【非特許文献】
【0105】
【非特許文献1】Castro L N. (2007) Fundamentals of natural computing: an overview. Physics of Life Reviews 4: 1-36.
【非特許文献2】Kari L, & Rozenberg G. (2008) The many facets of natural computing. Communications of the ACM 51: 72-83.
【非特許文献3】Terabe K, Hasegawa T, Nakayama T, & Aono M. (2005) Quantized conductance atomic switch. Nature 433: 47-50.
【非特許文献4】Robbins H. (1952) Some aspects of the sequential design of experiments. Bull Amer Math Soc 58: 527-536.
【非特許文献5】Thompson W. (1933) On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25: 285-294.
【非特許文献6】Gittins J, & Jones D. (1974) Dynamic allocation index for the sequential design of experiments( Gans, J. Progress in Statistics North Holland, 241-266所収)
【非特許文献7】Gittins J. (1979) Bandit processes and dynamic allocation indices. J R Stat Soc B 41: 148-177.
【非特許文献8】Agrawal R. (1995) Sample mean based index policies with O(log n) regret for the multi-armed bandit problem. Adv Appl Prob 27: 1054-1078.
【非特許文献9】Auer P, Cesa-Bianchi N, & Fischer P. (2002) Finite-time analysis of the multiarmed bandit problem. Machine Learning 47: 235-256.
【非特許文献10】Lai L, Jiang H, & Poor H. V. (2008) Medium access in cognitive radio networks: a competitive multi-armed bandit framework. Proc. of IEEE 42nd Asilomar Conference on Signals, System and Computers, 98-102.
【非特許文献11】Lai L, Gamal H. E, Jiang H, & Poor H. V. (2011) Cognitive medium access: exploration, exploitation, and competition. IEEE Trans. on Mobile Computing 10: 239-253.
【非特許文献12】Agarwal D, Chen B.-C, & Elango P. (2009) Explore/exploit schemes for web content optimization. Proc of ICDM2009, http://dx.doi.org/10.1109/ICDM.2009.52.
【非特許文献13】Kocsis L, & Szepesv´ari C. (2006) Bandit based monte-carlo planning, In: Carbonell, J. G. et al., 17th European Conference on Machine Learning, Lecture Notes in Artificial Intelligence 4212, Springer, 282-293.
【非特許文献14】Gelly S, Wang Y, Munos R, & Teytaud O. (2006) Modification of UCT with patterns in Monte-Carlo Go. RR-6062-INRIA, 1-19.
【非特許文献15】Kim S-J, Aono M, & Hara M. (2010) Tug-of-war model for multi-armed bandit problem, In: Calude C. et al. Unconventional Computation, Lecture Notes in Computer Science 6079, Springer, 69-80.
【非特許文献16】Kim S-J, Aono M, & Hara M. (2010) Tug-of-war model for the two-bandit problem: Nonlocally-correlated parallel exploration via resource conservation. BioSystems 101: 29-36.
【非特許文献17】Kim S-J, Nameda E, Aono M, & Hara M. (2011) Adaptive tug-of-war model for two-armed bandit problem. Proc of NOLTA2011, 176-179.
【非特許文献18】Kim S-J, Aono M, Nameda E, & Hara M. (2011) Amoeba-inspired tug-of-war model: Toward a physical implementation of an accurate and speedy parallel search algorithm. Technical Report of IEICE (CCS-2011-025), 36-41.
【非特許文献19】Aono M, Kim S-J, Hara M, & Munakata T. (2014) Amoeba-inspired tug-of-war algorithms for explorationexploitation dilemma in extended bandit problem. BioSystems 117: 1-9.
【非特許文献20】Kim S-J, & Aono M. (2014) Amoeba-inspired algorithm for cognitive medium access. NOLTA 5: 198-209.
【非特許文献21】Kim S-J, Aono M, & Nameda E. (2014) Efficient decision-making by volume-conserving physical object. New J Phys, http://arxiv.org/abs/1412.6141.
【非特許文献22】Kim S-J, Naruse M, Aono M, Ohtsu M, & Hara M. (2013) Decision maker based on nanoscale photo-excitation transfer. Sci Rep 3: 2370.
【非特許文献23】Naruse M, Nomura W, Aono M, Ohtsu M, Sonnefraud Y, Drezet, A, Huant S, & Kim S-J. (2014) Decision making based on optical excitation transfer via near-field interactions between quantum dots. J Appl Phys 116: 154303.
【非特許文献24】Naruse M, Berthel M, Drezet A, Huant S, Aono M, Ohtsu M, Hori H, & Kim S-J. (2015) Single photon decision maker Sci Rep.
【非特許文献25】Tsuruoka T, Hasegawa T, Terabe K, & Aono M. (2012) Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch. Nanotechnology 23: 435705.
【非特許文献26】Sutton R, & Barto A. (1998) Reinforcement Learning: An Introduction, MIT Press.
【非特許文献27】Vermorel J, & Mohri M. (2005) Multi-armed bandit algorithms and empirical evaluation(Gama J., et al. 16th European Conference on Machine Learning. Lecture Notes in Artificial Intelligence 3720, Springer, 437-448所収)
【非特許文献28】Kim S-J, & Aono M. (2015) Decision maker using coupled incompressible-fluid cylinders. Special issue of Advances in Science, Technology and Environmentology B11: 41-45, http://arxiv.org/abs/1502.03890.
【非特許文献29】Kim S-J, Naruse M, & Aono M. (2015) Harnessing natural fluctuations: analogue computer for efficient socially-maximal decision-making. eprint arXiv, http://arxiv.org/abs/1504.03451.