンズでは、第1レンズ群の焦点距離をf1、第2レンズ群の焦点距離をf2とするとき、次の条件式を満足することが好ましい。
(11) 0.4≦|f1/f2|≦1.1
【0116】
条件式(11)は、第1レンズ群の焦点距離と第2レンズ群の焦点距離との比の絶対値を規定するものである。条件式(11)を満足することで、明るいレンズ系が得られるとともに、第1レンズ群の変倍に伴う移動量を適切に設定することができ、変倍に伴う非点収差や像面湾曲の発生を抑えることができる。
【0117】
条件式(11)においてその下限を下回ると、第1レンズ群の焦点距離が短くなりすぎて、像面湾曲の補正が過剰になるとともに、非点収差、歪曲収差を補正することが困難になる。特に、明るいレンズ系では変倍時の球面収差、像面湾曲、非点収差を含む諸収差の補正が極めて難しくなり、明るく良好な光学性能を備えたレンズ系を実現することが困難になる。一方、条件式(11)においてその上限を上回ると、第1レンズ群の焦点距離が長くなりすぎて、広角端から望遠端への変倍の際に第1レンズ群の移動量が増えるため、レンズ全系の小型化を維持したまま光学性能を向上させることが困難になる。
【0118】
なお、上記条件式(11)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(11a) 0.5≦|f1/f2|≦0.9
【0119】
また、上記条件式(11a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(11b) 0.6≦|f1/f2|≦0.8
【0120】
さらに、本発明にかかるズームレンズでは、広角端から望遠端への変倍時における第2レンズ群の移動量をX2、第2レンズ群の焦点距離をf2とするとき、次の条件式を満足することが好ましい。
(12) 0.2≦|X2/f2|≦0.9
【0121】
条件式(12)は、広角端から望遠端への変倍時における第2レンズ群の移動量と第2レンズ群の焦点距離との比を規定するものである。条件式(12)を満足することで、変倍時の第2レンズ群の移動量と第2レンズ群の屈折力を適切に設定して、変倍時の球面収差、像面湾曲の変動を適切に補正することができる。
【0122】
条件式(12)においてその下限を下回ると、変倍時の第2レンズ群の移動量が少なくなりすぎ、変倍時の球面収差、像面湾曲の補正が過剰になって、良好な光学性能を得ることが困難になる。一方、条件式(12)においてその上限を上回ると、変倍時の第2レンズ群の移動量が増えすぎて、球面収差、像面湾曲の補正が不足するとともに、レンズ系の全長が伸びてしまう。
【0123】
なお、上記条件式(12)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(12a) 0.3≦|X2/f2|≦0.8
【0124】
また、上記条件式(12a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(12b) 0.4≦|X2/f2|≦0.7
【0125】
さらに、本発明にかかるズームレンズでは、望遠端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離をf23t、望遠端における無限遠物体合焦状態のレンズ全系の焦点距離をftとするとき、次の条件式を満足することが好ましい。
(13) 1.1≦f23t/ft≦2.8
【0126】
条件式(13)は、望遠端における無限遠物体合焦状態のレンズ全系の焦点距離と、望遠端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離との比を規定するものである。条件式(13)を満足することで、望遠端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離を適切に設定して、レンズ系の望遠端における球面収差、コマ収差、像面湾曲を適切に補正することができる。
【0127】
条件式(13)においてその下限を下回ると、望遠端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離が短くなりすぎて、レンズ系の望遠端における球面収差、コマ収差、像面湾曲の補正が過剰になるため、適切な収差補正を行うことが困難になる。一方、条件式(13)においてその上限を上回ると、望遠端における無限遠物体合焦状態の第2レンズ群と第3レンズ群との合成焦点距離が長くなりすぎて、レンズ系の望遠端における球面収差、コマ収差、像面湾曲の補正が不足し、良好な光学性能を得ることが困難になる。
【0128】
なお、上記条件式(13)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(13a) 1.2≦f23t/ft≦2.2
【0129】
また、上記条件式(13a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(13b) 1.3≦f23t/ft≦1.8
【0130】
さらに、本発明にかかるズームレンズでは、第2レンズ群の焦点距離をf2、第3レンズ群の焦点距離をf3とするとき、次の条件式を満足することが好ましい。
(14) 3.2≦|f3/f2|≦80.0
【0131】
条件式(14)は、第2レンズ群の焦点距離と第3レンズ群の焦点距離との比の絶対値を規定するものである。条件式(14)を満足することで、変倍時の第2レンズ群の移動に伴って発生する非点収差や像面湾曲を効果的に抑制することができる。
【0132】
条件式(14)においてその下限を下回ると、第2レンズ群の焦点距離が長くなりすぎて、像面湾曲を補正することが難しくなり、特に、広角端から望遠端への変倍時に良好な光学性能を得ることが困難になる。一方、条件式(14)においてその上限を上回ると、第2レンズ群の焦点距離が短くなりすぎて、像面湾曲の補正が過剰になるとともに、非点収差を良好に補正することが困難になる。特に、明るいレンズ系では変倍時の球面収差、像面湾曲、非点収差を含む諸収差の補正が極めて難しくなり、良好な光学性能を備えたレンズ系の実現が困難になる。
【0133】
なお、上記条件式(14)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(14a) 4.0≦|f3/f2|≦70.0
【0134】
また、上記条件式(14a)は、次に示す範囲を満足すると、さらに好ましい効果が期待できる。
(14b) 7.5≦|f3/f2|≦37.0
【0135】
以上説明したように、本発明によれば、上記構成を備えることにより、簡易な構成でありながら、大口径比で、高画素、高感度化が進んだ固体撮像素子に対応可能な高い光学性能を備え、特に可視光域から近赤外域までの広範な波長の光に対して発生する諸収差を全変倍域に亘って良好に補正することが可能な、小型のズームレンズを実現することができる。
【0136】
このような特徴を備えた本発明にかかるズームレンズは、主に可視光域の光を用いる写真用のカメラはもとより、夜間撮影も行う監視カメラ等、様々な撮像装置に用いることができる。特に、高画素、高感度化が進んだ固体撮像素子を備えた撮像装置に好適な高い光学性能を備えている。
【0137】
さらに、本発明は、昼夜を問わず、良好な画像が得られる高性能の撮像装置を提供することを目的とする。この目的を達成するためには、上記構成を備えたズームレンズと、このズームレンズによって形成された光学像を電気的信号に変換する固体撮像素子と、を備えて撮像装置を構成すればよい。このようにすることで、可視光域から近赤外域までの広範な波長の光に対して発生する諸収差を全変倍域に亘って良好に補正することが可能になり、昼夜を問わず、良好な画像が得られる高性能の撮像装置を実現することができる。
【0138】
以下、本発明にかかるズームレンズの実施例を図面に基づき詳細に説明する。なお、以下の実施例により本発明が限定されるものではない。
【実施例1】
【0139】
図2は、実施例1にかかるズームレンズの構成を示す光軸に沿う断面図である。同図は、レンズ系の広角端における無限遠物体合焦状態を示している。このズームレンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G
11と、正の屈折力を有する第2レンズ群G
12と、正の屈折力を有する第3レンズ群G
13と、が配置されて構成される。第1レンズ群G
11と第2レンズ群G
12との間には、所定の口径を規定する開口絞りSTPが配置される。第3レンズ群G
13と像面IMGとの間には、カバーガラスCGが配置される。
【0140】
第1レンズ群G
11は、物体側から順に、負レンズL
111と、負レンズL
112と、負レンズL
113と、正レンズL
114と、が配置されて構成される。負レンズL
113の物体側面には、非球面が形成されている。負レンズL
113と正レンズL
114とは、接合されている。
【0141】
第2レンズ群G
12は、物体側から順に、正レンズL
121と、負レンズL
122と、正レンズL
123と、負レンズL
124と、正レンズL
125と、が配置されて構成される。正レンズL
121の両面には、非球面が形成されている。負レンズL
122と正レンズL
123とは、接合されている。負レンズL
124と正レンズL
125とは、接合されている。
【0142】
第3レンズ群G
13は、物体側から順に、正レンズL
131と、負レンズL
132と、が配置されて構成される。正レンズL
131の物体側面には、非球面が形成されている。正レンズL
131と負レンズL
132とは、接合されている。正レンズL
131と負レンズL
132との接合面は、像面IMG側に凸形状になっている。
【0143】
このズームレンズは、開口絞りSTPおよび第3レンズ群G
13を像面IMGに対して固定したまま、第1レンズ群G
11を光軸に沿って像面IMG側に小さく凸の軌跡を形成するように移動させ、第2レンズ群G
12を光軸に沿って像面IMG側から物体側へ移動させることによって、広角端から望遠端への変倍を行う(
図2中の実線の矢印を参照)。また、第1レンズ群G
11を光軸に沿って像面IMG側に小さく凸の軌跡を形成するように移動させて、無限遠物体合焦状態から最至近距離物体合焦状態までのフォーカシングを行う(
図2中の破線の矢印を参照)。
【0144】
以下、実施例1にかかるズームレンズに関する各種数値データを示す。
【0145】
(面データ)
r
1=28.560
d
1=0.70 nd
1=1.65844 νd
1=50.86 PCt
1=0.7742
r
2=6.875
d
2=2.74
r
3=19.908
d
3=0.50 nd
2=1.56883 νd
2=56.04 PCt
2=0.8080
r
4=9.323
d
4=3.73
r
5=-10.508(非球面)
d
5=0.60 nd
3=1.62263 νd
3=58.16 PCt
3=0.8464
r
6=13.006
d
6=1.89 nd
4=1.91082 νd
4=35.25 PCt
4=0.7131
r
7=-44.951
d
7=D(7)(可変)
r
8=∞(開口絞り)
d
8=D(8)(可変)
r
9=10.758(非球面)
d
9=3.59 nd
5=1.55332 νd
5=71.68 PCt
5=0.8164
r
10=-16.500(非球面)
d
10=0.15
r
11=228.575
d
11=0.50 nd
6=1.51680 νd
6=64.20 PCt
6=0.8682
r
12=9.700
d
12=4.22 nd
7=1.49700 νd
7=81.65 PCt
7=0.8305
r
13=-10.326
d
13=0.15
r
14=-195.147
d
14=0.50 nd
8=1.80610 νd
8=40.73 PCt
8=0.7464
r
15=7.112
d
15=3.49 nd
9=1.49700 νd
9=81.65 PCt
9=0.8305
r
16=-16.606
d
16=D(16)(可変)
r
17=-22.555(非球面)
d
17=2.26 nd
10=1.82080 νd
10=42.71 PCt
10=0.7536
r
18=-9.150
d
18=0.50 nd
11=1.72825 νd
11=28.32 PCt
11=0.6855
r
19=-26.098
d
19=5.49
r
20=∞
d
20=0.50 nd
12=1.51680 νd
12=64.20 PCt
12=0.8682
r
21=∞
d
21=BF
r
22=∞(像面)
【0146】
円錐係数(k)および非球面係数(A,B,C,D,E)
(第5面)
k=0,
A=0,B=1.09677×10
-6,C=-4.85235×10
-6,
D=1.74189×10
-7,E=-4.16360×10
-9
(第9面)
k=0,
A=0,B=-1.91613×10
-4,C=3.26425×10
-6,
D=3.00419×10
-8,E=-2.56440×10
-9
(第10面)
k=0,
A=0,B=4.25683×10
-4,C=1.04005×10
-6,
D=1.78047×10
-7,E=-4.32383×10
-9
(第17面)
k=0,
A=0,B=-3.89074×10
-5,C=7.70391×10
-7,
D=0,E=0
【0147】
(各種データ)
変倍比:1.88
広角端 中間焦点位置 望遠端
焦点距離(無限遠物体合焦状態) 4.42 5.82 8.34
Fナンバー 1.55 1.78 2.43
半画角(ω) 66.99 47.79 32.55
像高 4.75 4.75 4.75
レンズ系全長 46.58 44.00 43.18
バックフォーカス(BF) 2.00 2.00 2.00
D(7) 5.68 3.08 2.26
D(8) 6.16 4.28 0.85
D(16) 1.23 3.11 6.55
【0148】
(ズームレンズ群データ)
群 始面 焦点距離 レンズ移動量(像面IMG側を+)
1 1 -7.61 3.42
2 9 10.56 -5.31
3 17 281.39 0.00
【0149】
(条件式(1)に関する数値)
|f1/fw|=1.72
【0150】
(条件式(2)に関する数値)
f23w(広角端における無限遠物体合焦状態の第2レンズ群G
12と第3レンズ群G
13との合成焦点距離)=11.06
f23w/fw=2.50
【0151】
(条件式(3)に関する数値)
|f3/fw|=63.48
【0152】
(条件式(4)に関する数値)
|f23w/f1|=1.45
【0153】
(条件式(5)に関する数値)
|νd3P−νd3n|=14.4
【0154】
(条件式(6)に関する数値)
νd2P_ave=78.3
【0155】
(条件式(7)に関する数値)
PCt_2n_i−(0.546+0.00467×νd_2n_i)=0.0224
【0156】
(条件式(8)に関する数値)
νd1p=35.3
【0157】
(条件式(9)に関する数値)
PCt_1n_i−(0.546+0.00467×νd_1n_i)=0.0288
【0158】
(条件式(10)に関する数値)
PCt_3n_i−(0.546+0.00467×νd_3n_i)=0.0072
【0159】
(条件式(11)に関する数値)
|f1/f2|=0.72
【0160】
(条件式(12)に関する数値)
|X2/f2|=0.50
【0161】
(条件式(13)に関する数値)
f23t(望遠端における無限遠物体合焦状態の第2レンズ群G
12と第3レンズ群G
13との合成焦点距離)=11.28
f23t/ft=1.35
【0162】
(条件式(14)に関する数値)
|f3/f2|=26.66
【0163】
図3は、実施例1にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(587.56nm)、短破線はg線(435.84nm)、長破線はIR線(850.00nm)に相当する波長の特性を示している。非点収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。なお、非点収差図において、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。
【実施例2】
【0164】
図4は、実施例2にかかるズームレンズの構成を示す光軸に沿う断面図である。同図は、レンズ系の広角端における無限遠物体合焦状態を示している。このズームレンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G
21と、正の屈折力を有する第2レンズ群G
22と、正の屈折力を有する第3レンズ群G
23と、が配置されて構成される。第1レンズ群G
21と第2レンズ群G
22との間には、所定の口径を規定する開口絞りSTPが配置される。第3レンズ群G
23と像面IMGとの間には、カバーガラスCGが配置される。
【0165】
第1レンズ群G
21は、物体側から順に、負レンズL
211と、負レンズL
212と、正レンズL
213と、が配置されて構成される。負レンズL
211の両面と正レンズL
213の像面IMG側面には、非球面が形成されている。負レンズL
212と正レンズL
213とは、接合されている。
【0166】
第2レンズ群G
22は、物体側から順に、正レンズL
221と、負レンズL
222と、正レンズL
223と、負レンズL
224と、正レンズL
225と、が配置されて構成される。正レンズL
221の両面には、非球面が形成されている。負レンズL
222と正レンズL
223とは、接合されている。負レンズL
224と正レンズL
225とは、接合されている。
【0167】
第3レンズ群G
23は、物体側から順に、正レンズL
231と、負レンズL
232と、が配置されて構成される。正レンズL
231と負レンズL
232とは、接合されている。正レンズL
231と負レンズL
232との接合面は、像面IMG側に凸形状になっている。
【0168】
このズームレンズは、開口絞りSTPおよび第3レンズ群G
23を像面IMGに対して固定したまま、第1レンズ群G
21を光軸に沿って像面IMG側に小さく凸の軌跡を形成するように移動させ、第2レンズ群G
22を光軸に沿って像面IMG側から物体側へ移動させることによって、広角端から望遠端への変倍を行う(
図4中の実線の矢印を参照)。また、第1レンズ群G
21を光軸に沿って像面IMG側に小さく凸の軌跡を形成するように移動させて、無限遠物体合焦状態から最至近距離物体合焦状態までのフォーカシングを行う(
図4中の破線の矢印を参照)。
【0169】
以下、実施例2にかかるズームレンズに関する各種数値データを示す。
【0170】
(面データ)
r
1=131.432(非球面)
d
1=0.80 nd
1=1.82080 νd
1=42.71 PCt
1=0.7536
r
2=7.500(非球面)
d
2=6.41
r
3=-7.511
d
3=0.52 nd
2=1.59349 νd
2=67.00 PCt
2=0.8494
r
4=14.710
d
4=1.78 nd
3=1.88202 νd
3=37.22 PCt
3=0.7227
r
5=-27.238(非球面)
d
5=D(5)(可変)
r
6=∞(開口絞り)
d
6=D(6)(可変)
r
7=9.752(非球面)
d
7=4.00 nd
4=1.55332 νd
4=71.68 PCt
4=0.8164
r
8=-17.883(非球面)
d
8=0.53
r
9=55.332
d
9=0.50 nd
5=1.62041 νd
5=60.34 PCt
5=0.8383
r
10=7.902
d
10=3.74 nd
6=1.49700 νd
6=81.65 PCt
6=0.8305
r
11=-11.975
d
11=0.15
r
12=-226.211
d
12=0.50 nd
7=1.80610 νd
7=40.73 PCt
7=0.7464
r
13=7.900
d
13=3.55 nd
8=1.49700 νd
8=81.65 PCt
8=0.8305
r
14=-15.426
d
14=D(14)(可変)
r
15=-54.287
d
15=2.77 nd
9=1.74400 νd
9=44.90 PCt
9=0.7459
r
16=-7.290
d
16=0.50 nd
10=1.69895 νd
10=30.05 PCt
10=0.6936
r
17=-81.768
d
17=4.80
r
18=∞
d
18=1.50 nd
11=1.51680 νd
11=64.20 PCt
11=0.8682
r
19=∞
d
19=BF
r
20=∞(像面)
【0171】
円錐係数(k)および非球面係数(A,B,C,D,E)
(第1面)
k=0,
A=0,B=2.13175×10
-4,C=-4.85138×10
-7,
D=-1.09051×10
-8,E=1.18921×10
-10
(第2面)
k=0,
A=0,B=1.17722×10
-4,C=4.20431×10
-7,
D=2.28582×10
-7,E=-4.06642×10
-9
(第5面)
k=0,
A=0,B=2.95068×10
-5,C=3.66591×10
-6,
D=-2.18995×10
-7,E=5.67556×10
-9
(第7面)
k=0,
A=0,B=-1.72280×10
-4,C=4.22093×10
-6,
D=-4.83929×10
-8,E=7.48395×10
-10
(第8面)
k=0,
A=0,B=4.19117×10
-4,C=2.50848×10
-6,
D=2.80895×10
-8,E=1.14497×10
-10
【0172】
(各種データ)
変倍比:1.89
広角端 中間焦点位置 望遠端
焦点距離(無限遠物体合焦状態) 4.42 5.83 8.36
Fナンバー 1.54 1.79 2.50
半画角(ω) 63.96 47.71 32.79
像高 4.75 4.75 4.75
レンズ系全長 46.39 44.08 43.65
バックフォーカス(BF) 1.00 1.00 1.00
D(5) 4.42 2.11 1.67
D(6) 7.09 5.05 1.35
D(14) 1.83 3.88 7.58
【0173】
(ズームレンズ群データ)
群 始面 焦点距離 レンズ移動量(像面IMG側を+)
1 1 -7.27 2.74
2 7 10.81 -5.74
3 15 734.04 0.00
【0174】
(条件式(1)に関する数値)
|f1/fw|=1.64
【0175】
(条件式(2)に関する数値)
f23w(広角端における無限遠物体合焦状態の第2レンズ群G
22と第3レンズ群G
23との合成焦点距離)=11.06
f23w/fw=2.50
【0176】
(条件式(3)に関する数値)
|f3/fw|=165.95
【0177】
(条件式(4)に関する数値)
|f23w/f1|=1.52
【0178】
(条件式(5)に関する数値)
|νd3P−νd3n|=14.9
【0179】
(条件式(6)に関する数値)
νd2P_ave=78.3
【0180】
(条件式(7)に関する数値)
PCt_2n_i−(0.546+0.00467×νd_2n_i)=0.0105
【0181】
(条件式(8)に関する数値)
νd1p=37.2
【0182】
(条件式(9)に関する数値)
PCt_1n_i−(0.546+0.00467×νd_1n_i)=0.0081
【0183】
(条件式(10)に関する数値)
PCt_3n_i−(0.546+0.00467×νd_3n_i)=0.0073
【0184】
(条件式(11)に関する数値)
|f1/f2|=0.67
【0185】
(条件式(12)に関する数値)
|X2/f2|=0.53
【0186】
(条件式(13)に関する数値)
f23t(望遠端における無限遠物体合焦状態の第2レンズ群G
22と第3レンズ群G
23との合成焦点距離)=11.15
f23t/ft=1.33
【0187】
(条件式(14)に関する数値)
|f3/f2|=67.92
【0188】
図5は、実施例2にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(587.56nm)、短破線はg線(435.84nm)、長破線はIR線(850.00nm)に相当する波長の特性を示している。非点収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。なお、非点収差図において、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。
【実施例3】
【0189】
図6は、実施例3にかかるズームレンズの構成を示す光軸に沿う断面図である。同図は、レンズ系の広角端における無限遠物体合焦状態を示している。このズームレンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G
31と、正の屈折力を有する第2レンズ群G
32と、正の屈折力を有する第3レンズ群G
33と、が配置されて構成される。第1レンズ群G
31と第2レンズ群G
32との間には、所定の口径を規定する開口絞りSTPが配置される。第3レンズ群G
33と像面IMGとの間には、カバーガラスCGが配置される。
【0190】
第1レンズ群G
31は、物体側から順に、負レンズL
311と、負レンズL
312と、負レンズL
313と、正レンズL
314と、が配置されて構成される。負レンズL
313の物体側面には、非球面が形成されている。負レンズL
313と正レンズL
314とは、接合されている。
【0191】
第2レンズ群G
32は、物体側から順に、正レンズL
321と、負レンズL
322と、正レンズL
323と、負レンズL
324と、正レンズL
325と、が配置されて構成される。正レンズL
321の両面には、非球面が形成されている。負レンズL
322と正レンズL
323とは、接合されている。負レンズL
324と正レンズL
325とは、接合されている。
【0192】
第3レンズ群G
33は、物体側から順に、正レンズL
331と、負レンズL
332と、が配置されて構成される。正レンズL
331の物体側面には、非球面が形成されている。正レンズL
331と負レンズL
332とは、接合されている。正レンズL
331と負レンズL
332との接合面は、像面IMG側に凸形状になっている。
【0193】
このズームレンズは、開口絞りSTPおよび第3レンズ群G
33を像面IMGに対して固定したまま、第1レンズ群G
31を光軸に沿って像面IMG側に凸の軌跡を形成するように移動させ、第2レンズ群G
32を光軸に沿って像面IMG側から物体側へ移動させることによって、広角端から望遠端への変倍を行う(
図6中の実線の矢印を参照)。また、第1レンズ群G
31を光軸に沿って像面IMG側に凸の軌跡を形成するように移動させて、無限遠物体合焦状態から最至近距離物体合焦状態までのフォーカシングを行う(
図6中の破線の矢印を参照)。
【0194】
以下、実施例3にかかるズームレンズに関する各種数値データを示す。
【0195】
(面データ)
r
1=22.334
d
1=0.70 nd
1=1.88300 νd
1=40.80 PCt
1=0.7381
r
2=6.875
d
2=2.79
r
3=21.150
d
3=0.50 nd
2=1.48749 νd
2=70.45 PCt
2=0.8988
r
4=12.931
d
4=5.34
r
5=-10.100(非球面)
d
5=0.60 nd
3=1.69350 νd
3=53.20 PCt
3=0.8135
r
6=24.955
d
6=1.41 nd
4=1.84666 νd
4=23.78 PCt
4=0.6600
r
7=-35.784
d
7=D(7)(可変)
r
8=∞(開口絞り)
d
8=D(8)(可変)
r
9=11.750(非球面)
d
9=3.87 nd
5=1.55332 νd
5=71.68 PCt
5=0.8164
r
10=-18.393(非球面)
d
10=0.15
r
11=32.202
d
11=0.50 nd
6=1.62299 νd
6=58.12 PCt
6=0.8107
r
12=9.700
d
12=4.73 nd
7=1.49700 νd
7=81.65 PCt
7=0.8305
r
13=-11.842
d
13=0.15
r
14=167.012
d
14=0.50 nd
8=1.80610 νd
8=40.73 PCt
8=0.7464
r
15=7.822
d
15=4.27 nd
9=1.49700 νd
9=81.65 PCt
9=0.8305
r
16=-32.434
d
16=D(16)(可変)
r
17=-21.608(非球面)
d
17=2.77 nd
10=1.55332 νd
10=71.68 PCt
10=0.8164
r
18=-9.150
d
18=0.50 nd
11=1.84666 νd
11=23.78 PCt
11=0.6600
r
19=-14.586
d
19=6.36
r
20=∞
d
20=0.50 nd
12=1.51680 νd
12=64.20 PCt
12=0.8682
r
21=∞
d
21=BF
r
22=∞(像面)
【0196】
円錐係数(k)および非球面係数(A,B,C,D,E)
(第5面)
k=0,
A=0,B=9.65920×10
-5,C=-1.19171×10
-5,
D=9.17092×10
-7,E=-2.98439×10
-8
(第9面)
k=0,
A=0,B=-1.57570×10
-4,C=2.33471×10
-6,
D=3.86574×10
-9,E=-6.82758×10
-10
(第10面)
k=0,
A=0,B=2.76164×10
-4,C=1.16104×10
-6,
D=6.71701×10
-8,E=-1.34735×10
-9
(第17面)
k=0,
A=0,B=1.43511×10
-5,C=1.78962×10
-7,
D=0,E=0
【0197】
(各種データ)
変倍比:1.89
広角端 中間焦点位置 望遠端
焦点距離(無限遠物体合焦状態) 4.43 5.83 8.36
Fナンバー 1.65 2.02 3.09
半画角(ω) 66.72 48.20 32.79
像高 4.75 4.75 4.75
レンズ系全長 50.69 49.53 50.62
バックフォーカス(BF) 2.00 2.00 2.00
D(7) 3.53 2.36 3.44
D(8) 7.97 5.45 0.85
D(16) 1.53 4.06 8.66
【0198】
(ズームレンズ群データ)
群 始面 焦点距離 レンズ移動量(像面IMG側を+)
1 1 -5.89 2.25
2 9 11.09 -7.12
3 17 400.00 0.00
【0199】
(条件式(1)に関する数値)
|f1/fw|=1.33
【0200】
(条件式(2)に関する数値)
f23w(広角端における無限遠物体合焦状態の第2レンズ群G
32と第3レンズ群G
33との合成焦点距離)=11.78
f23w/fw=2.66
【0201】
(条件式(3)に関する数値)
|f3/fw|=90.25
【0202】
(条件式(4)に関する数値)
|f23w/f1|=2.00
【0203】
(条件式(5)に関する数値)
|νd3P−νd3n|=47.9
【0204】
(条件式(6)に関する数値)
νd2P_ave=78.3
【0205】
(条件式(7)に関する数値)
PCt_2n_i−(0.546+0.00467×νd_2n_i)=0.0102
【0206】
(条件式(8)に関する数値)
νd1p=23.8
【0207】
(条件式(9)に関する数値)
PCt_1n_i−(0.546+0.00467×νd_1n_i)=0.0191
【0208】
(条件式(10)に関する数値)
PCt_3n_i−(0.546+0.00467×νd_3n_i)=0.0029
【0209】
(条件式(11)に関する数値)
|f1/f2|=0.53
【0210】
(条件式(12)に関する数値)
|X2/f2|=0.64
【0211】
(条件式(13)に関する数値)
f23t(望遠端における無限遠物体合焦状態の第2レンズ群G
32と第3レンズ群G
33との合成焦点距離)=12.00
f23t/ft=1.44
【0212】
(条件式(14)に関する数値)
|f3/f2|=36.08
【0213】
図7は、実施例3にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(587.56nm)、短破線はg線(435.84nm)、長破線はIR線(850.00nm)に相当する波長の特性を示している。非点収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。なお、非点収差図において、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。
【実施例4】
【0214】
図8は、実施例4にかかるズームレンズの構成を示す光軸に沿う断面図である。同図は、レンズ系の広角端における無限遠物体合焦状態を示している。このズームレンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G
41と、正の屈折力を有する第2レンズ群G
42と、正の屈折力を有する第3レンズ群G
43と、が配置されて構成される。第1レンズ群G
41と第2レンズ群G
42との間には、所定の口径を規定する開口絞りSTPが配置される。第3レンズ群G
43と像面IMGとの間には、カバーガラスCGが配置される。
【0215】
第1レンズ群G
41は、物体側から順に、負レンズL
411と、負レンズL
412と、負レンズL
413と、正レンズL
414と、が配置されて構成される。負レンズL
413の物体側面には、非球面が形成されている。負レンズL
413と正レンズL
414とは、接合されている。
【0216】
第2レンズ群G
42は、物体側から順に、正レンズL
421と、負レンズL
422と、正レンズL
423と、負レンズL
424と、正レンズL
425と、が配置されて構成される。正レンズL
421の両面には、非球面が形成されている。負レンズL
422と正レンズL
423とは、接合されている。負レンズL
424と正レンズL
425とは、接合されている。
【0217】
第3レンズ群G
43は、物体側から順に、正レンズL
431と、負レンズL
432と、が配置されて構成される。正レンズL
431の物体側面には、非球面が形成されている。正レンズL
431と負レンズL
432とは、接合されている。正レンズL
431と負レンズL
432との接合面は、像面IMG側に凸形状になっている。
【0218】
このズームレンズは、開口絞りSTPおよび第3レンズ群G
43を像面IMGに対して固定したまま、第1レンズ群G
41を光軸に沿って物体側から像面IMG側へ移動させ、第2レンズ群G
42を光軸に沿って像面IMG側から物体側へ移動させることによって、広角端から望遠端への変倍を行う(
図8中の実線の矢印を参照)。また、第1レンズ群G
41を光軸に沿って物体側から像面IMG側へ移動させて、無限遠物体合焦状態から最至近距離物体合焦状態までのフォーカシングを行う(
図8中の破線の矢印を参照)。
【0219】
以下、実施例4にかかるズームレンズに関する各種数値データを示す。
【0220】
(面データ)
r
1=63.338
d
1=0.70 nd
1=1.58913 νd
1=61.25 PCt
1=0.8368
r
2=6.875
d
2=2.83
r
3=54.504
d
3=0.50 nd
2=1.76182 νd
2=26.61 PCt
2=0.6762
r
4=15.319
d
4=2.94
r
5=-13.227(非球面)
d
5=0.60 nd
3=1.62263 νd
3=58.16 PCt
3=0.8464
r
6=13.671
d
6=1.99 nd
4=1.91082 νd
4=35.25 PCt
4=0.7131
r
7=-29.046
d
7=D(7)(可変)
r
8=∞(開口絞り)
d
8=D(8)(可変)
r
9=10.260(非球面)
d
9=3.74 nd
5=1.55332 νd
5=71.68 PCt
5=0.8164
r
10=-16.500(非球面)
d
10=0.74
r
11=-37.016
d
11=0.50 nd
6=1.56732 νd
6=42.84 PCt
6=0.7639
r
12=61.389
d
12=3.40 nd
7=1.49700 νd
7=81.65 PCt
7=0.8305
r
13=-10.017
d
13=0.15
r
14=195.108
d
14=0.50 nd
8=1.80610 νd
8=40.73 PCt
8=0.7464
r
15=7.000
d
15=3.73 nd
9=1.49700 νd
9=81.65 PCt
9=0.8305
r
16=-21.218
d
16=D(16)(可変)
r
17=-424.877(非球面)
d
17=2.51 nd
10=1.82080 νd
10=42.71 PCt
10=0.7536
r
18=-11.198
d
18=0.50 nd
11=1.72825 νd
11=28.32 PCt
11=0.6855
r
19=-153.514
d
19=4.43
r
20=∞
d
20=0.50 nd
12=1.51680 νd
12=64.20 PCt
12=0.8682
r
21=∞
d
21=BF
r
22=∞(像面)
【0221】
円錐係数(k)および非球面係数(A,B,C,D,E)
(第5面)
k=0,
A=0,B=1.61829×10
-5,C=-3.79476×10
-6,
D=1.79040×10
-7,E=-4.30180×10
-9
(第9面)
k=0,
A=0,B=-1.70485×10
-4,C=2.57665×10
-6,
D=3.91896×10
-8,E=-2.43028×10
-9
(第10面)
k=0,
A=0,B=4.38937×10
-4,C=4.74978×10
-8,
D=2.06665×10
-7,E=-4.60654×10
-9
(第17面)
k=0,
A=0,B=-4.36169×10
-5,C=-3.16374×10
-8,
D=0,E=0
【0222】
(各種データ)
変倍比:1.87
広角端 中間焦点位置 望遠端
焦点距離(無限遠物体合焦状態) 4.45 6.10 8.33
Fナンバー 1.55 1.79 2.26
半画角(ω) 66.34 45.39 32.52
像高 4.75 4.75 4.75
レンズ系全長 47.58 43.40 41.73
バックフォーカス(BF) 2.00 2.00 2.00
D(7) 8.29 4.09 2.41
D(8) 5.87 3.76 0.85
D(16) 1.20 3.31 6.22
【0223】
(ズームレンズ群データ)
群 始面 焦点距離 レンズ移動量(像面IMG側を+)
1 1 -9.74 5.88
2 9 11.52 -5.02
3 17 90.06 0.00
【0224】
(条件式(1)に関する数値)
|f1/fw|=2.19
【0225】
(条件式(2)に関する数値)
f23w(広角端における無限遠物体合焦状態の第2レンズ群G
42と第3レンズ群G
43との合成焦点距離)=11.32
f23w/fw=2.54
【0226】
(条件式(3)に関する数値)
|f3/fw|=20.23
【0227】
(条件式(4)に関する数値)
|f23w/f1|=1.16
【0228】
(条件式(5)に関する数値)
|νd3P−νd3n|=14.4
【0229】
(条件式(6)に関する数値)
νd2P_ave=78.3
【0230】
(条件式(7)に関する数値)
PCt_2n_i−(0.546+0.00467×νd_2n_i)=0.0178
【0231】
(条件式(8)に関する数値)
νd1p=35.3
【0232】
(条件式(9)に関する数値)
PCt_1n_i−(0.546+0.00467×νd_1n_i)=0.0288
【0233】
(条件式(10)に関する数値)
PCt_3n_i−(0.546+0.00467×νd_3n_i)=0.0072
【0234】
(条件式(11)に関する数値)
|f1/f2|=0.85
【0235】
(条件式(12)に関する数値)
|X2/f2|=0.44
【0236】
(条件式(13)に関する数値)
f23t(望遠端における無限遠物体合焦状態の第2レンズ群G
42と第3レンズ群G
43との合成焦点距離)=11.98
f23t/ft=1.44
【0237】
(条件式(14)に関する数値)
|f3/f2|=7.82
【0238】
図9は、実施例4にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(587.56nm)、短破線はg線(435.84nm)、長破線はIR線(850.00nm)に相当する波長の特性を示している。非点収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。なお、非点収差図において、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。
【実施例5】
【0239】
図10は、実施例5にかかるズームレンズの構成を示す光軸に沿う断面図である。同図は、レンズ系の広角端における無限遠物体合焦状態を示している。このズームレンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G
51と、正の屈折力を有する第2レンズ群G
52と、正の屈折力を有する第3レンズ群G
53と、が配置されて構成される。第1レンズ群G
51と第2レンズ群G
52との間には、所定の口径を規定する開口絞りSTPが配置される。第3レンズ群G
53と像面IMGとの間には、カバーガラスCGが配置される。
【0240】
第1レンズ群G
51は、物体側から順に、負レンズL
511と、負レンズL
512と、負レンズL
513と、正レンズL
514と、が配置されて構成される。負レンズL
513の物体側面には、非球面が形成されている。負レンズL
513と正レンズL
514とは、接合されている。
【0241】
第2レンズ群G
52は、物体側から順に、正レンズL
521と、負レンズL
522と、正レンズL
523と、負レンズL
524と、正レンズL
525と、が配置されて構成される。正レンズL
521の両面には、非球面が形成されている。負レンズL
522と正レンズL
523とは、接合されている。負レンズL
524と正レンズL
525とは、接合されている。
【0242】
第3レンズ群G
53は、物体側から順に、正レンズL
531と、負レンズL
532と、が配置されて構成される。正レンズL
531の物体側面には、非球面が形成されている。正レンズL
531と負レンズL
532とは、接合されている。正レンズL
531と負レンズL
532との接合面は、像面IMG側に凸形状になっている。
【0243】
このズームレンズは、開口絞りSTPおよび第3レンズ群G
53を像面IMGに対して固定したまま、第1レンズ群G
51を光軸に沿って物体側から像面IMG側へなだらかに移動させ、第2レンズ群G
52を光軸に沿って像面IMG側から物体側へ移動させることによって、広角端から望遠端への変倍を行う(
図10中の実線の矢印を参照)。また、第1レンズ群G
51を光軸に沿って物体側から像面IMG側へなだらかに移動させて、無限遠物体合焦状態から最至近距離物体合焦状態までのフォーカシングを行う(
図10中の破線の矢印を参照)。
【0244】
以下、実施例5にかかるズームレンズに関する各種数値データを示す。
【0245】
(面データ)
r
1=22.840
d
1=0.70 nd
1=1.62299 νd
1=58.12 PCt
1=0.8107
r
2=6.875
d
2=2.32
r
3=12.903
d
3=0.50 nd
2=1.48749 νd
2=70.45 PCt
2=0.8988
r
4=7.319
d
4=3.73
r
5=-13.671(非球面)
d
5=0.60 nd
3=1.62263 νd
3=58.16 PCt
3=0.8464
r
6=8.019
d
6=1.77 nd
4=1.91082 νd
4=35.25 PCt
4=0.7131
r
7=72.433
d
7=D(7)(可変)
r
8=∞(開口絞り)
d
8=D(8)(可変)
r
9=12.789(非球面)
d
9=3.50 nd
5=1.59201 νd
5=67.02 PCt
5=0.8184
r
10=-18.012(非球面)
d
10=0.15
r
11=3031.500
d
11=0.50 nd
6=1.56732 νd
6=42.84 PCt
6=0.7639
r
12=13.079
d
12=4.07 nd
7=1.59282 νd
7=68.63 PCt
7=0.7960
r
13=-10.671
d
13=0.15
r
14=47.455
d
14=0.50 nd
8=1.91082 νd
8=35.25 PCt
8=0.7131
r
15=7.000
d
15=3.47 nd
9=1.49700 νd
9=81.65 PCt
9=0.8305
r
16=-39.000
d
16=D(16)(可変)
r
17=-96.750(非球面)
d
17=2.52 nd
10=1.88202 νd
10=37.22 PCt
10=0.7227
r
18=-13.905
d
18=0.50 nd
11=1.67270 νd
11=32.17 PCt
11=0.7030
r
19=-99.333
d
19=4.38
r
20=∞
d
20=0.50 nd
12=1.51680 νd
12=64.20 PCt
12=0.8682
r
21=∞
d
21=BF
r
22=∞(像面)
【0246】
円錐係数(k)および非球面係数(A,B,C,D,E)
(第5面)
k=0,
A=0,B=-4.20167×10
-5,C=-6.77937×10
-6,
D=1.63124×10
-7,E=-2.05645×10
-9
(第9面)
k=0,
A=0,B=-2.65859×10
-4,C=-3.36618×10
-6,
D=1.22589×10
-7,E=-7.65284×10
-9
(第10面)
k=0,
A=0,B=2.80382×10
-4,C=-1.68536×10
-6,
D=2.93515×10
-8,E=-3.58703×10
-9
(第17面)
k=0,
A=0,B=-2.21084×10
-5,C=7.95255×10
-8,
D=0,E=0
【0247】
(各種データ)
変倍比:1.87
広角端 中間焦点位置 望遠端
焦点距離(無限遠物体合焦状態) 4.44 6.16 8.34
Fナンバー 1.55 1.89 2.56
半画角(ω) 66.62 44.71 32.43
像高 4.75 4.75 4.75
レンズ系全長 44.42 42.24 42.22
バックフォーカス(BF) 2.00 2.00 2.00
D(7) 4.98 2.78 2.75
D(8) 6.38 3.93 0.85
D(16) 1.22 3.66 6.75
【0248】
(ズームレンズ群データ)
群 始面 焦点距離 レンズ移動量(像面IMG側を+)
1 1 -7.84 2.23
2 9 10.13 -5.53
3 17 77.14 0.00
【0249】
(条件式(1)に関する数値)
|f1/fw|=1.77
【0250】
(条件式(2)に関する数値)
f23w(広角端における無限遠物体合焦状態の第2レンズ群G
52と第3レンズ群G
53との合成焦点距離)=10.10
f23w/fw=2.28
【0251】
(条件式(3)に関する数値)
|f3/fw|=17.39
【0252】
(条件式(4)に関する数値)
|f23w/f1|=1.29
【0253】
(条件式(5)に関する数値)
|νd3P−νd3n|=5.1
【0254】
(条件式(6)に関する数値)
νd2P_ave=71.4
【0255】
(条件式(7)に関する数値)
PCt_2n_i−(0.546+0.00467×νd_2n_i)=0.0178
【0256】
(条件式(8)に関する数値)
νd1p=35.3
【0257】
(条件式(9)に関する数値)
PCt_1n_i−(0.546+0.00467×νd_1n_i)=0.0288
【0258】
(条件式(10)に関する数値)
PCt_3n_i−(0.546+0.00467×νd_3n_i)=0.0068
【0259】
(条件式(11)に関する数値)
|f1/f2|=0.77
【0260】
(条件式(12)に関する数値)
|X2/f2|=0.55
【0261】
(条件式(13)に関する数値)
f23t(望遠端における無限遠物体合焦状態の第2レンズ群G
52と第3レンズ群G
53との合成焦点距離)=10.88
f23t/ft=1.30
【0262】
(条件式(14)に関する数値)
|f3/f2|=7.62
【0263】
図11は、実施例5にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(587.56nm)、短破線はg線(435.84nm)、長破線はIR線(850.00nm)に相当する波長の特性を示している。非点収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。なお、非点収差図において、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。
【実施例6】
【0264】
図12は、実施例6にかかるズームレンズの構成を示す光軸に沿う断面図である。同図は、レンズ系の広角端における無限遠物体合焦状態を示している。このズームレンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G
61と、正の屈折力を有する第2レンズ群G
62と、正の屈折力を有する第3レンズ群G
63と、が配置されて構成される。第1レンズ群G
61と第2レンズ群G
62との間には、所定の口径を規定する開口絞りSTPが配置される。第3レンズ群G
63と像面IMGとの間には、カバーガラスCGが配置される。
【0265】
第1レンズ群G
61は、物体側から順に、負レンズL
611と、負レンズL
612と、負レンズL
613と、正レンズL
614と、が配置されて構成される。負レンズL
613の物体側面には、非球面が形成されている。負レンズL
613と正レンズL
614とは、接合されている。
【0266】
第2レンズ群G
62は、物体側から順に、正レンズL
621と、負レンズL
622と、正レンズL
623と、負レンズL
624と、正レンズL
625と、が配置されて構成される。正レンズL
621の両面には、非球面が形成されている。負レンズL
622と正レンズL
623とは、接合されている。負レンズL
624と正レンズL
625とは、接合されている。
【0267】
第3レンズ群G
63は、物体側から順に、正レンズL
631と、負レンズL
632と、が配置されて構成される。正レンズL
631の物体側面には、非球面が形成されている。正レンズL
631と負レンズL
632とは、接合されている。正レンズL
631と負レンズL
632との接合面は、像面IMG側に凸形状になっている。
【0268】
このズームレンズは、開口絞りSTPおよび第3レンズ群G
63を像面IMGに対して固定したまま、第1レンズ群G
61を光軸に沿って物体側から像面IMG側へなだらかに移動させ、第2レンズ群G
62を光軸に沿って像面IMG側から物体側へ移動させることによって、広角端から望遠端への変倍を行う(
図12の実線の矢印を参照)。また、第1レンズ群G
61を光軸に沿って物体側から像面IMG側へなだらかに移動させて、無限遠物体合焦状態から最至近距離物体合焦状態までのフォーカシングを行う(
図12中の破線の矢印を参照)。
【0269】
以下、実施例6にかかるズームレンズに関する各種数値データを示す。
【0270】
(面データ)
r
1=29.683
d
1=0.70 nd
1=1.88300 νd
1=40.80 PCt
1=0.7381
r
2=6.875
d
2=3.36
r
3=85.894
d
3=0.50 nd
2=1.48749 νd
2=70.45 PCt
2=0.8988
r
4=15.316
d
4=3.44
r
5=-11.913(非球面)
d
5=0.60 nd
3=1.62263 νd
3=58.16 PCt
3=0.8464
r
6=12.850
d
6=3.45 nd
4=1.91082 νd
4=35.25 PCt
4=0.7131
r
7=-30.637
d
7=D(7)(可変)
r
8=∞(開口絞り)
d
8=D(8)(可変)
r
9=12.164(非球面)
d
9=4.00 nd
5=1.59201 νd
5=67.02 PCt
5=0.8499
r
10=-18.102(非球面)
d
10=1.52
r
11=-778.309
d
11=0.50 nd
6=1.56883 νd
6=56.04 PCt
6=0.8080
r
12=9.700
d
12=3.88 nd
7=1.49700 νd
7=81.65 PCt
7=0.8305
r
13=-13.485
d
13=0.16
r
14=288.955
d
14=0.50 nd
8=1.91082 νd
8=35.25 PCt
8=0.7131
r
15=8.053
d
15=3.50 nd
9=1.49700 νd
9=81.65 PCt
9=0.8305
r
16=-20.581
d
16=D(16)(可変)
r
17=-20.841(非球面)
d
17=2.79 nd
10=1.82080 νd
10=42.71 PCt
10=0.7536
r
18=-9.150
d
18=0.50 nd
11=1.91082 νd
11=35.25 PCt
11=0.7131
r
19=-14.353
d
19=4.00
r
20=∞
d
20=0.50 nd
12=1.51680 νd
12=64.20 PCt
12=0.8682
r
21=∞
d
21=BF
r
22=∞(像面)
【0271】
円錐係数(k)および非球面係数(A,B,C,D,E)
(第5面)
k=0,
A=0,B=-1.06724×10
-5,C=-2.37407×10
-6,
D=7.20137×10
-8,E=-1.81348×10
-9
(第9面)
k=0,
A=0,B=-1.07086×10
-4,C=1.71366×10
-6,
D=-2.23618×10
-8,E=4.85325×10
-10
(第10面)
k=0,
A=0,B=2.35304×10
-4,C=7.93066×10
-7,
D=-7.58119×10
-10,E=4.17355×10
-10
(第17面)
k=0,
A=0,B=-1.87934×10
-5,C=1.51794×10
-7,
D=0,E=0
【0272】
(各種データ)
変倍比:1.88
広角端 中間焦点位置 望遠端
焦点距離(無限遠物体合焦状態) 4.43 5.83 8.35
Fナンバー 1.65 1.91 2.58
半画角(ω) 66.04 47.83 32.80
像高 4.75 4.75 4.75
レンズ系全長 56.18 52.70 51.30
バックフォーカス(BF) 2.00 2.00 2.00
D(7) 8.95 5.44 4.04
D(8) 7.27 4.97 0.85
D(16) 4.10 6.40 10.52
【0273】
(ズームレンズ群データ)
群 始面 焦点距離 レンズ移動量(像面IMG側を+)
1 1 -8.44 4.91
2 9 13.22 -6.42
3 17 54.65 0.00
【0274】
(条件式(1)に関する数値)
|f1/fw|=1.90
【0275】
(条件式(2)に関する数値)
f23w(広角端における無限遠物体合焦状態の第2レンズ群G
62と第3レンズ群G
63との合成焦点距離)=14.51
f23w/fw=3.27
【0276】
(条件式(3)に関する数値)
|f3/fw|=12.33
【0277】
(条件式(4)に関する数値)
|f23w/f1|=1.72
【0278】
(条件式(5)に関する数値)
|νd3P−νd3n|=7.5
【0279】
(条件式(6)に関する数値)
νd2P_ave=76.8
【0280】
(条件式(7)に関する数値)
PCt_2n_i−(0.546+0.00467×νd_2n_i)=0.0025
【0281】
(条件式(8)に関する数値)
νd1p=35.3
【0282】
(条件式(9)に関する数値)
PCt_1n_i−(0.546+0.00467×νd_1n_i)=0.0288
【0283】
(条件式(10)に関する数値)
PCt_3n_i−(0.546+0.00467×νd_3n_i)=0.0025
【0284】
(条件式(11)に関する数値)
|f1/f2|=0.64
【0285】
(条件式(12)に関する数値)
|X2/f2|=0.49
【0286】
(条件式(13)に関する数値)
f23t(望遠端における無限遠物体合焦状態の第2レンズ群G
62と第3レンズ群G
63との合成焦点距離)=16.65
f23t/ft=2.00
【0287】
(条件式(14)に関する数値)
|f3/f2|=4.13
【0288】
図13は、実施例6にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(587.56nm)、短破線はg線(435.84nm)、長破線はIR線(850.00nm)に相当する波長の特性を示している。非点収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。なお、非点収差図において、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。
【実施例7】
【0289】
図14は、実施例7にかかるズームレンズの構成を示す光軸に沿う断面図である。同図は、レンズ系の広角端における無限遠物体合焦状態を示している。このズームレンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G
71と、正の屈折力を有する第2レンズ群G
72と、正の屈折力を有する第3レンズ群G
73と、が配置されて構成される。第1レンズ群G
71と第2レンズ群G
72との間には、所定の口径を規定する開口絞りSTPが配置される。第3レンズ群G
73と像面IMGとの間には、カバーガラスCGが配置される。
【0290】
第1レンズ群G
71は、物体側から順に、負レンズL
711と、負レンズL
712と、負レンズL
713と、正レンズL
714と、が配置されて構成される。負レンズL
713の物体側面には、非球面が形成されている。負レンズL
713と正レンズL
714とは、接合されている。
【0291】
第2レンズ群G
72は、物体側から順に、正レンズL
721と、負レンズL
722と、正レンズL
723と、負レンズL
724と、正レンズL
725と、が配置されて構成される。正レンズL
721の両面には、非球面が形成されている。負レンズL
722と正レンズL
723とは、接合されている。負レンズL
724と正レンズL
725とは、接合されている。
【0292】
第3レンズ群G
73は、物体側から順に、正レンズL
731と、負レンズL
732と、が配置されて構成される。正レンズL
731の物体側面には、非球面が形成されている。正レンズL
731と負レンズL
732とは、接合されている。正レンズL
731と負レンズL
732との接合面は、像面IMG側に凸形状になっている。
【0293】
このズームレンズは、開口絞りSTPおよび第3レンズ群G
73を像面IMGに対して固定したまま、第1レンズ群G
71を光軸に沿って物体側から像面IMG側へなだらかに移動させ、第2レンズ群G
72を光軸に沿って像面IMG側から物体側へ移動させることによって、広角端から望遠端への変倍を行う(
図14の実線の矢印を参照)。また、第1レンズ群G
71を光軸に沿って物体側から像面IMG側へなだらかに移動させて、無限遠物体合焦状態から最至近距離物体合焦状態までのフォーカシングを行う(
図14中の破線の矢印を参照)。
【0294】
以下、実施例7にかかるズームレンズに関する各種数値データを示す。
【0295】
(面データ)
r
1=36.110
d
1=0.70 nd
1=1.88300 νd
1=40.80 PCt
1=0.7381
r
2=6.875
d
2=3.49
r
3=269.543
d
3=0.50 nd
2=1.48749 νd
2=70.45 PCt
2=0.8988
r
4=14.782
d
4=3.23
r
5=-18.843(非球面)
d
5=0.60 nd
3=1.62263 νd
3=58.16 PCt
3=0.8464
r
6=11.664
d
6=3.36 nd
4=1.91082 νd
4=35.25 PCt
4=0.7131
r
7=-44.582
d
7=D(7)(可変)
r
8=∞(開口絞り)
d
8=D(8)(可変)
r
9=12.085(非球面)
d
9=4.00 nd
5=1.59201 νd
5=67.02 PCt
5=0.8499
r
10=-19.491(非球面)
d
10=1.36
r
11=309.911
d
11=0.50 nd
6=1.56883 νd
6=56.04 PCt
6=0.8080
r
12=10.063
d
12=3.87 nd
7=1.49700 νd
7=81.65 PCt
7=0.8305
r
13=-13.895
d
13=0.36
r
14=929.336
d
14=0.50 nd
8=1.91082 νd
8=35.25 PCt
8=0.7131
r
15=7.835
d
15=3.77 nd
9=1.49700 νd
9=81.65 PCt
9=0.8305
r
16=-21.378
d
16=D(16)(可変)
r
17=-22.644(非球面)
d
17=2.81 nd
10=1.82080 νd
10=42.71 PCt
10=0.7536
r
18=-9.159
d
18=0.50 nd
11=1.91082 νd
11=35.25 PCt
11=0.7131
r
19=-14.459
d
19=4.00
r
20=∞
d
20=0.50 nd
12=1.51680 νd
12=64.20 PCt
12=0.8682
r
21=∞
d
21=BF
r
22=∞(像面)
【0296】
円錐係数(k)および非球面係数(A,B,C,D,E)
(第5面)
k=0,
A=0,B=1.62760×10
-5,C=-1.42083×10
-6,
D=6.60166×10
-8,E=-8.80582×10
-10
(第9面)
k=0,
A=0,B=-1.02549×10
-4,C=1.52216×10
-6,
D=-2.31244×10
-8,E=3.62557×10
-10
(第10面)
k=0,
A=0,B=2.17744×10
-4,C=9.00649×10
-7,
D=-8.24436×10
-9,E=3.18041×10
-10
(第17面)
k=0,
A=0,B=-3.48413×10
-5,C=-3.50512×10
-8,
D=0,E=0
【0297】
(各種データ)
変倍比:1.88
広角端 中間焦点位置 望遠端
焦点距離(無限遠物体合焦状態) 4.42 5.82 8.33
Fナンバー 1.65 1.91 2.57
半画角(ω) 64.86 47.51 32.69
像高 4.75 4.75 4.75
レンズ系全長 57.42 53.69 52.09
バックフォーカス(BF) 2.00 2.00 2.00
D(7) 10.06 6.33 4.73
D(8) 7.35 5.02 0.85
D(16) 3.95 6.28 10.45
【0298】
(ズームレンズ群データ)
群 始面 焦点距離 レンズ移動量(像面IMG側を+)
1 1 -8.74 5.33
2 9 13.59 -6.50
3 17 48.39 0.00
【0299】
(条件式(1)に関する数値)
|f1/fw|=1.98
【0300】
(条件式(2)に関する数値)
f23w(広角端における無限遠物体合焦状態の第2レンズ群G
72と第3レンズ群G
73との合成焦点距離)=14.85
f23w/fw=3.36
【0301】
(条件式(3)に関する数値)
|f3/fw|=10.95
【0302】
(条件式(4)に関する数値)
|f23w/f1|=1.70
【0303】
(条件式(5)に関する数値)
|νd3P−νd3n|=7.5
【0304】
(条件式(6)に関する数値)
νd2P_ave=76.8
【0305】
(条件式(7)に関する数値)
PCt_2n_i−(0.546+0.00467×νd_2n_i)=0.0025
【0306】
(条件式(8)に関する数値)
νd1p=35.3
【0307】
(条件式(9)に関する数値)
PCt_1n_i−(0.546+0.00467×νd_1n_i)=0.0288
【0308】
(条件式(10)に関する数値)
PCt_3n_i−(0.546+0.00467×νd_3n_i)=0.0025
【0309】
(条件式(11)に関する数値)
|f1/f2|=0.64
【0310】
(条件式(12)に関する数値)
|X2/f2|=0.48
【0311】
(条件式(13)に関する数値)
f23t(望遠端における第2レンズ群G
72と第3レンズ群G
73との合成焦点距離)=17.40
f23t/ft=2.09
【0312】
(条件式(14)に関する数値)
|f3/f2|=3.56
【0313】
図15は、実施例7にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(λ=587.56nm)、短破線はg線(λ=435.84nm)、長破線はIR線(λ=850.00nm)に相当する波長の特性を示している。非点収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。なお、非点収差図において、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。
【実施例8】
【0314】
図16は、実施例8にかかるズームレンズの構成を示す光軸に沿う断面図である。同図は、レンズ系の広角端における無限遠物体合焦状態を示している。このズームレンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G
81と、正の屈折力を有する第2レンズ群G
82と、負の屈折力を有する第3レンズ群G
83と、が配置されて構成される。第1レンズ群G
81と第2レンズ群G
82との間には、所定の口径を規定する開口絞りSTPが配置される。第3レンズ群G
83と像面IMGとの間には、カバーガラスCGが配置される。
【0315】
第1レンズ群G
81は、物体側から順に、負レンズL
811と、負レンズL
812と、負レンズL
813と、正レンズL
814と、が配置されて構成される。負レンズL
813の物体側面には、非球面が形成されている。負レンズL
813と正レンズL
814とは、接合されている。
【0316】
第2レンズ群G
82は、物体側から順に、正レンズL
821と、負レンズL
822と、正レンズL
823と、負レンズL
824と、正レンズL
825と、が配置されて構成される。正レンズL
821の両面には、非球面が形成されている。負レンズL
822と正レンズL
823とは、接合されている。負レンズL
824と正レンズL
825とは、接合されている。
【0317】
第3レンズ群G
83は、物体側から順に、正レンズL
831と、負レンズL
832と、が配置されて構成される。正レンズL
831の両面には、非球面が形成されている。
【0318】
このズームレンズは、開口絞りSTPおよび第3レンズ群G
83を像面IMGに対して固定したまま、第1レンズ群G
81を光軸に沿って像面IMG側に凸の軌跡を形成するように移動させ、第2レンズ群G
82を光軸に沿って像面IMG側から物体側へ移動させることによって、広角端から望遠端への変倍を行う(
図16の実線の矢印を参照)。また、第1レンズ群G
81を光軸に沿って像面IMG側に緩い凸の軌跡を形成するように移動させて、無限遠物体合焦状態から最至近距離物体合焦状態までのフォーカシングを行う(
図16中の破線の矢印を参照)。
【0319】
以下、実施例8にかかるズームレンズに関する各種数値データを示す。
【0320】
(面データ)
r
1=21.133
d
1=0.70 nd
1=1.63854 νd
1=55.45 PCt
1=0.7991
r
2=6.875
d
2=2.69
r
3=9.922
d
3=0.50 nd
2=1.88300 νd
2=40.80 PCt
2=0.7381
r
4=6.150
d
4=3.97
r
5=-11.017(非球面)
d
5=0.60 nd
3=1.62263 νd
3=58.16 PCt
3=0.8464
r
6=7.873
d
6=1.74 nd
4=1.91082 νd
4=35.25 PCt
4=0.7131
r
7=67.749
d
7=D(7)(可変)
r
8=∞(開口絞り)
d
8=D(8)(可変)
r
9=11.518(非球面)
d
9=4.00 nd
5=1.55332 νd
5=71.68 PCt
5=0.8164
r
10=-16.500(非球面)
d
10=0.15
r
11=32.578
d
11=0.50 nd
6=1.88300 νd
6=40.80 PCt
6=0.7381
r
12=19.905
d
12=3.90 nd
7=1.49700 νd
7=81.65 PCt
7=0.8305
r
13=-11.291
d
13=0.15
r
14=-238.272
d
14=0.50 nd
8=1.80610 νd
8=40.73 PCt
8=0.7464
r
15=7.799
d
15=4.36 nd
9=1.49700 νd
9=81.65 PCt
9=0.8305
r
16=-17.677
d
16=D(16)(可変)
r
17=-21.317(非球面)
d
17=2.82 nd
10=1.49710 νd
10=81.56 PCt
10=0.8349
r
18=-9.150(非球面)
d
18=0.30
r
19=-8.426
d
19=0.50 nd
11=1.90366 νd
11=31.32 PCt
11=0.6968
r
20=-13.212
d
20=6.04
r
21=∞
d
21=0.50 nd
12=1.51680 νd
12=64.20 PCt
12=0.8682
r
21=∞
d
21=BF
r
22=∞(像面)
【0321】
円錐係数(k)および非球面係数(A,B,C,D,E)
(第5面)
k=0,
A=0,B=-3.75950×10
-5,C=-1.72154×10
-5,
D=9.06529×10
-7,E=-2.94817×10
-8
(第9面)
k=0,
A=0,B=-1.77587×10
-4,C=2.23866×10
-6,
D=1.17470×10
-8,E=-1.15419×10
-9
(第10面)
k=0,
A=0,B=3.51196×10
-4,C=1.23946×10
-6,
D=8.50737×10
-8,E=-1.85413×10
-9
(第17面)
k=0,
A=0,B=2.94890×10
-5,C=1.18346×10
-6,
D=0,E=0
(第18面)
k=0,
A=0,B=-4.83274×10
-5,C=-5.27841×10
-8,
D=0,E=0
【0322】
(各種データ)
変倍比:1.88
広角端 中間焦点位置 望遠端
焦点距離(無限遠物体合焦状態) 4.43 5.83 8.35
Fナンバー 1.65 2.00 3.06
半画角(ω) 65.46 47.68 32.57
像高 4.75 4.75 4.75
レンズ系全長 48.26 47.11 48.05
バックフォーカス(BF) 2.00 2.00 2.00
D(7) 3.68 2.53 3.47
D(8) 7.47 5.14 0.85
D(16) 1.20 3.53 7.82
【0323】
(ズームレンズ群データ)
群 始面 焦点距離 レンズ移動量(像面IMG側を+)
1 1 -5.65 2.10
2 9 10.41 -6.62
3 17 -186.14 0.00
【0324】
(条件式(1)に関する数値)
|f1/fw|=1.27
【0325】
(条件式(2)に関する数値)
f23w(広角端における無限遠物体合焦状態の第2レンズ群G
82と第3レンズ群G
83との合成焦点距離)=10.96
f23w/fw=2.47
【0326】
(条件式(3)に関する数値)
|f3/fw|=41.97
【0327】
(条件式(4)に関する数値)
|f23w/f1|=1.94
【0328】
(条件式(5)に関する数値)
|νd3P−νd3n|=50.2
【0329】
(条件式(6)に関する数値)
νd2P_ave=78.3
【0330】
(条件式(7)に関する数値)
PCt_2n_i−(0.546+0.00467×νd_2n_i)=0.0102
【0331】
(条件式(8)に関する数値)
νd1p=35.3
【0332】
(条件式(9)に関する数値)
PCt_1n_i−(0.546+0.00467×νd_1n_i)=0.0288
【0333】
(条件式(10)に関する数値)
PCt_3n_i−(0.546+0.00467×νd_3n_i)=0.0045
【0334】
(条件式(11)に関する数値)
|f1/f2|=0.54
【0335】
(条件式(12)に関する数値)
|X2/f2|=0.64
【0336】
(条件式(13)に関する数値)
f23t(望遠端における無限遠物体合焦状態の第2レンズ群G
82と第3レンズ群G
83との合成焦点距離)=10.57
f23t/ft=1.27
【0337】
(条件式(14)に関する数値)
|f3/f2|=17.88
【0338】
図17は、実施例8にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(587.56nm)、短破線はg線(435.84nm)、長破線はIR線(850.00nm)に相当する波長の特性を示している。非点収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。なお、非点収差図において、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は半画角(図中、ωで示す)を表し、d線に相当する波長の特性を示している。
【0339】
なお、上記各実施例中の数値データにおいて、r
1,r
2,・・・・はレンズ面等の曲率半径、d
1,d
2,・・・・はレンズ等の肉厚またはそれらの面間隔、nd
1,nd
2,・・・・はレンズ等のd線(λ=587.56nm)に対する屈折率、νd
1,νd
2,・・・・はレンズ等のd線(λ=587.56nm)に対するアッベ数、PCt
1,PCt
2,・・・・はレンズ等のC線とt線に関する部分分散比を示している。そして、長さの単位はすべて「mm」、角度の単位はすべて「°」である。
【0340】
また、上記各非球面形状は、光軸に垂直な方向の高さをH、レンズ面頂を原点としたときの高さHにおける光軸方向の変位量をX(H)、近軸曲率半径をR、円錐係数をk、2次,4次,6次,8次,10次の非球面係数をそれぞれA,B,C,D,Eとし、光の進行方向を正とするとき、以下に示す式により表される。
【0341】
【数1】
【0342】
上記各実施例に示したように、本発明によれば、上記各条件式を満足することにより、簡易な構成でありながら、大口径比で、高画素、高感度化が進んだ固体撮像素子に対応可能な高い光学性能を備え、特に可視光域から近赤外域までの広範な波長の光に対して発生する諸収差を全変倍域に亘って良好に補正することが可能な、小型のズームレンズを実現することができる。
【0343】
このような特徴を備えたズームレンズは、主に可視光域の光を用いる写真用のカメラはもとより、夜間撮影も行う監視カメラ等、様々な撮像装置に用いることができる。特に、高画素、高感度化が進んだ固体撮像素子を備えた撮像装置に好適である。
【0344】
<適用例>
次に、本発明にかかるズームレンズを撮像装置に適用した例を示す。
図18は、本発明にかかるズームレンズを備えた撮像装置の一例を示す図である。
図18に示すように、撮像装置100は、ズームレンズ10と、レンズ鏡筒20と、固体撮像素子101と、を備えて構成される。ズームレンズ10はレンズ鏡筒20に収容され、図示しない駆動機構の駆動によって変倍やズーミングが実行される。なお、
図18では、ズームレンズ10として実施例1(
図2を参照)のものを示したが、実施例2〜8に示したズームレンズであっても同様に撮像装置100に搭載可能である。
【0345】
ズームレンズ10と固体撮像素子101とを備えた撮像装置100において、
図2に示した像面IMGが固体撮像素子101の撮像面に相当する。固体撮像素子101としては、たとえば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)センサなどの光電変換素子を用いることができる。
【0346】
撮像装置100において、ズームレンズ10の物体側から入射した光が最終的に固体撮像素子101の撮像面に結像する。そして、固体撮像素子101は受像した光を光電変換して電気信号として出力する。この出力信号が図示しない信号処理回路によって演算処理され、物体像に対応したデジタル画像が生成される。デジタル画像は、たとえばHDD(Hard Disk Drive)やメモリカード、光ディスク、磁気テープなどの記録媒体に記録することが可能である。
【0347】
上記のように構成することで、可視光域から近赤外域までの広範な波長の光に対して発生する諸収差を全変倍域に亘って良好に補正することが可能になり、昼夜を問わず、良好な画像が得られる高性能の撮像装置を実現することができる。
【0348】
図18では、本発明にかかるズームレンズを監視カメラに用いた例を示した。しかし、本発明にかかるズームレンズは、監視カメラのみならず、ビデオカメラ、デジタルスチルカメラ、一眼レフカメラ、ミラーレス一眼カメラ等に用いることも可能である。