【解決手段】流体の流路を切り替える流路切替弁であって、所定面31aにおいて所定方向に所定長で開口する開口流路32が形成された弁体31と、所定面に対向する対向面41aに開口する複数のポートが、所定方向に所定長よりも短い間隔で並んで形成され、且つ複数のポートにそれぞれ接続された接続流路42,43,44が形成された本体41と、所定方向において弁体の両端部36にそれぞれ取り付けられ、所定面と対向面との間に所定隙間が形成されるように弁体を支持し、所定方向への弁体の移動量に応じて弁体に弾性力を加える板ばね51と、弁体を所定方向に往復駆動するアクチュエータと、を備える。
前記アクチュエータにおいて、前記板ばねが自然状態で前記弁体を支持する状態における前記弁体の位置は、前記弁体を前記所定方向に往復駆動させる電磁力を作用させていない中立位置に設定されている請求項4に記載の流路切替弁。
前記アクチュエータは、前記板ばね及び前記弁体を貫通して前記弁体に取り付けられた可動軸を備え、前記可動軸を前記所定方向に往復駆動する請求項3に記載の流路切替弁。
前記アクチュエータにおいて、前記板ばねが自然状態で前記弁体を支持する状態における前記可動軸の位置は、前記可動軸を前記所定方向に往復駆動させる電磁力を作用させていない中立位置に設定されている請求項7に記載の流路切替弁。
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、特許文献1に記載のものでは、流体の流路を切り替える際に、スプールとスリーブとが擦れる。このため、スプールを駆動する際に摩擦力が発生し、流体の流路を切り替える応答性が低下することとなる。
【0005】
本発明は、こうした実情に鑑みてなされたものであり、その主たる目的は、流体の流路を切り替える応答性を向上させることのできる流路切替弁を提供することにある。
【課題を解決するための手段】
【0006】
上記課題を解決するために、本発明は以下の手段を採用した。
【0007】
第1の手段は、流体の流路を切り替える流路切替弁であって、所定面において所定方向に所定長で開口する開口流路が形成された弁体と、前記所定面に対向する対向面に開口する複数のポートが、前記所定方向に前記所定長よりも短い間隔で並んで形成され、且つ前記複数のポートにそれぞれ接続された接続流路が形成された本体と、前記所定方向において前記弁体の両端部にそれぞれ取り付けられ、前記所定面と前記対向面との間に所定隙間が形成されるように前記弁体を支持し、前記所定方向への前記弁体の移動量に応じて前記弁体に弾性力を加える板ばねと、前記弁体を前記所定方向に往復駆動するアクチュエータと、を備えることを特徴とする。
【0008】
上記構成によれば、本体に形成された接続流路を通じて、各接続流路に接続された各ポートに対して流体を流入出させることができる。弁体には、所定面において所定方向に所定長で開口する開口流路が形成されている。本体には、上記所定面に対向する対向面に開口する複数のポートが、上記所定方向に上記所定長よりも短い間隔で並んで形成されている。このため、アクチュエータにより弁体を上記所定方向に往復駆動することで、複数のポートが弁体の開口流路を介して接続される状態、すなわち流体の流路を切り替えることができる。
【0009】
ここで、上記所定方向において弁体の両端部にそれぞれ板ばねが取り付けられており、板ばねは、上記所定面と上記対向面との間に所定隙間が形成されるように弁体を支持している。このため、弁体と本体とが擦れない状態で、弁体を往復駆動することができる。したがって、弁体を駆動する際に摩擦力が発生することを抑制することができ、流体の流路を切り替える応答性を向上させることができる。さらに、板ばねは、上記所定方向への弁体の移動量に応じて弁体に弾性力を加えるため、弁体の移動量を制御する際に板ばねによる弾性力を利用することができる。
【0010】
第2の手段では、前記弁体において、前記開口流路は、前記所定面と前記所定面の反対側の反対面とにおいて前記所定方向に前記所定長で開口しており、前記本体は、前記所定面に対向する第1対向面に開口する複数のポートが、前記所定方向に前記所定長よりも短い間隔で並んで形成され、且つ前記複数のポートにそれぞれ接続された接続流路が形成された第1本体と、前記反対面に対向する第2対向面に開口する複数のポートが、前記所定方向に前記所定長よりも短い間隔で並んで形成され、且つ前記複数のポートにそれぞれ接続された接続流路が形成された第2本体と、を含み、前記板ばねは、前記所定面と前記第1対向面との間に第1所定隙間が形成されるように前記弁体を支持し、前記反対面と前記第2対向面との間に第2所定隙間が形成されるように前記弁体を支持している。
【0011】
板ばねにより弁体の両端部が支持される構成では、ポートから弁体に向かって流れる流体の圧力により、弁体がポートから離れる方向へ変位するおそれがある。
【0012】
この点、上記構成によれば、弁体を挟んで両側に第1本体と第2本体とが設けられている。そして、第1本体及び第2本体には、同様の複数のポートがそれぞれ形成されている。このため、第1本体のポートと、そのポートに対応する第2本体のポートとに、同様の流体を流通させることにより、第1本体のポートから弁体に向かって流れる流体による圧力と、第2本体のポートから弁体に向かって流れる流体による圧力とを相殺することができる。したがって、ポートから弁体に向かって流れる流体の圧力により、弁体がポートから離れる方向へ変位することを抑制することができる。
【0013】
さらに、板ばねは、上記所定面と第1対向面との間に第1所定隙間が形成されるように弁体を支持し、上記反対面と第2対向面との間に第2所定隙間が形成されるように弁体を支持している。したがって、弁体と第1本体及び第2本体とが擦れない状態で、弁体を往復駆動することができる。
【0014】
具体的には、第3の手段のように、前記板ばねは、最も面積の大きい主面が前記所定方向に垂直となるように、前記本体に取り付けられているといった構成を採用することができる。こうした構成によれば、板ばねは、弁体の所定面と本体の対向面との間の所定隙間を維持するように弁体を支持し、且つ所定方向に沿った弾性力のみを弁体に作用させる構成を、容易に実現することができる。
【0015】
第4の手段では、前記弁体において、前記板ばねの間に位置する部分に可動子が固定されており、前記アクチュエータは、前記所定方向において前記板ばねの間で前記可動子に作用させる電磁力により、前記弁体を非接触で前記所定方向に往復駆動する。
【0016】
上記構成によれば、アクチュエータによって、弁体に固定された可動子に作用させられる電磁力により、弁体が非接触で所定方向へ駆動される。その結果、弁体を駆動する際に摩擦力が発生せず、弁体を駆動する応答性を向上させることができる。また、電磁力が作用させられる可動子と、弁体とを別体にすることができ、弁体の設計の自由度を向上させることができる。
【0017】
さらに、弁体の両端部が板ばねにより支持されており、上記所定方向において板ばねの間で電磁力が可動子に作用させられる。このため、駆動される際に弁体がぶれることを抑制することができる。
【0018】
第5の手段では、前記アクチュエータにおいて、前記板ばねが自然状態で前記弁体を支持する状態における前記弁体の位置は、前記弁体を前記所定方向に往復駆動させる電磁力を作用させていない中立位置に設定されている。
【0019】
上記構成によれば、板ばねが自然状態で弁体を支持し、且つアクチュエータにより電磁力を作用させていない状態において、弁体を所定方向の中立位置に維持することができる。このため、中立位置を基準として、可動子に作用させる電磁力を制御することにより、弁体を所定方向に容易に往復駆動することができる。
【0020】
第6の手段では、前記アクチュエータは、前記板ばね及び前記弁体を貫通して前記弁体に取り付けられた可動軸を備え、前記可動軸を前記所定方向に往復駆動する。
【0021】
上記構成によれば、アクチュエータの可動軸は、板ばね及び弁体を貫通して弁体に取り付けられているため、弁体の所定面と本体の対向面とを平行に維持し易くなる。
【0022】
第7の手段では、前記アクチュエータは、電磁力により前記可動軸を非接触で往復駆動する。
【0023】
上記構成によれば、アクチュエータの可動軸は、電磁力により非接触で往復駆動される。したがって、弁体を駆動する際に摩擦力が発生することを、アクチュエータにおいても抑制することができ、流体の流路を切り替える応答性をさらに向上させることができる。
【0024】
第8の手段では、前記アクチュエータにおいて、前記板ばねが自然状態で前記弁体を支持する状態における前記可動軸の位置は、前記可動軸を前記所定方向に往復駆動させる電磁力を作用させていない中立位置に設定されている。
【0025】
上記構成によれば、板ばねが自然状態で弁体を支持し、且つアクチュエータにより電磁力を作用させていない状態において、可動軸を所定方向の中立位置に維持することができる。このため、中立位置を基準として、可動軸に作用させる電磁力を制御することにより、可動軸ひいては弁体を容易に往復駆動することができる。
【0026】
第9の手段では、前記所定面及び前記対向面は、所定の平面度に仕上げられており、前記板ばねは、前記所定面と前記対向面とが所定の平行度となるように、前記弁体を支持している。
【0027】
上記構成によれば、弁体の所定面及び本体の対向面の平面度及び平行度が管理されているため、所定面と対向面との間に形成される所定隙間の精度を向上させることができる。
【0028】
第10の手段は、第9の手段の流路切替弁を製造する方法であって、前記所定面と前記対向面との間に、前記所定隙間の幅に基づいて設定された厚みの隙間冶具を挿入した状態で、前記板ばねを前記本体に固定した後、前記隙間冶具を取り外すことを特徴とする。
【0029】
上記工程によれば、弁体の所定面と本体の対向面との間に、所定隙間の幅に基づいて設定された厚みの隙間冶具が挿入されるため、所定面と対向面との間隔を所定隙間に容易に調節することができる。そして、その状態で板ばねが本体に固定された後に隙間冶具が取り外されるため、所定面と対向面との間に所定隙間を容易に形成することができる。
【発明を実施するための形態】
【0031】
(第1実施形態)
以下、負荷(容積)に対して空気を供給及び排出する流路を切り替える流路切替弁に具現化した第1実施形態について、図面を参照しつつ説明する。
【0032】
図1に示すように、流路切替弁10は、弁機構20とアクチュエータ70とを備えている。弁機構20とアクチュエータ70とは、接続部材24を介して接続されている。アクチュエータ70は、弁機構20を駆動する。
【0033】
弁機構20は、ハウジング21、弁体31、本体41、板ばね51、蓋27等を備えている。
【0034】
ハウジング21は、四角筒状に形成されている。ハウジング21には、加圧された空気(流体に相当)を供給するP0ポート(加圧ポート)、負荷に対して空気を供給及び排出するA0ポート(出力ポート)、空気を排出するR0ポート(排気ポート)が形成されている。ハウジング21の内部には、P0ポート、A0ポート、R0ポートにそれぞれ接続され、ハウジング21の内面でそれぞれ開口する加圧流路、出力流路、排気流路が形成されている。
【0035】
ハウジング21の内部には、弁体31、本体41、板ばね51等が収容されている。
図2〜4に示すように、本体41は、溝形状(一面が開いた四角筒状)に形成されている。本体41は、ハウジング21に固定されている。弁体31は、直方体状に形成されている。本体41の互いに対向する内側面41bの間に、弁体31が配置されている。本体41の内側面41bと弁体31の外側面との間には、隙間が形成されている。すなわち、本体41の内側面41bと弁体31の外側面とは非接触状態になっている。
【0036】
図4に示すように、弁体31の所定面31a(具体的には下面)には、弁体31の長手方向(所定方向に相当)に所定長L1で開口する開口流路32が形成されている。開口流路32は、長軸の長さが所定長L1の長穴状の凹部になっている。
図2,3に示すように、弁体31には、長手方向に貫通する貫通孔33が形成されている。弁体31には、上下方向に貫通するピン孔34及びねじ孔35が形成されている。なお、本体41の下底部には、ピン孔34及びねじ孔35に対応する位置に、それぞれピン孔及びねじ孔が形成されている。
【0037】
本体41の下底部には、弁体31の所定面31aに対向する対向面41aに開口するP1bポート,A1bポート,R1bポート(複数のポートに相当)が形成されている。P1bポート,A1bポート,R1bポートは、弁体31の長手方向に所定長L1よりも短い間隔で並んで形成されている。本体41の下底部には、P1bポート,A1bポート,R1bポートにそれぞれ接続された接続流路42,43,44が形成されている。接続流路42,43,44は、それぞれ本体41の下底部の下面で開口している。本体41の下底部の下面における接続流路42,43,44の開口は、それぞれP1aポート,A1aポート,R1aポートになっている。P1aポート,A1aポート,R1aは、それぞれ上記加圧流路、出力流路、排気流路に接続されている。
【0038】
図1,2に示すように、弁体31の長手方向の両端部36には、板ばね51がそれぞれ取り付けられている。板ばね51は、ばね鋼等のばね性材料により、矩形板状に形成されている。板ばね51の所定部分には、スリット51aが形成されている。板ばね51にスリット51aが形成されることにより、板ばね51は蛇行する所定パターンに形成されている。板ばね51の厚みは、板ばね51が所定の剛性を有し、板ばね51が所定の弾性力を発生するように設定されている。板ばね51の2つの短辺部分51bがそれぞれ本体41に固定されている。板ばね51は、最も面積の大きい主面(
図2における垂直面)が弁体31の長手方向に垂直となるように、本体41に取り付けられている。
【0039】
弁体31の所定面31a及び本体41の対向面41aは、所定の平面度に仕上げられている。また、板ばね51は、所定面31aと対向面41aとが所定の平行度となるように、弁体31を支持している。詳しくは、弁体31の長手方向の両端部36が、板ばね51の中央を貫通してそれぞれ固定されている。
図4に示すように、板ばね51は、弁体31の所定面31aと本体41の対向面41aとの間に所定隙間C1が形成されるように弁体31を支持している。所定隙間C1は5μm程度である。弁体31において所定面31aと反対側の面と、本体41との間には、隙間が形成されている。すなわち、弁体31には、他の部材と摺動する部分が存在していない。
【0040】
そして、板ばね51は、弁体31の長手方向(板ばね51の主面に垂直な方向)への弁体31の移動量に応じて、弁体31に弾性力を加える。詳しくは、板ばね51は、弁体31の長手方向への弁体31の移動量に比例した弾性力を弁体31に加える。
【0041】
次に、弁機構20(流路切替弁10)の製造方法を説明する。
【0042】
まず、本体41の下底部の上面(対向面41a)に隙間冶具を載せる。隙間冶具の厚みは、上記所定隙間C1の幅に基づいて設定されている。すなわち、隙間冶具の厚みは、弁機構20を組立後に、弁体31の所定面31aと本体41の対向面41aとの間に所定隙間C1が形成されるように設定されている。
【0043】
続いて、本体41の対向面41aと弁体31の下面(所定面31a)とで隙間冶具を挟むように、隙間冶具の上に弁体31を載せる。このとき、本体41の内側面41bと弁体31の外側面との間に、隙間を形成する。
【0044】
続いて、板ばね51の中央に形成された貫通孔に弁体31の長手方向の端部36を挿入する。そして、板ばね51の中央部を、弁体31の端部36に溶接により固定する。また、板ばね51の短辺部分51bを、本体41に溶接により固定する。
【0045】
続いて、隙間冶具を、本体41及び弁体31から外す。以上により、本体41、弁体31、及び板ばね51の組立が完了する。
【0046】
次に、
図1,5を参照して、アクチュエータ70の構成を説明する。アクチュエータ70は、コア71、コイル72、蓋73、磁石74,75、可動子76、可動軸81等を備えている。
【0047】
コア71は、常磁性体材料により、四角柱状に形成されている。コア71の外周には、コイル72が取り付けられている。コア71及びコイル72は、平行(並列)に一対設けられている。一対のコア71は、蓋73により互いに連結されている。蓋73は、常磁性体材料により、板状に形成されている。
【0048】
コア71の一端部は、コイル72の内部から突出している。一対のコア71の一端部には、互いに平行な平面である平行部71aが形成されている。
【0049】
一対の平行部71aには、磁石74,75がそれぞれ取り付けられている。磁石74,75は、強磁性体材料により形成された永久磁石である。磁石74,75は、直方体状に形成されている。磁石74,75は、コア71の軸方向(弁体31の長手方向)にN極とS極とが並ぶように、コア71の平行部71aにそれぞれ取り付けられている。磁石74のN極と磁石75のS極とが対向しており、磁石74のS極と磁石75のN極とが対向している。すなわち、磁石74と磁石75とは、コア71の軸方向において互いの磁極の向きが反対になるように配置されている。磁石74,75の互いに対向する面は、平行になっている。
【0050】
磁石74と磁石75との間には、上記接続部材24の一部分を介して可動子76が配置されている。接続部材24は、非磁性体材料により形成されている。接続部材24のうち磁石74と磁石75との間に配置される部分は、磁束を透過させ易いように薄く形成されている。可動子76は、常磁性体材料により、四角柱状に形成されている。可動子76には、弁体31の長手方向(可動子76の軸方向)に可動子76を貫通する貫通孔76aが形成されている。
【0051】
可動子76の貫通孔76aには、アクチュエータ70の可動軸81が挿通されている。可動軸81は、非磁性体材料により、円柱状に形成されている。可動軸81は、小径部と中径部と大径部とを備えている。小径部が2つの板ばね51及び弁体31の貫通孔33に挿通されており、中径部が可動子76の貫通孔76aに挿通されている。小径部と中径部との段差部に、弁体31の端部36が当接している。
【0052】
弁体31の長手方向において、可動子76は、磁石74,75の磁力により磁石74,75の中央位置(中立位置)に配置している。この状態で可動子76が可動軸81に固定されるように、可動子76と可動軸81との相対位置がスペーサ82により調節されている。そして、可動軸81の中径部と大径部との段差に可動子76又はスペーサ82を当接させ、中径部にナット83を締め付けることにより、可動軸81に可動子76が取り付けられている。
【0053】
また、2つの板ばね51が自然状態において、2つの板ばね51及び弁体31を可動軸81の小径部が貫通している。この状態において、小径部の先端にナット37を締め付けることにより、小径部が弁体31に取り付けられている。すなわち、アクチュエータ70において、板ばね51が自然状態で弁体31を支持する状態における可動子76及び可動軸81の位置は、可動軸81(可動子76)を弁体31の長手方向に往復駆動させる電磁力を作用させていない中立位置に設定されている。ナット37と蓋27との間には隙間が形成されており、ナット37と蓋27とは非接触状態になっている。
【0054】
可動軸81の大径部の端部は、端部部材84により覆われている。端部部材84は、非磁性体材料により形成されている。上記蓋27、ハウジング21、接続部材24、及び端部部材84により、本体41、弁体31、及び可動軸81、可動子76等を収容する空間は、Oリング85,86,87(シール部材)により密閉(シール)されている。可動軸81、可動子76、スペーサ82、及びナット83と、接続部材24及び端部部材84との間には隙間が形成されている。すなわち、可動軸81、可動子76、スペーサ82、及びナット83と、接続部材24及び端部部材84とは非接触状態になっている。
【0055】
次に、
図6〜8を参照して、アクチュエータ70により、弁体31の長手方向に可動軸81及び弁体31を往復駆動する原理を説明する。
【0056】
アクチュエータ70のコイル72に電流を流していない非励磁状態では、
図6に示すように、磁石74のN極から磁石75のS極へ向かう磁界、及び磁石75のN極から磁石74のS極へ向かう磁界が発生する。この状態では、可動子76は、可動軸81の軸方向(弁体31の長手方向)において中立位置で釣り合って静止している。この状態では、板ばね51は自然状態になっており、板ばね51から可動軸81へ力が作用していない。また、この状態では、
図4に示すように、本体41のP1bポート及びR1bポートは、弁体31により閉じられている。
【0057】
アクチュエータ70のコイル72に正方向の電流を流した正方向の励磁状態では、
図7に矢印H1で示すように、上側のコア71の平行部71aから下側のコア71の平行部71aへ向かうコイル磁界が発生する。このため、磁石74のN極から磁石75のS極へ向かう磁界とコイル磁界とは強め合い、磁石75のN極から磁石74のS極へ向かう磁界とコイル磁界とは弱め合う。その結果、可動子76は、弁体31の方向へ引き付ける磁力を受ける。そして、矢印F1で示すように、可動子76と共に可動軸81及び弁体31が矢印F1の方向へ移動する。この際に、アクチュエータ70は電磁力により可動軸81を非接触で駆動し、弁体31も本体41と非接触で駆動される。これに対して、
図9に矢印F3で示すように、板ばね51は、弁体31の移動量に比例した抗力を弁体31に作用させる。
図4において、弁体31が左方向(蓋27の方向)へ駆動されると、本体41のA1bポートとR1bポートとが、弁体31の開口流路32を介して接続される。すなわち、流路切替弁10の流路が切り替えられる。
【0058】
アクチュエータ70のコイル72に負方向の電流を流した負方向の励磁状態では、
図8に矢印H2で示すように、下側のコア71の平行部71aから上側のコア71の平行部71aへ向かうコイル磁界が発生する。このため、磁石74のN極から磁石75のS極へ向かう磁界とコイル磁界とは弱め合い、磁石75のN極から磁石74のS極へ向かう磁界とコイル磁界とは強め合う。その結果、可動子76は、端部部材84(弁体31と反対)の方向へ引き付ける磁力を受ける。そして、矢印F2で示すように、可動子76と共に可動軸81及び弁体31が矢印F2の方向へ移動する。この際に、アクチュエータ70は電磁力により可動軸81を非接触で駆動し、弁体31も本体41と非接触で駆動される。これに対して、板ばね51は、弁体31の移動量に比例した抗力を弁体31に作用させる。
図4において、弁体31が右方向(端部部材84の方向)へ駆動されると、本体41のA1bポートとP1bポートとが、弁体31の開口流路32を介して接続される。すなわち、流路切替弁10の流路が切り替えられる。
【0059】
板ばね51が発生する荷重と弁体31のストロークとは比例している。また、板ばね51が薄いほど、同一の板ばね荷重に対するストロークが長くなる。
【0060】
図10は、コイル72に流す電流と弁体31のストロークとの関係を示すグラフである。正方向の電流を大きくするほど正方向のストロークが大きくなり、負方向の電流を大きくするほど負方向のストロークが大きくなっている。
【0061】
図11は、コイル72に流す電流と空気の流量との関係を示すグラフである。実線は空気の圧力が0.1MPaの実験結果を示しており、破線は空気の圧力が0.2MPaの実験結果を示している。0.1MPa及び0.2MPaのいずれの圧力においても、正方向の電流を大きくするほどAポート(A0ポート)からRポート(R0ポート)への流量が大きくなり、負方向の電流を大きくするほどPポート(P0ポート)からAポート(A0ポート)への流量が大きくなっている。0.2MPaの圧力では、0.1MPaの圧力と比較して、同一の電流に対する流量が大きくなっている。
【0062】
以上詳述した本実施形態は、以下の利点を有する。
【0063】
・弁体31の長手方向(所定方向)において、弁体31の両端部36にそれぞれ板ばね51が取り付けられている。板ばね51は、弁体31の所定面31aと本体41の対向面41aとの間に所定隙間C1が形成されるように弁体31を支持している。このため、弁体31と本体41とが擦れない状態で、弁体31を往復駆動することができる。したがって、弁体31を駆動する際に摩擦力が発生することを抑制することができ、空気の流路を切り替える応答性を向上させることができる。さらに、板ばね51は、上記所定方向への弁体31の移動量に応じて弁体31に弾性力を加えるため、弁体31の移動量を制御する際に板ばね51による弾性力を利用することができる。
【0064】
・板ばね51は、最も面積の大きい主面が所定方向に垂直となるように、本体41に取り付けられている。このため、板ばね51は、弁体31の所定面31aと本体41の対向面41aとの間の所定隙間C1を維持するように弁体31を支持し、且つ所定方向に沿った弾性力のみを弁体31に作用させる構成を、容易に実現することができる。
【0065】
・アクチュエータ70は、板ばね51及び弁体31を貫通して弁体31に取り付けられた可動軸81を備え、可動軸81を所定方向に往復駆動する。こうした構成によれば、アクチュエータ70の可動軸81は、板ばね51及び弁体31を貫通して弁体31に取り付けられているため、弁体31の所定面31aと本体41の対向面41aとを平行に維持し易くなる。
【0066】
・アクチュエータ70の可動軸81は、電磁力により非接触で往復駆動される。したがって、弁体31を駆動する際に摩擦力が発生することを、アクチュエータ70においても抑制することができ、空気の流路を切り替える応答性をさらに向上させることができる。
【0067】
・アクチュエータ70において、板ばね51が自然状態で弁体31を支持する状態における可動軸81(可動子76)の位置は、可動軸81を所定方向に往復駆動させる電磁力を作用させていない中立位置に設定されている。こうした構成によれば、板ばね51が自然状態で弁体31を支持し、且つアクチュエータ70により電磁力を作用させていない状態において、可動軸81を所定方向の中立位置に維持することができる。このため、中立位置を基準として、可動軸81に作用させる電磁力を制御することにより、可動軸81ひいては弁体31を容易に往復駆動することができる。
【0068】
・弁体31の所定面31a及び本体41の対向面41aは、所定の平面度に仕上げられている。板ばね51は、所定面31aと対向面41aとが所定の平行度となるように、弁体31を支持している。こうした構成によれば、弁体31の所定面31a及び本体41の対向面41aの平面度及び平行度が管理されているため、所定面31aと対向面41aとの間に形成される所定隙間C1の精度を向上させることができる。
【0069】
・弁体31の所定面31aと本体41の対向面41aとの間には所定隙間C1が形成されているため、
図4に示すように、P1bポートが開口流路32に接続されていない状態であっても、P1bポートから弁体31に向かって流れる空気が所定隙間C1を介して漏れることとなる。この点、所定隙間C1は5μm程度であるため、所定隙間C1を介して漏れる空気の量を少なくすることができる。
【0070】
・所定面31aと対向面41aとの間に、所定隙間C1の幅に基づいて設定された厚みの隙間冶具が挿入されるため、所定面31aと対向面41aとの間隔を所定隙間C1に容易に調節することができる。そして、その状態で板ばね51が本体41に固定された後に隙間冶具が取り外されるため、所定面31aと対向面41aとの間に所定隙間C1を容易に形成することができる。
【0071】
・
図6に示すように、磁石74,75は直方体状に形成されている。このため、
図8,9に示すように、アクチュエータ70を励磁状態にした場合に、可動子76及び可動軸81には矢印F1,F2に示す方向の磁力のみが作用し、弁体31の所定面31a(
図8,9における紙面)に垂直な方向の磁力が作用しない。したがって、可動軸81が所定面31aに垂直な方向へずれることを抑制することができる。これに対して、磁石74,75を半円筒状に形成した場合は、可動子76及び可動軸81に所定面31aに垂直な方向の磁力が作用し、その磁力の不釣り合いにより可動軸81が所定面31aに垂直な方向へずれるおそれがある。
【0072】
上記第1実施形態では、所定隙間C1を5μm程度とすることにより、所定隙間C1を介して漏れる空気の量を少なくしている。しかしながら、
図11に示すように、電流0においても、空気の漏れによる流量が発生している。特に、空気の圧力が0.2MPaの場合は、空気の圧力が0.1MPaの場合と比較して、空気の漏れによる流量が大きくなっている。
【0073】
この原因として、板ばね51により弁体31の両端部36が支持される構成では、
図4に示すように、P1bポート,A1bポートから弁体31に向かって流れる空気の圧力により、弁体31がP1bポート,A1bポートから離れる方向へ変位することが考えられる。すなわち、弁体31の所定面31aと本体41の対向面41aとの間の所定隙間C1が、空気の圧力により広がることが考えられる。
【0074】
(第2実施形態)
そこで、本実施形態では、
図12〜14に示すように、弁体31を挟んで両側に第1本体41Aと第2本体41Bとを設けている。以下、第1実施形態との相違点を中心に説明する。なお、第1実施形態の部材と対応する部材については、同一の符号を付すことにより説明を省略する。
【0075】
弁体31において、開口流路32は、弁体31の所定面31aと所定面31aの反対側の反対面31bとにおいて弁体31の長手方向(所定方向に相当)に所定長L1で開口している。開口流路32は、弁体31において所定面31aから反対面31bまで貫通している。なお、開口流路32が、弁体31の所定面31a側と反対面31b側とにそれぞれ形成されており、所定面31aから反対面31bまで貫通していない構成を採用することもできる。
【0076】
第1本体41Aには、所定面31aに対向する第1対向面45aに開口するP1bポート,A1bポート、R1bポートが、弁体31の長手方向に所定長L1よりも短い間隔で並んで形成されている。第2本体41Bには、反対面31bに対向する第2対向面45bに開口するP1bポート,A1bポート、R1bポートが、弁体31の長手方向に所定長L1よりも短い間隔で並んで形成されている。第1本体41AのP1bポート,A1bポート、R1bポートは、それぞれ第2本体41BのP1bポート,A1bポート、R1bポートに対向している。P1bポート,A1bポート、R1bポートには、それぞれ接続流路42,43,44が接続されている。
【0077】
第1本体41Aと第2本体41Bとの間には、第3本体41Cが設けられている。板ばね51の短辺部分51bが、第3本体41Cの長手方向の両端部にそれぞれ溶接により固定されている。第1本体41A及び第2本体41Bは、ねじ45により第3本体41Cにそれぞれ固定されている。そして、板ばね51は、所定面31aと第1対向面45aとの間に第1所定隙間C1が形成されるように弁体31を支持し、反対面31bと第2対向面45bとの間に第2所定隙間C2が形成されるように弁体31を支持している。本実施形態では、第1所定隙間C1と第2所定隙間C2とは等しく設定されている。なお、本体41A,41B,41C、弁体31、及び板ばね51は、第1実施形態の組立方法に準じた組立方法により組み立てられる。
【0078】
ここで、第1本体41AのP1bポートと、そのP1bポートに対応する第2本体41BのP1bポートとに、同様の加圧した空気を流通させる。これにより、第1本体41AのP1bポートから弁体31に向かって流れる空気による圧力と、第2本体41BのP1bポートから弁体31に向かって流れる空気による圧力とが相殺される。
【0079】
図15は、コイル72に流す電流と空気の流量との関係を示すグラフである。
図15では、
図11と比較して空気の漏れによる流量が減少している。さらに、空気の漏れ量が減少していることから、より低い圧力の空気であっても流量の最大値を大きくすることができる。
【0080】
図16〜19は、流量の入力値(input)及び出力値(output)を示すタイムチャートである。
【0081】
図16は、流路切替弁10が空気を供給及び排出する対象の負荷(容積)が3ccであり、ステップ状の入力値(指令値)を与えた場合を示している。入力値が変わった瞬間に若干のオーバーシュートはあるが、それを除いて入力値に出力値が一致している。
【0082】
図17は、対象の負荷が3ccであり、正弦波状の入力値を10Hzの周波数で与えた場合を示している。正弦波の極大値及び極小値付近において若干のオーバーシュートがあるが、それを除いて入力値に出力値が一致している。
【0083】
図18は、対象の負荷が3ccであり、正弦波状の入力値を2Hzの周波数で与えた場合を示している。この場合は入力値に出力値が精度良く一致している。
【0084】
図19は、対象の負荷が80ccであり、ステップ状の入力値を与えた場合を示している。この場合は入力値に出力値が精度良く一致している。
【0085】
以上詳述した本実施形態は、以下の利点を有する。ここでは、第1実施形態と相違する利点のみを述べる。
【0086】
・弁体31を挟んで両側に第1本体41Aと第2本体41Bとが設けられている。そして、第1本体41A及び第2本体41Bには、同様の複数のP1bポート,A1bポート,R1bポートがそれぞれ形成されている。このため、第1本体41AのP1bポート,A1bポート,R1bポートと、そのポートに対応する第2本体41BのP1bポート,A1bポート,R1bポートとに、同様の空気を流通させることにより、第1本体41AのP1bポート,A1bポートから弁体31に向かって流れる空気による圧力と、第2本体41BのP1bポート,A1bポートから弁体31に向かって流れる空気による圧力とを相殺することができる。したがって、P1bポート,A1bポートから弁体31に向かって流れる空気の圧力により、弁体31がポートP1bポート,A1bポートから離れる方向へ変位することを抑制することができる。
【0087】
・第1本体41Aのポートから弁体31に向かって流れる空気による圧力と、第2本体41Bのポートから弁体31に向かって流れる空気による圧力とを相殺することができる。このため、板ばね51に要求される剛性を低下させることができ、第1実施形態と比較して薄い板ばね51を採用することができる。
【0088】
・板ばね51は、弁体31の所定面31aと第1対向面45aとの間に第1所定隙間C1が形成されるように弁体31を支持し、弁体31の反対面31bと第2対向面45bとの間に第2所定隙間C2が形成されるように弁体31を支持している。したがって、弁体31と第1本体41A及び第2本体41Bとが擦れない状態で、弁体31を往復駆動することができる。
【0089】
なお、上記第1,第2実施形態を、以下のように変更して実施することもできる。
【0090】
・本体41(41A,41B,41C)、弁体31、及び板ばね51を組み立てる際に用いる隙間冶具の個数や形状は、任意に変更することができる。要するに、隙間冶具の厚みが、弁体31の所定面31aと本体41の対向面41a(45a)との間の所定隙間C1の幅に基づいて設定されていればよい。
【0091】
・所定隙間C1の幅は、5μm程度に限らず、1〜5μmであったり、6〜10μmであったり、10〜20μmであってもよい。
【0092】
・可動軸81が弁体31を途中まで貫通する構成や、可動軸81が弁体31の一方の端部36に固定された構成を採用することもできる。
【0093】
・アクチュエータ70において、板ばね51が自然状態で弁体31を支持する状態における可動軸81(可動子76)の位置を、可動軸81を弁体31の長手方向に往復駆動させる電磁力を作用させていない中立位置以外に設定することもできる。
【0094】
・弁体31の両端部36にそれぞれ取り付けられた板ばね51の弾性力が、互いに等しくない構成を採用することもできる。
【0095】
・板ばね51の最も面積の大きい主面が、弁体31の長手方向に垂直ではなく、傾斜した状態で本体41に取り付けられている構成を採用することもできる。
【0096】
・アクチュエータ70として、モータや、ピエゾ素子、サーマルアクチュエータ等を採用することもできる。ただし、アクチュエータ70においても、弁体31を駆動する際に摩擦力が発生しない構成が望ましい。なお、アクチュエータ70において、弁体31を駆動する際に摩擦力が発生したとしても、弁体31と本体41とが擦れない状態で弁体31を往復駆動することにより、従来と比較して流路切替弁10において流路を切り替える応答性を向上させることができる。
【0097】
・本体41に形成されるポートの数は3つに限らず、2つや4つ以上であってもよい。
【0098】
・流路切替弁10により流路を切り替える流体は空気に限らず、空気以外の気体や、液体を採用することもできる。
【0099】
(第3実施形態)
本実施形態では、上記可動軸81を省略し、弁体31と可動子76とを一体に構成している。以下、第2実施形態との相違点を中心に説明する。なお、第1,第2実施形態の部材と対応する部材については、同一の符号を付すことにより説明を省略する。
【0100】
図20〜22に示すように、弁機構20は、ハウジング21、弁体31、第3本体41C、第4本体41D、板ばね51、蓋27等を備えている。ハウジング21、弁体31、第3本体41C、第4本体41D、板ばね51、蓋27は、非磁性体により形成されている。
【0101】
ハウジング21は、四角筒状に形成されている。ハウジング21には、加圧された空気(流体に相当)を供給するP0ポート(加圧ポート)、負荷に対して空気を供給及び排出するA0ポート(出力ポート)、空気を排出するR0ポート(排気ポート)が設けられている。P0ポート、A0ポート、R0ポートは、非磁性体により形成されている。P0ポート、A0ポート、R0ポートには、それぞれ加圧流路、出力流路、排気流路が接続されている。加圧流路及び排気流路は、第3本体41Cに接続されている。出力流路は、ハウジング21の内面で開口している。
【0102】
ハウジング21の内部には、弁体31、本体41C,41D、板ばね51、磁石74A,74B,75A,75B等が収容されている。本体41C,41Dは、直方体状(平板状)に形成されている。第3本体41Cは、ハウジング21に固定されている。第4本体41Dは、第3本体41Cに固定されている。弁体31は、直方体状(平板状)に形成されている。
【0103】
並列に配置された第4本体41Dの間に、弁体31が配置されている。第4本体41Dと弁体31との間には、隙間が形成されている。すなわち、第4本体41Dと弁体31とは非接触状態になっている。
【0104】
弁体31は、板ばね51を介して第4本体41Dに固定されている。板ばね51の2つの短辺部分51bがそれぞれ第4本体41Dに固定されている。板ばね51は、最も面積の大きい主面(
図20,21における垂直面)が弁体31の長手方向に垂直となるように、第4本体41Dに取り付けられている。こうした構成により、弁体31(可動部材に相当)は、一対の板ばね51により弁体31の長手方向(所定方向に相当)に移動可能に支持されている。
【0105】
弁体31の所定面31aと第4本体41Dの第1面41dとは同一平面上に位置している。
図22に示すように、弁体31の所定面31aに第3本体41Cの対向面41aが対向している。そして、第4本体41Dの第1面41dは、第3本体41Cの対向面41aに対向している。第4本体41Dの第1面41dと第3本体41Cの対向面41aとの間に所定厚みのシム46(スペーサ)が並んで2つ挿入された状態で、第3本体41Cと第4本体41Dとが固定されている。シム46の厚みは10μm程度である。すなわち、弁体31の所定面31aと第3本体41Cの対向面41aとの間には、シム46の厚みに相当する隙間(所定隙間)が形成されている。このように、弁体31には、他の部材と摺動する部分が存在していない。なお、シム46の数は2つに限らず、1つや、3つ以上であってもよい。
【0106】
図22に示すように、弁体31の所定面31aには、弁体31の長手方向(所定方向)に所定長L1で開口する開口流路32が2つ形成されている。開口流路32は、弁体31を所定面31aに垂直な方向へ貫通し、長軸の長さが所定長L1の長孔になっている。なお、開口流路32が、弁体31の所定面31a側にそれぞれ形成された凹部になっており、弁体31を貫通していない構成を採用することもできる。
【0107】
それぞれの第3本体41Cには、対向面41aに開口するP1bポート,A1bポート,R1bポート(複数のポートに相当)が形成されている。P1bポート,A1bポート,R1bポートは、弁体31の長手方向に所定長L1よりも短い間隔L2で並んで形成されている。第3本体41Cには、P1bポート,A1bポート,R1bポートにそれぞれ接続された接続流路42,43,44が形成されている。接続流路42,43,44は、それぞれ上記加圧流路、出力流路、排気流路に接続されている。なお、接続流路43は、ハウジング21内の空間を介して出力流路に接続されている。ハウジング21内の空間は、シール部材47によりシールされている。
【0108】
そして、板ばね51は、弁体31の長手方向(板ばね51の主面に垂直な方向)への弁体31の移動量に応じて、弁体31に弾性力を加える。詳しくは、板ばね51は、弁体31の長手方向への弁体31の移動量、すなわち板ばね51の変形量に比例した弾性力を弁体31に加える。
【0109】
次に、
図20,21を参照して、アクチュエータ70の構成を説明する。アクチュエータ70は、コア71(71c,71d)、コイル72、磁石74A,74B,75A,75B等を備えている。
【0110】
コア71は、常磁性体材料により、「U」字形状に形成されている。コア71における「U」字形状の底部71cの外周には、コイル72が取り付けられている。コア71における「U」字形状の一対の直線部71dは、互いに平行になっている。
【0111】
一対の直線部71dには、磁石74A,75Aと磁石74B,75Bとがそれぞれ取り付けられている。磁石74A〜75Bは、強磁性体材料により形成された永久磁石である。磁石74A〜75Bは、直方体状に形成されている。磁石74A,75Bは、コア71の直線部71d側にS極が位置し、弁体31(可動子76)側にN極が位置するように、コア71の直線部71dにそれぞれ取り付けられている。磁石74B,75Aは、コア71の直線部71d側にN極が位置し、弁体31(可動子76)側にS極が位置するように、コア71の直線部71dにそれぞれ取り付けられている。磁石74AのN極と磁石74BのS極とが対向しており、磁石75AのS極と磁石75BのN極とが対向している。磁石74A,74Bの互いに対向する面は平行になっており、磁石75A,75Bの互いに対向する面は平行になっている。弁体31の長手方向(以下、「所定方向」という)において、磁石74Aと磁石75Aとが所定間隔で配置されており、磁石74Bと磁石75Bとが同じく所定間隔で配置されている。
【0112】
磁石74A,75Aと磁石74B,75Bとの間には、上記ハウジング21の一部分を介して可動子76が配置されている。ハウジング21のうち、磁石74Aと磁石74Bとの間に配置される部分、及び磁石75Aと磁石75Bとの間に配置される部分は、磁束を透過させ易いように薄く形成されている。可動子76は、常磁性体材料により、四角筒状に形成されている。上記所定方向における可動子76の幅L3は、磁石74B(74A)の接続部材24側の端面と磁石75B(75A)の蓋27側の端面との間隔L4よりも短くなっている。可動子76の中空部には、弁体31が挿通されている。所定方向において、弁体31の中央に可動子76が固定されている。すなわち、弁体31において、一対の板ばね51の間に位置する部分に可動子76が固定されている。可動子76は、弁体31以外の部材とは接触していない。
【0113】
所定方向において、可動子76は、磁石74A,74B,75A,75Bの磁力により磁石74A(74B)と磁石75A(75B)との中央位置(中立位置)に配置している。この状態で、自然状態の一対の板ばね51により支持された弁体31に、可動子76が固定されている。すなわち、アクチュエータ70において、板ばね51が自然状態で弁体31を支持する状態における可動子76の位置は、弁体31(可動子76)を所定方向に往復駆動させる電磁力を作用させていない中立位置に設定されている。そして、アクチュエータ70は、所定方向において一対の板ばね51の間で可動子76に作用させる電磁力により、弁体31を非接触で所定方向へ駆動する。
【0114】
次に、
図23〜25を参照して、アクチュエータ70により、弁体31の長手方向(所定方向)に弁体31を往復駆動する原理を説明する。
【0115】
アクチュエータ70のコイル72に電流を流していない非励磁状態では、
図23に示すように、磁石74AのN極から磁石74BのS極へ向かう磁界、及び磁石75BのN極から磁石74BのS極へ向かう磁界が発生する。この状態では、可動子76は、上記所定方向において中立位置で釣り合って静止している。この状態では、一対の板ばね51は自然状態になっており、一対の板ばね51から弁体31へ力が作用していない。また、この状態では、
図22に示すように、第3本体41CのP1bポート及びR1bポートは、弁体31により閉じられている。
【0116】
アクチュエータ70のコイル72に正方向の電流を流した正方向の励磁状態では、
図24に矢印H3で示すように、コア71の上側の直線部71dから下側の直線部71dへ向かうコイル磁界が発生する。このため、磁石74AのN極から磁石74BのS極へ向かう磁界とコイル磁界とは強め合い、磁石75BのN極から磁石75AのS極へ向かう磁界とコイル磁界とは弱め合う。その結果、可動子76は、接続部材24の方向へ引き付ける磁力を受ける。そして、矢印F4で示すように、可動子76と共に弁体31が矢印F4の方向へ移動する。この際に、アクチュエータ70は電磁力により弁体31を非接触で駆動し、弁体31は本体41C,41Dと非接触で駆動される。これに対して、一対の板ばね51は、弁体31の移動量に比例した抗力を弁体31に作用させる。
図22において、弁体31が接続部材24の方向へ駆動されると、第3本体41CのA1bポートとP1bポートとが、弁体31の開口流路32を介して接続される。すなわち、流路切替弁10の流路が切り替えられる。
【0117】
ここで、それぞれの第3本体41CのP1bポートに、同様の加圧した空気を流通させる。これにより、それぞれの第3本体41CのP1bポートから弁体31に向かって流れる空気による圧力が相殺される。
【0118】
また、アクチュエータ70のコイル72に負方向の電流を流した負方向の励磁状態では、
図25に矢印H4で示すように、コア71の下側の直線部71dから上側の直線部71dへ向かうコイル磁界が発生する。このため、磁石74AのN極から磁石74BのS極へ向かう磁界とコイル磁界とは弱め合い、磁石75BのN極から磁石75AのS極へ向かう磁界とコイル磁界とは強め合う。その結果、可動子76は、蓋27の方向へ引き付ける磁力を受ける。そして、矢印F5で示すように、可動子76と共に弁体31が矢印F5の方向へ移動する。この際に、アクチュエータ70は電磁力により弁体31を非接触で駆動し、弁体31は本体41C,41Dと非接触で駆動される。これに対して、一対の板ばね51は、弁体31の移動量に比例した抗力を弁体31に作用させる。
図22において、弁体31が蓋27の方向へ駆動されると、第3本体41CのA1bポートとR1bポートとが、弁体31の開口流路32を介して接続される。すなわち、流路切替弁10の流路が切り替えられる。
【0119】
以上詳述した本実施形態は、以下の利点を有する。
【0120】
・一対の板ばね51により、板ばね51の変形量に応じた弾性力が所定方向へ加えられる。弁体31は、一対の板ばね51により上記所定方向へ移動可能に支持されているため、弁体31を非摺動で移動可能に支持することができる。そして、アクチュエータ70によって作用させられる電磁力により、弁体31が非接触で所定方向へ駆動される。その結果、弁体31を駆動する際に摩擦力が発生せず、弁体31を駆動する応答性を向上させることができる。さらに、弁体31を非摺動で駆動するため、弁体31に摩耗が生じず、摺動を伴う一般的な弁体と比較して半永久的に使用することができる。
【0121】
・弁体31は一対の板ばね51により支持されており、上記所定方向において一対の板ばね51の間で電磁力が作用させられる。このため、駆動される際に弁体31がぶれることを抑制することができる。
【0122】
・弁体31に固定された可動子76に電磁力が作用させられる。このため、電磁力が作用させられる可動子76と、弁体31とを別体にすることができ、弁体31の設計の自由度を向上させることができる。
【0123】
・第3本体41Cに形成された接続流路を通じて、各接続流路に接続された各ポートに対して流体を流入出させることができる。弁体31には、所定面31aにおいて所定方向に所定長L1で開口する開口流路32が形成されている。第3本体41Cには、上記所定面31aに対向する対向面41aに開口する複数のポートが、上記所定方向に上記所定長L1よりも短い間隔L2で並んで形成されている。このため、アクチュエータ70により弁体31を上記所定方向に駆動することで、複数のポートが弁体31の開口流路32を介して接続される状態、すなわち流体の流路を切り替えることができる。
【0124】
・弁体31の所定面31aと第4本体41Dの第1面41dとは同一平面上に位置しており、第3本体41Cの対向面41aと第4本体41Dの第1面41dとの間に所定厚みのシム46が挿入された状態で、第3本体41Cと第4本体41Dとが固定されている。このため、弁体31の所定面31aと第3本体41Cの対向面41aとの間に、シム46の厚み分の隙間を容易に形成することができる。
【0125】
・アクチュエータ70において、板ばね51が自然状態で弁体31を支持する状態における弁体31(可動子76)の位置は、弁体31を所定方向に往復駆動させる電磁力を作用させていない中立位置に設定されている。こうした構成によれば、板ばね51が自然状態で弁体31を支持し、且つアクチュエータ70により電磁力を作用させていない状態において、弁体31を所定方向の中立位置に維持することができる。このため、中立位置を基準として、可動子76に作用させる電磁力を制御することにより、弁体31を容易に再現性よく往復駆動することができる。さらに、アクチュエータ70により電磁力を作用させていない状態における流体の流量を、一定に安定させることができる。
【0126】
・弁体31を挟んで両側に第3本体41Cが設けられている。そして、それぞれの第3本体41Cには、同様の複数のP1bポート,A1bポート,R1bポートが形成されている。このため、それぞれの第3本体41CのP1bポート,A1bポート,R1bポートに、同様の空気を流通させることにより、それぞれの第3本体41CのP1bポート,A1bポートから弁体31に向かって流れる空気による圧力を相殺することができる。したがって、P1bポート,A1bポートから弁体31に向かって流れる空気の圧力により、弁体31がP1bポート,A1bポートから離れる方向へ変位することを抑制することができる。また、板ばね51に要求される剛性を低下させることができ、より薄い板ばね51を採用することができる。
【0127】
なお、上記第3実施形態を、以下のように変更して実施することもできる。
【0128】
・一対の板ばね51が、弁体31の両端部36以外の部分、例えば若干中央寄りの部分を支持する構成を採用することもできる。
【0129】
・シム46の厚みは、10μm程度に限らず、5〜10μmであったり、10〜15μmであったり、15〜20μmであってもよい。
【0130】
・
図26に示すように、所定方向において、2つの開口流路32の互いに離れた側の端同士の間隔L5と、P1bポートとR1bポートとの間隔L6との関係を、以下のように変更することができる。(1)L6≧L5。この場合は、
図27に示すように、電流0mA付近に不感帯を有する流路切替弁10として使用することができ、流体の流れ始めを安定させることができる。(2)L6<L5。この場合は、
図28に示すように、電流0mA付近にコンスタントブリード流量を有する流路切替弁10として使用することができ、流体の流量を変更する応答性を向上させることができる。(3)L6<<L5。この場合は、
図29に示すように、ポートPからポートAへ流す流体と、ポートRからポートAへ流す流体とを混合する混合弁として使用することができる。
【0131】
・可動子76と弁体31とを常磁性体材料により、一体に形成することもできる。この場合、可動子そのものにより弁体31(可動部材)が構成され、可動子に開口流路32が形成される。