【解決手段】眼科装置は、測定光学系、固視光学系、移動機構、制御部、設定部、算出部、及び選択部を含む。測定光学系は、眼底からの測定光の戻り光から複数の集束光を生成し、複数の集束光を受光して点像群を検出する。固視光学系は被検眼に固視標を呈示する。移動機構は遠近方向に固視標を移動する。制御部は遠近方向の複数の位置のそれぞれにおいて測定光学系に点像群を検出させる。設定部は複数の点像群のそれぞれから2以上の部分点像群を設定する。算出部は部分点像群に基づいて眼屈折力値を求める。選択部は部分点像群ごとの眼屈折力値の遠近方向における変化に基づいて2以上の部分点像群の1つを選択する。算出部は選択部により選択された部分点像群に基づいて眼屈折力値を求める。
【発明を実施するための形態】
【0010】
この発明に係る眼科装置の実施形態の例について、図面を参照しながら詳細に説明する。なお、この明細書において引用された文献の記載内容や任意の公知技術を、以下の実施形態に援用することが可能である。
【0011】
<眼科装置>
実施形態に係る眼科装置は、任意の自覚検査及び任意の他覚測定の少なくとも一方を実行可能である。自覚検査では、被検者に情報(視標など)が呈示され、その情報に対する被検者の応答に基づいて結果が取得される。自覚検査には、遠用検査、近用検査、コントラスト検査、グレアー検査等の自覚屈折測定や、視野検査などがある。他覚測定では、被検眼に光を照射し、その戻り光の検出結果に基づいて被検眼に関する情報が取得される。他覚測定には、被検眼の特性を取得するための測定と、被検眼の画像を取得するための撮影とが含まれる。他覚測定には、他覚屈折測定、角膜形状測定、眼圧測定、眼底撮影、光コヒーレンストモグラフィ(Optical Coherence Tomography:以下、OCT)を用いた断層像撮影(OCT撮影)、OCTを用いた計測等がある。
【0012】
以下、実施形態に係る眼科装置は、自覚検査として、遠用検査、近用検査などを実行可能であり、且つ、他覚測定として、波面収差計測による他覚屈折測定、角膜形状測定などを実行可能な装置であるものとする。しかしながら、実施形態に係る眼科装置の構成は、これに限定されるものではない。
【0013】
[構成]
実施形態に係る眼科装置は、ベースに固定された顔受け部と、ベースに対して前後上下左右に移動可能な架台とを備えている。架台には、被検眼の検査(測定)を行うための光学系が収納されたヘッド部が設けられている。検者側の位置に配置された操作部に対して操作を行うことにより、顔受け部とヘッド部とを相対移動することができる。また、眼科装置は、後述のアライメントを実行することにより顔受け部とヘッド部とを自動で相対移動することができる。
【0014】
図1に、実施形態に係る眼科装置の光学系の構成例を示す。眼科装置は、被検眼Eの検査を行うための光学系として、Zアライメント系1、XYアライメント系2、ケラト測定系3、視標投影系4、観察系5、収差測定投影系6、及び収差測定受光系7を含む。また、眼科装置は処理部9を含む。
【0015】
(処理部9)
処理部9は、眼科装置の各部を制御する。また、処理部9は、各種演算処理を実行可能である。処理部9はプロセッサを含む。プロセッサの機能は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路により実現される。処理部9は、例えば、記憶回路や記憶装置に格納されているプログラムを読み出し実行することで、実施形態に係る機能を実現する。
【0016】
(観察系5)
観察系5は、被検眼Eの前眼部を動画撮影する。被検眼Eの前眼部からの光(赤外光)は、対物レンズ51を通過し、ダイクロイックミラー52を透過し、絞り53の開口を通過する。絞り53の開口を通過した光は、ハーフミラー22を透過し、リレーレンズ54を通過し、結像レンズ55に導かれる。結像レンズ55は、リレーレンズ54から導かれた光をエリアセンサー56の受光面に結像する。エリアセンサー56の受光面は、被検眼Eの瞳孔と光学的に略共役な位置に配置されている。エリアセンサー56は、所定のレートで撮像及び信号出力を行う。エリアセンサー56の出力(映像信号)は処理部9に入力される。処理部9は、この映像信号に基づく前眼部像E’を表示部10の表示画面10aに表示させる。前眼部像E’は、例えば赤外動画像である。観察系5は、前眼部を照明するための照明光源を含んでいてもよい。
【0017】
(Zアライメント系1)
Zアライメント系1は、観察系5の光軸方向(前後方向、Z方向)におけるアライメントを行うための光(赤外光)を被検眼Eに照射する。Zアライメント光源11から出力された光は、被検眼Eの角膜Kに照射され、角膜Kにより反射され、結像レンズ12に導かれる。結像レンズ12は、導かれてきた光をラインセンサー13の受光面に結像する。角膜頂点の位置が前後方向に変化すると、ラインセンサー13に対する光の投影位置が変化する。ラインセンサー13の出力は処理部9に入力される。処理部9は、ラインセンサー13に対する光の投影位置に基づいて被検眼Eの角膜頂点の位置を求め、これに基づきZアライメントを実行する。
【0018】
(XYアライメント系2)
XYアライメント系2は、観察系5の光軸に直交する方向(左右方向(X方向)、上下方向(Y方向))のアライメントを行うための光(赤外光)を被検眼Eに照射する。XYアライメント系2は、ハーフミラー22により観察系5から分岐された光路に設けられたXYアライメント光源21を含む。XYアライメント光源21から出力された光は、リレーレンズ23を通過し、ハーフミラー22により反射される。ハーフミラー22により反射された光は、観察系5の光軸上の対物レンズ51の前側焦点位置で集光された後、ダイクロイックミラー52を透過し、対物レンズ51により平行光とされ、被検眼Eの角膜Kに照射される。角膜Kの表面で反射した光は、被検眼Eの角膜表面の反射焦点位置近傍にプルキンエ像を形成する。XYアライメント光源21は、対物レンズ51の焦点位置と光学的に略共役な位置に配置されている。角膜Kによる反射光は、観察系5を通じてエリアセンサー56に導かれる。エリアセンサー56の受光面には、XYアライメント光源21から出力された光のプルキンエ像(輝点)による像Brが形成される。
【0019】
処理部9は、
図1に示すように、輝点像Brを含む前眼部像E’とアライメントマークALとを表示画面10aに表示させる。手動でXYアライメントを行う場合、検者は、アライメントマークAL内に輝点像Brを誘導するように光学系の移動操作を行う。自動でアライメントを行う場合、処理部9は、アライメントマークALに対する輝点像Brの変位がキャンセルされるように、光学系を移動させるための機構を制御する。
【0020】
(ケラト測定系3)
ケラト測定系3は、角膜Kの曲率を測定するためのリング状光束(赤外光)を角膜Kに投影する。ケラト板31は、対物レンズ51の近傍に配置されている。ケラト板31の背面側(対物レンズ51側)にはケラトリング光源32が設けられている。ケラトリング光源32からの光でケラト板31を照明することにより、角膜Kにリング状光束が投影される。その反射光(ケラトリング像)はエリアセンサー56により前眼部像とともに検出される。処理部9は、このケラトリング像を基に公知の演算を行うことで角膜曲率パラメータを算出する。ケラトリングに代わり多重のリングからなるプラチドリング板が配置されていてもよい。この場合、角膜の曲率だけではなく、角膜形状を測定することが可能になる。
【0021】
(視標投影系4)
視標投影系4は、固視標や自覚検査用の視標等の各種視標を被検眼Eに呈示する。視標チャート42は、処理部9からの制御を受け、視標を表すパターンを表示する。光源41から出力された光(可視光)は、視標チャート42を通過し、リレーレンズ43及びフィールドレンズ44を通過し、反射ミラー45により反射され、ダイクロイックミラー68を透過し、ダイクロイックミラー52により反射される。ダイクロイックミラー52により反射された光は、対物レンズ51を通過して眼底Efに投影される。
【0022】
光源41及び視標チャート42を含む移動ユニット46は、視標投影系4の光軸に沿って移動可能である。視標チャート42と眼底Efとが光学的に略共役となるように移動ユニット46の位置が調整される。
【0023】
視標チャート42は、処理部9からの制御を受け、被検眼Eを固視させるための固視標を表すパターンを表示することが可能である。視標チャート42において固視標を表すパターンの表示位置を順次に変更することで固視位置を移動し、視線や被検眼の調節を誘導することができる。このような視標チャート42には、液晶パネルや、EL(エレクトロルミネッセンス)などを利用した電子表示デバイスや、回転するガラス板等に描画された複数の視標のいずれかを光軸上に適宜配置するもの(ターレットタイプ)などがある。また、視標投影系4は、前述の視標とともにグレアー光を被検眼Eに投影するためのグレアー検査光学系を含んでもよい。
【0024】
自覚検査を行う場合、処理部9は、他覚測定の結果に基づき移動ユニット46を制御する。処理部9は、検者又は処理部9により選択された視標を視標チャート42に表示させる。それにより、当該視標が被検者に呈示される。被検者は視標に対する応答を行う。応答内容の入力を受けて、処理部9は、更なる制御や、自覚検査値の算出を行う。例えば、視力測定において、処理部9は、ランドルト環等に対する応答に基づいて、次の視標を選択して呈示し、これを繰り返し行うことで視力値を決定する。
【0025】
他覚測定(他覚屈折測定など)においては、風景チャートが眼底Efに投影される。この風景チャートを被検者に固視させつつアライメントが行われ、雲霧視状態で眼屈折力が測定される。
【0026】
(収差測定投影系6、収差測定受光系7)
収差測定投影系6及び収差測定受光系7は、被検眼Eの眼球収差特性の測定に用いられる。収差測定投影系6は、眼球収差特性測定用の光束(赤外光)を眼底Efに投影する。収差測定受光系7は、この光束の被検眼Eの眼底Efからの戻り光を受光する。収差測定受光系7による戻り光の受光結果から被検眼Eの眼球収差特性が求められる。
【0027】
光源(点光源)61は、微小な点状で、例えば850nmの近傍の波長の光を発するものが用いられる。光源61としては、例えばスーパールミネッセントダイオード(Super Luminescent Diode:SLD)などが挙げられるが、LD(レーザーダイオード)や発光径の小さなLEDでも良い。光源61を含む移動ユニット69は、収差測定投影系6の光軸に沿って移動可能である。光源61は、眼底Efと光学的に略共役な位置に配置される。光源61から出力された光(測定光)は、リレーレンズ62及びフィールドレンズ63を通過し、偏光板64を透過する。偏光板64は、光源61から出力された光の偏光成分のうちp偏光成分のみを透過させる。偏光板64を透過した光は、絞り65の開口を通過し、p偏光成分を反射する偏光ビームスプリッター66により反射され、ロータリープリズム67を通過し、ダイクロイックミラー68により反射される。ダイクロイックミラー68により反射された光は、ダイクロイックミラー52により反射され、対物レンズ51を通過して眼底Efに投影される。
【0028】
なお、光源61の位置に直接光源を配置せず、当該光源装置と眼科装置とを接続する光ファイバーにより光源61からの光をリレーレンズ62に導くようにしてもよい。この場合、光ファイバーのファイバー端は、眼底Efと光学的に略共役な位置に配置される。
【0029】
ロータリープリズム67は、眼底Efの血管や疾患部位における反射率のムラを平均化させたり、SLD光源によるスペックルノイズを軽減するために用いられる。
【0030】
被検眼Eに入射した光は、眼底による散乱反射により偏光状態が維持されなくなり、眼底Efからの戻り光は、p偏光成分とs偏光成分とが混在した光となる。このような眼底Efからの戻り光は、対物レンズ51を通過し、ダイクロイックミラー52及び68により反射される。ダイクロイックミラー68により反射された戻り光は、ロータリープリズム67を通過し、偏光ビームスプリッター66に導かれる。偏光ビームスプリッター66は、戻り光の偏光成分のうちs偏光成分のみを透過させる。偏光ビームスプリッター66を透過したs偏光成分の光は、フィールドレンズ71を通過し、反射ミラー72により反射され、リレーレンズ73を通過し、移動ユニット77に導かれる。対物レンズ51の表面や被検眼Eの角膜Kで正反射した光はp偏光を維持しているため偏光ビームスプリッター66により反射され、波面収差測定系7に入射しないためゴーストの発生を軽減できる。
【0031】
移動ユニット77は、コリメータレンズ74と、ハルトマン板75と、エリアセンサー76とを含む。エリアセンサー76には、例えばCCD(Charge Coupled Device)イメージセンサー又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサーが用いられる。移動ユニット77に導かれた光は、コリメータレンズ74を通過し、ハルトマン板75に入射する。ハルトマン板75は、被検眼Eの瞳孔と光学的に略共役な位置に配置されている。移動ユニット77は、収差測定受光系7の光軸に沿って移動可能である。移動ユニット77は、眼底Efとコリメータレンズ74の前側焦点位置とが光学的に略共役になるように被検眼Eの眼屈折力値に応じて光軸に沿って移動される。
【0032】
図2A及び
図2Bに、実施形態に係るハルトマン板75の説明図を示す。
図2A及び
図2Bは、収差測定受光系7の光軸方向から見たときのハルトマン板75の構成を模式的に表したものである。ハルトマン板75は、眼底Efからの戻り光から複数の集束光を生成する。
図2A及び
図2Bに示すように、ハルトマン板75には、複数のマイクロレンズ75Aが格子状に配列されている。ハルトマン板75は、入射光を多数の光束に分割しそれぞれ集光する。例えば、ハルトマン板75は、
図2Aに示すように、エッチングやモールド等によりガラス板に複数のマイクロレンズ75Aが配列された構成を有する。この場合、各マイクロレンズの開口を大きくとることができ、信号の強度を高めることができる。また、ハルトマン板75は、
図2Bに示すように、各マイクロレンズ75Aの周囲にクロム遮光膜等を形成することにより遮光部75Bを設けて複数のマイクロレンズ75Aが配列された構成を有していてもよい。マイクロレンズ75Aは、正方配列されたものに限らず、同心円周上に配置されたものや三角形の各頂点位置に配置されたものや六方細密配置されたものであってもよい。
【0033】
エリアセンサー76は、マイクロレンズ75Aの焦点位置に配置され、ハルトマン板75によりそれぞれ集光された光(集束光)を検出する。
図3に示すように、エリアセンサー76の受光面には、被検眼Eの瞳孔Ep上の光の照射領域a
1、・・・、b
1、・・・、c
1、・・・に対応してハルトマン板75のマイクロレンズ75Aにより点像A
1、・・・、B
1、・・・、C
1、・・・が形成される。上記のように眼底Efとコリメータレンズ74の前側焦点位置とが光学的に略共役な関係にある場合、エリアセンサー76の受光面に形成された点像の重心位置の間隔はマイクロレンズ75Aのレンズ中心間距離と略等しくなる。エリアセンサー76は、ハルトマン板75のマイクロレンズ75Aにより形成された点像群を検出する。処理部9は、エリアセンサー76により検出された点像群に基づく検出信号と点像群の検出位置を示す位置情報とを取得し、各マイクロレンズ75Aにより形成された点像の位置を解析することで、ハルトマン板75に入射した光の波面収差を求める。それにより、被検眼Eの眼球収差特性が求められる。処理部9は、求められた眼球収差特性から被検眼Eの眼屈折力値を求める。
【0034】
処理部9は、算出された眼屈折力値に基づいて、光源61と眼底Efとコリメータレンズ74の前側焦点位置とが光学的に共役になるように、移動ユニット69と移動ユニット77とをそれぞれ光軸方向に移動させることが可能である。更に、処理部9は、移動ユニット69、77の移動に連動して移動ユニット46をその光軸方向に移動させることが可能である。
【0035】
(処理系の構成)
実施形態に係る眼科装置の処理系について説明する。眼科装置の処理系の機能的構成の例を
図4及び
図5に示す。
図4は、実施形態に係る眼科装置の処理系の機能ブロック図の一例を表したものである。
図5は、
図4の演算処理部120の機能ブロック図の一例を表したものである。処理部9は、制御部110と演算処理部120とを含む。また、実施形態に係る眼科装置は、表示部170と、操作部180と、通信部190と、移動機構200とを含む。
【0036】
移動機構200は、Zアライメント系1、XYアライメント系2、ケラト測定系3、視標投影系4、観察系5、収差測定投影系6、及び収差測定受光系7等の光学系が収納されたヘッド部を前後上下左右方向に移動させるための機構である。例えば、移動機構200には、移動機構200を移動するための駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構とが設けられる。アクチュエータは、例えばパルスモータにより構成される。伝達機構は、例えば歯車の組み合わせやラック・アンド・ピニオンなどによって構成される。制御部110(主制御部111)は、アクチュエータに対して制御信号を送ることにより移動機構200に対する制御を行う。
【0037】
(制御部110)
制御部110は、プロセッサを含み、眼科装置の各部を制御する。制御部110は、主制御部111と、記憶部112とを含む。記憶部112には、眼科装置を制御するためのコンピュータプログラムがあらかじめ格納されている。コンピュータプログラムには、光源制御用プログラム、センサー制御用プログラム、光学系制御用プログラム、演算処理用プログラム及びユーザインターフェイス用プログラムなどが含まれる。このようなコンピュータプログラムに従って主制御部111が動作することにより、制御部110は制御処理を実行する。
【0038】
主制御部111は、測定制御部として眼科装置の各種制御を行う。Zアライメント系1に対する制御には、Zアライメント光源11の制御、ラインセンサー13の制御などがある。Zアライメント光源11の制御には、光源の点灯、消灯、光量調整などがある。ラインセンサー13の制御には、検出素子の露光調整やゲイン調整や検出レート調整などがある。それにより、Zアライメント光源11の点灯と非点灯とが切り替えられたり、光量が変更されたりする。主制御部111は、ラインセンサー13により検出された信号を取り込み、取り込まれた信号に基づいてラインセンサー13に対する光の投影位置を特定する。主制御部111は、特定された投影位置に基づいて被検眼Eの角膜頂点の位置を求め、これに基づき移動機構200を制御してヘッド部を前後方向に移動させる(Zアライメント)。
【0039】
XYアライメント系2に対する制御には、XYアライメント光源21の制御などがある。XYアライメント光源21の制御には、光源の点灯、消灯、光量調整などがある。それにより、XYアライメント光源21の点灯と非点灯とが切り替えられたり、光量が変更されたりする。主制御部111は、エリアセンサー56により検出された信号を取り込み、取り込まれた信号に基づいてXYアライメント光源21からの光の戻り光に基づく輝点像の位置を特定する。主制御部111は、所定の目標位置(例えば、アライメントマークの中心位置)に対する輝点像の位置との変位がキャンセルされるように移動機構200を制御してヘッド部を左右上下方向に移動させる(XYアライメント)。
【0040】
ケラト測定系3に対する制御には、ケラトリング光源32の制御などがある。ケラトリング光源32の制御には、光源の点灯、消灯、光量調整などがある。それにより、ケラトリング光源32の点灯と非点灯とが切り替えられたり、光量が変更されたりする。主制御部111は、エリアセンサー56により検出されたケラトリング像に対する公知の演算を演算処理部120に実行させる。それにより、被検眼Eの角膜形状パラメータが求められる。
【0041】
視標投影系4に対する制御には、光源41の制御、視標チャート42の制御、移動ユニット46の移動制御などがある。光源41の制御には、光源の点灯、消灯、光量調整などがある。それにより、光源41の点灯と非点灯とが切り替えられたり、光量が変更されたりする。視標チャート42の制御には、視標や固視標の表示のオン・オフや、固視標の表示位置の切り替えなどがある。それにより、被検眼Eの眼底Efに視標や固視標が投影される。例えば、眼科装置には、移動ユニット46を光軸方向に移動する移動機構46Aが設けられている。移動機構46Aには、移動機構200と同様に、当該移動機構を移動するための駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構とが設けられる。主制御部111は、アクチュエータに対して制御信号を送ることにより移動機構46Aに対する制御を行い、移動ユニット46を光軸方向に移動させる。それにより、視標チャート42と眼底Efとが光学的に共役となるように移動ユニット46の位置が調整される。
【0042】
観察系5に対する制御には、エリアセンサー56の制御や図示のない前眼部照明用LEDの点灯、消灯、光量調整などがある。エリアセンサー56の制御には、エリアセンサー56の露光調整やゲイン調整や検出レート調整などがある。主制御部111は、エリアセンサー56により検出された信号を取り込み、取り込まれた信号に基づく画像の形成等の処理を演算処理部120に実行させる。なお、観察系5が照明光源を含んで構成されている場合、主制御部111は照明光源を制御することが可能である。
【0043】
収差測定投影系6に対する制御には、光源61の制御、ロータリープリズム67の制御、移動ユニット69の制御などがある。光源61の制御には、光源の点灯、消灯、光量調整などがある。それにより、光源61の点灯と非点灯とが切り替えられたり、光量が変更されたりする。ロータリープリズム67の制御には、ロータリープリズム67の回転制御などがある。例えば、ロータリープリズム67を回転させる回転機構が設けられており、主制御部111は、この回転機構を制御することによりロータリープリズム67を回転させる。例えば、眼科装置には、移動ユニット69を光軸方向に移動する移動機構69Aが設けられている。移動機構69Aには、移動機構200と同様に、当該移動機構を移動するための駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構とが設けられる。主制御部111は、アクチュエータに対して制御信号を送ることにより移動機構69Aに対する制御を行い、移動ユニット69を光軸方向に移動させる。
【0044】
収差測定受光系7に対する制御には、エリアセンサー76の制御、移動ユニット77の移動制御などがある。エリアセンサー76の制御には、エリアセンサー76の露光調整やゲイン調整や検出レート調整などがある。主制御部111は、エリアセンサー76により検出された信号を取り込み、取り込まれた信号に基づく眼球収差特性の算出処理などを演算処理部120に実行させる。例えば、眼科装置には、移動ユニット77を光軸方向に移動する移動機構77Aが設けられている。移動機構77Aには、移動機構200と同様に、当該移動機構を移動するための駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構とが設けられる。主制御部111は、アクチュエータに対して制御信号を送ることにより移動機構77Aに対する制御を行い、移動ユニット77を光軸方向に移動させる。
【0045】
主制御部111は、表示制御部として各種情報を表示部170に表示させることが可能である。表示部170に表示される情報には、上記の光学系を用いて取得された他覚測定結果(収差測定結果)や自覚検査結果、これらに基づく画像や情報などがある。例えば、演算処理部120により求められた眼屈折力値や、後述するように分布情報生成部124により生成された眼屈折力値の分布を表す情報などが表示部170に表示される。主制御部111は、これらの情報を互いに重畳して表示部170に表示させたり、その一部を識別表示させたりすることが可能である。
【0046】
また、主制御部111は、記憶部112にデータを書き込む処理や、記憶部112からデータを読み出す処理を行う。
【0047】
(記憶部112)
記憶部112は、各種のデータを記憶する。記憶部112に記憶されるデータとしては、例えば自覚検査の検査結果、他覚測定の測定結果、前眼部像の画像データ、ハルトマン点像の画像データ、被検眼情報などがある。被検眼情報は、患者IDや氏名などの被検者に関する情報や、左眼/右眼の識別情報などの被検眼に関する情報を含む。また、記憶部112には、眼科装置を動作させるための各種プログラムやデータが記憶されている。
【0048】
(演算処理部120)
演算処理部120は、プロセッサを含み、図示しない記憶部(又は記憶部112)に記憶されたコンピュータプログラムに従って下記の各部の処理を実行する。演算処理部120は、設定部121と、眼屈折力値算出部122と、選択部123と、分布情報生成部124とを含む。
【0049】
設定部121は、エリアセンサー76により検出された点像群から1以上の部分点像群を設定する。部分点像群は、少なくとも3つの点像を含む。設定部121は、エリアセンサー76により検出された点像群の分布に基づいて1以上の部分点像群を設定することが可能である。例えば、設定部121は、既定の位置関係にある3以上の点像を含むように部分点像群を設定する。既定の位置関係にある3以上の点像の例には、互いに隣接する3以上の点像、所定の形状を有する領域に含まれる3点以上の点像、瞳孔の所定部位(例えば瞳孔中心)に対応する位置(エリアセンサー76上の位置)を含む領域に含まれる3点以上の点像などがある。設定部121は、一の部分点像群により規定される領域の少なくとも一部が他の一の部分点像群により規定される領域と重複するように部分点像群を設定することが可能である。
【0050】
また、設定部121は、操作部180に対する検者等のユーザにより指定された点像を含むように部分点像群を設定することが可能である。例えば、設定部121は、表示部170に表示された前眼部画像に対してユーザが指定した部位に対応するエリアセンサー76上の点像を含むように部分点像群を設定する。
【0051】
眼屈折力値算出部122は、エリアセンサー76により検出された点像群を解析することにより単一の眼屈折力値を求める。例えば、眼屈折力値算出部122は、収差測定受光系7においてハルトマン板75によりエリアセンサー76の受光面に形成された点像群を解析する。具体的には、眼屈折力値算出部122は、得られた点像群が描出された画像から特定された光線の傾きを求める。眼屈折力値算出部122は、求められた光線の傾き量を用いた公知の演算により波面の近似式を求める。求められた波面の近似式は、ゼルニケ係数とゼルニケ多項式とにより表される。波面収差は、ゼルニケ係数で表される。眼屈折力値算出部122は、公知の演算により、ゼルニケ係数の低次項から球面度数S、乱視度数C及び乱視軸角度Aを眼屈折力値として求める。
【0052】
また、眼屈折力値算出部122は、設定部121により設定された部分点像群のそれぞれについて眼屈折力算出値を求めることが可能である。すなわち、眼屈折力値算出部122は、エリアセンサー76により検出された点像群のうち設定部121により設定された1以上の部分点像群に基づいて1以上の眼屈折力値を求める。
【0053】
以下、眼屈折力値算出部122による眼屈折力値の算出処理例について説明する。
【0054】
図6〜
図8に、眼屈折力値算出部122の処理例の説明図を示す。
図6は、設定部121により設定された部分点像群に含まれる任意の2つの点像に基づいて被検眼の球面度数Sを求める場合の説明図を表す。
図6は、上記の2つの点像を形成する2つのマイクロレンズ75Aを通る断面線における断面構造を模式的に表している。
図7は、被検眼の眼屈折力値が球面度数だけを含む場合に、ハルトマン板75のマイクロレンズ75Aとエリアセンサー76とを結ぶ直線の交点を模式的に表した透視図である。
図7は、ハルトマン板75、エリアセンサー76、及び上記光源における仮想的な平面80が収差測定受光系7の光軸方向に配置された透視図を表す。
図8は、被検眼の眼屈折力値が乱視度数を含む場合に、ハルトマン板75のマイクロレンズ75Aとエリアセンサー76とを結ぶ直線の交点を模式的に表した透視図である。
図8は、ハルトマン板75、エリアセンサー76、及び上記交点における仮想的な平面81が収差測定受光系7の光軸方向に配置された透視図を表す。なお、
図8は、説明の便宜上、単性乱視の場合の説明図を表している。
【0055】
ハルトマン板75から光線の仮想的な上記の交点までの距離をFとし、被検眼Eの瞳からハルトマン板75までの倍率をMとすると、眼屈折力値算出部122は、以下の式(1)に従って被検眼Eの球面度数Sを求めることができる。
【0057】
被検眼Eの眼屈折力値が球面度数だけを含む場合、
図7に示すように、ハルトマン板75のマイクロレンズ75Aのレンズ中心とエリアセンサー76の受光面における点像の重心位置とを結ぶ直線は、一点で交差する。従って、任意の2つの点像について、マイクロレンズ75Aのレンズ中心と点像の重心位置とをそれぞれ結ぶ2つの直線の交点を被検眼Eの焦点位置として特定することができる。
【0058】
図6に示すように、2つのマイクロレンズ75Aのレンズ中心の間隔をLとし、ハルトマン板75からエリアセンサー76までの距離をfとすると、眼屈折力値算出部122は、以下の式(2)に従ってハルトマン板75から交点までの距離Fを求めることができる。
【0060】
式(2)において、変位量dxは、マイクロレンズ75Aのレンズ中心と、対応するエリアセンサー76上での点像の重心位置との変位量を表す(
図6参照)。変位量は、
図6に示すように、以下の式(3)で表される。
【0062】
間隔Lと距離fとは光学設計により既知の情報であり、距離hは、エリアセンサー76により得られた検出結果により特定可能な情報である。以上より、眼屈折力値算出部122は、上記のように被検眼Eの球面度数Sを算出することが可能である。
【0063】
これに対して、被検眼Eの眼屈折力値が乱視度数を含む場合、ハルトマン板75のマイクロレンズ75Aを通過した光によりエリアセンサー76上に形成される点像は、乱視の経線方向にパワーを受けて移動する(
図8参照)。被検眼Eの第1焦点位置(後側焦点位置)における仮想的な平面81上では乱視の経線方向に点像が並び、被検眼Eの第2焦点位置(前側焦点位置)における仮想的な平面上で当該経線方向に直交する乱視の経線方向に点像が並ぶ。従って、眼屈折力値算出部122は、少なくとも3つの点像が一直線上に並ぶ位置を被検眼Eの焦点位置(後側焦点位置、前側焦点位置)として特定し、特定された焦点位置に基づく焦点距離から被検眼Eの眼屈折力値を求めることができる。なお、眼屈折力値算出部122は、少なくとも3つの点像が所定の誤差の範囲内で直線上に並ぶと判断される位置を被検眼Eの焦点位置として特定してもよい。
【0064】
例えば、ハルトマン板75から被検眼Eの後側焦点位置までの距離をFとし、ハルトマン板75から被検眼Eの前側焦点位置までの距離をF´とすると、眼屈折力値算出部122は、距離Fから球面度数Dを求め、距離F´から球面度数D´を求める。球面度数SをDとしたとき、眼屈折力値算出部122は、(D´−D)を算出することにより乱視度数Cを求め、特定された被検眼Eの後側焦点位置における平面81上で求められた3つの点像が並ぶ直線の傾きθを乱視軸角度Aとして求めることができる。或いは、球面度数SをD´としたとき、眼屈折力値算出部122は、(D−D´)を算出することにより乱視度数Cを求め、特定された被検眼Eの前側焦点位置における平面上で求められた3つの点像が並ぶ直線の傾きθ´を乱視軸角度Aとして求めることができる。
【0065】
眼屈折力値算出部122は、1つの部分点像群について求められた2以上の眼屈折力値を平均化した代表値を求めたり、部位ごとに異なる重み付け加算を行って代表値を求めたりすることが可能である。また、眼屈折力値算出部122は、2以上の部分点像群に基づいて2以上の眼屈折力値を求め、求められた2以上の眼屈折力値を平均化した代表値を求めることが可能である。例えば、眼屈折力値算出部122は、所定の領域(例えば、白内障等でぼけの程度が著しい領域)を除く2以上の眼屈折力値を平均化した代表値を求めてもよい。また、眼屈折力値算出部122は、部位ごとに異なる重み付け加算を行って代表値を求めたりすることが可能である。例えば、眼屈折力値算出部122は、当該部分点像群の中心位置(重心位置)からの距離に対応した重み付け加算によって代表値を求めてもよい。
【0066】
なお、
図6〜
図8では、主に、部分点像群の2つ又は少なくとも3つの点像に基づいて眼屈折力値を算出する例について説明したが、眼屈折力値算出部122の処理はこれに限定されるものではない。例えば、眼屈折力値算出部122は、エリアセンサー76により検出された全点像に対して眼屈折力値を求め、求められた眼屈折力算出値を平均化したり、部位ごとに異なる重み付け加算を行って得られた代表値を単一の眼屈折力値として求めてもよい。
【0067】
眼屈折力値算出部122は、点像群における所定の範囲の点像の欠落の有無に応じて、部分点像群のそれぞれについて眼屈折力値を求める第1処理と、点像群について単一の眼屈折力値を求める第2処理のいずれかを実行することが可能である。例えば、眼屈折力値算出部122は、点像群に所定の範囲の点像の欠落があるとき第1処理を実行し、点像群に所定の範囲の点像の欠落がないとき第2処理を実行する。また、眼屈折力値算出部122は、点像群に含まれる点像の個数に応じて第1処理と第2処理のいずれかを実行するようにしてもよい。この場合、眼屈折力値算出部122は、点像群に含まれる点像の個数が閾値以下のとき第1処理を実行し、点像群に含まれる点像の個数が閾値未満のとき第2処理を実行することができる。
【0068】
また、眼屈折力値算出部122は、点像群に含まれる部分的な屈折異常(屈折力変化)に基づく点像の有無に応じて、部分点像群のそれぞれについて眼屈折力値を求める第1処理と、点像群について単一の眼屈折力値を求める第2処理のいずれかを実行することが可能である。例えば、眼屈折力値算出部122は、点像群に部分的な屈折異常に基づく点像あるとき第1処理を実行し、点像群に部分的な屈折異常に基づく点像がないとき第2処理を実行する。
【0069】
また、眼屈折力値算出部122は、観察系5により取得されたケラトリング像に基づいて、角膜屈折力、角膜乱視度及び角膜乱視軸角度を算出する。例えば、眼屈折力値算出部122は、ケラトリング像を解析することにより角膜前面の強主経線や弱主経線の角膜曲率半径を算出し、角膜曲率半径に基づいて上記パラメータを算出する。
【0070】
選択部123は、設定部121により設定された2以上の部分点像群の1つを選択する。眼屈折力値算出部122は、選択部123により選択された部分点像群に基づいて眼屈折力値を処方値として求める。選択部123は、遠近方向の複数の位置のそれぞれにおいて固視標が呈示された状態で求められた部分点像群ごとの眼屈折力値の遠近方向における変化に基づいて、2以上の部分点像群の1つを選択する。それにより、被検者の知覚に寄与する眼屈折力値を処方値として選択することが可能になる。
【0071】
分布情報生成部124は、2以上の部分点像群の位置と眼屈折力値算出部122により算出された2以上の眼屈折力値とに基づいて、眼屈折力値の分布情報を生成する。主制御部111は、分布情報生成部124により生成された分布情報を表示部170に表示させることができる。これにより、部分点像群の位置に対応付けて当該部分点像群について求められた眼屈折力値を容易に把握することが可能になる。このとき、主制御部111は、前眼部画像に描出された瞳孔領域に分布情報を重畳させて表示部170に表示させてもよい。また、主制御部111は、眼屈折力値の分布情報において、選択部123により選択された部分点像群を識別可能に表示部170に表示させてもよい。
【0072】
(表示部170、操作部180)
表示部170は、ユーザインターフェイス部として、制御部110(主制御部111)による制御を受けて情報を表示する。表示部170は、
図1に示す表示部10を含む。
【0073】
操作部180は、ユーザインターフェイス部として、眼科装置を操作するために使用される。操作部180は、眼科装置に設けられた各種のハードウェアキー(ジョイスティック、ボタン、スイッチなど)を含む。また、操作部180は、タッチパネル式の表示画面10aに表示される各種のソフトウェアキー(ボタン、アイコン、メニューなど)を含んでもよい。
【0074】
表示部170及び操作部180の少なくとも一部が一体的に構成されていてもよい。その典型例として、タッチパネル式の表示画面10aがある。
【0075】
(通信部190)
通信部190は、図示しない外部装置と通信するための機能を有する。通信部190は、例えば処理部9に設けられていてもよい。通信部190は、外部装置との通信の形態に応じた構成を有する。
【0076】
収差測定投影系6及び収差測定受光系7は、実施形態に係る「測定光学系」の一例である。視標投影系4は、実施形態に係る「固視光学系」の一例である。眼屈折力値算出部122は、実施形態に係る「算出部」の一例である。ハルトマン板75は、実施形態に係る「レンズアレイ」の一例である。
【0077】
[動作例]
この実施形態に係る眼科装置の動作例について説明する。
【0078】
被検眼Eには、例えば瞳孔上に互いに屈折力が異なる複数の領域が存在する場合がある。例えば、被検眼Eが円錐角膜眼である場合、中心部が突出することにより角膜曲率が小さい領域とそれ以外の領域とが存在するため、瞳孔上に屈折力が異なる複数の領域が存在する。
【0079】
図9に、被検眼Eが円錐角膜眼である場合にエリアセンサー76により検出される点像群の一例を模式的に示す。この場合、角膜曲率が小さい領域Rは屈折異常部位に相当する領域となるため、エリアセンサー76では
図9に示すように点像が検出され、領域Rに相当する領域には点像の分布密度が低い領域(或いは分布密度が高い領域)が生ずる。このように互いに屈折力が異なる複数の領域が存在する被検眼の場合、被検者はほとんどの像を所定の領域を通過する光束に基づいて知覚していることが多い。
図9に示すように、瞳孔Ep上に互いに異なる屈折力を有する領域Rとそれ以外の領域とが存在する場合、エリアセンサー76により検出される点像の間隔は領域Rとそれ以外の領域とで異なる。従って、被検眼に複視が生ずることは判別できるが、被検者がどの領域を通過する光束によって像を優位に知覚するかが不明であるため、被検者に対してどのような処方値を提示すればよいかがわからなかった。
【0080】
これに対して、実施形態によれば、得られた点像から設定された2以上の部分点像群のそれぞれについて眼屈折力値を求め、2以上の部分点像群のうち知覚に寄与した部分点像群の眼屈折力値を処方値として求めることができる。
【0081】
例えば、主制御部111は、測定制御部として移動機構46Aと視標投影系4とを連係的に制御することにより、遠近方向の複数の位置のそれぞれにおいて固視標が呈示された状態で収差測定投影系6及び収差測定受光系7に点像群を検出させる。設定部121は、
図10に示すように、瞳孔Epにおいて領域R1、R2に対応する部分点像群R1´、R2´を設定する。眼屈折力値算出部122は、設定部121により設定されたそれぞれの部分点像群に基づいて眼屈折力値を求める。それにより、
図10に示すように、領域R1、R2のそれぞれについて、視標呈示位置に対応した眼屈折力値の変化特性T1、T2が求められる。
【0082】
選択部123は、所定の眼屈折力値に対応した位置で視標が呈示されたときに、どの部分点像群が当該眼屈折力値になったかを特定することにより被検者の知覚に寄与した部分点像群を選択する。具体的には、視標呈示位置に対応した眼屈折力値の変化特性T0は一意に決まる。選択部123は、変化特性T0に対する誤差が最小となる変化特性(
図11では、変化特性T1)を有する部分点像群(
図11では、領域R1)を被検者が主に知覚に使用している領域と推定し、当該領域を選択することが可能である。眼屈折力値算出部122は、選択された部分点像群に基づいて眼屈折力値を処方値として求める。
【0083】
図12及び
図13に、この実施形態に係る眼科装置の動作例のフロー図を示す。
【0084】
(S1)
被検者の顔を顔受け部で固定した後、XYアライメント系2によるXYアライメントとZアライメント系1によるZアライメントとによりヘッド部が被検眼Eの検査位置に移動される。検査位置とは、被検眼Eの検査を既定の精度内で行うことが可能な位置である。例えば、処理部9(主制御部111)は、エリアセンサー56の受光面上に結像された前眼部像の撮像信号を取得し、表示部170(表示部10の表示画面10a)に前眼部像E’を表示させる。その後、上記のXYアライメントとZアライメントとによりヘッド部が被検眼Eの検査位置に移動される。ヘッド部の移動は、主制御部111による指示に従って、主制御部111によって実行されるが、ユーザによる操作若しくは指示に従って主制御部111によって実行されてもよい。
【0085】
(S2)
次に、主制御部111は、仮測定(予備測定)を実行する。例えば、主制御部111は、視標チャート42に風景チャート等の固視標を表示させる。主制御部111は、光源61を点灯させることにより得られた被検眼Eからの戻り光に基づく点像群をエリアセンサー76により検出させる。主制御部111は、エリアセンサー76により検出された点像群に基づいて眼屈折力値を眼屈折力値算出部122に算出させ、算出された眼屈折力値から移動量を特定する。
【0086】
(S3)
主制御部111は、S2において算出された移動量に基づき遠点に相当する位置に移動ユニット46を光軸に沿って移動させる。
【0087】
(S4)
次に、主制御部111は、本測定を実行する。まず、主制御部111は、光源61を点灯させることにより得られた被検眼Eからの戻り光に基づく点像群をエリアセンサー76により新たに検出させる。
【0088】
(S5)
主制御部111は、S4において得られた点像群をナンバリングし、各点像とレンズアレイの対応付けを行う。
【0089】
(S6)
次に、主制御部111は、S4において取得された点像群に基づいて、部分点像群毎に眼屈折力値を求めるか否かを判定する。
【0090】
この実施形態では、点像群に部分的な屈折異常(屈折力変化)に基づく点像が存在する場合、部分点像群毎に眼屈折力値を求める。点像群に部分的な屈折異常に基づく点像があることは、被検眼E(例えば瞳孔)に屈折異常部位が存在していることを意味する。例えば、部分的な屈折異常があると、エリアエンサ-76の受光面に結像される点像の分布密度が変化する。主制御部111は、S4において取得された点像群において部分的な点像の分布密度が変化する領域を特定することにより、取得された点像群に屈折異常に基づく点像があるか否かを判定することが可能である。具体的には、主制御部111は、単位面積あたりの点像の密度に基づいて取得された点像群に部分的な屈折異常に基づく点像があるか否かを判定する。部分的な屈折異常に基づく点像があると判定されたとき(S6:Y)、眼科装置の動作はS11に移行する。屈折異常に基づく点像がないと判定されたとき(S6:N)、眼科装置の動作はS7に移行する。
【0091】
(S7)
S6において部分点像群毎に眼屈折力値を求めないと判定されたとき(S6:N)、主制御部111は、S3において移動された遠点に相当する位置から更に例えば1.5D分だけ移動ユニット46を光軸方向の遠視側に移動させ、被検眼に風景チャート等の視標を雲霧視させる。
【0092】
(S8)
次に、主制御部111は、測定を実行する。まず、主制御部111は、光源61を点灯させることにより得られた被検眼Eからの戻り光に基づく点像群をエリアセンサー76により新たに検出させる。
【0093】
(S9)
主制御部111は、S8において取得された測定対象の全範囲の点像に基づいて眼屈折力値算出部122により単一の眼屈折力値を代表値として算出させる。例えば、眼屈折力値算出部122は、上記の通り、ゼルニケ係数とゼルニケ多項式とから眼屈折力値を求める。或いは、眼屈折力値算出部122は、点像群から設定された2以上の部分点像群のそれぞれについて上記のように眼屈折力値を求め、求められた2以上の眼屈折力値から単一の眼屈折力値を求めてもよい。
【0094】
(S10)
主制御部111は、S9において求められた代表値としての単一の眼屈折力値、又は後述のS24において求められた代表値を表示部170に表示させる。以上で、眼科装置の動作は終了である(エンド)。
【0095】
(S11)
S6において部分点像群毎に眼屈折力値を求めると判定されたとき(S6:Y)、主制御部111は、眼屈折力値算出部122により部分点像群のそれぞれについて眼屈折力値(球面度数S、乱視度数C、及び乱視軸角度A)を算出させる。すなわち、主制御部111は、設定部121により、S4において取得された点像群から1以上の部分点像群を設定させる。その後、主制御部111は、設定部121により設定された1以上の部分点像群のそれぞれについて眼屈折力値算出部122により眼屈折力値を算出させる。
【0096】
(S12)
主制御部111は、部分点像群毎に求められた眼屈折力値の差が所定の閾値以上であるか否かを判定する。差が所定の閾値以上であると判定されたとき(S12:Y)、眼科装置の動作はS15に移行する。差が所定の閾値以上ではないと判定されたとき(S12:N)、眼科装置の動作は13に移行する。
【0097】
(S13)
S12において差が所定の閾値以上ではないと判定されたとき(S12:N)、主制御部111は、S3において移動された遠点に相当する位置から更に例えば1.5D分だけ移動ユニット46を光軸方向の遠視側に移動させ、視標チャート42を雲霧位置に移動させる。
【0098】
(S14)
次に、主制御部111は、測定を実行する。主制御部111は、光源61を点灯させることにより得られた被検眼Eからの戻り光に基づく点像群をエリアセンサー76により新たに検出させる。
【0099】
(S15)
S12において差が所定の閾値以上であると判定されたとき(S12:Y)、主制御部111は、移動ユニット46を近視側に例えば2D分だけ移動させ、被検眼Eの調節可能範囲の探索を開始する。
【0100】
(S16)
主制御部111は、測定を実行する。主制御部111は、光源61を点灯させることにより得られた被検眼Eからの戻り光に基づく点像群をエリアセンサー76により新たに検出させる。
【0101】
(S17)
主制御部111は、眼屈折力値算出部122により部分点像群のそれぞれについて眼屈折力値を算出させる。主制御部111は、視標呈示位置に対応する眼屈折値と一致する部分点像群(被検眼の対応部位)があるか否かを判定する。視標呈示位置に対応する眼屈折値と一致する部分点像群があると判定されたとき(S17:Y)、眼科装置の動作はS19に移行する。視標呈示位置に対応する眼屈折値と一致する部分点像群がないと判定されたとき(S17:N)、眼科装置の動作はS18に移行する。
【0102】
(S18)
視標呈示位置に対応する眼屈折値と一致する部分点像群がないと判定されたとき(S17:N)、主制御部111は、移動ユニット46を更に近視側に例えば1D分だけ移動させる。すなわち、主制御部111は、S15(又はS18)における移動後の位置は被検眼Eの調節可能範囲内の位置ではないと判断し、当該範囲の探索を継続させる。眼科装置の動作はS16に移行する。
【0103】
(S19)
S17において視標呈示位置に対応する眼屈折値と一致する部分点像群があると判定されたとき(S17:Y)、主制御部111は、移動ユニット46を遠視側に例えば0.25D分だけ移動させる。すなわち、主制御部111は、S15(又はS18)における移動後の位置は被検眼Eの調節可能範囲内の位置であると判断し、被検眼Eの遠点に相当する位置の探索を開始させる。
【0104】
(S20)
主制御部111は、測定を実行する。主制御部111は、光源61を点灯させることにより得られた被検眼Eからの戻り光に基づく点像群をエリアセンサー76により新たに検出させる。
【0105】
(S21)
主制御部111は、眼屈折力値算出部122により部分点像群のそれぞれについて眼屈折力値を算出させる。主制御部111は、視標呈示位置の変化に対応する眼屈折力値の変化(以下、基準変化特性)に対して、部分点像群における眼屈折力値の変化が所定の閾値以下の部分点像があるか否かを判定する。ここで、部分点像群における眼屈折力値の変化が
図11の変化特性T1、T2に相当し、基準変化特性が変化特性T0に相当する。基準変化特性に対する、部分点像群における眼屈折力値の変化の誤差が所定の閾値以下の部分点像群があると判定されたとき、主制御部111は、基準変化特性に対する誤差が最小となる部分点像群を選択部123に選択させる。
【0106】
基準変化特性に対する、部分点像群における眼屈折力値の変化の誤差が所定の閾値以上ではないと判定されたとき(S21:N)、眼科装置の動作はS22に移行する。基準変化特性に対する、部分点像群における眼屈折力値の変化の誤差が所定の閾値以上であると判定されたとき(S21:Y)、眼科装置の動作はS19に移行する。
【0107】
(S22)
S21において基準変化特性に対する、部分点像群における眼屈折力値の変化の誤差が所定の閾値以上ではないと判定されたとき(S21:N)、主制御部111は、更に例えば1.5D分だけ移動ユニット46を光軸方向に移動させる。すなわち、主制御部111は、当該視標呈示位置が遠点に相当する位置と判断し、視標チャート42を雲霧位置に移動させる。
【0108】
(S23)
主制御部111は、測定を実行する。主制御部111は、光源61を点灯させることにより得られた被検眼Eからの戻り光に基づく点像群をエリアセンサー76により新たに検出させる。
【0109】
(S24)
主制御部111は、S14において取得された部分点像群のそれぞれについて眼屈折力値算出部122により眼屈折力値(球面度数S、乱視度数C、及び乱視軸角度A)を算出させる。或いは、主制御部111は、S21において選択部123により選択された部分点像群について眼屈折力値算出部122により眼屈折力値(球面度数S、乱視度数C、及び乱視軸角度A)を算出させる。
【0110】
眼屈折力値算出部122は、算出された1以上の眼屈折力値から代表値(被検眼Eの最適矯正値)を求める。例えば、眼屈折力値算出部122は、1つの部分点像群について求められた2以上の眼屈折力値から代表値を求める。また、眼屈折力値算出部122は、2以上の部分点像群について求められた2以上の眼屈折力値から代表値を求めてもよい。眼科装置の動作はS10に移行する。
【0111】
以上のように、実施形態に係る眼科装置は、点光源である光源61からの光を被検眼Eに照射し、ハルトマン板75を用いて点像群を取得し、取得された点像群から1以上の部分点像群を設定し、設定された1以上の部分点像群ごとに眼屈折力値を求める。それにより、測定領域全体を1つの曲面に近似して眼屈折力値を求める場合に比べて、実際に被検者の知覚に寄与する部位の眼屈折力値を求めることができるので、信頼性の高い眼屈折力値を得ることが可能になる。
【0112】
また、実施形態に係る眼科装置は、視標呈示位置の変化に対応する眼屈折力値の変化に対して、部分点像群における眼屈折力値の変化の誤差が最小となる部分点像群に基づいて眼屈折力値を求める。それにより、瞳孔に屈折異常部位が存在する場合であっても信頼性が高い処方値を求めることが可能になる。
【0113】
なお、実施形態に係る眼科装置は、ゾーンタイプの多焦点眼内レンズ挿入眼に対して、ゾーンごとに眼屈折力値を算出することが可能である。それにより、眼内レンズ挿入眼に対して、適切な眼内レンズが挿入されたか否かを容易に判断することができるようになる。
【0114】
(作用・効果)
実施形態に係る眼科装置の作用及び効果について説明する。
【0115】
実施形態に係る眼科装置は、測定光学系(収差測定投影系6、収差測定受光系7)と、固視光学系(視標投影系4)と、移動機構(移動機構46A)と、制御部(制御部110、主制御部111)と、設定部(設定部121)と、算出部(眼屈折力値算出部122)と、選択部(選択部123)と、を含む。測定光学系は、被検眼(被検眼E)の眼底(眼底Ef)に測定光を投射し、眼底からの測定光の戻り光から複数の集束光を生成し、生成された複数の集束光を受光して点像群を検出する。固視光学系は、被検眼に固視標を呈示する。移動機構は、遠近方向に固視標を移動する。制御部は、移動機構と測定光学系とを連係的に制御することにより、遠近方向の複数の位置のそれぞれにおいて測定光学系に点像群を検出させる。設定部は、連係的な制御により取得された複数の点像群のそれぞれから2以上の部分点像群を設定する。算出部は、設定部により設定されたそれぞれの部分点像群に基づいて眼屈折力値を求める。選択部は、部分点像群ごとの眼屈折力値の遠近方向における変化に基づいて、2以上の部分点像群の1つを選択する。算出部は、選択部により選択された部分点像群に基づいて眼屈折力値を求める。
【0116】
このような構成によれば、眼底に測定光を投射することにより取得された点像群の2以上の部分点像群のそれぞれの眼屈折力値の遠近方向における変化に基づいて、2以上の部分点像群の1つを選択し、選択された部分点像群の眼屈折力値を求めるようにしたので、被検眼に屈折異常部位が存在する場合であっても被検者の知覚に寄与する領域における眼屈折力値を処方値として求めることが可能になる。
【0117】
また、実施形態に係る眼科装置では、選択部は、複数の位置に対応する眼屈折力値に対する誤差が最小となる部分点像群を選択してもよい。
【0118】
このような構成によれば、被検眼に屈折異常部位が存在する場合であっても信頼性が高い処方値を求めることが可能になる。
【0119】
また、実施形態に係る眼科装置では、連係的な制御の前に、制御部は、測定光学系に点像群を検出させる予備測定を実行させ、算出部は、予備測定により取得された点像群の複数の部分点像群に基づいて複数の眼屈折力値を求め、制御部は、複数の眼屈折力値のばらつきを表す値を求め、当該値が閾値以上であるとき、連係的な制御を実行し、当該値が閾値未満のとき、測定光学系の既定の制御を実行してもよい。
【0120】
このような構成によれば、部分点像群間の眼屈折力値のばらつき(差など)に対応して信頼性が高い処方値を求めることができる。
【0121】
また、実施形態に係る眼科装置では、既定の制御として、制御部は、測定光学系に点像群を検出させ、算出部は、当該点像群の1以上の部分点像群に基づいて1以上の眼屈折力値を求めてもよい。
【0122】
このような構成によれば、例えば、部分点像群間の眼屈折力値のばらつきを表す値が閾値未満のとき、例えば被検眼に屈折異常部位がないと判断し、部分点像群毎に眼屈折力値を求めることができる。それにより、測定対象領域の全体を1つの曲面に近似して眼屈折力値を求める場合に比べて、実際に被検者の知覚に寄与する部位の眼屈折力値を求めることができ、信頼性の高い眼屈折力値を求めることが可能になる。
【0123】
また、実施形態に係る眼科装置では、算出部は、当該点像群に部分的な屈折異常に基づく点像があるとき、1以上の部分点像群に基づいて1以上の眼屈折力値を求め、当該点像群に部分的な屈折異常に基づく点像がないとき、当該点像群に基づいて単一の眼屈折力値を求めてもよい。
【0124】
このような構成によれば、点像群における部分的な屈折異常に基づく点像の有無に応じて、1以上の部分点像群のそれぞれについて眼屈折力値を求めたり、点像群について単一の眼屈折力値を求めたりするようにしたので、信頼性の高い眼屈折力値の算出が可能になる。
【0125】
また、実施形態に係る眼科装置では、測定光学系は、戻り光から複数の集束光を生成するレンズアレイと、レンズアレイにより生成された複数の集束光を受光するエリアセンサと、を含んでもよい。
【0126】
このような構成によれば、波面収差が測定が可能な眼科装置の光学系を流用することができるので、低コストで信頼性の高い処方値を求めることが可能になる。
【0127】
また、実施形態に係る眼科装置では、眼屈折力値は、球面度数、乱視度数、及び乱視軸角度を含んでもよい。
【0128】
このような構成によれば、被検眼に屈折異常部位が存在する場合でも実際に被検者の知覚に寄与する部位の球面度数、乱視度数、及び乱視軸角度を求めることが可能になる。
【0129】
(その他の変形例)
以上に示された実施形態は、この発明を実施するための一例に過ぎない。この発明を実施しようとする者は、この発明の要旨の範囲内において任意の変形、省略、追加等を施すことが可能である。
【0130】
眼圧測定機能、眼底撮影機能、前眼部撮影機能、光干渉断層撮影(OCT)機能、超音波検査機能など、眼科分野において使用可能な任意の機能を有する装置に対して、上記の実施形態に係る発明を適用することが可能である。なお、眼圧測定機能は眼圧計等により実現される。眼底撮影機能は眼底カメラや走査型検眼鏡(SLO)等により実現される。前眼部撮影機能はスリットランプ等により実現される。OCT機能は光干渉断層計等により実現される。超音波検査機能は超音波診断装置等により実現される。また、このような機能のうち2つ以上を具備した装置(複合機)に対してこの発明を適用することも可能である。