【解決手段】アルキレンオキサイド付加物成分(A)および高分子粒子成分(B)を含有する、二次電池スラリー用分散剤組成物。アルキレンオキサイド付加物成分(A)と、高分子粒子成分(B)と、無機粒子とを含有する二次電池スラリー組成物であって、前記無機粒子の含有量を100重量部としたときに、それぞれの含有量が、前記成分(A)が0.01〜10重量部、前記成分(B)が0.1〜50重量部であり、ロスマイルス試験法による25℃における有効濃度0.1重量%の起泡力が、流下直後において50mm以下、かつ、流下直後から5分後において25mm以下である、二次電池スラリー組成物。
前記アルキレンオキサイド付加物の起泡力(ロスマイルス試験法、濃度0.1重量%および温度25℃の測定条件下)が、流下直後において50mm以下であり、流下直後から5分後において20mm以下である、請求項1〜3のいずれかに記載の二次電池スラリー用分散剤組成物。
前記アルキレンオキサイド付加物の0.1重量%水溶液の表面張力が25℃において20〜50mN/mである、請求項1〜4のいずれかに記載の二次電池スラリー用分散剤組成物。
下記一般式(2)で表され、有効濃度が1重量%の水溶液の曇点が30℃以上である、エチレンオキサイド付加物成分(C)をさらに含む、請求項1〜6のいずれかに記載の二次電池スラリー用界面活性剤組成物。
R´O−(EO)n−H (2)
(R´は、活性水素含有化合物由来の有機基、EOはオキシエチレン基を示す。nは、EOの平均付加モル数を示し、n=1〜100である。)
有効濃度が1重量%の水溶液の曇点が30℃以上である、エチレンオキサイド付加物成分(C)をさらに含み、前記無機粒子の含有量を100重量部としたときに、前記成分(C)が0.01〜10重量部である、請求項8に記載の二次電池スラリー組成物。
下記一般式(1)で表されるアルキレンオキサイド付加物成分(A)及び溶媒を混合して混合液を得る工程(a)と、前記混合液及び高分子粒子成分(B)を混合して分散剤組成物を得る工程(b)と、前記分散剤組成物と無機粒子とを混合してスラリー組成物を得る工程(c)と、正極の集電体、負極の集電体、正極、負極及びセパレータから選ばれる少なくとも1種に前記スラリー組成物を塗布し乾燥して被膜を形成させる工程(d)を含む、二次電池用材料の製造方法。
RO−[(PO)p/(EO)q]−(PO)r−H (1)
(但し、Rは水素元素あるいは炭素数1〜30のアルキル基またはアルケニル基を示し、直鎖または分枝鎖のいずれの構造から構成されていてもよい。POはオキシプロピレン基、EOはオキシエチレン基を示す。p、qおよびrは、各々の平均付加モル数を示し、p=1〜20、q=0〜30およびr=0〜20である。[(PO)p/(EO)q]はpモルのPOとqモルのEOとがランダム付加してなるポリオキシアルキレン基である。)
集電体上に正極用被膜を有する二次電池用正極であって、前記被膜が、請求項8又は9に記載の二次電池スラリー組成物の不揮発分により形成されてなる、二次電池用正極。
集電体上に負極用被膜を有する二次電池用負極であって、前記被膜が、請求項8又は9に記載の二次電池スラリー組成物の不揮発分により形成されてなる、二次電池用負極。
セパレータ用被膜を有するセパレータであって、前記被膜が、請求項8又は9に記載の二次電池スラリー組成物の不揮発分により形成されてなる、二次電池用セパレータ。
負極、正極、セパレータ及び電解液を含む二次電池であって、前記負極、前記正極及び前記セパレータのうちの少なくとも1つが、請求項8又は9に記載の二次電池スラリー組成物の不揮発分により形成されてなる被膜を有する、二次電池。
【発明を実施するための形態】
【0016】
本発明の二次電池スラリー用分散剤組成物は、特定のアルキレンオキサイド付加物である成分(A)および高分子粒子成分(B)を必須成分として含む。
まず、二次電池スラリー用分散剤組成物を構成する各成分を詳しく説明する。
〔成分(A)〕
本発明で用いられるアルキレンオキサイド付加物成分(A)は、上記一般式(1)で表される。
一般式(1)中のRは、水素あるいはアルキル基またはアルケニル基である。分散性に優れる観点から、Rはアルキル基またはアルケニル基であると特に好ましい。
一般式(1)中のRがアルキル基またはアルケニル基である場合のRに対しては、下記に示すアルコールROHを構成するRの説明をそのまま適用できる。Rの具体例としても、下記で具体的に例示した種々のアルコールからOH基を除いたアルキル基またはアルケニル基を例示することができる。
【0017】
pはポリオキシアルキレン基([(PO)p/(EO)q])中のオキシプロピレン基の平均付加モル数を表し、rはポリオキシアルキレン基に結合する(ポリ)オキシプロピレン基((PO)r)中のオキシプロピレン基の平均付加モル数を表す。但し、r=0の場合は、アルキレンオキサイド付加物において(ポリ)オキシプロピレン基((PO)r)が存在しないことになる。ここでポリオキシプロピレン基((PO)r)について、(ポリ)オキシアルキレン基に結合していない他方の末端は水酸基となっている(以下では、この水酸基を末端水酸基ということがある。)。
【0018】
オキシプロピレン基の平均付加モル数pとしては、特に限定はないが、通常1〜20、好ましくは1〜15、より好ましくは1〜10、さらに好ましくは2〜10、特に好ましくは3〜10、最も好ましくは4〜10である。オキシプロピレン基の平均付加モル数pが1未満であると、塗布性が優れないことがある。一方、オキシプロピレン基pの平均付加モル数が20超であると、分散性が優れないことがある。
【0019】
オキシプロピレン基の平均付加モル数rとしては、特に限定はないが、通常0〜20、好ましくは1〜10、より好ましくは2〜10、さらに好ましくは3〜10、よりさらに好ましくは3〜9、特に好ましくは3〜8、最も好ましくは4〜8である。オキシプロピレン基rの平均付加モル数が20超であると、分散性が優れない。
【0020】
EOはオキシエチレン基であり、qはオキシエチレン基の平均付加モル数を示す。オキシエチレン基の平均付加モル数qとしては、特に限定はないが、通常0〜30、好ましくは1〜20、より好ましくは1〜18、さらに好ましくは2〜16、特に好ましくは3〜13、最も好ましくは4〜10である。オキシエチレン基の平均付加モル数qが30モル超であると、塗布性が優れないことがある。
【0021】
p、qおよびrの和(p+q+r)としては、特に限定はないが、分散安定性を考慮すると、通常70≧(p+q+r)>2、好ましくは60≧(p+q+r)>5、より好ましくは50≧(p+q+r)>6、さらに好ましくは40≧(p+q+r)>8、よりさらに好ましくは30≧(p+q+r)>10、特に好ましくは30≧(p+q+r)>12、最も好ましくは20≧(p+q+r)>14である。p、qおよびrの和が2以下であると、分散安定性が十分ではないことがある。一方、p、qおよびrの和が70超であると、分散安定性と塗布性が優れないことがある。
【0022】
[(PO)p/(EO)q]は、pモルのオキシプロピレン基とqモルのオキシエチレン基とがランダム付加してなるポリオキシアルキレン基である。このポリオキシアルキレン基の一方の末端は、エーテル結合を介してR基と結合している。ここでランダム付加とは、オキシプロピレン基およびオキシエチレン基が無秩序に共重合して配列された付加状態になっていることを言う。
【0023】
アルキレンオキサイド付加物は、ランダム付加してなるポリオキシアルキレン基のpとqの商が特定の範囲にあると、塗布性に優れる場合があるので好ましい。pとqの商としては、たとえば、塗布性を考慮すると、好ましくは0.5≦p/q≦2.0、より好ましくは0.5≦p/q≦1.6、さらに好ましくは0.6≦p/q≦1.5、よりさらに好ましくは0.6≦p/q≦1.4、特に好ましくは0.7≦p/q≦1.3、最も好ましくは0.8≦p/q≦1.2である。pとqの商が0.5未満であると、塗布性が優れないことがある。pとqの商が2.0超であると、分散安定性及び塗布性が十分ではないことがある。
【0024】
アルキレンオキサイド付加物の重量平均分子量としては、特に限定はないが、好ましくは200〜5000、より好ましくは300〜4000、さらに好ましくは400〜3000、特に好ましくは500〜2000、最も好ましくは600〜1500である。重量平均分子量が200未満であると、塗布性が十分ではないことがある。重量平均分子量が5000超であると、ハンドリング性が低いことがある。重量平均分子量の測定方法は、実施例で詳しく説明する。
【0025】
アルキレンオキサイド付加物の曇点は、通常、アルキレンオキサイド付加物の1重量%水溶液を調製し加温して一旦液を濁らせ、徐々に冷却して濁りが無くなる温度を曇点とする方法を用いて測定する。上記曇点としては、通常100℃以下、好ましくは0〜95℃、より好ましくは10〜95℃、さらに好ましくは20〜95℃、特に好ましくは30〜95℃、最も好ましくは40〜80℃である。前記曇点が100℃超であると、塗布性が優れないことがある。
【0026】
前記成分(A)の曇点は、通常、前記成分(A)の1重量%水溶液を調製し加温して一旦液を濁らせ、徐々に冷却して濁りが無くなる温度を曇点とする方法を用いて測定する。上記曇点としては、好ましくは0〜100℃、より好ましくは10〜90℃、さらに好ましくは20〜80℃、特に好ましくは30〜70℃、最も好ましくは40〜60℃である。上記曇点が100℃超であると、ハンドリング性に優れないことがある。前記成分(A)の中には、1重量%水溶液の曇点が0℃以下のものも存在する。
本発明では、上記曇点が0℃以下である場合は、曇点が測定不能であるので、上記に示す曇点の測定方法とは異なる以下に示す測定方法を選択し、その測定方法で得られた値を曇点とすることができる。
【0027】
上記曇点が0℃以下の場合は、前記成分(A)の曇点は、以下の実施例で詳しく説明するBDG法により測定した値とする。BDG法により測定した前記成分(A)の曇点は、好ましくは0〜99℃、より好ましくは20〜90℃、さらに好ましくは30〜80℃、特に好ましくは40〜70℃、最も好ましくは50〜60℃である。BDG法により測定した曇点が0℃未満であると、無機粒子の分散性に優れないことがある。一方、BDG法により測定した曇点が99℃超であると、前記成分(A)のハンドリング性が低いことがある。
【0028】
前記成分(A)の起泡力は、以下の実施例で詳しく説明する濃度0.1重量%、温度25℃の測定条件下でロスマイルス試験法により測定した値とする。アルキレンオキサイド付加物の流下直後の起泡力は、好ましくは50mm以下、より好ましくは40mm以下、さらに好ましくは30mm以下、特に好ましくは20mm以下、最も好ましくは10mm以下である。流下直後から5分後の起泡力は、好ましくは25mm以下、より好ましくは20mm以下、さらに好ましくは15mm以下、特に好ましくは10mm以下、最も好ましくは5mm以下である。ロスマイルス試験法により流下直後の起泡力が50mm超であると、塗布性に優れないことがある。一方、流下直後から5分後の起泡力が25mm超であると、塗布性に優れないことがある。
【0029】
前記成分(A)の表面張力は、好ましくは20〜80mN/m、より好ましくは20〜60mN/m、さらに好ましくは20〜50mN/m、特に好ましくは20〜40mN/m、最も好ましくは25〜40mN/mである。前記成分(A)の表面張力が20mN/m未満であると、セメント組成物の乾燥性が悪いことがある。一方、前記成分(A)の表面張力が80mN/m超であると、塗布性及び分散性が十分でないことがある。本発明において表面張力は、以下の実施例で詳しく説明する濃度0.1重量%、温度25℃の測定条件下でウィルヘルミー法により測定した値とする。
【0030】
本発明に用いられる成分(A)は、アルコールに1種以上のアルキレンオキサイドを付加反応して得られる。一般式(1)中のRが水素である場合のアルコール原料としては、特に限定はないが、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、グリセリン等の多価アルコール等が挙げられる。これらの多価アルコールは、1種または2種以上を併用してもよい。
【0031】
一般式(1)中のRがアルキル基またはアルケニル基である場合のアルコール原料は、特に限定はないが、たとえば一価アルコールである。
成分(A)の原料となる一価アルコールROHは、Rが炭化水素基であり直鎖または分枝鎖のいずれの構造であってもよいが、汎用性に優れるので直鎖の構造であると好ましい。
Rの炭素数は、好ましくは1〜30、より好ましくは2〜20、さらに好ましくは8〜20、よりさらに好ましくは10〜20、特に好ましくは10〜18、最も好ましくは10〜14である。Rの炭素数が30超であると、塗布性に優れないことがある。
また、Rはアルキル基またはアルケニル基であると、汎用性に優れるために好ましい。Rとしては、炭素数10〜20のアルケニル基が好ましく、塗布性およびハンドリンド性に優れる。
上記アルコールとしては、特に限定はないが、たとえば、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナオール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、へキサデカノール、ヘプタデカノール、オクタデカノール、ノナデカノール、エイコサノール、ヘネイコサノール、ドコサノール、トリコサノール、テトラコサノール、ペンタコサノール、ヘキサコサノール、ヘプタコサノール、オクタコサノール、ノナコサノールおよびトリアコサノール等の直鎖アルカノール;2−エチルへキサノール、2−プロピルヘプタノール、2−ブチルオクタノール、1−メチルヘプタデカノール、2−ヘキシルオクタノール、1−ヘキシルヘプタノール、イソデカノール、イソトリデカノール、3,5,5−トリメチルヘキサノール等の分岐アルカノール;ヘキセノール、ヘプテノール、オクテノール、ノネノール、デセノール、ウンデセノール、ドデセノール、トリデセノール、テトラデセノール、ペンタデセノール、へキサデセノール、ペンタデセノール、ヘキサデセノール、ヘプタデセノール、オクタデセノール、ノナデセノール、エイセノール、ドコセノール、テトラコセノール、ペンタコセノール、ヘキサコセノール、ヘプタコセノール、ヘプタコセノール、オクタコセノール、ノナコセノールおよびトリアコンセノール等の直鎖アルケノール;イソヘキセノール、2−エチルへキセノール、イソトリデセノール、1−メチルヘプタデセノール、1−ヘキシルヘプテノール、イソトリデセノールおよびイソオクタデセノール等の分岐アルケノール等が挙げられる。これらのアルコールは、1種または2種以上を併用してもよい。アルコールの製品の具体例としては、特に限定はないが、たとえば、ヤシアルコール、パームアルコール等の天然油脂由来のアルコールや、合成アルコール等が挙げられる。これらのアルコールは、1種または2種以上を併用してもよい。
【0032】
アルコールが炭素数10〜20のアルケノールであると塗布性およびハンドリンド性に優れるので好ましい。炭素数10〜20のアルケノールとしては、上記で例示したアルコールのうちで、デセノール、ウンデセノール、ドデセノール、トリデセノール、テトラデセノール、ペンタデセノール、へキサデセノール、ペンタデセノール、ヘキサデセノール、ヘプタデセノール、オクタデセノール、ノナデセノール、エイセノール等を挙げることができる。
【0033】
前記成分(A)の製造方法は、特に限定はなく、アルコール原料、触媒等の原料を反応容器に仕込み、そしてその反応容器にアルキレンオキサイドを供給して付加反応した後脱ガス処理や脱水処理が行われる方法など一般的な方法が適用できる。触媒はアルカリ(土類)金属の酸化物、アルカリ(土類)金属の炭酸塩など一般的な化合物が使用できる。脱ガス処理は、たとえば減圧脱気方式、真空脱気方式等で行われる。また、脱水処理は、たとえば加熱脱水方式、減圧脱水方式、真空脱水方式等で行われる。製造形式については特に限定はなく、連続式でもバッチ式でもよい。反応容器については、特に限定はないが、たとえば、攪拌翼を備えた槽型反応容器やマイクロリアクター等を挙げることができる。攪拌翼としては、特に限定はないが、マックスブレンド翼、トルネード翼、フルゾーン翼、パドル多段翼、タービン翼等を挙げることができる。
アルキレンオキサイドを供給する方法については特に限定はないが、アルキレンオキサイドを供給ラインから活性水素含有化合物に対して連続的に供給する方法等が挙げられる。アルキレンオキサイドの付加反応後は、濾過などを行い触媒残差の分離除去を行ってもよい。
【0034】
〔高分子粒子成分(B)〕
成分(B)である高分子粒子は、無機粒子の分散助剤、二次電池スラリー組成物の塗布性向上剤として機能する。また、二次電池用スラリーを基材に塗布して水を乾燥した後の無機粒子同士の結着剤としても機能する。本発明の二次電池スラリー用分散剤組成物が含有する前記成分(B)としては、特に限定はなく、二次電池スラリー組成物の分散性あるいは塗布性や水を除去した後の無機粒子の相互の結着を阻害しない化合物であれば、特に制限はない。
前記成分(B)としては、特に限定はないが、たとえば、ポリイソブチレン等のイソブチレン系高分子粒子;ポリブタジエン、ポリイソプレン、スチレン−ブタジエン共重合体等のジエン系高分子粒子;フッ化ビニリデン系高分子、フッ化エチレン−プロピレン共重合体等のフッ素系高分子粒子;アクリル系高分子粒子;ジメチルポリシロキサン等のポリシロキサン系高分子粒子;ポリ酢酸ビニル、ポリステアリン酸ビニル等のビニル系高分子粒子;スチレン−塩化ビニル共重合体、スチレン−酢酸ビニル共重合体等のスチレン系高分子粒子;ウレタン系高分子粒子;フェノール系高分子粒子;ポリエチレン、ポリプロピレン、ポリ−1−ブテン等のオレフィン系高分子粒子;ケトン系高分子粒子;アミド系高分子粒子;ポリフェニレンオキサイド系高分子粒子;エポキシ系高分子粒子;天然ゴム;セルロース系高分子粒子;ポリペプチド;蛋白質等が挙げられる。なかでも、水中での分散性および水を除去した後の無機粒子の結着性に優れるので、アクリル系高分子粒子が好ましい。
【0035】
アクリル系高分子粒子としては、特に限定はないが、たとえば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、シトラコン酸等のカルボキシル基含有単量体;(メタ)アクリロニトリル、α−クロルアクリロニトリル、α−エトキシアクリロニトリル、フマロニトリル等のニトリル系単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸−2−メトキシエチル、(メタ)アクリル酸−2−エトキシエチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸セチル、ベンジル(メタ)アクリレート、(メタ)アクリル酸2−(パーフルオロヘキシル)エチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸−β−メチルグリシジル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸イソボルニル等の(メタ)アクリル酸エステル単量体単位;(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、アセトンアクリルアミド、N、N−ジメチル(メタ)アクリルアミド、N、N−ジエチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−ヘキシル(メタ)アクリルアミド、N−シクロヘキシル(メタ)アクリルアミド、N−ヒドロキシエチル(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド、N−ニトロフェニル(メタ)アクリルアミド、ダイアセトンアクリルアミド等の(メタ)アクリルアミド単量体単位;塩化ビニル、塩化ビニリデン、臭化ビニル等のハロゲン化ビニル系単量体およびハロゲン化ビニリデン系単量体;酢酸ビニル、プロピオン酸ビニル、ネオデカン酸ビニルエステル等のビニルエステル系単量体から選ばれる少なくとも一種の単量体単位から構成される高分子粒子等が挙げられる。なかでも、分散性と結着性に優れるのでカルボキシル基含有単量体、(メタ)アクリル酸エステル単量体単位、(メタ)アクリルアミド単量体単位から選ばれる少なくとも一種を構成成分として含むと好ましい。
【0036】
アクリル系高分子粒子は、さらに上記以外のその他の単量体単位を含んでいてもよい。その他の単量体単位としては、特に限定はないが、たとえば、スチレン、α−メチルスチレン、クロロスチレン等のスチレン系単量体;N−フェニルマレイミド、N−(2−クロロフェニル)マレイミド、N−シクロヘキシルマレイミド、N−ラウリルマレイミド等のマレイミド系単量体;アクロレイン;ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン等の不飽和有機シラン等が挙げられ、1種または2種以上でもよい。
【0037】
前記成分(B)を構成する単量体単位が含有するカルボキシル基含有単量体の重量割合としては、特に限定はないが、たとえば、通常1〜50重量%、好ましくは1〜30重量%、より好ましくは1〜20重量%、さらに好ましくは1〜10重量%、特に好ましくは2〜10重量%、最も好ましくは2〜8重量%である。高分子粒子を構成する単量体単位が含有するカルボキシル基含有単量体単位の重量割合が1重量%未満であると、分散性が十分ではないことがある。一方、カルボキシル基含有単量体単位の重量割合が50重量%超であると、塗布性に優れないことがある。
【0038】
前記成分(B)を構成する単量体単位が含有する(メタ)アクリル酸エステル単量体単位の重量割合としては、特に限定はないが、たとえば、通常10〜99重量%、好ましくは20〜95重量%、より好ましくは30〜90重量%、さらに好ましくは50〜85重量%、特に好ましくは60〜85重量%、最も好ましくは70〜85重量%である。高分子粒子を構成する単量体単位が含有する(メタ)アクリル酸エステル単量体単位の重量割合が10重量%未満であると、塗布性が十分ではないことがある。一方、(メタ)アクリル酸エステル単量体単位の重量割合が99重量%超であると、分散性に優れないことがある。
【0039】
前記成分(B)を構成する単量体単位が含有する(メタ)アクリルアミド単量体単位の重量割合としては、特に限定はないが、たとえば、通常0.01〜99重量%、好ましくは0.1〜60重量%、より好ましくは0.5〜30重量%、さらに好ましくは1〜20重量%、特に好ましくは1〜10重量%、最も好ましくは1〜5重量%である。高分子粒子を構成する単量体単位が含有する(メタ)アクリルアミド単量体単位の重量割合が0.01重量%未満であると、塗布性が十分ではないことがある。一方、(メタ)アクリルアミド単量体単位の重量割合が99重量%超であると、分散性に優れないことがある。
【0040】
前記成分(B)は、重合性単量体とともに、重合性二重結合を2個以上有する重合性単量体(架橋剤)を含み構成された重合体であってもよい。
架橋剤としては、特に限定はないが、たとえば、ジビニルベンゼン、ジビニルナフタレン等の芳香族ジビニル化合物;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1、9−ノナンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられ、1種または2種以上を併用してもよい。
【0041】
前記成分(B)としては、たとえば、KFポリマー(ポリフッ化ビニリデン樹脂、株式会社クレハ)、カイナーシリーズ(ポリフッ化ビニリデン樹脂、アルケマ株式会社)、ソレフシリーズ(ポリフッ化ビニリデン樹脂、ソルベイ株式会社)、アルマテックスシリーズ(アクリル系樹脂、ポリエステル系樹脂、三井化学株式会社)、ケミパールシリーズ(ポリオレフィン水性ディスパージョン、三井化学株式会社)、ボンロンシリーズ(アクリルエマルション、三井化学株式会社)、オレスターシリーズ(ポリウレタン樹脂、三井化学株式会社)、ユーバンシリーズ(アミノ樹脂、三井化学株式会社)、エポキーシリーズ(エポキシ樹脂、三井化学株式会社)、Nipolシリーズ(スチレン・ブタジエン系ラテックス、アクリロニトリル・ブタジエン系ラテックス、アクリレート系ラテックス、日本ゼオン株式会社)、ザイクセンシリーズ(ポリオレフィン樹脂、住友精化株式会社)、セポルジョンシリーズ(ナイロンエマルジョン、ポリエステルエマルジョン、住友精化株式会社)、セポレックスシリーズ(ポリイソプレンラテックス、クロロスルホン化ポリエチレンラテックス、住友精化株式会社)、フローセンリーズ(ポリエチレン、住友精化株式会社)、フローブレンリーズ(ポリプロピレン、住友精化株式会社)、SBラテックス(スチレン・ブタジエン系ラテックス、JSR株式会社)、アクリルエマルションAEシリーズ(アクリルエマルション、株式会社イーテック)、ボンコートシリーズ(アクリル系エマルジョン、アクリル−スチレン系エマルジョン、DIC株式会社)、ボンディックシリーズ(ポリウレタンディスパージョン、DIC株式会社)、ラックスターシリーズ(ブタジエン樹脂ラテックス、DIC株式会社)など市販されている高分子粒子を使用しても構わない。
【0042】
前記成分(B)の平均粒子径については、特に限定されないが、好ましくは0.001〜100μm、さらに好ましくは0.01〜10μm、特に好ましくは0.05〜1μm、最も好ましくは0.1〜0.8μmである。前記成分(B)の平均粒子径が0.001μm未満の場合、製造が困難となり好ましくない場合がある。一方、前記成分(B)の平均粒子径が100μm超の場合、乳化安定性が悪くなり好ましくない場合がある。
前記成分(B)のガラス転移点として、特に限定はないが、たとえば、好ましくは−100〜100℃、より好ましくは−90〜50℃、さらに好ましくは−80〜25℃、特に好ましくは−70〜10℃、最も好ましくは−60〜0℃である。高分子粒子のガラス転移点が−100℃未満であると、ハンドリング性に優れないことがある。一方、高分子粒子のガラス転移点が100℃超であると、二次電池用スラリーの結着性が十分ではないことがある。
【0043】
前記成分(B)の熱重量測定(TGA、パージガスとして乾燥空気を導入、および40℃から昇温10℃/minで加熱)による200℃の重量減少としては、特に限定はないが、好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは10重量%以下、特に好ましくは5重量%以下、最も好ましくは3重量%以下である。高分子粒子の熱重量測定による200℃の重量減少が20重量%超であると、結着性が十分でないことがある。
【0044】
前記成分(B)のゼータ電位が特定の範囲にあると分散性に優れるので好ましい。
測定温度25℃における5重量%濃度水分散液のゼータ電位が、好ましくは−10〜−100mV、より好ましくは−10〜−90mV、さらに好ましくは−20〜−80mV、特に好ましくは−30〜−70mV、最も好ましくは−35〜−65mVである。高分子粒子の5重量%濃度水分散液のゼータ電位が−100mV未満であると、ハンドリング性に優れないことがある。一方、高分子粒子の5重量%濃度水分散液のゼータ電位が−10mV超であると、二次電池用スラリーの分散性が十分ではないことがある。
【0045】
前記成分(B)の水への溶解度に関しては、特に限定はないが、たとえば、好ましくは10g/1000ml以下、より好ましくは5g/1000ml以下、さらに好ましくは1g/1000ml以下、特に好ましくは0.5g/1000ml以下、最も好ましくは0.1g/1000ml以下である。前記成分(B)の水への溶解度が10g/1000ml超であると、二次電池用スラリーの結着性が十分ではないことがある。前記成分(B)の水への溶解度の好ましい下限値は0g/1000mlである。
【0046】
前記成分(B)の水への膨潤度に関しては、特に限定はないが、たとえば、好ましくは10.0倍以下、より好ましくは7.5倍以下、さらに好ましくは5.0倍以下、特に好ましくは2.0倍以下、最も好ましくは1.5倍以下である。前記成分(B)の水への膨潤度が10倍超であると、二次電池用スラリーの結着性が十分ではないことがある。前記成分(B)の水への膨潤度の好ましい下限値は1.0倍である。
【0047】
前記成分(B)の無機酸化物板に対する接触角が特定の範囲にあると分散性に優れるので好ましい。測定温度25℃における5重量%濃度水分散液を無機酸化物板に滴下する動的接触角において、特に限定はないが、好ましくは100msec経過時で40〜70°、1600msec経過時で30〜60°、より好ましくは100msec経過時で45〜70°、1600msec経過時で35〜60°、さらに好ましくは100msec経過時で50〜70°、1600msec経過時で40〜60°、特に好ましくは100msec経過時で50〜65°、1600msec経過時で40〜55°、最も好ましくは100msec経過時で55〜65°、1600msec経過時で45〜55°である。無機酸化物板に対する100msec経過時の接触角が40°未満であると、ハンドリング性に優れない場合がある。100msec経過時の接触角が70°超であると、分散性に優れない場合がある。無機酸化物板に対する1600msec経過時の接触角が30°未満であると、ハンドリング性に優れない場合がある。無機酸化物板に対する1600msec経過時の接触角が60°超であると、ハンドリング性に優れない場合がある。
【0048】
接触角測定に使用する無機酸化物板の原料としては、特に限定はないが、シリカ(酸化ケイ素)、α−アルミナ、β−アルミナ、γ−アルミナ、θアルミナ等のアルミナ(酸化アルミニウム)、チタニア(酸化チタン)、マグネシア(酸化マグネシウム)、ジルコニア(酸化ジルコニウム)、酸化カルシウム、酸化バリウム、酸化スズ、酸化ストロンチウム、酸化ニオブ、酸化セリウム、酸化タングステン、酸化インジウム、酸化ガリウム、酸化イットリウム、酸化鉄、酸化アンチモン、ホワイトカーボン等が挙げられる。
【0049】
前記成分(B)は、高分子粒子が水に分散した高分子粒子エマルションの状態であってもよい。高分子粒子エマルションの場合の高分子粒子の濃度としては、特に限定はないが、たとえば、好ましくは1〜80重量%、より好ましくは10〜70重量%、さらに好ましくは15〜60重量%、特に好ましくは20〜50重量%、最も好ましくは30〜50重量%である。高分子粒子エマルションの場合の高分子粒子の濃度が1重量%未満であると分散性に優れないことがある。一方、高分子粒子の濃度が80重量%超であるとハンドリング性に優れないことがある。
【0050】
前記成分(B)の製造方法は、特に限定はないが、たとえば、通常各種単量体を乳化重合することによって得られる。
乳化重合に用いる開始剤としては、特に限定はないが、たとえば、過酸化水素、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の無機過酸化物類;アゾビスイソブチロニトリル、2、2´−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]塩酸塩等のアゾ化合物類;クメンハイドロパーオキサイド、t−ブチルパーベンゾエート等の有機過酸化物類等が挙げられ、1種または2種以上を併用してもよい。
また、上記無機過酸化物類と還元性物質を組み合わせてレドックス重合を行ってもよい。無機過酸化物類と組み合わせる還元性物質としては、特に限定はないが、たとえば、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、硫酸第一鉄等が挙げられ、1種または2種以上を併用してもよい。
【0051】
また、前記乳化重合では連鎖移動剤を使用してもよい。連鎖移動剤としては、特に限定はないが、たとえば、α−メチルスチレンダイマー、n−ブチルメルカプタン、t−ドデシルメルカプタン等のメルカプタン類;四塩化炭素、四臭化炭素等のハロゲン化炭化水素等が挙げられ、1種または2種以上を併用してもよい。
また、前記乳化重合では乳化剤を使用してもよい。乳化剤としては、非イオン界面活性剤、陰イオン界面活性剤、陽イオン界面活性剤、両性界面活性剤が挙げられ、1種または2種以上を含んでいてもよい。界面活性剤が非イオン界面活性剤および/または陰イオン界面活性剤であると好ましい。
高分子粒子エマルションが含有する水は、水道水、イオン交換水、蒸留水等のいずれでもよい。
【0052】
高分子粒子エマルションに含まれる水の含有量は、単量体の合計を100重量部としたときに、10〜10000重量部、好ましくは50〜10000重量部、さらに好ましくは50〜5000重量部、特に好ましくは50〜1000重量部、最も好ましくは50〜500重量部である。水の含有量が10重量部未満であると、乳化安定性が十分ではないことがある。一方、水の含有量が10000重量部超であると、生産効率が悪くなる。
高分子粒子エマルションは、上記で説明した各成分以外に、消泡剤、中和剤、保護コロイド剤、抗菌剤、防黴剤、着色剤、酸化防止剤、消臭剤、架橋剤、各種触媒、各種有機溶剤、キレート剤等をさらに含有していてもよい。
【0053】
消泡剤としては特に限定はないが、たとえば、ヒマシ油、ゴマ油、アマニ油、動植物油などの油脂系消泡剤;ステアリン酸、オレイン酸、パルミチン酸などの脂肪酸系消泡剤;ステアリン酸イソアミル、こはく酸ジステアリル、エチレングリコールジステアレート、ステアリン酸ブチルなどの脂肪酸エステル系消泡剤;ポリオキシアルキレンモノハイドリックアルコール、ジ−t−アミルフェノキシエタノール、3−ヘプタノール、2−エチルヘキサノールなどのアルコール系消泡剤;3−ヘプチルセロソルブ、ノニルセロソルブ、3−ヘプチルカルビトールなどのエーテル系消泡剤;トリブチルホスフェート、トリス(ブトキシエチル)ホスフェートなどのリン酸エステル系消泡剤;ジアミルアミンなどのアミン系消泡剤;ポリアルキレンアミド、アシレートポリアミンなどのアミド系消泡剤;ラウリル硫酸エステルナトリウムなどの硫酸エステル系消泡剤;ジメチルポリシロキサンなどのポリシロキサン系消泡剤;鉱物油等が挙げられ、1種または2種以上を併用してもよい。なお、ここに記載した消泡剤は後述する消泡剤(D)としての機能を発揮する。
【0054】
前記成分(B)の含有量としては、特に限定はないが、成分(A)を100重量部としたときに、通常100〜3000重量部、好ましくは150〜2000重量部、より好ましくは200〜1000重量部、さらに好ましくは250〜500重量部である。前記成分(B)の含有量が100重量部未満であると、分散安定性が十分ではないことがある。一方、前記成分(B)の含有量が3000重量部超であると、塗布性に優れないことがある。
〔成分(C);1重量%濃度水溶液の曇点が30℃以上である、エチレンオキサイド付加物〕
成分(C)のエチレンオキサイド付加物は下記一般式(2)で表され、無機粉末の分散性に寄与する成分である。エチレンオキサイド付加物はある特定の範囲の曇点であるとよい。
前記成分(C)は1%濃度水溶液の曇点が特定の範囲にあればよく、特に限定はないが、下記一般式(2)で表される化合物であると好ましい。
下記一般式(2):
R´O−(EO)n−H (2)
(EOはオキシエチレン基を示す。nは、EOの平均付加モル数を示し、n=1〜100である。)
R´は、炭化水素基であって、特に限定はないが、たとえば、アルキル基、アルケニル基、フェニル基、スチレン化フェニル基、アルキルフェニル基が分散性に優れるので好ましい。アルキル基、アルケニル基、スチレン化フェニル基から構成されると、ハンドリング性に優れるのでさらに好ましい。
アルキル基またはアルケニル基の炭素数としては、特に限定はないが、たとえば、通常1〜30、好ましくは8〜25、さらに好ましくは9〜20、特に好ましくは10〜18、最も好ましくは11〜16である。R´の炭素数が30超であると、得られるエチレンオキサイド付加物の疎水性が増大する。また、アルキル基またはアルケニル基は直鎖または分枝鎖のいずれの構造から構成されていてもよい。
【0055】
EOはオキシエチレン基であり、nはオキシエチレン基の平均付加モル数を示す。オキシエチレン基の平均付加モル数nとしては、特に限定はないが、通常5〜100、好ましくは6〜60、より好ましくは7〜50、さらに好ましくは8〜30、特に好ましくは9〜20、最も好ましくは10〜15である。オキシエチレン基の平均付加モル数が5未満であると、親水性や無機粒子の分散性が十分ではない場合がある。一方、オキシエチレン基の平均付加モル数が100超であると、親水性が強くなりすぎることがある。
成分(C)のエチレンオキサイド付加物のHLB(以下、HLB(C)とする)としては、好ましくは8〜20、より好ましくは9〜19、さらに好ましくは10〜18、特に好ましくは11〜17、最も好ましくは12〜16である。HLB(C)が8未満であると、無機粉末の分散性に優れないことがある。一方、HLB(C)が20超であると、ハンドリング性に優れないことがある。
なお、前記成分(C)が複数のエチレンオキサイド付加物からなる場合には、前記成分(C)の加重平均のHLBを意味する。
【0056】
前記成分(C)の重量平均分子量としては、特に限定はないが、好ましくは200〜5000、より好ましくは300〜4000、さらに好ましくは300〜3000、特に好ましくは300〜2000、最も好ましくは500〜1500である。重量平均分子量が200未満であると、塗布性が十分ではないことがある。重量平均分子量が5000超であると、ハンドリング性が低いことがある。重量平均分子量の測定方法は、実施例で詳しく説明する。
前記成分(C)の曇点は、通常、前記成分(C)の1重量%水溶液を調製し加温して一旦液を濁らせ、徐々に冷却して濁りが無くなる温度を曇点とする方法を用いて測定する。上記曇点としては、好ましくは30℃以上、より好ましくは40℃以上、さらに好ましくは50℃以上、特に好ましくは60℃以上、最も好ましくは70℃以上である。上記曇点が30℃未満であると、無機粉末の分散性に優れないことがある。前記成分(C)の曇点の好ましい上限は、水の沸点付近の99℃である。ただし、前記成分(C)の中には、1重量%水溶液の曇点が99℃を超過するものも存在する。
【0057】
本発明では、上記曇点が99℃超である場合は、曇点が測定不能であるので、上記に示す曇点の測定方法とは異なる以下に示す測定方法を選択し、その測定方法で得られた値を曇点とすることができる。
上記曇点が99℃超の場合は、前記成分(C)の曇点は、以下の実施例で詳しく説明する硫酸カリウム水溶液を溶媒とした方法(硫酸カリ法)により測定した値とする。硫酸カリ法により測定した前記成分(C)の曇点は、好ましくは30〜99℃、より好ましくは40〜90℃、さらに好ましくは50〜85℃、特に好ましくは55〜80℃、最も好ましくは60〜75℃である。硫酸カリ法により測定した曇点が30℃未満であると、前記成分(C)の乳化性が低いことがある。一方、硫酸カリ法により測定した曇点が99℃超であると、前記成分(C)のハンドリング性が低いことがある。
【0058】
前記成分(C)の起泡力は、以下の実施例で詳しく説明する濃度0.1重量%、温度25℃の測定条件下でロスマイルス試験法により測定した値とする。前記成分(C)の流下直後の起泡力は、好ましくは10〜200mm、より好ましくは20〜190mm、さらに好ましくは30〜180mm、特に好ましくは40〜170mm、最も好ましくは50〜160mmである。流下直後から5分後の起泡力は、好ましくは1〜200以下、より好ましくは5〜180mm、さらに好ましくは10〜160mm、特に好ましくは15〜150mm、最も好ましくは15〜140mmである。ロスマイルス試験法により流下直後の起泡力が200mm超であると、二次電池用スラリーの塗布性が十分ではないことがある。流下直後の起泡力が10mm未満であると、無機粉末の分散性に優れないことがある。一方、流下直後から5分後の起泡力が200mm超であると、二次電池用スラリーの塗布性が十分ではないことがある。流下直後から5分後の起泡力が1mm未満であると、無機粉末の分散性に優れないことがある。
【0059】
前記成分(C)の表面張力は、好ましくは20〜50mN/m、より好ましくは22〜45mN/m、さらに好ましくは22〜40mN/m、特に好ましくは25〜40mN/m、最も好ましくは25〜35mN/mである。エチレンオキサイド付加物の表面張力が20mN/m未満であると、二次電池用スラリーの塗布性が十分ではないことがある。一方、前記成分(C)の表面張力が50mN/m超であると、無機粉末の分散性に優れないことがある。本発明において表面張力は、以下の実施例で詳しく説明するように、濃度0.1重量%、温度25℃の測定条件下でウィルヘルミー法により測定した値とする。
【0060】
前記成分(C)の臨界ミセル濃度(CMC)は、特に限定はないが、好ましくは5〜300mg/l、より好ましくは10〜290mg/l、さらに好ましくは15〜250mg/l、特に好ましくは20〜200mg/l、最も好ましくは25〜160mg/lである。前記成分(C)の臨界ミセル濃度が5mg/l未満であると、分散性が十分ではないことがある。一方、前記成分(C)の臨界ミセル濃度が100mg/l超であると、二次電池用スラリーの塗布性が十分ではないことがある。
前記成分(C)の水への溶解性に関しては、特に限定はないが、水溶性を示す方が無機粒子の分散性に優れるので好ましい。
前記成分(C)の水への溶解度に関しては、特に限定はないが、たとえば、好ましくは1000g/1000ml以上、より好ましくは5000g/1000ml以上、さらに好ましくは9000g/1000ml以上、特に好ましくは20000g/1000ml以上、最も好ましくは99000g/1000ml以上である。前記成分(C)の水への溶解度が1000g/1000ml未満であると、二次電池用スラリーの分散性が十分ではないことがある。
【0061】
前記成分(C)の含有量としては、特に限定はないが、成分(A)を100重量部としたときに、通常1〜5000重量部、好ましくは10〜2500重量部、より好ましくは50〜1000重量部、さらに好ましくは100〜500重量部である。前記成分(C)の含有量が1重量部未満であると、分散安定性が十分ではないことがある。一方、前記成分(C)の含有量が5000重量部超であると、塗布性に優れないことがある。
【0062】
〔消泡剤成分(D)〕
本発明の二次電池スラリー用分散剤組成物は、消泡剤成分(D)を含有すると、二次電池スラリーのハンドリング性向上および塗布性向上の観点から、好ましい。
前記成分(D)としては特に限定はないが、たとえば、ヒマシ油、ゴマ油、アマニ油、動植物油などの油脂系消泡剤;ステアリン酸、オレイン酸、パルミチン酸などの脂肪酸系消泡剤;ステアリン酸イソアミル、こはく酸ジステアリル、エチレングリコールジステアレート、ステアリン酸ブチルなどの脂肪酸エステル系消泡剤;ポリオキシアルキレンモノハイドリックアルコール、ジ−t−アミルフェノキシエタノール、3−ヘプタノール、2−エチルヘキサノールなどのアルコール系消泡剤;3−ヘプチルセロソルブ、ノニルセロソルブ、3−ヘプチルカルビトール、ポリアルキレングリコールなどのエーテル系消泡剤;トリブチルホスフェート、トリス(ブトキシエチル)ホスフェートなどのリン酸エステル系消泡剤;ジアミルアミンなどのアミン系消泡剤;ポリアルキレンアミド、アシレートポリアミンなどのアミド系消泡剤;ラウリル硫酸エステルナトリウムなどの硫酸エステル系消泡剤;ジメチルポリシロキサンなどのポリシロキサン系消泡剤;パラフィン系鉱物油、シクロペンテン、シクロヘキサン、フイヒテライト、オレアナンなどのナフテン系鉱物油などの鉱物油;シリカ微粉末系消泡剤等が挙げられ、1種または2種以上を併用してもよい。なかでも消泡剤が、ポリシロキサン系消泡剤、シリカ微粉末から選ばれる少なくとも1種以上であると、消泡性に優れるので好ましい。
【0063】
前記成分(D)の含有量としては、特に限定はないが、成分(A)を100重量部としたときに、通常1〜1000重量部、好ましくは2〜100重量部、さらに好ましくは3〜75重量部、特に好ましくは4〜50重量部、最も好ましくは5〜30重量部である。消泡剤の含有量が1重量部未満であると、消泡性が十分ではないことがある。一方、消泡剤の含有量が1000重量部超であると、塗布性に優れないことがある。
【0064】
〔その他の成分〕
本発明の二次電池スラリー用分散剤組成物は、上記で説明した成分以外のその他の成分を含んでいても構わない。その他の成分としては、特に限定はないが、たとえば、分散助剤、pH調整剤成分、レオロジー調整剤、陰イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤等が挙げられる。
【0065】
本発明で用いられる分散助剤は、二次電池スラリーの分散を補助し、二次電池スラリーの安定性を高める効果がある。分散助剤としては、特に限定はないが、たとえば、アセトン、アセチルアセトン、ジピパロイルメタン、デヒドロ酢酸、マロン酸ジエチル等のケトン化合物;メタノール、エタノール、イソプロピルアルコール、ブタノール、3−メトキシ−3−メチル−1−ブタノール等のアルコール化合物;乳酸、酢酸、プロピオン酸、マレイン酸、シュウ酸、ギ酸、メタンスルホン酸、トルエンスルホン酸、クエン酸、酒石酸、エチレンジアミン四酢酸等の有機酸;塩化水素、硫酸、硝酸、リン酸、ポリリン酸等の無機酸等が挙げられ、1種または2種以上を併用してもよい。なかでも分散助剤が無機酸、有機酸から選ばれる少なくとも1種以上であると、分散安定性に優れるので好ましい。
【0066】
分散助剤の分子量としては、特に限定はないが、たとえば、通常10〜2000、好ましくは20〜1000、さらに好ましくは30〜500、特に好ましくは40〜300、最も好ましくは50〜200である。分散助剤の分子量が10未満であると、分散安定性が十分ではないことがある。一方、分散助剤の分子量が2000超であると、分散性が十分でないことがある。
【0067】
分散助剤の含有量としては、特に限定はないが、成分(A)を100重量部としたときに、通常1〜1000重量部、好ましくは10〜500重量部、さらに好ましくは50〜300重量部、特に好ましくは70〜200重量部、最も好ましくは90〜150重量部である。分散助剤の含有量が1重量部未満であると、分散安定性が十分ではないことがある。一方、分散助剤の含有量が1000重量部超であると、塗布性に優れないことがある。
本発明で用いられるpH調整剤は、分散安定性を高める目的で含んでもよい。pH調整剤としては、特に限定はないが、たとえば、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化カルシウム、水酸化バリウム、水酸化ストロンチウム、水酸化マグネシウム等のアルカリ(土類)金属の水酸化物;アンモニア;炭酸ナトリウム、炭酸水素ナトリウム等の炭酸塩;酸化カルシウム、酸化ナトリウム、酸化カリウム、酸化マグネシウム、酸化バリウム、酸化銀、酸化クロム、酸化マンガン、酸化鉄、酸化ビスマス等の金属酸化物;メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、エチレンジアミン、モノエタノールアミン、スペルミン、アニリン、トルイジン、ピロリジン、モルホリン、イミダゾール、アミノ酸等のアミン化合物等が挙げられ、1種または2種以上を併用してもよい。なかでもpH調整剤がアルカリ(土類)金属の水酸化物から選ばれる少なくとも1種以上であると、汎用性に優れるので好ましい。ここで、アルカリ(土類)金属とは、アルカリ金属又はアルカリ土類金属を示す。
【0068】
pH調整剤の分子量としては、特に限定はないが、たとえば、通常10〜2000、好ましくは15〜1000、さらに好ましくは20〜500、特に好ましくは25〜200、最も好ましくは30〜100である。前記pH調整剤の分子量が10未満であると、分散安定性が十分ではないことがある。一方、pH調整剤の分子量が2000超であると、ハンドリング性が十分でないことがある。
pH調整剤の含有量としては、特に限定はないが、成分(A)を100重量部としたときに、通常1〜1000重量部、好ましくは10〜500重量部、さらに好ましくは50〜300重量部、特に好ましくは70〜200重量部、最も好ましくは90〜150重量部である。pH調整剤の含有量が1重量部未満であると、分散安定性が十分ではないことがある。一方、pH調整剤の含有量が1000重量部超であると、塗布性に優れないことがある。
【0069】
本発明のレオロジー調整剤は、分散安定性や塗布性を高める目的で含んでもよい。レオロジー調整剤としては適宜選択され、特に限定はないが、たとえば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリアクリル酸、ポリエチレングリコール、ポリエチレンオキシド、ポリオキシエチレン・ポリプロピレンブロックポリマー、ポリビニルアルコール、ポリビニルピロリドン、アラビアガム、グアーガム、キサンタンガム、ゼラチン、コーンスターチ、ポリアクリルアミド等の水溶性高分子が挙げられる。
本発明の陰イオン性界面活性剤としては、たとえば、オレイン酸ナトリウム、パルミチン酸カリウム、オレイン酸トリエタノールアミン等の脂肪酸塩;ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム、ステアリル硫酸ナトリウム、セチル硫酸ナトリウム等のアルキル硫酸エステル塩;ポリオキシエチレントリデシルエーテル酢酸ナトリウム等のポリオキシアルキレンアルキルエーテル酢酸塩;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;ポリオキシアルキレンアルキルエーテル硫酸塩;ステアロイルメチルタウリンNa、ラウロイルメチルタウリンNa、ミリストイルメチルタウリンNa、パルミトイルメチルタウリンNa等の高級脂肪酸アミドスルホン酸塩;ラウロイルサルコシンナトリウム等のN−アシルサルコシン塩;モノステアリルリン酸ナトリウム等のアルキルリン酸塩;ポリオキシエチレンオレイルエーテルリン酸ナトリウム、ポリオキシエチレンステアリルエーテルリン酸ナトリウム等のポリオキシアルキレンアルキルエーテルリン酸エステル塩;ジ−2−エチルヘキシルスルホコハク酸ナトリウム、ジオクチルスルホコハク酸ナトリウム等の長鎖スルホコハク酸塩、N−ラウロイルグルタミン酸ナトリウムモノナトリウム、N−ステアロイル−L−グルタミン酸ジナトリウム等の長鎖N−アシルグルタミン酸塩;ポリアクリル酸、ポリメタアクリル酸、ポリマレイン酸、ポリ無水マレイン酸、マレイン酸とイソブチレンとの共重合物、無水マレイン酸とイソブチレンとの共重合物、マレイン酸とジイソブチレンとの共重合物、無水マレイン酸とジイソブチレンとの共重合物、アクリル酸とイタコン酸との共重合物、メタアクリル酸とイタコン酸との共重合物、マレイン酸とスチレンとの共重合物、無水マレイン酸とスチレンとの共重合物、アクリル酸とメタアクリル酸との共重合物、アクリル酸とアクリル酸メチルエステルとの共重合物、アクリル酸と酢酸ビニルとの共重合物、アクリル酸とマレイン酸との共重合物、アクリル酸と無水マレイン酸との共重合物のアルカリ金属塩(リチウム塩、ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(マグネシウム塩、カルシウム塩等)、アンモニウム塩およびアミン塩等のポリカルボン酸塩;ナフタレンスルホン酸、アルキルナフタレンスルホン酸、ナフタレンスルホン酸のホルマリン縮合物、アルキルナフタレンスルホン酸のホルマリン縮合物、および、これらのアルカリ金属塩(リチウム塩、ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(マグネシウム塩、カルシウム塩等)、アンモニウム塩およびアミン塩等のナフタレンスルホン酸塩;メラミンスルホン酸、アルキルメラミンスルホン酸、メラミンスルホン酸のホルマリン縮合物、アルキルメラミンスルホン酸のホルマリン縮合物、および、これらのアルカリ金属塩(リチウム塩、ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(マグネシウム塩、カルシウム塩等)、アンモニウム塩およびアミン塩等のメラミンスルホン酸塩等;リグニンスルホン酸、および、これらのアルカリ金属塩(リチウム塩、ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(マグネシウム塩、カルシウム塩等)、アンモニウム塩およびアミン塩等のリグニンスルホン酸塩等が挙げられ、1種または2種以上を併用してもよい。
【0070】
本発明の陽イオン性界面活性剤としては、たとえば、塩化ステアリルトリメチルアンモニウム、塩化ラウリルトリメチルアンモニウム、臭化セチルトリメチルアンモニウム等のアルキルトリメチルアンモニウム塩;ジアルキルジメチルアンモニウム塩;トリアルキルメチルアンモニウム塩、アルキルアミン塩が挙げられ、1種または2種以上を併用してもよい。
本発明の両性界面活性剤としては、たとえば、2−ウンデシル−N,N−(ヒドロキシエチルカルボキシメチル)−2−イミダゾリンナトリウム、2−ココイル−2−イミダゾリニウムヒドロキサイド−1−カルボキシエチロキシ2ナトリウム塩等のイミダゾリン系両性界面活性剤;2−ヘプタデシル−N−カルボキシメチル−N−ヒドロキシエチルイミダゾリウムベタイン、ラウリルジメチルアミノ酢酸ベタイン、アルキルベタイン、アミドベタイン、スルホベタイン等のベタイン系両性界面活性剤;N−ラウリルグリシン、N−ラウリルβ−アラニン、N−ステアリルβ−アラニン等のアミノ酸型両性界面活性剤等が挙げられ、1種または2種以上を併用してもよい。
【0071】
〔二次電池スラリー用分散剤組成物、その製造方法と形態〕
二次電池スラリー用分散剤組成物の製造方法は、特に限定はなく、成分(A):アルキレンオキサイド付加物、成分(B):高分子粒子、任意成分である成分(C):1重量%濃度水溶液の曇点が30℃以上である、エチレンオキサイド付加物、任意成分である成分(D):消泡剤等を混合する方法等を挙げることができる。
混合については、特に限定はなく、容器と攪拌翼といった極めて簡単な機構を備えた装置を用いて行うことができる。攪拌翼としては、特に限定はないが、マックスブレンド翼、トルネード翼、フルゾーン翼等を挙げることができる。また、一般的な揺動または攪拌を行える混合機を用いてもよい。混合機としては、たとえば、リボン型混合機、垂直スクリュー型混合機等の揺動攪拌または攪拌を行える混合機を挙げることができる。また、攪拌装置を組み合わせたことにより効率のよい多機能な混合機であるスーパーミキサー(株式会社カワタ製)およびハイスピードミキサー(株式会社深江製)、ニューグラムマシン(株式会社セイシン企業製)、SVミキサー(株式会社神鋼環境ソリューション社製)、フィルミクス(プライミクス株式会社)、ジェットペースタ(日本スピンドル製造株式会社)、KRCニーダ(株式会社栗本鐵工所製)、自転・公転ミキサー(株式会社シンキー、株式会社写真化学)等を用いてもよい。他には、たとえば、ジョークラッシャー、ジャイレトリークラッシャー、コーンクラッシャー、ロールクラッシャー、インパクトクラッシャー、ハンマークラッシャー、ロッドミル、ボールミル、振動ロッドミル、振動ボールミル、円盤型ミル、ジェットミル、サイクロンミルなどの粉砕機を用いてもよい。
また、超音波乳化機、連続式二軸混練機、高圧乳化機やマイクロリアクター等を用いてもよい。
【0072】
二次電池スラリー用分散剤組成物の有効濃度が0.1重量%水溶液の25℃における表面張力としては、特に限定はないが、好ましくは20〜50mN/m、さらに好ましくは25〜45mN/m、特に好ましくは25〜40mN/m、最も好ましくは25〜35mN/mである。20mN/m未満では、乾燥性に優れないことがある。50mN/m超では、塗布性が悪いことがある。
【0073】
二次電池スラリー用分散剤組成物は、以下の実施例で詳しく説明する濃度0.1重量%、温度25℃の測定条件下でロスマイルス試験法により起泡力を測定するが、二次電池スラリー用分散剤組成物の流下直後の起泡力は、50mm以下、好ましくは40mm以下、より好ましくは30mm以下、さらに好ましくは20mm以下、特に好ましくは10mm以下である。流下直後から5分後の起泡力は、25mm以下、好ましくは20mm以下、より好ましくは15mm以下、さらに好ましくは10mm以下、特に好ましくは5mm以下である。ロスマイルス試験法により流下直後の起泡力が50mm超であると、二次電池用スラリーの塗布性が十分ではない。また、流下直後から5分後の起泡力が25mm超であると、二次電池用スラリーの塗布性が十分ではない。
【0074】
二次電池スラリー用分散剤組成物の測定温度25℃におけるゼータ電位としては、特に限定はないが、好ましくは−20〜−100mV、さらに好ましくは−25〜−80mV、特に好ましくは−30〜−70mV、最も好ましくは−35〜−60mVである。−100mV未満では、ハンドリング性が悪いことがある。−20mV超では、分散性に優れないことがある。
【0075】
二次電池スラリー用分散剤組成物のpHとしては、特に限定はないが、好ましくは4.0〜12.0、さらに好ましくは5.0〜11.0、特に好ましくは6.0〜10.0、最も好ましくは7.0〜9.0である。pHが4.0未満では、塗布性が悪いことがある。12.0超では、ハンドリング性が悪いことがある。
【0076】
二次電池スラリー用分散剤組成物の、ポリオレフィン樹脂表面に対して当該分散剤組成物の液滴を落としてから1600msec後の接触角としては、特に限定はないが、好ましくは10〜60°、さらに好ましくは15〜60°、特に好ましくは20〜50°、最も好ましくは30〜40°である。10°未満では、分散性に優れないことがある。60°超では、塗布性が悪いことがある。
【0077】
二次電池スラリー用分散剤組成物の無機酸化物板表面に対して二次電池スラリー用分散剤組成物の液滴を落としてから1600msec後の接触角としては、特に限定はないが、好ましくは10〜60°、さらに好ましくは15〜60°、特に好ましくは20〜50°、最も好ましくは30〜40°である。10°未満では、分散性に優れないことがある。60°超では、塗布性が悪いことがある。
【0078】
接触角測定に使用する無機酸化物板の原料としては、特に限定はないが、シリカ(酸化ケイ素)、α−アルミナ、β−アルミナ、γ−アルミナ、θアルミナ等のアルミナ(酸化アルミニウム)、チタニア(酸化チタン)、マグネシア(酸化マグネシウム)、ジルコニア(酸化ジルコニウム)、酸化カルシウム、酸化バリウム、酸化スズ、酸化ストロンチウム、酸化ニオブ、酸化セリウム、酸化タングステン、酸化インジウム、酸化ガリウム、酸化イットリウム、酸化鉄、酸化アンチモン、ホワイトカーボン等が挙げられる。
【0079】
二次電池スラリー用分散剤組成物の不揮発分濃度としては、特に限定はないが、たとえば、通常1〜90%、好ましくは10〜80%、さらに好ましくは20〜70%、特に好ましくは30〜60%、最も好ましくは35〜55%である。1%未満では、分散性に優れないことがある。90%超では、安定性が悪いことがある。
【0080】
〔二次電池スラリー組成物、その製造方法および用途〕
本発明の二次電池スラリー組成物は、上記で説明した二次電池スラリー用分散剤組成物の存在下、無機粒子を溶媒に分散させる製造方法によって得られる。
本発明の二次電池スラリー組成物の製造方法としては、特に限定はないが、たとえば、前記二次電池スラリー用分散剤組成物と溶媒とを混合する分散剤調整工程と、前記分散剤調整工程により得られた混合液に無機粒子を分散させる無機粒子分散工程を含む製造方法等が挙げられる。
【0081】
無機粒子は、二次電池スラリー組成物の用途によって異なるので後で説明する。
二次電池スラリー組成物におけるアルキレンオキサイド付加物成分(A)の含有量としては、特に限定はないが、無機粒子100重量部に対して、0.01〜10重量部、好ましくは0.1〜5重量部、より好ましくは0.4〜2.5重量部、さらに好ましくは0.7〜2重量部、特に好ましくは1〜1.5重量部である。10重量部超であると、電池性能が優れない。一方、0.01重量部未満であると、塗布性が十分でない。
【0082】
二次電池スラリー組成物における高分子粒子成分(B)の含有量としては、特に限定はないが、無機粒子100重量部に対して、0.1〜50重量部、好ましくは0.5〜20重量部、より好ましくは1〜15重量部、さらに好ましくは2〜10重量部、特に好ましくは3〜7重量部である。50重量部超であると、電池性能が優れない。一方、0.1重量部未満であると、塗布性が十分でない。
【0083】
二次電池スラリー組成物は、以下の実施例で詳しく説明する濃度0.1重量%、温度25℃の測定条件下でロスマイルス試験法により起泡力を測定するが、二次電池スラリー組成物の流下直後の起泡力は、50mm以下、好ましくは40mm以下、より好ましくは30mm以下、さらに好ましくは20mm以下、特に好ましくは10mm以下である。流下直後から5分後の起泡力は、25mm以下、好ましくは20mm以下、より好ましくは15mm以下、さらに好ましくは10mm以下、特に好ましくは5mm以下である。ロスマイルス試験法により流下直後の起泡力が50mm超であると、塗布性が十分ではない。また、流下直後から5分後の起泡力が25mm超であると、塗布性が十分ではない。
【0084】
二次電池スラリー組成物の比重としては、特に限定はないが、たとえば、通常1〜4、好ましくは1.1〜3、より好ましくは1.2〜2.5、さらに好ましくは1.3〜2、特に好ましくは1.4〜1.9、最も好ましくは1.5〜1.8である。二次電池スラリー組成物の比重が4超であると、分散安定性に優れない場合がある。一方、二次電池スラリー組成物の比重が1未満であると、塗布性に優れでない場合がある。
【0085】
二次電池スラリー組成物のpHとしては、特に限定はないが、好ましくは4.0〜12.0、さらに好ましくは5.0〜11.0、特に好ましくは6.0〜10.0、最も好ましくは7.0〜9.0である。pHが4.0未満では、塗布性が悪いことがある。12.0超では、ハンドリング性が悪いことがある。
【0086】
無機粒子を分散させる溶媒としては、特に限定はなく、有機溶剤でも水でも構わないが、コストが小さく有害性リスクの少ないことから水が好ましい。
本発明の二次電池スラリー組成物が含有する水は、水道水、イオン交換水、蒸留水等のいずれでもよい。
【0087】
二次電池スラリー組成物における溶媒の含有量としては、特に限定はないが、たとえば、無機粒子100重量部に対して、1〜10000重量部、好ましくは10〜1000重量部、より好ましくは50〜500重量部、さらに好ましくは60〜300重量部、特に好ましくは80〜200重量部、最も好ましくは100〜150重量部である。二次電池スラリー組成物における溶媒の含有量が無機粒子100重量部に対して10000重量部超であると、電池性能が優れない場合がある。一方、二次電池スラリー組成物における溶媒の含有量が無機粒子100重量部に対して溶媒の含有量が1重量部未満であると、塗布性が十分でない場合がある。
【0088】
本発明の二次電池スラリー組成物は、上記で説明した各成分以外に、ハイドロトロープ剤、保護コロイド剤、抗菌剤、防黴剤、着色剤、酸化防止剤、消臭剤、架橋剤、触媒、乳化安定剤、キレート剤等をさらに含有していてもよい。
本発明の二次電池スラリー組成物を得るために、二次電池スラリー用分散剤組成物、無機粒子、水等の各成分を混合する方法については、特に限定はなく、容器と攪拌翼といった極めて簡単な機構を備えた装置を用いて行うことができる。攪拌翼としては、特に限定はないが、マックスブレンド翼、トルネード翼、フルゾーン翼等を挙げることができる。また、一般的な揺動または攪拌を行える混合機を用いてもよい。混合機としては、たとえば、リボン型混合機、垂直スクリュー型混合機等の揺動攪拌または攪拌を行える混合機を挙げることができる。また、攪拌装置を組み合わせたことにより効率のよい多機能な混合機であるスーパーミキサー(株式会社カワタ製)およびハイスピードミキサー(株式会社深江製)、ニューグラムマシン(株式会社セイシン企業製)、SVミキサー(株式会社神鋼環境ソリューション社製)、フィルミクス(プライミクス株式会社)、ジェットペースタ(日本スピンドル製造株式会社)、KRCニーダ(株式会社栗本鐵工所製)等を用いてもよい。他には、たとえば、ジョークラッシャー、ジャイレトリークラッシャー、コーンクラッシャー、ロールクラッシャー、インパクトクラッシャー、ハンマークラッシャー、ロッドミル、ボールミル、振動ロッドミル、振動ボールミル、円盤型ミル、ジェットミル、サイクロンミルなどの粉砕機を用いてもよい。また、超音波乳化機、連続式二軸混練機、高圧乳化機やマイクロリアクター等を用いてもよい。
【0089】
また、本発明の二次電池スラリー組成物の製造方法は、二次電池スラリー用分散剤組成物を構成する各成分を別々に溶媒に分散させる工程を含んでも構わない。尚、別々に溶媒に分散させる際の各成分の量は、前記した二次電池スラリー組成物の各成分含有量に従う。
二次電池スラリー用分散剤組成物を構成する各成分を別々に溶媒に分散させる工程としては、特に限定はないが、たとえば、前記成分(A)と溶媒を混合して混合液を得る工程(a)と、前記混合液及び前記成分(B)を混合して分散剤組成物を得る工程(b)と、前記分散剤組成物と無機粒子とを混合してスラリー組成物を得る工程(c)を含む製造方法が挙げられる。成分(C)、成分(D)及びその他の成分から選ばれる少なくとも1種を用いる場合には、成分(C)、成分(D)及びその他の成分から選ばれる少なくとも1種を混合する工程は、工程(a)、工程(b)、工程(c)のいずれでも構わないが、工程(a)で混合すると、分散剤組成物が均一となることにより本願効果が得られやすいため、好ましい。
本発明の二次電池スラリー組成物の用途としては、特に限定はないが、正極用途、負極用途、正極、負極、セパレータ等の表面コート用途等が挙げられる。
以下、各種用途について、詳しく説明する。
【0090】
(二次電池正極用途)
本発明の二次電池スラリー組成物は、二次電池正極用途として利用することができる。二次電池スラリー組成物が二次電池正極用途として用いられる場合の二次電池正極用スラリー組成物の無機粒子としては、正極活物質、導電助剤等が挙げられる。二次電池正極用途の二次電池スラリー組成物は、通常集電体シートに塗布、乾燥して薄膜化して二次電池用正極として使用できる。
【0091】
正極活物質としては、特に限定はないが、たとえば、リン酸鉄リチウム(LiFePO
4)、リン酸マンガンリチウム(LiMnPO
4)、リン酸コバルトリチウム(LiCoPO
4)、ピロリン酸鉄(Li
2FeP
2O
7)、コバルト酸リチウム複合酸化物(LiCoO
2)、スピネル型マンガン酸リチウムコバルト酸リチウム複合酸化物(LiMn
2O
4)、マンガン酸リチウム複合酸化物(LiMnO
2)、ニッケル酸リチウム複合酸化物(LiNiO
2)、ニオブ酸リチウム複合酸化物(LiNbO
2)、鉄酸リチウム複合酸化物(LiFeO
2)、マグネシウム酸リチウム複合酸化物(LiMgO
2)、カルシウム酸リチウム複合酸化物(LiCaO
2)、銅酸リチウム複合酸化物(LiCuO
2)、亜鉛酸リチウム複合酸化物(LiZnO
2)、モリブテン酸リチウム複合酸化物(LiMoO
2)、タンタル酸リチウム複合酸化物(LiTaO
2)、タングステン酸リチウム複合酸化物(LiWO
2)、リチウム−ニッケル−コバルト−アルミニウム複合酸化物(LiNi
0.8Co
0.15Al
0.05O
2)、リチウム−ニッケル−コバルト−マンガン複合酸化物(LiNi
0.33Co
0.33Mn
0.33O
2、LiNi
0.8Co
0.1Mn
0.1O
2)、酸化マンガンニッケル(LiNi
0.5Mn
1.5O
4)、酸化マンガン(MnO
2)、リチウム過剰系ニッケル−コバルト−マンガン複合酸化物、水酸化ニッケル(Ni(OH)
2)、バナジウム系酸化物、硫黄系酸化物、シリケート系酸化物等が挙げられ、1種または2種以上でもよい。
【0092】
導電助剤としては、特に限定はないが、たとえば、ファーネスブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラック;グラフェン;カーボンナノ繊維、単層カーボンナノチューブ、多層カーボンナノチューブ等のカーボンナノチューブ;銀、銅、錫、亜鉛、酸化亜鉛、ニッケル、マンガン等の金属微粒子;酸化インジウムスズなどの複合金属微粒子等が挙げられ、1種または2種以上でもよい。
【0093】
正極の集電体としては、電子伝導性を有し正極材料に通電し得る材料であればよく、特に限定はないが、たとえば、C、Ti、Cr、Mo、Ru、Rh、Ta、W、Os、Ir、Pt、Au、Al、Ni等の導電性物質、これら導電性物質の二種類以上を含有する合金(例えば、ステンレス鋼)を使用し得る。電気伝導性が高く、電解液中の安定性と耐酸化性がよい観点から、集電体としてはC、Al、Ni、ステンレス鋼等が好ましく、さらに材料コストの観点からAl等が好ましい。集電体の形状には、特に限定はなく、たとえば、箔状基材、三次元基材などを用いることができる。集電体表面上には、あらかじめプライマー層が形成されていてもよく、プライマー層に導電助剤を含んでいてもよい。
【0094】
二次電池正極用スラリー組成物を正極の集電体に塗工する方法としては、均一にウェットコーティングできる方法であればよく、特に限定はないが、たとえば、キャピラリーコート法、スピンコート法、スリットダイコート法、スプレーコート法、ディップコート法、ロールコート法、スクリーン印刷法、フレキソ印刷法、バーコーター法、グラビアコーター法、ダイコーター法などを採用することができる。
【0095】
塗膜から溶媒を除去する方法は、乾燥による方法が一般的である。溶媒の乾燥温度は、特に限定はないが、通常、10〜200℃、好ましくは30〜190℃、さらに好ましくは50〜180℃、特に好ましくは80〜170℃、最も好ましくは90〜160℃である。溶媒の乾燥温度が200℃超の場合、正極の機能が低下し好ましくない場合がある。
集電体表面に本発明の二次電池正極用スラリー組成物を塗布、乾燥して形成する表面コート被膜は、集電体のどちらか片面に形成させてよく、両面に形成させてもよい。
集電体表面に本発明の二次電池正極用スラリー組成物を塗布、乾燥して形成された片面分の正極被膜の膜厚としては、特に限定はないが、たとえば、通常1〜500μm、好ましくは10〜400μm、さらに好ましくは20〜300μm、特に好ましくは30〜200μm、最も好ましくは50〜150μmである。片面分の正極被膜の膜厚が1μm未満の場合電池性能が悪くなり好ましくない場合がある。片面分の表面コート被膜の膜厚が500μm超の場合、ハンドリング性が低下し好ましくない場合がある。
【0096】
(二次電池負極用途)
本発明の二次電池スラリー組成物は、二次電池負極用途として利用することができる。二次電池スラリー組成物が二次電池負極用途として用いられる場合の二次電池負極用スラリー組成物の無機粒子としては、負極活物質、導電助剤等が挙げられる。二次電池負極用途の二次電池スラリー組成物は、通常集電体シートに塗布、乾燥して薄膜化して二次電池用負極として使用できる。
【0097】
二次電池負極用スラリー組成物の無機粒子としては、負極活物質、導電助剤等が挙げられる。
負極活物質としては、特に限定はないが、たとえば、天然黒鉛、人造黒鉛、膨張黒鉛、活性炭、カーボンファイバー、コークス、ソフトカーボン、ハードカーボン等の炭素材料;シリコン系;SiO、SnO、SnO
2、CuO、Li
4Ti
5O
12等の金属酸化物系;Si−Al、Al−Zn、Si−Mg、Al−Ge、Si−Ge、Si−Ag、Zn−Sn、Ge−Ag、Ge−Sn、Ge−Sb、Ag−Sn、Ag−Ge、Sn−Sb等の合金;リン酸スズガラス系等が挙げられ、1種または2種以上でもよい。
導電助剤としては、特に限定はないが、たとえば、ファーネスブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラック;グラフェン;カーボンナノ繊維、単層カーボンナノチューブ、多層カーボンナノチューブ等のカーボンナノチューブ;銀、銅、錫、亜鉛、酸化亜鉛、ニッケル、マンガン等の金属微粒子;酸化インジウムスズなどの複合金属微粒子等が挙げられ、1種または2種以上でもよい。
【0098】
負極の集電体としては、電子伝導性を有し負極材料に通電し得る材料であればよく、特に限定はないが、たとえば、Cu、Ni、C、Ti、Cr、Mo、Ru、Rh、Ta、W、Os、Ir、Pt、Au、Al等の導電性物質、これら導電性物質の二種類以上を含有する合金(例えば、ステンレス鋼)を使用し得る。電気伝導性が高く、電解液中の安定性と耐酸化性がよい観点から、集電体としてはCu、C、Al、ステンレス鋼等が好ましく、さらに材料コストの観点からCu等が好ましい。集電体の形状には、特に限定はなく、たとえば、箔状基材、三次元基材などを用いることができ、具体的には圧延銅箔、電解銅箔等が好ましい。集電体表面上には、あらかじめプライマー層が形成されていてもよく、プライマー層に導電助剤を含んでいてもよい。
【0099】
二次電池負極用スラリー組成物を負極の集電体に塗工する方法としては、均一にウェットコーティングできる方法であればよく、特に限定はないが、たとえば、キャピラリーコート法、スピンコート法、スリットダイコート法、スプレーコート法、ディップコート法、ロールコート法、スクリーン印刷法、フレキソ印刷法、バーコーター法、グラビアコーター法、ダイコーター法などを採用することができる。
【0100】
塗膜から溶媒を除去する方法は、乾燥による方法が一般的である。溶媒の乾燥温度は、特に限定はないが、通常、10〜200℃、好ましくは30〜190℃、さらに好ましくは50〜180℃、特に好ましくは80〜170℃、最も好ましくは90〜160℃である。溶媒の乾燥温度が200℃超の場合、負極の機能が低下し好ましくない場合がある。
【0101】
集電体表面に本発明の二次電池負極用スラリー組成物を塗布、乾燥して形成する表面コート被膜は、集電体のどちらか片面に形成させてよく、両面に形成させてもよい。
集電体表面に本発明の二次電池負極用スラリー組成物を塗布、乾燥して形成された片面分の負極被膜の膜厚としては、特に限定はないが、たとえば、通常1〜500μm、好ましくは10〜400μm、さらに好ましくは20〜300μm、特に好ましくは30〜200μm、最も好ましくは50〜150μmである。片面分の負極被膜の膜厚が1μm未満の場合電池性能が悪くなり好ましくない場合がある。片面分の表面コート被膜の膜厚が500μm超の場合、ハンドリング性が低下し好ましくない場合がある。
【0102】
(表面コート用途)
本発明の二次電池スラリー組成物は、セパレータの表面コート用途、また上述した正極あるいは負極の表面コート用途として利用することができる。二次電池スラリー組成物が表面コート用途として用いられる場合の二次電池スラリー組成物の無機粒子としては、非導電性粒子等が挙げられる。非導電性粒子としては、特に限定はないが、たとえば、シリカ(酸化ケイ素)、α−アルミナ、β−アルミナ、γ−アルミナ、θアルミナ等のアルミナ(酸化アルミニウム)、チタニア(酸化チタン)、マグネシア(酸化マグネシウム)、ジルコニア(酸化ジルコニウム)、酸化カルシウム、酸化バリウム、酸化スズ、酸化ストロンチウム、酸化ニオブ、酸化セリウム、酸化タングステン、酸化インジウム、酸化ガリウム、酸化イットリウム、酸化鉄、酸化アンチモン、ホワイトカーボン等の無機酸化物粒子;窒化アルミニウム、窒化ケイ素などの無機窒化物微粒子;フッ化カルシウム、フッ化バリウム、硫化バリウム、硫化カルシウム等のイオン結晶微粒子;シリコン、ダイヤモンドなどの共有結合性結晶微粒子;マイカ、タルク、ベントナイト、カオリン、ケイ酸アルミニウム、セリサイト等のケイ酸塩;炭酸カルシウム、炭酸マグネシウム、炭酸バリウム等の炭酸塩等が挙げられ、1種または2種以上でもよい。なかでもα−アルミナが熱的および化学的安定性が特に高いため、好ましい。
【0103】
非導電性粒子の平均粒子径については、特に限定されないが、通常0.001〜100μm、好ましくは0.01〜10μm、さらに好ましくは0.1〜1μm、特に好ましくは0.1〜0.8μm、最も好ましくは0.2〜0.7μmである。非導電性粒子の平均粒子径が0.001μm未満の場合、製造が困難となり好ましくない場合がある。一方、非導電性粒子の平均粒子径が100μm超の場合、分散性が悪くなり好ましくない場合がある。
非導電性粒子のBET比表面積としては、特に限定はないが、たとえば、通常0.1〜30m
2/g、好ましくは1〜18m
2/g、さらに好ましくは4〜14m
2/g、特に好ましくは5〜10m
2/g、最も好ましくは8〜10m
2/gである。非導電性粒子のBET比表面積が0.1m
2/g未満の場合被膜形成性が悪くなり好ましくない場合がある。一方、非導電性粒子のBET比表面積が30m
2/g超の場合、ハンドリング性が悪くなり好ましくない場合がある。
【0104】
非導電性粒子の電気伝導度としては、特に限定はないが、たとえば、好ましくは100μS/cm以下、さらに好ましくは80μS/cm以下、特に好ましくは40μS/cm以下、最も好ましくは20μS/cm以下である。非導電性粒子の電気伝導度が100μS/cm超の場合、電池性能が悪くなり好ましくない場合がある。
非導電性粒子は遊離の金属(あるいは金属イオン)を含有していてもよい。遊離の金属としては、特に限定はないが、たとえば、鉄、シリカ、マグネシウム、ナトリウム、銅等が挙げられる。
【0105】
遊離の金属の含有量としては、特に限定はないが、たとえば、通常10000ppm以下、好ましくは1000ppm以下、さらに好ましくは100ppm以下、特に好ましくは10ppm以下、最も好ましくは1ppm以下である。遊離の金属の含有量が10000ppm超の場合、電池性能が悪くなり好ましくない場合がある。
【0106】
表面コート用途の二次電池スラリー組成物のゼータ電位としては、特に限定はないが、測定温度25℃における5重量%濃度水分散液のゼータ電位が、好ましくは−10〜−100mV、より好ましくは−10〜−90mV、さらに好ましくは−20〜−80mV、特に好ましくは−30〜−70mV、最も好ましくは−35〜−65mVである。5重量%濃度のセパレータ表面コート用途の二次電池スラリー組成物のゼータ電位が−100mV未満であると、ハンドリング性に優れないことがある。一方、5重量%濃度のセパレータ表面コート用途の二次電池スラリー組成物のゼータ電位が−10mV超であると、分散性が十分ではないことがある。
【0107】
ここで、本発明の二次電池スラリー組成物が二次電池セパレータの表面コート用途として用いられる場合について詳しく述べる。
二次電池では、通常、正極と負極の間の短絡を防ぐ為に、セパレータが用いられている。たとえば、リチウムイオン電池の場合、セパレータは、電池内部で短絡が発生した場合、セパレータの有するシャットダウン機能によって、セパレータの孔が塞がって、短絡した部分のリチウムイオンの移動ができなくなり、短絡部位の電池機能を失わせることにより、リチウムイオン二次電池の安全性を保持する役割を担っている。しかしながら、瞬間的に発生する発熱によって電池温度が例えば150℃を超えると、セパレータは急激に収縮して、正極と負極の短絡部位が拡大することがある。この場合、電池温度は数百℃以上にまで異常過熱された状態に至ることがあり、安全性の面で問題となっている。そこで、上記問題点を解決する手段として、リチウムイオン二次電池を構成する正極または負極ないしはセパレータの表面に、絶縁性を有する無機酸化物フィラーを含む無機酸化物多孔膜を形成させる。
【0108】
二次電池セパレータコート用スラリー組成物をセパレータに塗工する方法としては、均一にウェットコーティングできる方法であればよく、特に限定はないが、たとえば、キャピラリーコート法、スピンコート法、スリットダイコート法、スプレーコート法、ディップコート法、ロールコート法、スクリーン印刷法、フレキソ印刷法、バーコーター法、グラビアコーター法、ダイコーター法などを採用することができる。
【0109】
塗膜から溶媒を除去する方法は、乾燥による方法が一般的である。溶媒の乾燥温度は、セパレータの軟化点以下の温度が好ましく、通常、10〜200℃、好ましくは30〜150℃、さらに好ましくは40〜120℃、特に好ましくは50〜100℃、最も好ましくは60〜90℃である。溶媒の乾燥温度が200℃超の場合、セパレータの機能が低下し好ましくない場合がある。
【0110】
セパレータの組成を構成する樹脂としては、特に限定はないが、たとえば、ポリエチレン、ポリプロピレン、ポリブチレン等のポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ナイロン等のポリアミド系樹脂;ポリアミドイミド系樹脂;ポリアセタール系樹脂;ポリスチレン系樹脂;メタクリル系樹脂;ポリ塩化ビニル系樹脂;ポリカーボネート系樹脂;ポリフェニレンサルファイド系樹脂、セルロース系樹脂等が挙げられる。
セパレータの形状としては、特に限定はなく、たとえば微多孔膜フィルム、不織布等が挙げられる。
【0111】
セパレータは、二次電池セパレータコート用スラリー組成物を塗工する前に、表面をポリフッ化ビニリデン樹脂やポリアラミド樹脂などで表面コートされていてもよい。
セパレータは、二次電池セパレータコート用スラリー組成物を塗工する前に親水化処理を行ってもよい。親水化処理としては、酸やアルカリ等による薬剤処理、コロナ処理、プラズマ処理が挙げられる。
セパレータ表面に本発明の二次電池セパレータコート用スラリー組成物を塗布、乾燥して形成する表面コート被膜は、セパレータのどちらか片面に形成させてよく、両面に形成させてもよい。
セパレータ表面に本発明の二次電池セパレータコート用スラリー組成物を塗布、乾燥して形成された片面分の表面コート被膜の膜厚としては、特に限定はないが、たとえば、通常0.1〜30μm、好ましくは0.3〜10μm、さらに好ましくは0.5〜5μm、特に好ましくは1〜4μm、最も好ましくは1〜3μmである。片面分の表面コート被膜の膜厚が0.1未満の場合耐熱性が悪くなり好ましくない場合がある。片面分の表面コート被膜の膜厚が30μm超の場合、セパレータの機能が低下し好ましくない場合がある。
【0112】
本発明の二次電池セパレータコート用スラリー組成物を塗布、乾燥して表面コートされたセパレータの膜厚としては、特に限定はないが、たとえば、通常1〜100μm、好ましくは5〜50μm、さらに好ましくは10〜30μm、特に好ましくは15〜25μm、最も好ましくは20〜25μmである。表面コートされたセパレータの膜厚が1未満の場合耐熱性が悪くなり好ましくない場合がある。片面分の表面コート被膜の膜厚が100μm超の場合、セパレータの機能が低下し好ましくない場合がある。
【0113】
本発明の二次電池セパレータコート用スラリー組成物を塗布、乾燥して表面コートされたセパレータに対する溶媒の接触角が特定の範囲にあると電池性能に優れるので好ましい。
【0114】
本発明の二次電池セパレータコート用スラリー組成物を塗布、乾燥して表面コートされたセパレータに対する水の接触角としては、特に限定はないが、たとえば、水を滴下してから1600msec経過時で通常60°以下、好ましくは50°以下、より好ましくは40°以下、さらに好ましくは30°以下、特に好ましくは20°以下である。表面コートされたセパレータに対する水の接触角が60°超であると、電池性能に優れない場合がある。
【0115】
本発明の二次電池セパレータコート用スラリー組成物を塗布、乾燥して表面コートされたセパレータに対する電解液の接触角としては、特に限定はないが、たとえば、電解液を滴下してから1600msec経過時で通常80°以下、好ましくは70°以下、より好ましくは60°以下、さらに好ましくは55°以下、特に好ましくは50°以下である。表面コートされたセパレータに対する電解液の接触角が80°超であると、電池性能に優れない場合がある。
【0116】
接触角の測定に用いられる電解液としては、たとえば、ジメチルカーボネート、エチレンカーボネート、ジエチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、メチルエチルカーボネート等のアルキルカーボネート化合物;γ−ブチロラクトン、ギ酸メチル等のエステル化合物;1、2ジメトキシエタン、テトラヒドロフラン等のエーテル化合物;スルホラン、ジメチルスルホキシド等の含硫黄化合物等が挙げられ、1種または2種以上でもよい。
【0117】
〔二次電池用材料及びその製造方法〕
本発明の二次電池用材料としては、上記二次電池スラリー組成物の各用途で既述した正極、負極、セパレータが挙げられる。すなわち、本発明の正極は、集電体上に正極用被膜を有する二次電池用正極であって、前記被膜が、上記二次電池スラリー組成物の不揮発分により形成されてなる。本発明の負極は、集電体上に負極用被膜を有する二次電池用負極であって、前記被膜が、上記二次電池スラリー組成物の不揮発分により形成されてなる。本発明のセパレータは、セパレータ用被膜を有するセパレータであって、前記被膜が、請求項7又は8に記載の二次電池スラリー組成物の不揮発分により形成されてなる。
【0118】
本発明の二次電池用材料の製造方法は、特に限定されないが、例えば、前記成分(A)と溶媒を混合して混合液を得る工程(a)と、前記混合液及び前記成分(B)を混合して分散剤組成物を得る工程(b)と、前記分散剤組成物と無機粒子とを混合してスラリー組成物を得る工程(c)と、正極の集電体、負極の集電体、正極、負極及びセパレータから選ばれる少なくとも1種に前記スラリー組成物を塗布し乾燥して被膜を形成させる工程(d)を含む製造方法が挙げられる。前記成分(C)、前記成分(D)、前記その他の成分から選ばれる少なくとも1種を混合する工程は、工程(a)、工程(b)、工程(c)のいずれでも構わないが、工程(a)で混合すると、分散剤組成物が均一となることにより本願効果が得られやすいため、好ましい。
なお、塗布方法及び乾燥方法については、上記二次電池スラリー組成物の各用途で既述した方法を採用できる。
【0119】
〔二次電池〕
本発明の二次電池スラリー用分散剤組成物を用いて作製された正極、負極、セパレータを用いて、本発明の二次電池を作製することができ、その製造方法は特に限定されない。たとえば、上述した負極と正極とをセパレータを介して重ね合わせ電池形状に応じて巻いたり折ったり積層したりして電極体を作製し電池容器に入れ、電池容器に電解液を注入して封口してもよい。
電池形状は、特に限定はないが、たとえば、コイン型、円筒型、角型、シート型等が挙げられる。
電池の外装方法は、特に限定はないが、たとえば、金属ケース、モールド樹脂、アルミラミネートフィルム等が挙げられる。
【0120】
二次電池の種類としては、特に限定はなく、リチウムイオン電池、リチウムイオンポリマー電池等のリチウムイオン二次電池;ニッケル水素電池、ニッケルカドミウム電池等のアルカリ二次電池;ナトリウム硫黄電池;レドックスフロー電池;空気電池等が挙げられる。
電解液としては、特に限定はないが、リチウムイオン電池の場合は、たとえば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものを使用できる。リチウム塩としては、たとえば、LiPF
6、LiAsF
6、LiBF
4、LiSbF
6、LiAlCl
4、LiClO
4、CF
3SO
3Li、C
4H
9SO
3Li、CF
3COOLi、(CF
3CO)
2NLi、(CF
3SO
2)
2NLi、(C
2F
5SO
2)
2NLiなどが挙げられ、1種または2種以上でもよい。電解液に使用する溶媒としては、支持電解質を溶解できるものであれば特に限定はなく、たとえば、ジメチルカーボネート、エチレンカーボネート、ジエチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、メチルエチルカーボネート等のアルキルカーボネート化合物;γ−ブチロラクトン、ギ酸メチル等のエステル化合物;1、2ジメトキシエタン、テトラヒドロフラン等のエーテル化合物;スルホラン、ジメチルスルホキシド等の含硫黄化合物等が挙げられる。電解液には、その他添加剤が混合されていてもよく、たとえば、ビニレンカーボネートなどが挙げられる。
【0121】
二次電池がニッケル水素電池の場合の電解液としては、特に限定はなくアルカリ性の水溶液であればよく、たとえば、水酸化カリウムや水酸化ナトリウムを含む水溶液等が挙げられる。
【0122】
本発明の二次電池は、様々な電気機器(電気を使用する乗り物を含む)の電源として利用することができる。
電気機器としては、例えば、エアコン、洗濯機、テレビ、冷蔵庫、冷凍庫、冷房機器、ノートパソコン、タブレット、スマートフォン、パソコンキーボード、パソコン用ディスプレイ、デスクトップ型パソコン、CRTモニター、パソコンラック、プリンター、一体型パソコン、マウス、ハードディスク、パソコン周辺機器、アイロン、衣類乾燥機、ウインドウファン、トランシーバー、送風機、換気扇、音楽レコーダー、音楽プレーヤー、オーブン、レンジ、洗浄機能付便座、温風ヒーター、カーコンポ、カーナビ、懐中電灯、加湿器、携帯カラオケ機、換気扇、乾燥機、乾電池、空気清浄器、携帯電話、非常用電灯、ゲーム機、血圧計、コーヒーミル、コーヒーメーカー、こたつ、コピー機、ディスクチェンジャー、ラジオ、シェーバー、ジューサー、シュレッダー、浄水器、照明器具、除湿器、食器乾燥機、炊飯器、ステレオ、ストーブ、スピーカー、ズボンプレッサー、掃除機、体脂肪計、体重計、ヘルスメーター、ムービープレーヤー、電気カーペット、電気釜、炊飯器、電気かみそり、電気スタンド、電気ポット、電子ゲーム機、携帯ゲーム機、電子辞書、電子手帳、電子レンジ、電磁調理器、電卓、電動カート、電動車椅子、電動工具、電動歯ブラシ、あんか、散髪器具、電話機、時計、インターホン、エアサーキュレーター、電撃殺虫器、複写機、ホットプレート、トースター、ドライヤー、電動ドリル、給湯器、パネルヒーター、粉砕機、はんだごて、ビデオカメラ、ビデオデッキ、ファクシミリ、ファンヒーター、フードプロセッサー、布団乾燥機、ヘッドホン、電気ポット、ホットカーペット、マイク、マッサージ機、豆電球、ミキサー、ミシン、もちつき機、床暖房パネル、ランタン、リモコン、冷温庫、冷水器、冷凍ストッカー、冷風器、ワープロ、泡だて器、電子楽器、オートバイ、おもちゃ類、芝刈り機、うき、自転車、自動車、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、鉄道、船、飛行機、非常用蓄電池などが挙げられる。
【実施例】
【0123】
以下に、本発明の実施例を、その比較例とともに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
【0124】
〔重量平均分子量〕
アルキレンオキサイド付加物あるいは高分子粒子を不揮発分濃度が約0.2質量%濃度となるようにテトラヒドロフランに溶かした後、以下の測定条件でゲルパーミエーションクロマトグラフィー(GPC)を測定した。次いで、分子量既知のポリエチレングリコールのGPC測定結果から、検量線を作成し、重量平均分子量を算出した。
(測定条件)
機器名:HLC−8220(東ソー社製)
カラム:KF−G、KF−402HQ、KF−403HQ各1本ずつを直列に連結(いずれもShodex社製)
溶離液:テトラヒドロフラン
注入量:10μl
溶離液の流量:0.3ml/分
温度:40℃
【0125】
〔1%濃度水溶液の曇点測定〕
アルキレンオキサイド付加物の1重量%水溶液を調製し、加温して一旦液を濁らせ、徐々に冷却して濁りが無くなる温度をアルキレンオキサイド付加物の曇点とした。
【0126】
〔BDG法による曇点測定〕
n−ブチルジグリコール(別名:2−(2−ブトキシエトキシ)エタノール、ジエチレングリコールモノ−n−ブチルエーテル)の25重量%水溶液にアルキレンオキサイド付加物を添加して曇点試験液を調製した。その際、曇点試験液中のアルキレンオキサイド付加物の濃度が10重量%となるように調整した。次いで、加温して一旦曇点試験液を濁らせ、徐々に冷却して濁りが無くなる温度を曇点とした。
【0127】
(硫酸カリ法による曇点の測定)
硫酸カリウムの5重量%水溶液にアルキレンオキサイド付加物を添加して曇点試験液を調製した。その際、曇点試験液中のアルキレンオキサイド付加物の濃度が1重量%となるように調整した。次いで、加温して一旦曇点試験液を濁らせ、徐々に冷却して濁りが無くなる温度を曇点とした。
【0128】
〔起泡力〕
JIS K3362の方法に準拠したロスマイルス試験法により温度25℃の測定条件下で測定した。組成物の有効濃度が0.1重量%水溶液を試験液とし、試験液の50mlをロスマイルス測定装置の管壁に沿って流し込み、上部の流下ピペットにも試験液の200mlを入れて準備した。ロスマイルス測定装置の円筒中央に試験液の液滴が落ちるようにピペットをセットし、90cmの高さから試験液を流下させ、流下が終わった直後(流下直後)の泡沫の高さと、流下直後から5分後の泡沫の高さを測定した。なお、ここでいう有効濃度とは、組成物の重量に対して、組成物を105℃で熱処理して溶媒等を除去し、恒量に達した時の絶乾成分の重量割合をいう。
【0129】
〔表面張力〕
有効濃度の0.1重量%水溶液を試験液とし、自動表面張力計(KRUSS社製、品番TensiometerK100)を用いて、ウィルヘルミー法により温度25℃の測定条件下で測定した。
【0130】
〔臨界ミセル濃度(CMC)〕
自動表面張力計(KRUSS社製、品番TensiometerK100)を用いて、温度25℃の測定条件下で測定した。
【0131】
〔接触角〕
接触角計(協和界面科学株式会社製、品番DM−901)を用いて測定した。
〔HLB値〕
実施例及び比較例で用いたアルキレンオキサイド付加物のHLB値は、グリフィン法に基づくものであり、下記式により算出した。
HLB値={アルキレンオキサイド付加物の分子量のうちの親水基部分の分子量/アルキレンオキサイド付加物の分子量}×20
式中、親水基部分とは、たとえば、アルキレンオキサイド付加物を構成するエチレンオキサイド付加の部分を示す。
【0132】
〔ガラス転移点の測定〕
動的粘弾性測定装置(ティ−・エイ・インスツルメント社製、品番Q800)を用いて測定した。
〔熱重量測定(TGA)の測定〕
示差熱天秤(リガク社製、品番Thermo plus EVO)を用いて、設定開始温度20℃、設定最終温度300℃、昇温速度毎分10℃の測定条件で測定した。
〔平均粒子径、ゼータ電位の測定〕
粒径・ゼータ電位測定システム(大塚電子製、ELSZ−1000)を用いて測定した。
【0133】
〔アルキレンオキサイド付加物成分(A)〕
実施例および比較例で用いたアルキレンオキサイド付加物A−1〜A−15について、その一般式と物性を以下に示す。それらの具体的な製造方法を以下の製造例A−1〜A−15に示す。
アルキレンオキサイド付加物A−1:C
12H
25O−[(PO)
2/(EO)
4]−(PO)
3−H、重量平均分子量652、曇点43.9℃
アルキレンオキサイド付加物A−2:C
10H
21O−[(PO)
6/(EO)
6]−(PO)
4−H、重量平均分子量1003、曇点40.1℃
アルキレンオキサイド付加物A−3:C
13H
27O−[(PO)
7/(EO)
7]−(PO)
6−H、重量平均分子量1266、曇点37.5℃
アルキレンオキサイド付加物A−4:C
10H
21O−[(PO)
8/(EO)
4]−H、重量平均分子量799、曇点48.1℃
アルキレンオキサイド付加物A−5:C
16H
33O−[(PO)
10/(EO)
8]−(PO)
10−H、重量平均分子量1741、曇点45.6℃
アルキレンオキサイド付加物A−6:C
18H
35O−[(PO)
4/(EO)
4]−(PO)
6−H、重量平均分子量1027、曇点44.9℃
アルキレンオキサイド付加物A−7:C
20H
41O−[(PO)
4/(EO)
3]−(PO)
12−H、重量平均分子量1359、曇点41.0℃
アルキレンオキサイド付加物A−8:CH
3O−[(PO)
4/(EO)
3]−H、重量平均分子量652、曇点48.1℃
アルキレンオキサイド付加物A−9:C
4H
9O−[(PO)
2/(EO)
1]−H、重量平均分子量234、曇点38.1℃
アルキレンオキサイド付加物A−10:HO−[(PO)
12/(EO)
4]−H、重量平均分子量934、曇点37.5℃
アルキレンオキサイド付加物A−11:HO−(PO)
10−H、重量平均分子量673、曇点41.0℃
アルキレンオキサイド付加物A−12:C
12H
25O−(PO)
3−(EO)
7−H、重量平均分子量667、曇点71.3℃
アルキレンオキサイド付加物A−13:C
12H
25O−(EO)
7−(PO)
3−H、重量平均分子量730、曇点48.8℃
アルキレンオキサイド付加物A−14:C
12H
25O−[(PO)
2/(EO)
4]−(EO)
3−H、重量平均分子量616、曇点82.9℃
アルキレンオキサイド付加物A−15:C
10H
21O−[(PO)
6/(EO)
6]−(EO)
4−H、重量平均分子量928、曇点92.5℃
なお、アルキレンオキサイド付加物A−12および13では、POおよびEOはランダム状ではなく、ブロック状に付加している。
〔高分子粒子〕
実施例および比較例で用いた高分子粒子成分(B)について、それらの具体的な製造方法および物性を以下の表3の製造例B−1〜B−8に示す。
〔エチレンオキサイド付加物C〕
実施例および比較例で用いたエチレンオキサイド付加物C−1〜C−8について、その一般式と物性を以下に示す。また、それらの具体的な製造方法を以下の製造例C−1〜C−8に示す。
アルキレンオキサイド付加物C−1:C
12H
25O−(EO)
10−H、重量平均分子量626、曇点68℃、HLB14.0
アルキレンオキサイド付加物C−2:C
10H
21O−(EO)
8−H、重量平均分子量511、曇点51℃、HLB13.8
アルキレンオキサイド付加物C−3:C
14H
29O−(EO)
12−H、重量平均分子量740、曇点85℃、HLB14.5
アルキレンオキサイド付加物C−4:C
18H
35O−(EO)
50−H、重量平均分子量2470、曇点100℃以上、HLB17.9
アルキレンオキサイド付加物C−5:POE(10)スチレン化フェニルエーテル、重量平均分子量750、曇点61℃、HLB11.7
アルキレンオキサイド付加物C−6:POE(20)スチレン化フェニルエーテル、重量平均分子量1190、曇点100℃以上、HLB14.8
アルキレンオキサイド付加物C−7:POE(40)硬化ひまし油エーテル、重量平均分子量1820、曇点100℃以上、HLB13.1
アルキレンオキサイド付加物C−8:C12−C14混合2級アルコールのEO9モル付加物、重量平均分子量600、曇点56、HLB13.3
【0134】
〔消泡剤〕
実施例および比較例で用いた消泡剤を以下に示す。
ポリシロキサン系消泡剤1:ジメチルポリシロキサン、粘度100mPa・s(25℃)
ポリシロキサン系消泡剤2:ジメチルポリシロキサン、粘度1000mPa・s(25℃)
シリカ微粉末系消泡剤:トリメチルエトキシシランにより疎水化処理されたシリカ微粉末
鉱物油系消泡剤:パラフィン系鉱物油
【0135】
〔無機粒子〕
実施例および比較例で用いた無機粒子を以下に示す。
αアルミナ1:一次粒子径0.3μm、BET比表面積8.4m
2/g
αアルミナ2:一次粒子径0.8μm、BET比表面積4.9m
2/g
γアルミナ:一次粒子径0.3μm、BET比表面積4.7m
2/g
θアルミナ:一次粒子径0.3μm、BET比表面積5.3m
2/g
シリカ:一次粒子径0.3μm、BET比表面積5.4m
2/g
コバルト酸リチウム;一次粒子径7.3μm、BET比表面積0.4m
2/g
リチウム−ニッケル−コバルト−マンガン複合酸化物(LiNi
0.33Co
0.33Mn
0.33O
2;一次粒子径11.5μm、BET比表面積0.3m
2/g
マンガン酸リチウム複合酸化物(LiMnO
2);一次粒子径10.1μm、BET比表面積0.3m
2/g
グラファイト;一次粒子径11.1μm、BET比表面積0.4m
2/g
アセチレンブラック;平均粒子径70.1nm、BET比表面積68m
2/g
カーボンナノ繊維:繊維系150.0nm、BET比表面積13m
2/g
【0136】
〔製造例A−1〕
(工程1)
1Lのオートクレーブに、ラウリルアルコール(分子量186)100gと、水酸化カリウム0.3gとを仕込んだ後、オートクレーブ内を窒素置換してから、攪拌しつつ80℃で減圧脱水を行った。
次いで、130℃まで昇温した後、反応温度145±5℃、反応圧力3.5±0.5kg/cm
2を維持しつつエチレンオキサイドおよびプロピレンオキサイドを同時に供給開始した。エチレンオキサイドでは、約100分間で総量95gを供給した。また、プロピレンオキサイドでは、約100分間で総量62gを供給した。
エチレンオキサイドおよびプロピレンオキサイドの供給が完了した後、反応温度を維持しつつ、内圧が低下して一定になるまで熟成させた。
(工程2)
次いで、130℃まで昇温した後、反応温度145±5℃、反応圧力3.5±0.5kg/cm
2を維持しつつ約150分間でプロピレンオキサイド94gを供給した。
プロピレンオキサイドの供給が完了した後、反応温度を維持しつつ、内圧が低下して一定になるまで熟成させ、80℃まで冷却した。後処理として、得られた反応混合物に合成吸着剤(キョーワード700、協和化学工業(株))9gを加えて、90℃で窒素気流下1時間攪拌して処理した後、ろ過により触媒を除去して、アルキレンオキサイド付加物を得た。
得られたアルキレンオキサイド付加物のプロピレンオキサイド付加モル数(p)は2であり、エチレンオキサイド付加モル数(q)は4であり、プロピレンオキサイド付加モル数(r)は3であった。
得られたアルキレンオキサイド付加物A−1の重量平均分子量は652であった。曇点は43.9℃であった。起泡力は、流下直後が20mm、流下直後から5分後が5mmであった。表面張力は32.8mN/mであった。
【0137】
〔製造例A−2およびA−11〕
製造例A−2〜A−11では、製造例A−1において、表1〜2に示すように原料をそれぞれ変更する以外は、製造例A−1と同様にアルキレンオキサイド付加物をそれぞれ得て、物性等も製造例A−1と同様に評価した。その結果を表1〜2に示す。
〔製造例A−12〕
1Lのオートクレーブに、ラウリルアルコール(分子量186)100gと、水酸化カリウム0.3gとを仕込んだ後、オートクレーブ内を窒素置換してから、攪拌しつつ80℃で減圧脱水を行った。
次いで、130℃まで昇温した後、反応温度145±5℃、反応圧力3.5±0.5kg/cm
2を維持しつつ、約150分間でプロピレンオキサイド94gを供給した。内圧が低下して一定になるまで熟成させた後、約150分間でエチレンオキサイド166gを供給した。
エチレンオキサイドの供給が完了した後、反応温度を維持しつつ、内圧が低下して一定になるまで熟成させ、80℃まで冷却した。後処理として、得られた反応混合物に合成吸着剤(キョーワード700、協和化学工業(株))3gを加えて、90℃で窒素気流下1時間攪拌して処理した後、ろ過により触媒を除去して、アルキレンオキサイド付加物を得た。
得られたアルキレンオキサイド付加物はPOとEOのブロック付加体であり、エチレンオキサイド付加モル数は7であり、プロピレンオキサイド付加モル数は3であった。
得られたアルキレンオキサイド付加物の重量平均分子量は667であった。曇点については、BDG法で測定して84℃であった。起泡力は、流下直後が20mm、流下直後から5分後が5mmであった。表面張力は33.8mN/mであった。
〔製造例A−13〕
1Lのオートクレーブに、ラウリルアルコール(分子量186)100gと、水酸化カリウム0.3gとを仕込んだ後、オートクレーブ内を窒素置換してから、攪拌しつつ80℃で減圧脱水を行った。
次いで、130℃まで昇温した後、反応温度145±5℃、反応圧力3.5±0.5kg/cm
2を維持しつつ、約150分間でエチレンオキサイド166gを供給した。内圧が低下して一定になるまで熟成させた後、約150分間でプロピレンオキサイド94gを供給した。
プロピレンオキサイドの供給が完了した後、反応温度を維持しつつ、内圧が低下して一定になるまで熟成させ、80℃まで冷却した。後処理として、得られた反応混合物に合成吸着剤(キョーワード700、協和化学工業(株))3gを加えて、90℃で窒素気流下1時間攪拌して処理した後、ろ過により触媒を除去して、アルキレンオキサイド付加物を得た。
得られたアルキレンオキサイド付加物はEOとPOのブロック付加体であり、エチレンオキサイド付加モル数は7であり、プロピレンオキサイド付加モル数は3であった。
得られたアルキレンオキサイド付加物の重量平均分子量は665であった。曇点については、BDG法で測定して75℃であった。起泡力は、流下直後が30mm、流下直後から5分後が10mmであった。表面張力は34.8mN/mであった。
〔製造例A−14〕
1Lのオートクレーブに、ラウリルアルコール(分子量186)100gと、水酸化カリウム0.3gとを仕込んだ後、オートクレーブ内を窒素置換してから、攪拌しつつ80℃で減圧脱水を行った。
次いで、130℃まで昇温した後、反応温度145±5℃、反応圧力3.5±0.5kg/cm
2を維持しつつエチレンオキサイドおよびプロピレンオキサイドを同時に供給開始した。エチレンオキサイドでは、約100分間で総量62gを供給した。また、プロピレンオキサイドでは、約100分間で総量95gを供給した。
エチレンオキサイドおよびプロピレンオキサイドの供給が完了した後、反応温度を維持しつつ、内圧が低下して一定になるまで熟成させた。
次いで、130℃まで昇温した後、反応温度145±5℃、反応圧力3.5±0.5kg/cm
2を維持しつつ約130分間でエチレンオキサイド71gを供給した。
エチレンオキサイドの供給が完了した後、反応温度を維持しつつ、内圧が低下して一定になるまで熟成させ、80℃まで冷却した。後処理として、得られた反応混合物に合成吸着剤(キョーワード700、協和化学工業(株))9gを加えて、90℃で窒素気流下1時間攪拌して処理した後、ろ過により触媒を除去して、アルキレンオキサイド付加物を得た。
得られたアルキレンオキサイド付加物A−14の重量平均分子量は616であった。曇点は82.9℃であった。起泡力は、流下直後が20mm、流下直後から5分後が5mmであった。表面張力は33.5mN/mであった。
〔製造例A−15〕
1Lのオートクレーブに、デカノール(分子量159)100gと、水酸化カリウム0.3gとを仕込んだ後、オートクレーブ内を窒素置換してから、攪拌しつつ80℃で減圧脱水を行った。
次いで、130℃まで昇温した後、反応温度145±5℃、反応圧力3.5±0.5kg/cm
2を維持しつつエチレンオキサイドおよびプロピレンオキサイドを同時に供給開始した。エチレンオキサイドでは、約180分間で総量166gを供給した。また、プロピレンオキサイドでは、約180分間で総量219gを供給した。
エチレンオキサイドおよびプロピレンオキサイドの供給が完了した後、反応温度を維持しつつ、内圧が低下して一定になるまで熟成させた。
次いで、130℃まで昇温した後、反応温度145±5℃、反応圧力3.5±0.5kg/cm
2を維持しつつ約130分間でエチレンオキサイド111gを供給した。
エチレンオキサイドの供給が完了した後、反応温度を維持しつつ、内圧が低下して一定になるまで熟成させ、80℃まで冷却した。後処理として、得られた反応混合物に合成吸着剤(キョーワード700、協和化学工業(株))9gを加えて、90℃で窒素気流下1時間攪拌して処理した後、ろ過により触媒を除去して、アルキレンオキサイド付加物を得た。
得られたアルキレンオキサイド付加物A−15の重量平均分子量は928であった。曇点は92.5℃であった。起泡力は、流下直後が25mm、流下直後から5分後が10mmであった。表面張力は34.2mN/mであった。
【0138】
〔製造例B−1〕
まず、重合性単量体として、5gのアクリル酸および95gのアクリル酸ブチルを準備し、乳化剤として、2.0gのアルキルベンゼンスルフォン酸ソーダ塩を準備した。
上記で準備した重合性単量体および乳化剤と、150gのイオン交換水とをホモジナイザーで混合攪拌し、500mlのセパラブルフラスコ中で窒素気流下、80℃で3時間反応してアクリル系高分子粒子B−1のエマルションを得た。このアクリル系高分子粒子B−1のエマルションは、非水溶性であって、不揮発分濃度40.3重量%、粘度2mPa・s、平均粒子径164nm、ゼータ電位−45mV、熱重量測定0.1%、ガラス転移点−14℃、無機酸化物板としてアルミナ板への接触角が100msec経過時で58°、1600msec経過時で45°であった。
【0139】
〔製造例B−2〜B−8〕
製造例B−2〜B−8では、製造例B−1において、表3に示すように原料をそれぞれ変更する以外は、製造例B−1と同様に高分子粒子エマルションをそれぞれ得て、物性等も製造例B−1と同様に評価した。
【0140】
〔製造例C−1〕
(エチレンオキサイド付加物C−1の製造)
エチレンオキサイドの供給ラインを接続した1Lのオートクレーブに、ラウリルアルコール(分子量186)100gと、水酸化カリウム0.3gとを仕込んだ後、オートクレーブ内を窒素置換してから、攪拌しつつ80℃で減圧脱水を行った。
次いで、130℃まで昇温した後、反応温度145±5℃、反応圧力3.5±0.5kg/cm
2を維持しつつ、約120分間でエチレンオキサイド237gを供給した。
エチレンオキサイドの供給が完了した後、反応温度を維持しつつ、内圧が低下して一定になるまで熟成させ、80℃まで冷却した。後処理として、得られた反応混合物に合成吸着剤(キョーワード700、協和化学工業(株))3gを加えて、90℃で窒素気流下1時間攪拌して処理した後、ろ過により触媒を除去して、アルキレンオキサイド付加物C−1を得た。
得られたアルキレンオキサイド付加物C−1のエチレンオキサイド付加モル数(n)は10であった。アルキレンオキサイド付加物C−1は水溶性を示し、重量平均分子量は626、1%水溶液の曇点は68℃、HLBは14.0、表面張力は30.1mN/m、CMCは89mg/l、起泡力は直後の値が140mm、5分後の値が90mmであった。
【0141】
〔製造例C−2〜C−8〕
製造例C−2〜C−8では、製造例C−1において、表4に示すように原料をそれぞれ変更する以外は、製造例C−1と同様にアルキレンオキサイド付加物をそれぞれ得て、物性等も製造例C−1と同様に評価した。
【0142】
〔製造例1〕
成分(A)であるアルキレンオキサイド付加物を100gと、成分(B)である高分子粒子B−1を1000g含むアクリル系高分子粒子エマルションの2500gと、イオン交換水1500gを均一に混合して、二次電池スラリー用分散剤組成物を得た。イオン交換水の量はアクリル系高分子粒子1エマルションに含まれるイオン交換水と合わせて3000gであった。二次電池スラリー用分散剤組成物は、不揮発分濃度25.3%、粘度5mPa・s、pH8.2、表面張力35.2mN/m、ゼータ電位−55mV、起泡力は直後の値が10mm、5分後の値が5mm、無機酸化物板としてアルミナ板への接触角が1600msec経過時で49°、ポリオレフィン樹脂への接触角が1600msec経過時で20°であった。
【0143】
〔製造例2〜19〕
製造例2〜19では、表5、6に示すように原料をそれぞれ変更する以外は、製造例1と同様に二次電池スラリー用分散剤組成物をそれぞれ得て、物性等も製造例1と同様に評価した。その結果を表5、6に示す。
【0144】
〔実施例1〕
無機粉末であるαアルミナ1の100gと分散剤である二次電池スラリー用分散剤組成物1の30gとイオン交換水100gを均一に混合して、二次電池スラリー組成物を得た。
得られた二次電池スラリー組成物は、不揮発分濃度46.9重量%、粘度52mPa・s、平均粒子径332nm、ゼータ電位−30mV、起泡力は直後の値が30mm、5分後の値が5mmであった。
この二次電池スラリー組成物を用いて、二次電池スラリー用分散剤組成物の分散安定性を評価したところ、沈降物の重量が5重量%未満であり分散安定性に優れていた。
上記で得られた二次電池スラリー組成物を膜厚20μmのポリオレフィン樹脂系セパレータに塗布し、80℃のオーブン中で乾燥させた。乾燥後セパレータ表面を表面コートした被覆面積は95%以上であり塗布性に優れていた。表面コート膜厚は5μmであった。セパレータ表面を表面コートした表面コートセパレータは収縮率が95%以上であり、耐熱性に優れる。
【0145】
〔実施例2〜11〕
実施例2〜11では、実施例1において、表7に示すように原料をそれぞれ変更する以外は、実施例1と同様に二次電池スラリー組成物をそれぞれ得て、物性等も実施例1と同様に評価した。その結果を表7に示す。
〔実施例12〕
無機粉末であるコバルト酸リチウムの95g、アセチレンブラック5gと分散剤である二次電池スラリー用分散剤組成物1の30gとイオン交換水50gを均一に混合して、二次電池スラリー組成物を得た。得られた二次電池スラリー組成物は、不揮発分濃度59.8重量%、粘度6000mPa・s、平均粒子径10.4μm、pH7.4、ゼータ電位−34mV、起泡力は直後の値が20mm、5分後の値が5mmであった。
【0146】
この二次電池スラリー組成物を用いて、二次電池スラリー用分散剤組成物の分散安定性を評価したところ、沈降物の重量が5重量%未満であり分散安定性に優れていた。
上記で得られた二次電池スラリー組成物を膜厚20μmのアルミ箔に塗布し、150℃のオーブン中で乾燥させて二次電池用正極被膜を得た。乾燥後集電体の被覆面積は95%以上であり表面にひび割れなく塗布性に優れていた。乾燥性も300秒以内であり乾燥性に優れていた。二次電池用正極被膜の膜厚は60μmであった。二次電池用正極被膜の表面にエチレンカーボネートとジメチルカーボネートの当量混合液を滴下して1600msec経過時の接触角を測定したところ、接触角が20°未満であり、電解液の保液性に優れた。
【0147】
〔実施例13〜20〕
実施例13〜20では、実施例12において、表8、9に示すように原料をそれぞれ変更する以外は、実施例12と同様に二次電池スラリー組成物をそれぞれ得て、物性等も実施例12と同様に評価した。その結果を表8、9に示す。
〔実施例21〕
無機粉末であるグラファイトの95g、アセチレンブラック5gと分散剤である二次電池スラリー用分散剤組成物1の40gとイオン交換水40gを均一に混合して、二次電池スラリー組成物を得た。得られた二次電池スラリー組成物は、不揮発分濃度61.9重量%、粘度6500mPa・s、平均粒子径18.4μm、ゼータ電位−28mV、起泡力は直後の値が10mm、5分後の値が0mmであった。
この二次電池スラリー組成物を用いて、二次電池スラリー用分散剤組成物の分散安定性を評価したところ、沈降物の重量が5重量%未満であり分散安定性に優れていた。
上記で得られた二次電池スラリー組成物を膜厚18μmの銅箔に塗布し、150℃のオーブン中で乾燥させて二次電池用負極被膜を得た。乾燥後集電体の被覆面積は95%以上であり表面にひび割れなく塗布性に優れていた。乾燥性も300秒以内であり乾燥性に優れていた。二次電池用負極被膜の膜厚は80μmであった。二次電池用負極被膜の表面にエチレンカーボネートとジメチルカーボネートの当量混合液を滴下して1600msec経過時の接触角を測定したところ、接触角が20°未満であり、電解液の保液性に優れた。
【0148】
〔実施例22〜25〕
実施例22〜25では、実施例25において、表9に示すように原料をそれぞれ変更する以外は、実施例21と同様に二次電池スラリー組成物をそれぞれ得て、物性等も実施例21と同様に評価した。その結果を表9に示す。
【0149】
〔比較例1〕
無機粉末であるαアルミナ1の100gと分散剤である二次電池スラリー用分散剤組成物12の30gとイオン交換水100gを均一に混合して、二次電池スラリー組成物を得た。
得られた二次電池スラリー組成物は、不揮発分濃度46.8重量%、粘度150mPa・s、平均粒子径830nm、ゼータ電位−6mV、起泡力は直後の値が20mm、5分後の値が5mmであった。
この二次電池スラリー組成物を用いて、二次電池スラリー用分散剤組成物の分散安定性を評価したところ、沈降物の重量が10重量%以上30重量%未満であり、分散安定性に劣る。
上記で得られた二次電池スラリー組成物を膜厚20μmのポリオレフィン樹脂系セパレータに塗布し、80℃のオーブン中で乾燥させた。乾燥後セパレータ表面を表面コートした被覆面積は80%未満であり、塗布性に劣る。表面コート膜厚は3μmであった。セパレータ表面を表面コートした二次電池用被膜は収縮率が80%未満であり、耐熱性に劣る。
【0150】
〔比較例2〜16〕
比較例2〜16では、比較例1において、表10及び表11に示すように原料をそれぞれ変更する以外は、比較例1と同様に二次電池スラリー組成物をそれぞれ得て、物性等も比較例1と同様に評価した。その結果を表10及び表11に示す。
【0151】
〔分散安定性の評価〕
作製した二次電池スラリー組成物を100mlの遠沈管にとって室温で24時間保管した後の沈降物の重量を測定した。分散安定性の評価基準は以下のとおり。
◎:沈降物の重量が5重量%未満であり、分散安定性に優れる。
〇:沈降物の重量が5重量%以上10重量%未満であり、分散安定性に優れる。
△:沈降物の重量が10重量%以上30重量%未満であり、分散安定性に劣る。
×:沈降物の重量が30重量%以上であり、分散安定性に劣る。
【0152】
〔塗布性の評価〕
(セパレータの場合)
二次電池スラリー組成物をポリオレフィン系セパレータ表面に15g/m
2塗布して、80℃の温度に加熱して乾燥した。セパレータ表面を表面コートした被覆面積を測定した。塗布性の評価基準は以下のとおり。
◎:被覆面積が95%以上であり、塗布性に優れる。
〇:被覆面積が90%以上95%未満であり、塗布性に優れる。
△:被覆面積が80%以上90%未満であり、塗布性に劣る。
×:被覆面積が80%未満であり、塗布性に劣る。
【0153】
(正極および負極の場合)
二次電池スラリー組成物を集電体表面に10mg/cm
2塗布して、150℃の温度に加熱して乾燥した。集電体表面を表面コートした被覆面積を測定した。塗布性の評価基準は以下のとおり。
○:被覆面積が95%以上であり乾燥時に塗布表面のひび割れなく、塗布性に優れる。
×:乾燥時に塗布表面のひび割れ発生し被覆面積が95%未満であり、塗布性に劣る。
【0154】
〔乾燥性の評価〕
(セパレータの場合)
二次電池スラリー組成物をポリオレフィン系セパレータ表面に15g/m
2塗布して、80℃の温度で塗布表面が乾くまでの時間を目視にて測定する。乾燥性の評価基準は以下のとおり。
○:乾燥時間が30秒以下であれば、待ち時間が少なく乾燥性が良い。
×:乾燥時間が30秒超であれば、待ち時間が長く作業性に支障をきたすため乾燥性が良くない。
(正極および負極の場合)
二次電池スラリー組成物を集電体表面に10mg/cm
2塗布して、150℃の温度で塗布表面が乾くまでの時間を目視にて測定する。乾燥性の評価基準は以下のとおり。
○:乾燥時間が300秒以下であれば、待ち時間が少なく乾燥性が良い。
×:乾燥時間が300秒超であれば、待ち時間が長く作業性に支障をきたすため乾燥性が良くない。
【0155】
〔耐熱性の評価〕
作製した表面コートセパレータの試料縦10cm×横10cmを120℃の恒温槽中に8時間保管して加温した後、試料の縦横それぞれの長さを測定して収縮率を算出した。耐熱性の評価基準は以下のとおり。表面コートセパレータの耐熱性は縦あるいは横のいずれか小さい方の収縮率で評価した。
収縮率(%)=(8時間加温後の表面コートセパレータの縦あるいは横の長さ/10)×100
◎:収縮率が95%以上であり、耐熱性に優れる。
〇:収縮率が90%以上95%未満であり、耐熱性に優れる。
△:収縮率が80%以上90%未満であり、耐熱性に劣る。
×:収縮率が80%未満であり、耐熱性に劣る。
【0156】
〔水の保液性の評価〕
接触角計(協和界面科学株式会社製、品番DM−901)を用いて、表面コートセパレータに水を滴下後1600msec経過時の接触角を測定して評価した。
◎:接触角が20°未満であり、水の保液性に優れる。
〇:接触角が20°以上30°未満であり、水の保液性に優れる。
△:接触角が30°以上40°未満であり、水の保液性に劣る。
×:接触角が40°以上であり、水の保液性に劣る。
【0157】
〔電解液の保液性の評価〕
接触角計(協和界面科学株式会社製、品番DM−901)を用いて、表面コートセパレータ、正極、負極のいずれかににエチレンカーボネートとジメチルカーボネートの当量混合液を滴下して1600msec経過時の接触角を測定して評価した。
◎:接触角が20°未満であり、電解液の保液性に優れる。
〇:接触角が20°以上30°未満であり、電解液の保液性に優れる。
△:接触角が30°以上40°未満であり、電解液の保液性に劣る。
×:接触角が40°以上であり、電解液の保液性に劣る。
【0158】
【表1】
【0159】
【表2】
【0160】
【表3】
【0161】
【表4】
【0162】
【表5】
【0163】
【表6】
【0164】
【表7】
【0165】
【表8】
【0166】
【表9】
【0167】
【表10】
【0168】
【表11】
【0169】
表7〜9から分かるように、実施例1〜25では、上記一般式(1)で表されるアルキレンオキサイド付加物成分(A)および高分子粒子成分(B)を含有する二次電池スラリー用分散剤組成物を用いているために、二次電池スラリー用分散剤組成物の分散性が良好であるため、二次電池スラリー組成物の塗布性及び被膜の乾燥性が良好である。
一方、成分(A)を含まない場合(比較例1〜16)には、本願の課題が解決していない。
前記アルキレンオキサイド付加物の起泡力(ロスマイルス試験法、濃度0.1重量%および温度25℃の測定条件下)が、流下直後において50mm以下であり、流下直後から5分後において20mm以下である、請求項1〜3のいずれかに記載の二次電池スラリー用分散剤組成物。
前記アルキレンオキサイド付加物の0.1重量%水溶液の表面張力が25℃において20〜50mN/mである、請求項1〜4のいずれかに記載の二次電池スラリー用分散剤組成物。
下記一般式(2)で表され、有効濃度が1重量%の水溶液の曇点が30℃以上である、エチレンオキサイド付加物成分(C)をさらに含む、請求項1〜6のいずれかに記載の二次電池スラリー用界面活性剤組成物。
R´O−(EO)n−H (2)
(R´は、活性水素含有化合物由来の有機基、EOはオキシエチレン基を示す。nは、EOの平均付加モル数を示し、n=1〜100である。)
有効濃度が1重量%の水溶液の曇点が30℃以上である、エチレンオキサイド付加物成分(C)をさらに含み、前記無機粒子の含有量を100重量部としたときに、前記成分(C)が0.01〜10重量部である、請求項8に記載の二次電池スラリー組成物。
下記一般式(1)で表されるアルキレンオキサイド付加物成分(A)及び溶媒を混合して混合液を得る工程(a)と、前記混合液及び高分子粒子成分(B)を混合して分散剤組成物を得る工程(b)と、前記分散剤組成物と無機粒子とを混合してスラリー組成物を得る工程(c)と、正極の集電体、負極の集電体、正極、負極及びセパレータから選ばれる少なくとも1種に前記スラリー組成物を塗布し乾燥して被膜を形成させる工程(d)を含む、二次電池用材料の製造方法。
RO−[(PO)p/(EO)q]−(PO)r−H (1)
(但し、Rは水素元素あるいは炭素数1〜30のアルキル基またはアルケニル基を示し、直鎖または分枝鎖のいずれの構造から構成されていてもよい。POはオキシプロピレン基、EOはオキシエチレン基を示す。p、qおよびrは、各々の平均付加モル数を示し、p=1〜20、q=0〜30およびr=0〜20である。[(PO)p/(EO)q]はpモルのPOとqモルのEOとがランダム付加してなるポリオキシアルキレン基である。)
集電体上に正極用被膜を有する二次電池用正極であって、前記被膜が、請求項8又は9に記載の二次電池スラリー組成物の不揮発分により形成されてなる、二次電池用正極。
集電体上に負極用被膜を有する二次電池用負極であって、前記被膜が、請求項8又は9に記載の二次電池スラリー組成物の不揮発分により形成されてなる、二次電池用負極。
セパレータ用被膜を有するセパレータであって、前記被膜が、請求項8又は9に記載の二次電池スラリー組成物の不揮発分により形成されてなる、二次電池用セパレータ。
負極、正極、セパレータ及び電解液を含む二次電池であって、前記負極、前記正極及び前記セパレータのうちの少なくとも1つが、請求項8又は9に記載の二次電池スラリー組成物の不揮発分により形成されてなる被膜を有する、二次電池。
本発明者らは、鋭意検討をした結果、一定の構造をした界面活性剤を含む二次電池スラリー用分散剤組成物であれば、本願課題を解決できることを見出し、本発明に到達した。
すなわち、本発明の二次電池スラリー用分散剤組成物は、下記一般式(1)で表されるアルキレンオキサイド付加物成分(A)および高分子粒子成分(B)を含有する、二次電池スラリー用分散剤組成物
(但し、Rは水素元素あるいは炭素数1〜30のアルキル基またはアルケニル基を示し、直鎖または分枝鎖のいずれの構造から構成されていてもよい。POはオキシプロピレン基、EOはオキシエチレン基を示す。p、qおよびrは、各々の平均付加モル数を示し、p=1〜20、q=0〜30およびr=0〜20である。[(PO)p/(EO)q]はpモルのPOとqモルのEOとがランダム付加してなるポリオキシアルキレン基である。)