【実施例】
【0020】
下記の原液1〜5を調製した。なお、エタノールは95%エタノールを使用した。
【0021】
※原液1
ミノキシジル5g、1,3−ブチレングリコール10g、エタノール60g、クエン酸0.45g、リン酸0.38g、精製水で全量を100mLとし、撹拌溶解してpH6.1の原液を得た。なお、原液中の水の含量は、17g/100mLであった。
【0022】
※原液2
ミノキシジル5g、1,3−ブチレングリコール10g、エタノール60g、クエン酸0.55g、リン酸0.34g、精製水で全量を100mLとし、撹拌溶解してpH6.1の原液を得た。なお、原液中の水の含量は、17g/100mLであった。
【0023】
※原液3
ミノキシジル5g、1,3−ブチレングリコール10g、エタノール60g、リン酸0.4g、乳酸0.4g、精製水で全量を100mLとし、撹拌溶解してpH6.1の原液を得た。なお、原液中の水の含量は、17g/100mLであった。
【0024】
※原液4
ミノキシジル5g、1,3−ブチレングリコール10g、エタノール60g、クエン酸0.45g、乳酸0.5g、精製水で全量を100mLとし、撹拌溶解してpH6.0の原液を得た。なお、原液中の水の含量は、16g/100mLであった。
【0025】
※原液5
ミノキシジル5g、1,3−ブチレングリコール12g、エタノール60g、クエン酸0.45g、乳酸0.5g、精製水で全量を100mLとし、撹拌溶解してpH6.0の原液を得た。なお、原液中の水の含量は、14g/100mLであった。
【0026】
※原液6
ミノキシジル5g、1,3−ブチレングリコール10g、エタノール60g、リン酸0.38g、精製水で全量を100mLとし、撹拌溶解してpH6.5の原液を得た。なお、原液中の水の含量は、17g/100mLであった。
【0027】
※原液7
ミノキシジル5g、1,3−ブチレングリコール10g、エタノール60g、クエン酸0.45g、精製水で全量を100mLとし、撹拌溶解してpH6.5の原液を得た。なお、原液中の水の含量は、17g/100mLであった。
【0028】
※原液8
ミノキシジル5g、1,3−ブチレングリコール10g、エタノール60g、リン酸1.02g、精製水で全量を100mLとし、撹拌溶解してpH6.0の原液を得た。なお、原液中の水の含量は、17g/100mLであった。
【0029】
※原液9
ミノキシジル5g、1,3−ブチレングリコール10g、エタノール60g、乳酸0.5g、精製水で全量を100mLとし、撹拌溶解してpH6.4の原液を得た。なお、原液中の水の含量は、17g/100mLであった。
【0030】
原液1〜9の処方を表1に示す(なお、表中の単位はg/100mLである。)
【0031】
【表1】
【0032】
<試験例1:原液の低温安定性試験>
原液1〜9をそれぞれ透明容器に充填し、5℃で9日間保管後の結晶析出の有無を目視で評価した。その結果、結晶析出は生じなかった。
【0033】
(実施例1)
原液1のうち26.7mLを透明ガラス耐圧瓶に充填した。次に、透明ガラス耐圧瓶にエアゾールバルブを取りつけ、原液と噴射剤であるジメチルエーテルとの容積比が1/0.5になるように13.3mLのジメチルエーテルを透明ガラス耐圧瓶に充填し、エアゾール剤を得た。
【0034】
(実施例2)
原液1のうち32.0mLを透明ガラス耐圧瓶に充填した。次に、透明ガラス耐圧瓶にエアゾールバルブを取りつけ、原液と噴射剤であるジメチルエーテルを容積比が1/0.25になるように8.0mLのジメチルエーテルを透明ガラス耐圧瓶に充填し、エアゾール剤を得た。
【0035】
(実施例3)
原液2のうち26.7mLを透明ガラス耐圧瓶に充填した。次に、透明ガラス耐圧瓶にエアゾールバルブを取りつけ、原液と噴射剤であるジメチルエーテルを容積比が1/0.5になるように13.3mLのジメチルエーテルを透明ガラス耐圧瓶に充填し、エアゾール剤を得た。
【0036】
(実施例4)
原液3のうち30.0mLを透明ガラス耐圧瓶に充填した。次に、透明ガラス耐圧瓶にエアゾールバルブを取りつけ、原液と噴射剤であるジメチルエーテルを容積比が1/0.5になるように15.0mLのジメチルエーテルを透明ガラス耐圧瓶に充填し、エアゾール剤を得た。
【0037】
(実施例5)
原液4のうち30.0mLを透明ガラス耐圧瓶に充填した。次に、透明ガラス耐圧瓶にエアゾールバルブを取りつけ、原液と噴射剤であるジメチルエーテルを容積比が1/0.5になるように15.0mLのジメチルエーテルを透明ガラス耐圧瓶に充填し、エアゾール剤を得た。
【0038】
(実施例6)
原液5のうち30.0mLを透明ガラス耐圧瓶に充填した。次に、透明ガラス耐圧瓶にエアゾールバルブを取りつけ、原液と噴射剤であるジメチルエーテルを容積比が1/0.5になるように15.0mLのジメチルエーテルを透明ガラス耐圧瓶に充填し、エアゾール剤を得た。
【0039】
(比較例1)
原液6のうち26.7mLを透明ガラス耐圧瓶に充填した。次に、透明ガラス耐圧瓶にエアゾールバルブを取りつけ、原液と噴射剤であるジメチルエーテルを容積比が1/0.5になるように13.3mLのジメチルエーテルを透明ガラス耐圧瓶に充填し、エアゾール剤を得た。
【0040】
(比較例2)
原液7のうち26.7mLを透明ガラス耐圧瓶に充填した。次に、透明ガラス耐圧瓶にエアゾールバルブを取りつけ、原液と噴射剤であるジメチルエーテルを容積比が1/0.5になるように13.3mLのジメチルエーテルを透明ガラス耐圧瓶に充填し、エアゾール剤を得た。
【0041】
(比較例3)
原液8のうち26.7mLを透明ガラス耐圧瓶に充填した。次に、透明ガラス耐圧瓶にエアゾールバルブを取りつけ、原液と噴射剤であるジメチルエーテルを容積比が1/0.5になるように13.3mLのジメチルエーテルを透明ガラス耐圧瓶に充填し、エアゾール剤を得た。
【0042】
(比較例4)
原液9のうち30.0mLを透明ガラス耐圧瓶に充填した。次に、透明ガラス耐圧瓶にエアゾールバルブを取りつけ、原液と噴射剤であるジメチルエーテルを容積比が1/0.5になるように15.0mLのジメチルエーテルを透明ガラス耐圧瓶に充填し、エアゾール剤を得た。
【0043】
(比較例5)
原液1のうち26.7mLを透明ガラス耐圧瓶に充填した。次に、透明ガラス耐圧瓶にエアゾールバルブを取りつけ、原液と噴射剤である液化石油ガスを容積比が1/0.5になるように13.3mLの液化石油ガスを透明ガラス耐圧瓶に充填し、エアゾール剤を得た。
【0044】
実施例1〜実施例6、比較例1〜比較例5の原液と噴射剤を表2に示す(なお、表中のDMEはジメチルエーテルの略であり、LPGは液化石油ガスの略である。)
【0045】
【表2】
【0046】
<試験例2:相溶性、低温安定性の評価>
実施例1〜実施例6及び比較例1〜比較例5に関し、調製直後の相溶性及び5℃で9日間保管後の結晶析出の有無を評価した。調製直後の相溶性は、原液と噴射剤が混和した場合を○、原液と噴射剤が分離したものを×と表記した。低温安定性の評価は、結晶が析出せず混和したままであったものを○、結晶が析出したものを×と表記した。結果を表3に示す。
【0047】
【表3】
【0048】
試験例1から明らかなように、クエン酸、リン酸、または乳酸を単独使用した原液6〜9については、いずれも5℃で9日間保管したときに、結晶析出等の問題はなかった。しかし、噴射剤としてジメチルエーテルを用いてエアゾール剤とすると、低温保管時に結晶が析出した(比較例1〜4)。一方、本発明の、原液中にクエン酸、リン酸及び乳酸から選ばれる2種以上の酸を併用した実施例1〜6は、噴射剤としてジメチルエーテルを用いたエアゾール剤を調製しても低温保管時に結晶析出を生じなかった。また、比較例5に示すように、噴射剤として液化石油ガスを用いた場合、調製直後から原液と噴射剤が分離し、均一にならなかった。計量性が求められずミノキシジル含有エアゾール剤としては、適さないという結果となった。