特開2017-204461(P2017-204461A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ デクセリアルズ株式会社の特許一覧

<>
  • 特開2017204461-異方性導電フィルム 図000008
  • 特開2017204461-異方性導電フィルム 図000009
  • 特開2017204461-異方性導電フィルム 図000010
  • 特開2017204461-異方性導電フィルム 図000011
  • 特開2017204461-異方性導電フィルム 図000012
  • 特開2017204461-異方性導電フィルム 図000013
  • 特開2017204461-異方性導電フィルム 図000014
  • 特開2017204461-異方性導電フィルム 図000015
  • 特開2017204461-異方性導電フィルム 図000016
  • 特開2017204461-異方性導電フィルム 図000017
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2017-204461(P2017-204461A)
(43)【公開日】2017年11月16日
(54)【発明の名称】異方性導電フィルム
(51)【国際特許分類】
   H01R 11/01 20060101AFI20171020BHJP
   H01R 43/00 20060101ALI20171020BHJP
   H01B 5/16 20060101ALI20171020BHJP
【FI】
   H01R11/01 501C
   H01R43/00 H
   H01B5/16
【審査請求】未請求
【請求項の数】10
【出願形態】OL
【全頁数】27
(21)【出願番号】特願2017-84914(P2017-84914)
(22)【出願日】2017年4月23日
(31)【優先権主張番号】特願2016-92901(P2016-92901)
(32)【優先日】2016年5月5日
(33)【優先権主張国】JP
(71)【出願人】
【識別番号】000108410
【氏名又は名称】デクセリアルズ株式会社
(74)【代理人】
【識別番号】110000224
【氏名又は名称】特許業務法人田治米国際特許事務所
(72)【発明者】
【氏名】阿久津 恭志
(72)【発明者】
【氏名】塚尾 怜司
【テーマコード(参考)】
5E051
5G307
【Fターム(参考)】
5E051CA03
5G307HA02
5G307HB03
5G307HC01
(57)【要約】
【課題】導電粒子の所定の整列配置に対して抜けが存在する場合でも、異方性導電接続に問題が生じない限り規格内の製品として使用できるようにする。
【解決手段】絶縁性樹脂バインダ3に導電粒子2が規則的に配置されている規則配置領域を有し、長さが5m以上の異方性導電フィルム1Aであって、規則配置領域内に、導電粒子が連続して所定数以上抜けている箇所2Yが存在しない規格内領域が、異方性導電フィルム1Aの短手方向の所定幅で、異方導電性フィルム1Aの長手方向に所定長以上で存在する。
【選択図】図1
【特許請求の範囲】
【請求項1】
絶縁性樹脂バインダに導電粒子が規則的に配置されている規則配置領域を有する、長さが5m以上の異方性導電フィルムであって、該規則配置領域内に、導電粒子が連続して所定数以上抜けている箇所が存在しない規格内領域が、異方性導電フィルムの短手方向の所定幅で、異方導電性フィルムの長手方向に所定長以上で存在する異方性導電フィルム。
【請求項2】
該規則配置領域と該規格内領域とが一致している請求項1記載の異方性導電フィルム。
【請求項3】
導電粒子が連続して所定数以上抜けている箇所である規格外の箇所が存在する請求項1記載の異方性導電フィルム。
【請求項4】
異方性導電フィルムの全幅で長手方向200μmの任意に選択した領域において、導電粒子が10個以上存在する請求項1〜3のいずれかに記載の異方性導電フィルム。
【請求項5】
異方性導電フィルムの短手方向の少なくとも端部領域に沿って規格内領域を有する請求項1〜4のいずれかに記載の異方性導電フィルム。
【請求項6】
異方性導電フィルムがリールに巻かれた巻装体である請求項1〜5のいずれかに記載の異方性導電フィルム。
【請求項7】
絶縁性樹脂バインダに導電粒子が規則的に配置されている異方性導電フィルムの広幅原反を、規則的な配置に対して導電粒子が連続して所定数以上抜けている規格外の箇所が含まれないように、もしくは規格外の箇所がフィルムの短手方向の意図した位置になるように、長さ方向に截断し、長さ5m以上の異方性導電フィルムとする異方性導電フィルムの製造方法。
【請求項8】
絶縁性樹脂バインダに導電粒子が規則的に配置されている規格配置領域を有する異方性導電フィルムから、導電粒子が連続して所定数以上抜けている規格外の箇所を除去し、除去後の異方性導電フィルムをつなぎ合わせ、長さ5m以上の異方性導電フィルムとする異方性導電フィルムの製造方法。
【請求項9】
端子列を有する第1電子部品と端子列を有する第2電子部品とを、絶縁性樹脂バインダに導電粒子が規則的に配置されている規格配置領域を有する異方性導電フィルムを介して熱圧着することにより第1の電子部品と第2の電子部品の端子列同士を異方性導電接続する接続構造体の製造方法であって、
異方性導電フィルムとして、該規格配置領域内に、導電粒子が連続して所定数以上抜けている箇所が存在しない規格内領域が、異方性導電フィルムの短手方向の所定幅で異方性導電フィルムの長手方向に所定長で形成されている異方性導電フィルムを使用し、
該規格内領域を電子部品の端子列にアライメントする接続構造体の製造方法。
【請求項10】
第1電子部品及び第2電子部品がそれぞれ複数の端子列を有し、異方性導電フィルムに規格内領域が並列して形成されている場合に、
隣り合う規格領域の間の領域を、端子列と端子列の間の領域にアライメントする請求項9記載の接続構造体の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、異方性導電フィルムに関する。
【背景技術】
【0002】
絶縁性樹脂バインダに導電粒子を分散させた異方性導電フィルムが、ICチップ等の電子部品を基板に実装する際に広く使用されている。近年の電子部品の高密度実装に伴うバンプの狭ピッチ化により、異方性導電フィルムには、バンプにおける導電粒子の捕捉性を高め、かつショートを回避できるようにすることが強く求められている。
【0003】
この要請に異方性導電フィルムを対応させるため、導電粒子を規則的に整列配置させる手法が種々検討されている。例えば、延伸フィルム上に導電粒子を敷き詰め、そのフィルムを二軸延伸することにより、導電粒子を単層で整列配置させる技術(特許文献1)や、磁性を用いて基材に導電粒子を保持させ、その導電粒子を粘着性のフィルムへ転写させることにより導電粒子を所定の配列とする技術(特許文献2)等が知られている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特許5147048号公報
【特許文献2】特許4887700号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、二軸延伸法では、導電粒子を精密に所定の位置に整列させることが難しく、導電粒子の配列にしばしば抜けが生じる。転写法によれば、二軸延伸法に比べると導電粒子を精密に配置することができるが、異方性導電フィルムの一面全体において導電粒子の抜けを全てなくすことは難しい。
【0006】
また、異方性導電フィルムの製品は、一般に5m以上の長尺に製造されるため、その全長において導電粒子の抜けが全く無いものを製造することは、難しく、現実的ではない。例えば、1箇所にでも抜けがあるものを規格外の不良品とすると製品の歩留まりが低下し、製品の製造コストが上昇してしまう。一方で、製品において導電粒子の抜けが顕著に存在すると、異方性導電接続の接続安定性に問題が生ずる。
【0007】
そこで本発明は、導電粒子の所定の規則的配置に対して抜けが存在する異方性導電フィルムであっても、抜けの無い異方性導電フィルムと略同様に異方性導電接続に供することできるようにすることを課題とする。
【課題を解決するための手段】
【0008】
本発明者らは、導電粒子の所定の規則的配置に対して抜けが存在する場合でも、以下の(イ)〜(ハ)の場合には異方性導電接続に問題が生じないことを見出した。
【0009】
(イ)導電粒子の所定の規則的配置に対して抜けが連続していると導通不良が起こりやすく、特に異方性導電フィルムの長手方向に抜けが連続しているとその傾向が強いが、異方性導電フィルムの長手方向に連続する抜けであっても、その連続数が接続対象に応じた所定数以下であれば導通不良は起こりにくい。
【0010】
(ロ)異方性導電フィルムを、個々のバンプ面積が比較的大きいFOG(film on glass)等に使用する場合、一般的にバンプ幅は最大で200μm程度であるから、異方性導電フィルムの長手方向200μmの範囲に導電粒子が10個以上存在すれば、導電粒子の規則的配置に対して抜けが存在する場合でも接続の問題は実質的に生じない。
【0011】
(ハ)異方性導電フィルムを、バンプの位置が特定の箇所にあり(例えば短手方向の両端部にバンプ列があり)、個々のバンプ面積が比較的小さいCOG(chip on glass)などに使用する場合において、異方性導電フィルムの短手方向の両端部とチップの端子列を合わせるにあたり、導電粒子が所定数以上連続して抜けている箇所(即ち、実用上問題になるレベルで大きく抜けている箇所)が異方性導電フィルムの短手方向の両端部に沿って存在しなければ、短手方向の中央部で導電粒子が所定数以上連続して抜けていても接続に問題が生じ難い。
【0012】
本発明は、これらの知見に基づいてなされたものであり、絶縁性樹脂バインダに導電粒子が規則的に配置されている規則配置領域を有する、長さが5m以上の異方性導電フィルムであって、該規則配置領域内に、導電粒子が連続して所定数以上抜けている箇所が存在しない規格内領域が、異方性導電フィルムの短手方向の所定幅で、異方導電性フィルムの長手方向に所定長以上で存在する異方性導電フィルムを提供する。
【0013】
本発明の異方性導電フィルムの構成は、導電粒子の所定の規則的配置に対して抜けが存在したとしても、抜けの無い異方性導電フィルムと略同様の異方性導電接続を可能とするものであり、換言すれば、異方性導電フィルムの特性を低下させない範囲で導電粒子の存在量を低減させている構成という意義がある。従って、本発明の異方性導電フィルムは、導電粒子に使用される金属の量の削減を可能とし、製造コストの削減効果だけでなく、環境負荷の低減効果や異方性導電フィルム製品としての仕様条件の緩和(製造歩留まりの向上)に寄与するものである。このように異方性接続に必要な最小限の導電粒子個数で安定した導通特性を得るためには、規則配置領域と規格内領域とが一致していることが好ましい。なお、本発明の効果を大きく損なわない限り、導電粒子が連続して所定数以上抜けている箇所である規格外の箇所が存在してもよい。
【0014】
特に、個々のバンプ面積が比較的小さく且つバンプ個数の多い、例えばCOG(chip on glass)用の異方性導電フィルムとして、異方性導電フィルムの短手方向の少なくとも端部領域に沿って規格内領域を有する態様を提供する。
【0015】
また、個々のバンプ面積が比較的大きい、例えばFOG(film on glass)用の異方性導電フィルムとして、異方性導電フィルムの全幅で長手方向200μmの任意に選択した領域において、導電粒子が10個以上存在する態様を提供する。
【0016】
本発明は、また、絶縁性樹脂バインダに導電粒子が規則的に配置されている異方性導電フィルムの広幅原反を、規則的な配置に対して導電粒子が連続して所定数以上抜けている規格外の箇所が含まれないように、もしくは規格外の箇所がフィルムの短手方向の意図した位置になるように、長さ方向に裁断し、長さ5m以上の異方性導電フィルムとする異方性導電フィルムの製造方法を提供する。
【0017】
本発明は、更に、絶縁性樹脂バインダに導電粒子が規則的に配置されている規格配置領域を有する異方性導電フィルムから、導電粒子が連続して所定数以上抜けている規格外の箇所を除去し、除去後の異方性導電フィルムをつなぎ合わせ、長さ5m以上の異方性導電フィルムとする異方性導電フィルムの製造方法を提供する。長さ5m以上であれば、連続生産用の異方性接続装置に設置し、検証を行い易くなる。即ち汎用の異方性接続構造体に用いられている異方性導電フィルムから置き換える場合に、検証の負荷が低減できる。
【0018】
本発明は、更にまた、端子列を有する第1電子部品と端子列を有する第2電子部品とを、絶縁性樹脂バインダに導電粒子が規則的に配置されている規格配置領域を有する異方性導電フィルムを介して熱圧着することにより第1の電子部品と第2の電子部品の端子列同士を異方性導電接続する接続構造体の製造方法であって、
異方性導電フィルムとして、該規格配置領域内に、導電粒子が連続して所定数以上抜けている箇所が存在しない規格内領域が、異方性導電フィルムの短手方向の所定幅で異方性導電フィルムの長手方向に所定長で形成されている異方性導電フィルムを使用し、
該規格内領域を電子部品の端子列にアライメントする接続構造体の製造方法を提供する。
【0019】
この製造方法では、第1電子部品及び第2電子部品がそれぞれ複数の端子列を有し、異方性導電フィルムに規格内領域が並列して形成されている場合に、
隣り合う規格領域の間の領域を、端子列と端子列の間の領域にアライメントすることが好ましい。
【発明の効果】
【0020】
本発明の異方性導電フィルムの製造方法によれば、従来、導電粒子の抜けにより不良と判定されていた異方性導電フィルムから、実用上問題のない領域を抽出して異方性導電フィルムを製造することができる。また、本発明の接続構造体の製造方法によれば、接続構造体の製造に使用する異方性導電フィルムが、導電粒子の抜けの点で問題のあると判定される箇所を有していても、導電粒子が連続して所定数以上抜けている箇所が存在しないという規格内領域が、異方性導電フィルムの短手方向の所定幅で異方性導電フィルムの長手方向に所定長で延設されているときには、その規格内領域を電子部品の端子列にアライメントする。したがって、異方性導電接続の信頼性を損なうことなく、異方性導電フィルムの製造の歩留まりを向上させることができる。
【図面の簡単な説明】
【0021】
図1図1は、実施例の異方性導電フィルム1Aの導電粒子の配置を説明する平面図である。
図2図2は、実施例の異方性導電フィルム1Bの導電粒子の配置を説明する平面図である。
図3図3は、実施例の異方性導電フィルム1Cの導電粒子の配置を説明する平面図である。
図4図4は、COG用の異方性導電フィルムにおいて導電粒子の配置が規格外の箇所の位置を示す平面図である。
図5図5は、実施例の異方性導電フィルム1aの断面図である。
図6図6は、実施例の異方性導電フィルム1bの断面図である。
図7図7は、実施例の異方性導電フィルム1cの断面図である。
図8図8は、実施例の異方性導電フィルム1dの断面図である。
図9図9は、実施例の異方性導電フィルム1eの断面図である。
図10図10は、評価用ICのバンプ配列を示す概略図である。
【発明を実施するための形態】
【0022】
以下、本発明を図面を参照しながら詳細に説明する。なお、各図中、同一符号は同一又は同等の構成要素を表している。
【0023】
<異方性導電フィルム>
(異方性導電フィルムの全体構成)
本発明の異方性導電フィルムは、絶縁性樹脂バインダに導電粒子が規則的に配置されている領域(規則配置領域)を有するものであり、好ましくは、平面視において導電粒子が互いに離間し、規則的(例えば格子状)に配置されているものである。ここで、異方性導電フィルムの全面に1つの規則配置領域が広がっていてもよく、全面に複数の導電粒子群がそれぞれ規則配置領域として互いに離隔して配置されていてもよい。
【0024】
本発明の異方性導電フィルムは、規則配置領域を有するために、導電粒子の規則的な配置に対する導電粒子の抜けを正確に検査し、把握することができる。本発明の異方性導電フィルムは、このような規則配置領域内に、導電粒子が連続して所定数以上抜けている箇所が存在しない規格内領域が、異方性導電フィルムの短手方向の所定幅で、異方導電性フィルムの長手方向に所定長以上で存在するものである。なお、異方性導電フィルムの全面に複数の導電粒子群がそれぞれ規則配置領域として互いに離隔して配置されている場合には、それぞれの規則配置領域に規格内領域が、異方性導電フィルムの短手方向の所定幅で、異方導電性フィルムの長手方向に所定長以上で存在する。
【0025】
ここで、規格内領域に関し、異方性導電フィルムの短手方向は、一般的な異方性導電接続構造体においては端子の長手方向となるため、異方性導電フィルムの短手方向に連なる導電粒子の端子での捕捉性が良好となり、異方性導電接続条件は比較的緩和し易くなる。従って、異方性導電フィルムを、その短手方向を全て接続ツールに押圧して異方性導電接続に寄与させようとした場合、異方性導電フィルムの短手方向の押圧幅条件も緩和することができる。具体的には、異方性導電フィルムの短手方向の「所定幅」の上限は、好ましくは異方性導電フィルムの短手方向の95%以下、より好ましくは90%以下でよく、他方、下限は好ましくは10%以上、より好ましくは20%以上であればよい。また、異方性導電フィルムの短手方向の「所定幅」の位置は、一般的なCOGなどICチップやそれに類する端子レイアウトの異方性接続に適用させ易くするために、異方性導電フィルムの短手方向の中央部以外、即ち端部(両端部)にあることが好ましい。両端部におけるそれぞれの規格内領域の幅は、同じであってもよく異なっていてもよい。求められる端子レイアウトに適応させるためである。
【0026】
一方、規格内領域に関し、異方性導電フィルムの長手方向(即ち、一般的な異方性導電接続構造体においては端子の短手方向)の「所定長以上」とは、異方性導電接続構造体(例えば、カメラモジュールなどの10mm角程度の小型部位実装体)を基準とすると、5mm以上あればよく、好ましくは10mm以上、より好ましくは20mm(異方性導電フィルム長を5mとした場合の0.4%に相当)以上である。また、大型の異方性導電接続構造体(例えば、80インチ以上の大型ディスプレイ等)の場合であれば、規則配置領域を2000mm以上としてもよい。
【0027】
なお、規格内領域に関し、異方性導電フィルムの長手方向の「所定長以上」の上限が長いほど、異方性導電フィルム自体が良品となるため好ましい。従って、その「所定長以上」の上限には特に制限はないが、異方性導電フィルムを品質管理する際に画像検査する観点からは、ある程度の長さに制限すると、品質上の情報管理が行い易くなる側面もある。例えば、ある長さで区切れば、その長さ毎のデータの比較を行い易くなる。また、単純に画像データの容量が少なくすむという利点もある。「所定長以上」の上限の一例として、1000m以下、好ましくは500m以下、より好ましくは350m以下、更に好ましくは50m以下であれば、検査における画像データの処理や管理が行い易くなる。
【0028】
なお、規則配置領域に対して規格内領域が限りなく等しくなること、更には一致することが、安定した接続の点から好ましい。なお、本発明の効果を大きく損なわない限り、導電粒子が連続して所定数以上抜けている箇所(規格外の箇所)が規則配置領域内に存在してもよい。なお、異方性導電フィルムの規則配置領域外には、導電粒子が存在しない空白領域や、導電粒子がランダム配置されているランダム配置領域が存在してもよい。
【0029】
また、本発明の異方性導電フィルムのフィルム長さは、異方性導電接続による接続構造体の生産性を安定させるため、好ましくは5m以上、より好ましくは10m以上、さらに好ましくは50m以上である。一方、フィルム長さが長すぎると装置へのセッティング、輸送の手間などに労力を要する、もしくは装置改造のコストが大きくなるため、好ましくは5000m以下、より好ましくは1000m以下、さらに好ましくは500m以下である。また、フィルム幅は、特に制限はないが、例えば0.5〜5mmである。
【0030】
このように異方性導電フィルムは幅に対して長さが長いため、リールに巻かれた巻装体であることが好ましい。巻装体は、複数の異方性導電フィルムが繋ぎ合わされたものでもよい。異方性導電フィルムの繋ぎには繋ぎテープを使用することができる。繋ぎテープの厚みは、特に制限はないが、厚過ぎると樹脂のはみだしやブロッキングに悪影響がでるため、10〜40μmが好ましい。
【0031】
(導電粒子の配置)
導電粒子の規則的な配置としては、例えば、図1に示す異方性導電フィルム1Aのように、正方格子配列をあげることができる。この他、導電粒子の規則的な配置としては、長方格子、斜方格子、六方格子等の格子配列をあげることができる。導電粒子が所定間隔で直線状に並んだ粒子列を所定の間隔で並列させたものでもよい。また、図2に示す異方性導電フィルム1Bのように、正多角形を隙間無く並べた場合の正多角形(本実施例では正6角形)の頂点のうちの複数個を導電粒子2が占め、導電粒子2の配置として、導電粒子2a、2b、2c、2dからなる台形の繰り返しユニット5が観念できるようにしてもよい。なお、台形の繰り返しユニットは導電粒子の規則的な配置の一例であり、離隔したものであってもよく、また複数個の繰り返しユニットの集合が、離隔した導電粒子規則配置領域であってもよい。ここで、繰り返しユニット5は、最近接する導電粒子2の中心を順次結んで形成される導電粒子の配置の繰り返し単位であって、所定の規則性の繰り返しにより繰り返しユニット5が異方性導電フィルムの一面に及ぶものである。繰り返しユニット5自体における導電粒子の配置形状に特に制限はないが、繰り返しユニット5において導電粒子2が正多角形の一部を占めるように配置されていると、導電粒子の配置を把握しやすいので、所定の配置に対する導電粒子の抜けの有無を容易に判断することができる。なお、導電粒子の配置が把握し易いと、異方性導電フィルムの製造時や、異方性導電フィルムを用いて電子部品を接続した後の圧痕検査等の製品検査においてもそれぞれの作業が容易となり、時間を短縮することができ、工数削減を図ることができる。
【0032】
導電粒子2の配列の格子軸又は配列軸は、異方性導電フィルムの長手方向に対して平行でもよく、異方性導電フィルムの長手方向と交叉してもよく、接続する端子幅、端子ピッチなどに応じて定めることができる。例えば、ファインピッチ用の異方性導電性フィルムとする場合、図1に示したように導電粒子2の格子軸L1を異方性導電フィルム1Aの長手方向に対して斜行させ、異方性導電フィルム1Aで接続する端子10の長手方向(フィルムの短手方向)と格子軸L1とのなす角度θを6°〜84°、好ましくは11°〜74°にすることが好ましい。
【0033】
(導電粒子)
導電粒子2としては、公知の異方性導電フィルムにおいて使用されているものを適宜選択して使用することができる。例えば、ニッケル、銅、銀、金、パラジウムなどの金属粒子、ポリアミド、ポリベンゾグアナミン等の樹脂粒子の表面をニッケルなどの金属で被覆した金属被覆樹脂粒子等を挙げることができる。配置される導電粒子の大きさは、好ましくは1μm以上30μm以下、より好ましくは1μm以上10μm以下、さらに好ましくは2μm以上6μm以下である。
【0034】
導電粒子2の平均粒子径は、画像式ないしはレーザー式の粒度分布計により測定することができる。異方性導電フィルムを平面視で観察し、粒子径を計測して求めてもよい。その場合、好ましくは200個以上、より好ましくは500個以上、更により好ましくは1000個以上を計測する。
【0035】
導電粒子2の表面は、絶縁コートや絶縁粒子処理などにより被覆されていることが好ましい。このような被覆としては、導電粒子2の表面から剥がれ難く且つ異方性接続に問題を生じさせないものを選択する。また、導電粒子2の表面の全面又は一部に突起が設けられていてもよい。突起の高さは導電粒子径の20%以内、好ましくは10%以内であることが好ましい。
【0036】
(導電粒子の最短粒子間距離)
導電粒子の最短粒子間距離は、導電粒子の平均粒子径の0.5倍以上が好ましい。この距離が短すぎると導電粒子相互の接触によりショートが起こりやすくなる。隣接する導電粒子の距離の上限は、バンプ形状やバンプピッチに応じて定めることができる。一例として、導電粒子を10個以上捕捉させるとすれば、平均粒径の50倍未満であればよく、40倍未満であれば好ましく。30倍未満であればより好ましい。
【0037】
(導電粒子の個数密度)
導電粒子の個数密度は、異方性導電フィルムの製造コストを抑制する点から、50000個/mm2以下が好ましく、35000個/mm2以下がより好ましく、30000個/mm2以下がさらに好ましい。一方、導電粒子の個数密度は、少なすぎると端子で導電粒子が十分に捕捉されないことによる導通不良が懸念されることから、30個/mm2以上あればよく、300個/mm2以上が好ましく、500個/mm2以上がより好ましく、800個/mm2以上がさらに好ましい。
【0038】
(絶縁性樹脂バインダ)
絶縁性樹脂バインダ3としては、公知の異方性導電フィルムにおいて絶縁性樹脂バインダとして使用されている熱重合性組成物、光重合性組成物、光熱併用重合性組成物等を適宜選択して使用することができる。このうち熱重合性組成物としては、アクリレート化合物と熱ラジカル重合開始剤とを含む熱ラジカル重合性樹脂組成物、エポキシ化合物と熱カチオン重合開始剤とを含む熱カチオン重合性樹脂組成物、エポキシ化合物と熱アニオン重合開始剤とを含む熱アニオン重合性樹脂組成物等を挙げることができ、光重合性組成物としては、アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合性樹脂組成物等を挙げることができる。特に問題が生じないのであれば、複数種の重合性組成物を併用してもよい。併用例としては、熱カチオン重合性組成物と熱ラジカル重合性組成物の併用などが挙げられる。
【0039】
ここで、光重合開始剤としては波長の異なる光に反応する複数種類を含有させてもよい。これにより、異方性導電フィルムの製造時における、絶縁性樹脂層を構成する樹脂の光硬化と、異方性接続時に電子部品同士を接着するための樹脂の光硬化とで使用する波長を使い分けることができる。
【0040】
絶縁性樹脂バインダ3を光重合性組成物を使用して形成する場合に、異方性導電フィルムの製造時の光硬化により、絶縁性樹脂バインダ3に含まれる光重合性化合物の全部又は一部を光硬化させることができる。この光硬化により、絶縁性樹脂バインダ3における導電粒子2の配置が保持乃至固定化され、ショートの抑制と捕捉の向上が見込まれる。また、この光硬化の条件を調整することにより、異方性導電フィルムの製造工程における絶縁性樹脂層の粘度を調整することができる。
【0041】
絶縁性樹脂バインダ3における光重合性化合物の配合量は30質量%以下が好ましく、10質量%以下がより好ましく、2%質量未満がより好ましい。光重合性化合物が多すぎると異方性導電接続時の押し込みにかかる推力が増加するためである。
【0042】
一方、熱重合性組成物は、熱重合性化合物と熱重合開始剤とを含有するが、この熱重合性化合物として、光重合性化合物としても機能するものを使用してもよい。また、熱重合性組成物には、熱重合性化合物とは別に光重合性化合物を含有させると共に光重合性開始剤を含有させてもよい。好ましくは、熱重合性化合物とは別に光重合性化合物と光重合開始剤を含有させる。例えば、熱重合開始剤として熱カチオン重合開始剤、熱重合性化合物としてエポキシ樹脂を使用し、光重合開始剤として光ラジカル開始剤、光重合性化合物としてアクリレート化合物を使用する。絶縁性バインダ3には、これらの重合性組成物の硬化物を含めてもよい。
【0043】
熱又は光重合性化合物として使用されるアクリレート化合物としては従来公知の熱重合型(メタ)アクリレートモノマーを使用することができる。例えば、単官能(メタ)アクリレート系モノマー、二官能以上の多官能(メタ)アクリレート系モノマーを使用することができる。
【0044】
また、重合性化合物として使用されるエポキシ化合物は、3次元網目構造を形成し、良好な耐熱性、接着性を付与するものであり、固形エポキシ樹脂と液状エポキシ樹脂とを併用することが好ましい。ここで、固形エポキシ樹脂とは、常温で固体状であるエポキシ樹脂を意味する。また、液状エポキシ樹脂とは、常温で液状であるエポキシ樹脂を意味する。また、常温とは、JIS Z 8703で規定される5〜35℃の温度範囲を意味する。本発明では2種以上のエポキシ化合物を併用することができる。また、エポキシ化合物に加えてオキセタン化合物を併用してもよい。
【0045】
固形エポキシ樹脂としては、液状エポキシ樹脂と相溶し、常温で固体状であれば特に限定されず、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、多官能型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂などが挙られ、これらの中から1種を単独で、又は2種以上を組み合わせて用いることができる。これらの中でも、ビスフェノールA型エポキシ樹脂を用いることが好ましい。
【0046】
液状エポキシ樹脂としては、常温で液状であれば特に限定されず、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラックフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂などが挙げられ、これらの中から1種を単独で、又は2種以上を組み合わせて用いることができる。特に、フィルムのタック性、柔軟性などの観点から、ビスフェノールA型エポキシ樹脂を用いることが好ましい。
【0047】
熱重合開始剤のうち熱ラジカル重合開始剤としては、例えば、有機過酸化物、アゾ系化合物等を挙げることができる。特に、気泡の原因となる窒素を発生しない有機過酸化物を好ましく使用することができる。
【0048】
熱ラジカル重合開始剤の使用量は、少なすぎると硬化不良となり、多すぎると製品ライフの低下となるので、(メタ)アクリレート化合物100質量部に対し、好ましくは2〜60質量部、より好ましくは5〜40質量部である。
【0049】
熱カチオン重合開始剤としては、エポキシ化合物の熱カチオン重合開始剤として公知のものを採用することができ、例えば、熱により酸を発生するヨードニウム塩、スルホニウム塩、ホスホニウム塩、フェロセン類等を用いることができ、特に、温度に対して良好な潜在性を示す芳香族スルホニウム塩を好ましく使用することができる。
【0050】
熱カチオン重合開始剤の使用量は、少なすぎても硬化不良となる傾向があり、多すぎても製品ライフが低下する傾向があるので、エポキシ化合物100質量部に対し、好ましくは2〜60質量部、より好ましくは5〜40質量部である。
【0051】
アニオン重合開始剤としては、通常用いられる公知の硬化剤を使用することができる。例えば、有機酸ジヒドラジド、ジシアンジアミド、アミン化合物、ポリアミドアミン化合物、シアナートエステル化合物、フェノール樹脂、酸無水物、カルボン酸、三級アミン化合物、イミダゾール、ルイス酸、ブレンステッド酸塩、ポリメルカプタン系硬化剤、ユリア樹脂、メラミン樹脂、イソシアネート化合物、ブロックイソシアネート化合物などが挙げられ、これらの中から1種を単独で、又は2種以上を組み合わせて用いることができる。これらの中でも、イミダゾール変性体を核としその表面をポリウレタンで被覆してなるマイクロカプセル型潜在性硬化剤を用いることが好ましい。
【0052】
熱重合性組成物には、膜形成樹脂を含有させることが好ましい。膜形成樹脂は、例えば平均分子量が10000以上の高分子量樹脂に相当し、フィルム形成性の観点から、10000〜80000程度の平均分子量であることが好ましい。膜形成樹脂としては、フェノキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂、アクリル樹脂、ポリイミド樹脂、ブチラール樹脂等の種々の樹脂が挙げられ、これらは単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、膜形成状態、接続信頼性等の観点からフェノキシ樹脂を好適に用いることができる。
【0053】
熱重合性組成物には、溶融粘度調整のために、絶縁フィラーを含有させてもよい。これはシリカ粉やアルミナ粉などが挙げられる。絶縁性フィラーの大きさは粒径20〜1000nmが好ましく、また、配合量はエポキシ化合物等の熱重合性化合物(光重合性化合物)100質量部に対して5〜50質量部とすることが好ましい。更に、上述の絶縁フィラーとは異なる充填剤、軟化剤、促進剤、老化防止剤、着色剤(顔料、染料)、有機溶剤、イオンキャッチャー剤などを含有させてもよい。
【0054】
また、必要に応じて、応力緩和剤、シランカップリング剤、無機フィラー等を配合してもよい。応力緩和剤としては、水添スチレン−ブタジエンブロック共重合体、水添スチレン−イソプレンブロック共重合体等を挙げることができる。また、シランカップリング剤としては、エポキシ系、メタクリロキシ系、アミノ系、ビニル系、メルカプト・スルフィド系、ウレイド系等を挙げることができる。また、無機フィラーとしては、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウム等を挙げることができる。
【0055】
絶縁性樹脂バインダ3は、上述した樹脂を含むコーティング組成物を塗布法により成膜し乾燥させることや、更に硬化させることにより、あるいは予め公知の手法によりフィルム化することにより形成することができる。絶縁性樹脂バインダ3は、必要に応じて樹脂層を積層することにより得ても良い。また、絶縁性樹脂バインダ3は、剥離処理されたポリエチレンテレフタレートフィルム等の剥離フィルム上に形成することが好ましい。
【0056】
(絶縁性樹脂バインダの粘度)
絶縁性樹脂バインダ3の最低溶融粘度は、異方性導電フィルムの製造方法等に応じて適宜定めることができる。例えば、異方性導電フィルムの製造方法として、導電粒子を絶縁性樹脂バインダの表面に所定の配置で保持させ、その導電粒子を絶縁性樹脂バインダに押し込む方法を採用した場合、絶縁性樹脂バインダ3の最低溶融粘度は、フィルム成形性の観点から好ましくは1100Pa・s以上である。特に40〜80℃でフィルム成形を可能とする点から、絶縁性樹脂バインダ3の60℃粘度は好ましくは3000〜20000Pa・sである。また、後述するように、図5又は図6に示すように絶縁性樹脂バインダ3に押し込んだ導電粒子2の露出部分の周りに凹み3bを形成したり、図7に示すように絶縁性樹脂バインダ3に押し込んだ導電粒子2の直上に凹み3cを形成したりする点から、絶縁性樹脂バインダ3の最低溶融粘度は、1500Pa・s以上であればよく、好ましくは2000Pa・s以上、より好ましくは3000〜15000Pa・s、さらに好ましくは3000〜10000Pa・sである。この最低溶融粘度は、一例として回転式レオメータ(TA instruments社製)を用い、昇温速度が10℃/分、測定圧力が5gで一定に保持し、直径8mmの測定プレートを使用して求めることができる。また、40〜80℃で絶縁性樹脂バインダ3に対して導電粒子2を押し込む工程を行う場合に、上述と同様に凹み3b又は3cの形成の点から、絶縁性樹脂バインダ3の60℃における粘度は、好ましくは3000〜20000Pa・sである。この測定は最低溶融粘度と同様の測定方法で行い、温度が60℃の値を抽出して求めることができる。
【0057】
絶縁性樹脂バインダ3を構成する樹脂の粘度を上述のように高粘度とすることにより、異方性導電フィルムの使用時において、対向する電子部品等の接続対象物の間に導電粒子2を挟んで加熱加圧する場合に、異方性導電フィルム内の導電粒子2が、溶融した絶縁性樹脂バインダ3の流動により流されてしまうことを防止することができる。また、凹み3b又は3cのように導電粒子の周辺部もしくは直上の樹脂量を実施的にゼロ、もしくはその周囲に比べて低減させている場合には、接続するツールから導電粒子にかかる押し込みの力が伝わり易くなるので、端子間で導電粒子を良好に挟持することができ、導通特性の向上や導電粒子の捕捉性の向上が期待できる。
【0058】
(絶縁性樹脂バインダの厚み)
絶縁性樹脂バインダ3の厚みLaは、好ましくは1μm以上60μm以下、より好ましくは1μm以上30μm以下、さらに好ましくは2μm以上15μm以下である。また、絶縁性樹脂バインダ3の厚みLaは、導電粒子2の平均粒子径Dとの関係では、それらの比(La/D)が0.6〜10が好ましい。絶縁性樹脂バインダ3の厚みLaが大き過ぎると異方性導電接続時に導電粒子が位置ズレしやすくなり、端子における導電粒子の捕捉性が低下する。この傾向はLa/Dが10を超えると顕著である。そこでLa/Dは8以下がより好ましく、6以下が更により好ましい。反対に絶縁性樹脂バインダ3の厚みLaが小さすぎてLa/Dが0.6未満となると、導電粒子を絶縁性樹脂バインダ3によって所定の粒子分散状態あるいは所定の配列に維持することが困難となる。特に、接続する端子が高密度COGの場合、絶縁性接着層4の層厚Laと導電粒子2の粒子径Dとの比(La/D)は、好ましくは0.8〜2である。
【0059】
(絶縁性樹脂バイダにおける導電粒子の埋込態様)
絶縁性樹脂バインダ3における導電粒子2の埋込状態については特に制限がないが、異方性導電フィルムを対向する部品の間で挟持し、加熱加圧することにより異方性導電接続を行う場合、図5図6に示すように、導電粒子2を絶縁性樹脂バインダ3から部分的に露出させ、隣接する導電粒子2間の中央部における絶縁性樹脂バインダの表面3aの接平面3pに対して導電粒子2の露出部分の周りに凹み3bが形成されているか、又は図7に示すように、絶縁性樹脂バインダ3内に押し込まれた導電粒子2の直上の絶縁性樹脂バインダ部分に、前記と同様の接平面3pに対して凹み3cが形成され、導電粒子2の直上の絶縁性樹脂バインダ3の表面にうねりが存在するようにすることが好ましい。導電粒子2が対向する電子部品の電極間で挟持されて加熱加圧される際に生じる導電粒子2の扁平化に対し、図5に示した凹み3bがあることより、導電粒子2が絶縁性樹脂バインダ3から受ける抵抗が、凹み3bが無い場合に比して低減する。このため、対向する電極間において導電粒子2が挟持され易くなり、導通性能も向上する。また、絶縁性樹脂バインダ3を構成する樹脂のうち、導電粒子2の直上の樹脂の表面に凹み3c(図7)が形成されていることにより、凹み3cが無い場合に比して加熱加圧時の圧力が導電粒子2に集中し易くなり、電極において導電粒子2が挟持され易くなり、導通性能が向上する。
【0060】
上述の凹み3b、3cの効果を得やすくする点から、導電粒子2の露出部分の周りの凹み3b(図5図6)の最大深さLeと導電粒子2の平均粒径Dとの比(Le/D)は、好ましくは50%未満、より好ましくは30%未満、さらに好ましくは20〜25%であり、導電粒子2の露出部分の周りの凹み3b(図5図6)の最大径Ldと導電粒子2の平均粒子径Dとの比(Ld/D)は、好ましくは150%以下、より好ましくは100〜130%であり、導電粒子2の直上の樹脂における凹み3c(図7)の最大深さLfと導電粒子3の平均粒子径Dとの比(Lf/D)は、0より大きく、好ましくは10%未満、より好ましくは5%以下である。
【0061】
なお、導電粒子2の露出部分の径Lcは、導電粒子2の平均粒径D以下とすることができ、導電粒子2の頂部2tの1点で露出するようにしてもよく、導電粒子2が絶縁性樹脂バインダ3内に完全に埋まり、径Lcがゼロとなるようにしてもよい。フィラーPの絶縁性樹脂層への埋め込みを、フィラーPの絶縁性樹脂層への押し込みにより行っている場合のフィラーの位置調整の容易性の点からは、径Lcを15%以内とすることが好ましい。
【0062】
(絶縁性樹脂バインダの厚さ方向における導電粒子の位置)
上述の凹み3bの効果を得やすくする点から、接平面3pからの導電粒子2の最深部の距離(以下、埋込量という)Lbと、導電粒子2の平均粒径Dとの比(Lb/D)(以下、埋込率という)は60%以上105%以下であることが好ましい。
【0063】
(絶縁性接着層)
本発明の異方性導電フィルムでは、導電粒子2を配置させている絶縁性樹脂バインダ3上に絶縁性接着層4が積層されていてもよい。
【0064】
絶縁性樹脂バインダ3に上述の凹み3bが形成されている場合、図8に示す異方性導電フィルム1dのように、絶縁性接着層4は、絶縁性樹バインダ3に凹み3bが形成されている面に積層されてもよく、図9に示す異方性導電フィルム1eのように、凹み3bが形成されている面と反対側の面に積層されてもよい。絶縁性樹脂バインダ3に凹み3cが形成されている場合も同様である。絶縁性接着層4の積層により、異方性導電フィルムを用いて電子部品を異方性導電接続するときに、電子部品の電極やバンプによって形成される空間を充填し、接着性を向上させることができる。
【0065】
なお、絶縁性接着層4を絶縁性樹脂バインダ3に積層する場合、絶縁性接着層4が凹み3b、3cの形成面上にあるか否かに関わらず、絶縁性接着層4がツールで加圧するICチップ等の電子部品側にある(言い換えると、絶縁性樹脂バインダ3がステージに載置される基板等の電子部品側にある)ことが好ましい。このようにすることで、導電粒子の不本意な移動を避けることができ、捕捉性を向上させることができる。
【0066】
絶縁性接着層4は、公知の異方性導電フィルムにおいて絶縁性接着層として使用されているものと同様とすることができ、上述した絶縁性樹脂バインダ3と同様の樹脂を用いて粘度をより低く調整したものとしてもよい。絶縁性接着層4と絶縁性樹脂バインダ3との最低溶融粘度は、差があるほど電子部品の電極やバンプによって形成される空間が絶縁性接着層4で充填されやすくなり、電子部品同士の接着性を向上させる効果が期待できる。また、この差があるほど異方性導電接続時に絶縁性樹脂バインダ3を構成する樹脂の移動量が相対的に小さくなるため、端子における導電粒子の捕捉性が向上しやすくなる。実用上は、絶縁性接着層4と絶縁性樹脂バインダ3との最低溶融粘度比は、好ましくは2以上、より好ましくは5以上、さらに好ましくは8以上である。一方、この比が大きすぎると長尺の異方性導電フィルムを巻装体にした場合に、樹脂のはみだしやブロッキングが生じる虞があるので、実用上は15以下が好ましい。絶縁性接着層4の好ましい最低溶融粘度は、より具体的には、上述の比を満たし、かつ3000Pa・s以下、より好ましくは2000Pa・s以下であり、特に100〜2000Pa・sである。
【0067】
絶縁性接着層4の形成方法としては、絶縁性樹脂バインダ3を形成する樹脂と同様の樹脂を含むコーティング組成物を塗布法により成膜し乾燥させることや、更に硬化させることにより、あるいは予め公知の手法によりフィルム化することにより形成することができる。
【0068】
絶縁性接着層4の厚みは、特に限定はされないが、好ましくは4〜20μmである。もしくは、導電粒子径に対して、好ましくは1〜8倍である。
【0069】
また、絶縁性樹脂バインダ3と絶縁性接着層4を合わせた、積層された異方性導電フィルム全体の最低溶融粘度は、絶縁性樹脂バインダ3と絶縁性接着層4の厚みの比率にもよるが、実用上は8000Pa・s以下としてもよく、バンプ間への充填を行い易くするためには200〜7000Pa・sであってもよく、好ましくは、200〜4000Pa・sである。
【0070】
(第3の絶縁性樹脂層)
絶縁性接着層4と絶縁性樹脂バインダ3を挟んで反対側に第3の絶縁性樹脂層が設けられていてもよい。例えば、第3の絶縁性樹脂層をタック層として機能させることができる。絶縁性接着層4と同様に、電子部品の電極やバンプによって形成される空間を充填させるために設けてもよい。
【0071】
第3の絶縁性樹脂層の樹脂組成、粘度及び厚みは、絶縁性接着層4と同様でもよく、異なっていても良い。絶縁性樹脂バインダ3と絶縁性接着層4と第3の絶縁性樹脂層を合わせた異方性導電フィルムの最低溶融粘度は特に制限はないが、8000Pa・s以下としてもよく、200〜7000Pa・sであってもよく、200〜4000Pa・sとすることもできる。
【0072】
更に、絶縁性樹脂バインダ3だけでなく絶縁性接着層4にも、必要に応じてシリカ微粒子、アルミナ、水酸化アルミニウム等の絶縁性フィラーを加えてもよい。絶縁性フィラーの配合量は、それらの層を構成する樹脂100質量部に対して3質量部以上40質量部以下とすることが好ましい。これにより、異方性導電接続の際に異方性導電フィルムが溶融しても、溶融した樹脂で導電粒子が不用に移動することを抑制することができる。
【0073】
<異方性導電フィルムの製造方法>
(製造方法の概要)
本発明では、まず、絶縁性バインダに導電粒子が規則的に配置されている異方性導電フィルムの広幅の原反を入手し、もしくは作製し、次に、その異方性導電フィルムの原反における導電粒子の規則的な配置に対する抜けを調べ、規則的な配置に対して導電粒子が連続して所定数以上抜けている規格外の箇所が、接続を担う領域として使用されないようにするため、規格外の箇所を含む領域を除外するように広幅の原反を所定幅の異方性導電フィルムに裁断する(第1の態様)。あるいは、規格外の箇所がフィルムの短手方向の意図した位置になるように、広幅の原反を所定幅で長さ方向に裁断する(第2の態様)。また、第1の態様において規格外の箇所を除去した後の異方性導電フィルム(即ち、残余の異方性導電フィルム同士、あるいは規格外の箇所を除去したあとの別個の異方性導電フィルム同士)を繋ぎ合わせ、長さ5m以上の異方性導電フィルムを製造してもよい。
【0074】
ここで、上述の領域を除去する前の当初の異方性導電フィルムの作製方法には特に制限はない。例えば、導電粒子を所定の配列に配置するための転写型を製造し、転写型の凹部に導電粒子を充填し、その上に、剥離フィルム上に形成した絶縁性樹脂バインダ3を被せ圧力をかけ、絶縁性樹脂バインダ3に導電粒子2を押し込むことにより、絶縁性樹脂バインダ3に導電粒子2を転着させる。あるいはさらにその導電粒子2上に絶縁性接着層4を積層する。こうして、異方性導電フィルムを得ることができる。
【0075】
また、転写型の凹部に導電粒子を充填した後、その上に絶縁性樹脂バインダを被せ、転写型から絶縁性樹脂バインダの表面に導電粒子を転写させ、絶縁性樹脂バインダ上の導電粒子を絶縁性樹脂バインダ内に押し込むことにより異方性導電フィルムを製造してもよい。この押し込み時の押圧力、温度等により導電粒子の埋込量(Lb)を調整することができる。また、凹み3b、3cの形状及び深さを、押し込み時の絶縁性樹脂バインダの粘度、押込速度、温度等により調整することができる。例えば、絶縁性樹脂バインダの表面に図5に示した凹部3bを有する異方性導電フィルム1aを製造する場合や図7に示した凹み3cを有する異方性導電フィルム1cを製造する場合、凹みの形状や深さなどに応じて、絶縁性樹脂バインダの60℃における粘度の下限は好ましくは3000Pa・s以上、より好ましくは4000Pa・s以上、さらに好ましくは4500Pa・s以上であり、上限は、好ましくは20000Pa・s以下、より好ましくは15000Pa・s以下、更に好ましくは10000Pa・s以下である。また、押し込み時の温度は40〜80℃、より好ましくは50〜60℃で得られるようにする。
【0076】
なお、転写型としては、凹部に導電粒子を充填するもの他、凸部の天面に微粘着剤を付与してその天面に導電粒子が付着するようにしたものを用いても良い。
これらの転写型は機械加工、フォトリソグラフィ、印刷法等の公知の技術を用いて製造することができる。
また、導電粒子を所定の配列に配置する方法としては、転写側を用いる方法に代えて、二軸延伸フィルムを用いる方法等を使用してもよい。
【0077】
(抜け領域に対する対応)
本発明の異方性導電フィルムの製造方法の第1の態様では、個々のバンプ面積が比較的小さい接続構造体(COGなど、接続する端子配列が離隔して存在する一例でもある)に使用する異方性導電フィルムであっても個々のバンプ面積が比較的大きい接続構造体(FOGなど、接続する有効面積の長辺がフィルム幅と同一となる、端子配列が離隔して存在していないものの一例)に使用する異方性導電フィルムであっても、導電粒子が平面視にて規則的に配置されているもの、好ましくは、平面視にて導電粒子が互いに離間し、かつ規則的に配置されているものにおいて、導電粒子が規則的に配置されている領域(規則配置領域)から、導電粒子が抜けている箇所が所定数連続している規格外の箇所を除去する。言い換えると、抜けている箇所が接続後の導通安定性に問題を生じさせない範囲が点在しているに過ぎない領域は規格内領域とし、除去の対象としない。この問題を生じさせない範囲は、接続対象物により異なるが、一例として異方性導電フィルムをFOGに使用する場合、導電粒子が連続して1〜20個、場合により1〜209個抜けていても導通安定性に問題は生じ難い。ここで、導電粒子の連続抜け個数である209個という数字には、次に説明するような意味がある。即ち、異方性導電フィルムの幅が2mmで接続すべき端子幅が200μmという一般的に接続面積が広めとされるFOGの異方性導電接続条件(接続面積0.4μm2)において、15個×15個の四方格子で導電粒子を配置しようとした場合には、理想的には225個の導電粒子が接続面積0.4μm2中に存在することになるが、仮に209個の導電粒子が抜けたとしても、接続面積0.4μm2中に最低捕捉数として16個の導電粒子が端子内領域に存在することを意味する。ここで、捕捉される導電粒子数の16は、後述する捕捉される好ましい数値の下限である11個および20個の中間の値として設定している。そのため、導通の安定性が確保されやすくなる条件を見出すのに適した数値であると考える。このように、格子配列軸上の導電粒子個数(上記のように、この場合の格子配列軸の導電粒子個数は15個)よりも、捕捉される導電粒子が多くなる(この場合は16個)ということは、一つの端子において捕捉される導電粒子の個数が、ある方向の格子軸の全数よりも多いということになるので、捕捉された導電粒子は少なくとも2つの同一方向の配列軸に存在することになる。このように、少なくとも2つの格子軸に配置された導電粒子が捕捉されているということは、端子に捕捉された導電粒子の位置はある程度は離間していることが予想されるので、押圧のバランスを比較することができる。即ち、接続時の導電粒子の押し込みの良否を判定する条件が整う。なお、COGに使用する場合、連続して抜けている個数が1〜20個であれば導通安定性に問題が生じ難く、15個以下、特に10個以下であれば更に問題が生じ難い。
【0078】
なお、規格内領域内の抜けについて、規格内領域にも接続に支障をきたさない程度の許容できる抜けがあってもよく、このような許容できる抜けの大きさは、端子と端子間スペースを基準に判別できる。上述した連続して抜けている個数で判定する以外の手法となる。例えば、フィルムの長手方向(端子の幅方向)における抜けは、端子と端子間スペースの合計以下(即ち、抜けが2個の端子に跨らないようにすること)が好ましく、また、フィルム短手方向(端子の長手方向)で抜けが端子長の50%より大きい距離を取って抜けが離間していることが好ましい。このようにすると、少なくとも端子長の50%未満の領域で捕捉可能な導電粒子が存在することになる。抜けがこのようになれば、一般的な異方性接続においては、導通性能は許容できることが期待できる。なお、このような抜けを想定する場合、抜けの大きさは、フィルム長手方向及びフィルム短手方向のそれぞれに平行な方向における最長の導電粒子間距離による矩形として考えればよい。このように考えた場合、COGなどのファインピッチ端子に適用する場合の許容できる抜けの大きさは、一例としてはフィルム長手方向(端子の幅方向)に好ましくは80μm以下、より好ましくは30μm以下、更により好ましくは10μm以下となる。また、フィルム短手方向(端子の長手方向)では、端子長に50%以上捕捉される領域が残っていることが望ましいことから、一例として、好ましくは100μm以下、より好ましくは50μm以下、更により好ましくは40μm以下となる。また、端子幅の広いFOGの場合は、フィルム長手方向(端子幅方向)に好ましくは400μm以下、より好ましくは200μm以下となる。フィルム短手方向は有効接続面積となるので、フィルム短手方向の50%以下、好ましくは30%以下となる。端子レイアウトによっては、上記の数値を適宜組み合わせてもよい。本発明は一般的なCOGやFOGに限定されるものではないためである。
【0079】
図1に示すように、抜けている箇所2Xが連続せずに独立的に存在しているか、あるいは抜けている箇所2Xが所定数未満で繋がっている場合は点在に含まれる。これに対し、抜けている箇所2Xが所定数以上で連続している部分2Yがあり、これを規格外の箇所として除去するとき、異方性導電フィルムを長手方向に截断し、その部分2Yを含む帯状の領域Rを除去する。なお、図1では抜けが連続して3個存在する領域を規格外の箇所としているが、この個数はあくまでも一例である。
【0080】
かかる抜けの有無は、光学顕微鏡や金属顕微鏡、CCDカメラなどの撮像装置を用いて観察することができる。また、異方性導電フィルム1Aにおける導電粒子の分散状態を撮像装置と画像解析処理システム(例えば、WinROOF、三谷商事(株))を組み合わせて用いて検査することにより発見することができ、その位置を特定することができる。なお、撮像装置としては、一例として最大出力画素数(H)×(V)が648×494、フレームレートが30〜60fpsのものを適用できる。
【0081】
個々のバンプ面積が比較的大きい接続構造体(FOGなど)用の異方性導電フィルムでは、図3に示したように、異方性導電フィルム1Cの全幅Wで長さが異方性導電フィルムの長手方向に200μmの任意の領域Sにおいて導電粒子が10個以上存在するように、言い換えると異方性導電フィルムの全長における任意の位置において長さ200μmの範囲には10個以上の導電粒子が存在する全幅Wとなるように原反を裁断することが好ましい。一般的なFOGの接続では、バンプ幅が最大で200μm程度のためである。なお、一般的なFOGの接続におけるバンプ長(もしくは接続におけるツール幅)は0.3〜4mmであるから、この場合の異方性導電フィルムの裁断後の全幅Wは4mm以内とすることが好ましい。
【0082】
領域Sに存在させる導電粒子のより好ましい個数は、接続の信頼性を高めるために端子に捕捉される導電粒子の個数を多くする点からは、11個以上、さらに好ましくは20個以上である。上限は特に制限はない。ただし、領域Sに存在する導電粒子の数が過度に多いことにより、異方性導電接続時に端子における導電粒子の捕捉数が多すぎると、異方性導電接続で使用する押圧治具に必要な推力も過度に増すことになる。その場合、連続して異方性接続することにより得られた個々の異方性接続構造体同士で押し込みの程度が過度に異なることが懸念される。そのため、領域Sに存在させる導電粒子の個数は50個以下が好ましく、40個以下であることがより好ましく、35個以下であることがさらに好ましい。
【0083】
一方、本発明の異方性導電フィルムの製造方法の第2の態様では、個々のバンプ面積が比較的小さい接続構造体(COGなど)用の異方性導電フィルムでは、規則的な配置に対して導電粒子の抜けている箇所2Xが所定数以上連続している規格外の箇所が異方性導電フィルム1Aの短手方向の端部1Pに存在しないように原反を裁断し、裁断後の異方性導電フィルムの端部1Pには導電粒子の抜けはあるとしても規格外の箇所は存在しないこと、好ましくは所定の配置に導電粒子2が存在することを確保してもよい。
【0084】
ここで、異方性導電フィルム1Aの短手方向の幅の端部1Pは、異方性導電フィルム1Aの短手方向の幅の20%以内とすることが好ましく、30%以内とすることがより好ましい。通常、異方性導電フィルムを用いた電子部品の接続では、異方性導電フィルムの長手方向に延びた縁辺から、短手方向の幅の20%以内の帯状領域、より確実には30%以内の帯状領域に電子部品の端子列が存在するためである。なお、この端部1Pの大きさは、接続する電子部品の端子のレイアウトに応じて左右の端部で異なっていても良い。
【0085】
また、図4に示すように、COG接続するICチップ等の電子部品12においてバンプ(端子)10が2列に並んでいる場合において、この接続に使用する異方性導電フィルム1に、導電粒子が規則的に配置されている領域(規則配置領域)内に、導電粒子が連続して所定数以上抜けている規格外の箇所が存在しても、規格外の箇所が存在しない規格内領域Qが異方性導電フィルム1の短手方向の所定幅で異方性導電フィルム1の長手方向の所定長で形成されている場合には、その規格内領域Qを端子列11にアライメントする。言い換えると、異方性導電フィルム1に含まれる、規格外の箇所を含む領域Rを、2列の端子列11の間の領域(即ち、接続すべき端子が存在しない領域)にアライメントし、対向する電子部品12同士を異方性導電フィルム1で異方性導電接続する。本発明は、このようなアライメントにより異方性導電接続した接続構造体も包含する。なお、図4中、電子部品12の端部からバンプ10の内側端までの距離である。この距離が規格内領域Qの幅と重なることが好ましい。アライメント方法としては、COGの場合はフィルムをガラスに貼り合せる際に、ガラスを載置したステージを移動させて行ってもよく、フィルム側を移動させて行ってもよい。このアライメント方法は、COGの場合に限られず、FOGやその他の接続構造体の製造にも応用できる。本発明はこのような工程を含む接続構造体の製造方法を包含する。
【0086】
より具体的には、通常、個々の端子10の長手方向の長さL10は、一般的には30〜300μmであり、2列の端子列11の間の距離L11の範囲は複数列のバンプがある(例えば、3列の千鳥配列)、外形の短手が比較的小さいICチップ等の小さい電子部品では100〜200μm、外形の短手が比較的長いICチップ等の大きい電子部品では1000〜2000μmとなる。したがって、異方性導電フィルム1において、規格外の箇所を含む領域Rの幅LRが、隣り合う端子列11間の距離L11の幅以内であり、規格内領域Qの幅LQが端子10の長手方向の長さL10を有していればCOG接続に問題が生じず、また、異方性導電フィルムの領域Rの幅LRが端子列間の距離L11を上回り、領域Rが端子列11と部分的に重なっても、異方性導電接続により個々の端子10で捕捉される導電粒子が好ましくは10個以上、より好ましくは13個以上であれば実用上問題がない。例えば、端子10の大きさが100μ×20μm、端子列11の間隔L11が1000μmであり、異方性導電フィルム1の規格内領域Qにおける導電粒子の個数密度が32000個/mm2のとき、異方性導電フィルムの領域Rが端子10と重なっても、その重なり幅が端子10の長さL10の50%以内であれば実用上問題なくCOG接続することができる。
【0087】
(異方性導電フィルムの裁断)
本発明の異方性導電フィルムの製造方法では、異方性導電フィルムの生産性を高めるため、ある程度広い幅で異方性導電フィルムの長尺体を作成し、その後に前述した検査方法で導電粒子の抜けを確認し、好ましくは凝集などの不良部位も確認し、それらが所定幅の異方性導電フィルムに含まれないように裁断するか、あるいは、抜けのある箇所や凝集などの不良部位を異方性導電フィルム内に含めたまま、それらの位置が異方性導電フィルムの短手方向の意図した位置になるように所定幅の異方性導電フィルムに裁断することにより、実質的に抜けが問題とならない異方性導電フィルムを製造する。この異方性導電フィルムの製造工程では、不良箇所を記録するためにマーキングしてもよい。
【0088】
(異方性導電フィルムのつなぎ合わせ)
本発明の異方性導電フィルムの製造方法では、所定の抜け部分を含む領域を切除した後の残りの異方性導電フィルムをつなぎ合わせ、抜けが含まれていても実用上抜けが問題にならない異方性導電フィルムとして提供することもできる。
【0089】
本発明によれば、リールに巻かれた、長さ5m以上5000m以下の長尺の異方性導電フィルムの全長にわたり、長手方向に所定数以上の連続した抜けがない異方導電性フィルムを安価に得ることができ、特にCOG用には、長さ5m以上5000m以下の長尺の異方性導電フィルムの全長にわたり、フィルムの短手方向の幅の端部1Pに導電粒子の抜けが存在しない異方性導電フィルムを得ることができる。
【0090】
<接続構造体>
本発明の異方導電性フィルムは、FPC、ICチップ、ICモジュールなどの第1電子部品と、FPC、リジッド基板、セラミック基板、ガラス基板、プラスチック基板などの第2電子部品とを熱又は光により異方導電性接続する際に好ましく適用することができる。また、ICチップやICモジュールをスタックして第1電子部品同士を異方導電性接続することもできる。このようにして得られる接続構造体も本発明の一部である。
【0091】
異方導電性フィルムを用いた電子部品の接続方法としては、例えば、異方導電性フィルムのフィルム厚方向で導電粒子が近くに存在する側の界面を配線基板などの第2電子部品に仮貼りし、仮貼りされた異方性導電フィルムに対し、ICチップなどの第1電子部品を搭載し、第1電子部品側から熱圧着することが、接続信頼性を高める点から好ましい。また、光硬化を利用して接続することもできる。なお、この接続では接続作業効率の点から、電子部品の端子10の長手方向を異方導電性フィルム1A、1Bの短手方向に合わせることが好ましい。
【実施例】
【0092】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例により
限定されるものではない。
【0093】
<COG用転写体原盤の作製>
まず、実施例で使用する原盤を以下のとおり作成した。即ち、厚さ2mmのニッケルプレートを用意し、その50cm四方の領域に、六方格子パターンで円柱状の凸部(外径4μm、高さ4μm、中心間距離6μm)を形成し、凸部の面密度が32000個/mm2となる転写体原盤とした。
【0094】
(フィルム状原盤の作製)
次に、50cm幅で50μm厚のポリエチレンテレフタレート基材フィルムを用意し、その基材フィルムに、アクリレート樹脂(M208、東亞合成(株))100質量部と光重合開始剤(IRGACURE184、BASFジャパン(株))2質量部とを含有する光硬化性樹脂組成物を、膜厚が30μmとなるように塗布した。
【0095】
得られた光硬化性樹脂組成物膜に対し、ニッケル製の転写体原盤をその凸面から押圧し、高圧水銀灯(1000mJ)で、基材フィルム側から光照射を行うことにより、転写体原盤の凸部が凹部として転写された光硬化樹脂層が形成された。この操作を基材フィルムの長手方向に位置合わせしながら連続して繰り返すことにより、転写体原盤の凸部が凹部として転写された約10mのフィルム状原盤が得られた。得られたフィルム状原盤には、転写体原盤の凸部パターンに対応した凹部が六方格子状に配列されていた。
【0096】
得られたフィルム状原盤の任意の1mm2の領域を1000箇所選択し、各領域内の凹部の数を光学顕微鏡で計測した。そして、各領域で計測された個数の総数を領域の総面積で除算することで、凹部の面密度を算出した。この結果、凹部の面密度は、転写体原盤の凸部パターンの面密度と同じ32000個/mm2であった。
【0097】
<COG対応の異方性導電フィルムの作成>
(フィルム状原盤への導電粒子の充填)
【0098】
導電粒子として、金属被覆樹脂粒子(積水化学工業(株)、AUL703、平均粒子径3μm)を用意し、この導電粒子をフィルム状原盤の表面に複数回散布し、ついで、導電粒子を布でワイプすることで、長さ方向に30cmで裁断したフィルム状原盤の凹部に導電粒子を充填した。裁断箇所は、始点終点および始点終点の中間部を含む3箇所の計5箇所である。ここで、この樹脂型に充填されない導電粒子が存在するようにするため、散布する導電粒子の個数や、散布の回数などを調整することで、導電粒子が所定の抜けの状態になるような領域が得られるようにした。
【0099】
(絶縁性樹脂層用フィルム及び第2絶縁性樹脂層用フィルムの作成)
COG用に適した樹脂配合を決定するために、表1に示す配合の樹脂組成物を混合し、剥離処理したPETフィルムに塗布し、乾燥することにより、絶縁性バインダA1〜A4から絶縁性樹脂層用フィルム(厚み4μm)及び絶縁性バインダBから第2絶縁性樹脂層用フィルム(厚み14μm)を20×30cmのサイズでそれぞれ作成した。
【0100】
【表1】
【0101】
(導電粒子の絶縁性樹脂層への転写)
導電粒子が所定の条件で充填された裁断したフィルム状原盤の上に、上述の絶縁性樹脂層用フィルムを長手方向の長さを一致するようにし、幅方向はフィルム状原盤の中央部付近を含むように位置合わせして被せ、60℃、0.5MPaで押圧することにより導電粒子を転写させた。そして、フィルム状原盤から絶縁性樹脂層用フィルムを剥離し、絶縁性樹脂層用フィルム上の導電粒子を、加圧(押圧条件:60〜70℃、0.5Mpa)することで絶縁性樹脂層用フィルムに押し込み、更に、第2絶縁性樹脂層用フィルムを導電粒子転写面にかぶせ積層し、これを裁断したフィルム状原盤5点で行うことにより、導電粒子が図8に示す状態で埋め込まれた異方性導電フィルム(ACF1〜ACF4)を作製した。この場合、導電粒子の埋め込みは、押し込み条件でコントロールした。このように作成した、長手方向に30cmに裁断したフィルム状原盤5点を一セットとして導電粒子の埋め込み状態を観察したところ、埋め込まれた導電粒子の露出部分の周り又は埋め込まれた導電粒子の直上には表2に示すように凹みが、一セットで全て観察された。また、ACF4は、導電粒子の押し込みを行うとフィルム形状を維持できないものであった。従って、COG用には、ACF1〜3を適用できることが分かった。なお、導電粒子の埋込状態は絶縁性バインダBを積層する前に確認した。また、ACF1〜3について、CCDイメージセンサーで取得した画像を画像解析ソフト(WinROOF、三谷商事(株))を用いて導電粒子の抜けを観察し確認した。その結果、フィルムの長さ方向の抜けが連続した5個以下(粒子間距離の最大長33μm以内、後述するバンプ幅とバンプ間ギャップの合計38μmより小さい)、幅方向で7個以下(粒子間距離の最大長45μm以内)が組み合わさった抜けが複数存在していた。このフィルム長さ方向33μm×フィルム幅方向38μmの矩形領域を許容できる抜けと見なすことができる。従って、これよりも各寸法が小さいものは許容できる抜けであると認められる。なお、幅方向の抜けはバンプ長さ50μm以上に離間して存在していた。
【0102】
【表2】
【0103】
(導電粒子の抜けを勘案したCOG用異方性導電フィルムの作製)
次に、表3に示した実施例1〜4及び比較例1の「導電粒子抜け状態(図4、10参照:LQ[μm]、LR[μm]、LQ/W[%]、LR/W[%])が反映されるように、1.8mm幅でスリットした。なお、得られなかった場合は、導電粒子の散布量等を調整することにより、各実施例及び比較例毎にACF1〜ACF3の作製操作を繰り返すことで、それぞれ3種の異方性導電フィルムを作製した。各実施例及び比較例の異方性導電フィルムについて、LR(規格外の箇所(導電粒子が存在しない領域)の幅)の位置がフィルムの中央となるように、1.8mm幅にスリットした。ここで、規格外の箇所は、フィルム長さ方向33μmでフィルム幅方向38μmの大きさの許容できる抜けの矩形領域に対し、何れか一方の辺が大きく、導電粒子が存在しない矩形領域を含み、あるいは上記許容できる抜けの矩形領域が幅方向に50μm未満で接近している領域を含んでいる。
【0104】
【表3】
【0105】
<評価1(COGの場合)>
実施例1〜4及び比較例1のぞれぞれで作製した3種の異方導電性フィルムを用いてCOG接続して得た接続構造体の導通特性(初期導通性並びに導通信頼性)を以下のように試験・評価した。
【0106】
(初期導通性)
COG接続する電子部品として次の評価用IC(図10参照)とガラス基板を使用し、評価対象の異方導電性フィルムを、これらの評価用ICとガラス基板との間に挟み、加熱加圧(180℃、60MPa、5秒)して各評価用接続物を得た。この場合、異方導電性フィルムの長手方向とバンプの短手方向を合わせるとともに、異方性導電フィルムの一対の規格内領域がICチップの短手方向の両端部に位置するように接合した。得られた接続構造体の導通抵抗をデジタルマルチメータ(34401A、アジレント・テクノロジー(株))を用いて、4端子法(JIS K7194)で測定した。実用上、2Ω以下であることが望まれる。
(導通信頼性)
初期導通抵抗の測定に供した接続構造体を、85℃、湿度85%の恒温槽に500時間投入した後に再度導通抵抗を測定した。実用上、5Ω以下であることが望まれる。
【0107】
(評価用IC)
IC外形:1.6mm(幅)×30.0mm(長さ)×0.2mm(厚さ)
金バンプ:15μm(高)×20μm(幅)×100μm(長)
(バンプ間ギャップ18μm、金バンプはIC外形幅方向の端部に、それぞれIC外形長手方向に沿って、1000個配列している。金バンプ配列間の距離は1000μmとなる。)
【0108】
なお、図10は、評価用IC100をバンプ形成面側から見た平面図である。101がバンプであり、Gがバンプ間ギャップである。102がバンプ配列間距離を示している。点線で囲った領域A,Bに、異方性導電フィルムの規格内領域が対応し、それらに挟まれた領域Cが異方性導電フィルムの規格外の箇所(導電粒子が存在しない領域)に対応する。また、Vは、ICチップの短手方向のエッジとバンプの端部との距離を示している。
【0109】
(ガラス基板)
ガラス材質 コーニング社製1737F
外形 30mm×50mm
厚み 0.5mm
端子 ITO配線
【0110】
(評価基準)
測定に供した接続構造体について、全ての端子で初期導通抵抗が2Ω以下であり且つ導通信頼性試験後の導通抵抗が5Ω以下である場合を「良好」と評価し、それ以外(一つでも上記範囲を外れるバンプがある場合)を「不良」と評価した。得られた結果を表3に示す。
【0111】
表3に示すように、実施例1〜4のそれぞれ3種の異方性導電フィルムを用いて作製した接続構造体は、導通特性が良好であったが、比較例1の場合は、規格内領域が小さすぎたため、導通特性が不良という評価であった。
【0112】
なお、端子の一部に抜け領域がかかっていても、端子に捕捉される導電粒子が10個以上、好ましくは13個以上であれば、実用上問題はないことがわかった。抜け領域が端子配列にかかっていてもよいが、これは端子面積によって程度が変動するため、適宜調整すればよいことも分かった(実施例4)。以上の実施例から鑑みて、フィルム幅の規格内領域の割合は13%以上あればよく、20%以上が好ましく、33%以上あればより好ましいことがわかった。
【0113】
<FOG用転写体原盤及びFOG用フィルム状原盤並びにFOG対応の異方性導電フィルムの作成>
表1の絶縁性樹脂バインダに代えて表4のバインダを使用し、且つ導電粒子が所定の抜けの状態になるような条件を選択すること以外、COG対応の異方性導電フィルムの作成操作を繰り返すことにより、FOG用転写体原盤、FOG用フィルム状原盤、更に導電粒子が図8に示す状態で埋め込まれた異方性導電フィルム(ACF5〜ACF8)を作製した。この場合、導電粒子の埋め込み状態は、押し込み条件でコントロールした。その結果、埋め込まれた導電粒子の露出部分の周り又は埋め込まれた導電粒子の直上には表5に示すように凹みが観察された。これは、絶縁性バインダDを積層する前に確認した。なお、ACF8は、導電粒子の押し込みを行うとフィルム形状を維持できないものであった。従って、FOG用には、ACF5〜7を適用できることが分かった。
【0114】
また、ACF5〜7について、CCDイメージセンサーで取得した画像を画像解析ソフト(WinROOF、三谷商事(株))を用いて導電粒子の抜けを観察し確認した。その結果、フィルム長手方向(端子の幅方向)200μm以内において、10個以上導電粒子が必ず存在している程度の抜けの状態のもの(実施例5)と、1〜2個しか導電粒子が存在しない抜けの状態のもの(比較例2)を得た。
【0115】
【表4】
【0116】
【表5】
【0117】
(導電粒子の抜けを勘案したFOG用異方性導電フィルムの作製)
次に、20×30cmに裁断された5枚1セットの異方性導電フィルム(ACF5〜7)について、それぞれを幅2mmにスリットした。これらから、任意に5箇所(5枚で合計25箇所)抜き取ったフィルム20mmの領域で、フィルム長手方向200μm(端子の幅方向)において10個以上導電粒子が必ず存在したものを実施例5の異方性導電フィルムとして用意した。また、導電粒子が1又は2個の領域を有するようにする以外は同様の操作を繰り返することにより比較例2の異方性導電フィルムとして用意した。
【0118】
<評価2(FOGの場合)>
実施例5及び比較例2のそれぞれで作製した3種の異方導電性フィルムを用いてFOG接続して得た接続構造体の導通特性(初期導通性並びに導通信頼性)を以下のように試験・評価した。
【0119】
(初期導通性)
FOG接続する電子部品として次の評価用FPCとガラス基板を使用し、評価対象の異方導電性フィルムを、先に任意抜き取った25箇所がこれらの評価用FPCとガラス基板との間にくるようにそれぞれを裁断して挟み、加熱加圧(180℃、4.5MPa、5秒)して各評価用接続物を得た。この場合、異方導電性フィルムの長手方向とバンプの短手方向を合わせるように接合した。得られた接続構造体の導通抵抗をデジタルマルチメータ(34401A、アジレント・テクノロジー(株))を用いて、4端子法(JIS K7194)で測定した。実用上、2Ω以下であることが望まれる。
(導通信頼性)
初期導通抵抗の測定に供した接続構造体を、85℃、湿度85%の恒温槽に500時間投入した後に再度導通抵抗を測定した。実用上、5Ω以下であることが望まれる。
【0120】
(評価用FPC)
38μm厚のポリイミド基板にスズメッキされた8μm厚の400μmピッチのCu配線(L/S=200/200)が形成されたもの
【0121】
(ガラス基板)
ガラス材質 コーニング社製1737F
外形 30mm×50mm
厚み 0.5mm
端子 ITO配線
【0122】
(評価結果)
測定に供した接続構造体について、初期導通抵抗が2Ω以下であり且つ導通信頼性試験後の導通抵抗が5Ω以下である場合を「良好」と評価し、それ以外を「不良」と評価した。その結果、実施例5の3種の異方性導電フィルムを用いて作製した接続構造体の導通特性は良好であったが、一方、比較例2の異方性導電フィルムを用いて作製した接続構造体は、規則配置領域内に規格外領域が実施例5に比べて存在していたため、導通特性が不良という評価であった。
【産業上の利用可能性】
【0123】
本発明の異方性導電フィルムは、絶縁性樹脂バインダに導電粒子が規則的に配置されている規則配置領域を有し、長さが5m以上もある。しかも規則配置領域内に、導電粒子が連続して所定数以上抜けている箇所が存在しない規格内領域が、異方性導電フィルムの短手方向の所定幅で、異方導電性フィルムの長手方向に所定長以上で存在する。このため、導電粒子の所定の規則的配置に対して抜けが存在した場合であっても、抜けの無い異方性導電フィルムと略同様に異方性導電接続に供することができる。低コストの異方性導電接続用の接合部材として有用である。
【符号の説明】
【0124】
1A、1B、1C 異方性導電フィルム
1P 異方性導電フィルムの短手方向の幅の端部
2、2a、2b、2c、2d 導電粒子
2t 導電粒子の頂部
2X 導電粒子の抜け
2Y 抜けが連なっている部分
3 絶縁性樹脂バインダ
3a 隣接する導電粒子間の中央部における絶縁性樹脂バインダの表面
3b、3c 凹み
3p 接平面
4 絶縁性接着層
5 繰り返しユニット
10 バンプ、端子
11 端子列
12 電子部品
D 導電粒子の平均粒子径
L1 格子軸
La 絶縁性樹脂バインダの厚み
Q 規格内領域
R 規格外の箇所を含む領域
S 任意の領域
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10