【解決手段】素子基板10aと、素子基板10aの上面に位置している、固定化膜13aを有し検体の検出を行なう反応部13、反応部13に向かって伝搬する弾性波を発生させる第1IDT電極11、および反応部13を通過した弾性波を受信する第2IDT電極12、を有する検出部10bと、第1IDT電極11および第2IDT電極12を覆っている保護膜28と、を備え、素子基板10aは、第1IDT電極11および第2IDT電極12が位置している領域よりも反応部13が位置している領域の方が低い、センサ装置とする。
前記第1IDT電極および前記第2IDT電極は、前記素子基板の上面に複数の層が積層された第2複数層構造を有する、請求項1〜7のいずれか1つに記載のセンサ装置。
前記固定化膜の前記第1複数層構造と前記第1IDT電極および前記第2IDT電極の前記第2複数層構造とは異なる、請求項7を引用する請求項8に記載のセンサ装置。
前記固定化膜の前記第1複数層構造は、前記素子基板の上面に、チタン層および金層が順に積層された構造を有し、前記第1IDT電極および前記第2IDT電極の前記第2複数層構造は、前記素子基板の上面に、チタン層、金層およびチタン層が順に積層された構造を有する、請求項7を引用する請求項8または請求項9に記載のセンサ装置。
前記固定化膜の厚みは、前記第1IDT電極の厚みおよび前記第2IDT電極の厚みの少なくとも一方よりも小さい、請求項1〜12のいずれか1つに記載のセンサ装置。
前記固定化膜の上面の表面粗さは、前記第1IDT電極の上面の表面粗さおよび前記第2IDT電極の上面の表面粗さの少なくとも一方よりも大きい、請求項1〜13のいずれか1つに記載のセンサ装置。
前記素子基板の上面は、前記第1IDT電極および前記第2IDT電極が位置している領域の表面粗さよりも前記反応部が位置している領域の表面粗さの方が大きい、請求項1〜14のいずれか1つに記載のセンサ装置。
前記素子基板の上面のうち前記固定化膜が位置している領域の表面粗さは、前記固定化膜の上面の表面粗さよりも大きい、請求項1〜15のいずれか1つに記載のセンサ装置。
前記保護部材は、前記第1IDT電極および前記第2IDT電極の少なくとも一方と前記反応部との間に位置している、請求項1〜16のいずれか1つに記載のセンサ装置。
側断面視で、前記保護部材のうち前記反応部の側の端部は、上端から下端へと向かうにつれて、前記固定化膜の側に傾斜している、請求項1〜19のいずれか1つに記載のセンサ装置。
前記保護部材の厚みは、前記第1IDT電極の厚みおよび前記第2IDT電極の厚みの少なくとも一方よりも小さい、請求項1〜20のいずれか1つに記載のセンサ装置。
前記素子基板の上面に位置している第2検出部であって、前記反応部とは異なる反応に基づき、前記検出部とは異なる種類の電極を用いて前記被検出物の検出を行なう第2検出部をさらに備える、請求項1〜23のいずれか1つに記載のセンサ装置。
【発明を実施するための形態】
【0010】
以下、本発明に係るセンサ装置の実施形態について、図面を参照しつつ詳細に説明する。なお、以下に説明する各図面において同じ構成部材には同じ符号を付すものとする。また、各部材の大きさや部材同士の間の距離などは模式的に図示しており、現実のものとは異なる場合がある。
【0011】
<センサ装置の構成>
本発明の実施形態に係るセンサ装置100について、
図1〜
図6を用いて説明する。
本実施形態に係るセンサ装置100は、
図1に示すように、主に、第1カバー部材1、中間カバー部材1A、第2カバー部材2および検出素子3を備える。
【0012】
具体的には、センサ装置100は、
図1(b)に示すように、検体液が流入する流入部14と、流入部14と連続しており且つ中間カバー部材1Aと第2カバー部材2とで囲まれ少なくとも反応部13まで延びている流路15とを備えている。本実施形態において、中間カバー部材1Aおよび第2カバー部材2の幅は、検出素子3の幅よりも大きい。これにより、検体液が検出素子3の表面全体を効果的に覆うように流すことが可能となる。
【0013】
図1(c)は、
図1(a)の断面図を示すものであり、上から順に、a−a線で切断した断面、b−b線で切断した断面、c−c線で切断した断面を示す。流入部14は、第2カバー部材2を厚み方向に貫通するように形成されている。
【0014】
(第1カバー部材1)
第1カバー部材1は、
図1(a)、
図1(b)および
図2(a)に示すように平板状である。厚みは、例えば0.1mm〜1.5mmである。第1カバー部材1の平面形状は概ね長方形状である。第1カバー部材1の長さ方向の長さは、例えば1cm〜8cmであり、幅方向の長さは、例えば1cm〜3cmである。
【0015】
第1カバー部材1の材料としては、例えば、ガラスエポキシ、紙、プラスチック、セルロイド、セラミックス、不織布、ガラスなどを用いることができる。必要な強度とコストとを兼ね備える観点からプラスチックを用いることが好ましい。
【0016】
また、第1カバー部材1の上面には、
図1(a)および
図2(a)に示すように、端子6および端子6から検出素子3の近傍まで引き回された配線7が形成されている。
【0017】
端子6は、中間カバー部材1Aの上面において、検出素子3に対して幅方向に両側に形成されている。具体的には、検出素子3に対する端子6のうち少なくとも一部は、検出素子3の流入部14側の端部よりも流入部14側に配置されている。また、流路15の長手方向を基準にして検出素子3の一方側に配列している4つの端子6において、外側の2つの端子6に接続される配線7の長さが互いに略同一であり、また、内側の2つの端子6に接続される配線7の長さが互いに略同一である。これによれば、検出素子3で得られる信号が配線7の長さによってばらつくことを抑制することが可能となる。この場合において、例えば、
図4に示す第1IDT電極11に、配線7および第1引出し電極19などを介して外部の測定器から所定の電圧を印加する際に、一方の略同一の長さの配線7をグランド(接地)配線とし、他方の略同一の長さの配線7を信号配線とし、これらの配線間で電位差が発生するように接続される構成とすれば、信号のばらつきを抑制することが可能となり、検出の信頼性を向上させることが可能となる。
【0018】
センサ装置100を外部の測定器(図示せず)で測定する際に、端子6と外部の測定器とが電気的に接続される。また、端子6と検出素子3とは、配線7などを介して電気的に接続されている。
【0019】
そして、外部の測定器からの信号が端子6を介してセンサ装置100に入力されるとともに、センサ装置100からの信号が端子6を介して外部の測定器に出力されることとなる。
【0020】
(中間カバー部材1A)
本実施形態において、
図1(b)に示すように、中間カバー部材1Aが、第1カバー部材1の上面に、検出素子3と並んで位置している。また、
図1(a)および
図3(c)に示すように、中間カバー部材1Aと検出素子3とは間隙を介して位置している。なお、中間カバー部材1Aと検出素子3とはそれぞれの側部同士が接するように配置してもよい。
【0021】
中間カバー部材1Aは、
図1(b)および
図2(b)に示すように、平板状の板に凹部形成部位4を有する平板枠状であり、その厚みは、例えば、0.1mm〜0.5mmである。
【0022】
本実施形態において、凹部形成部位4は、
図1(b)に示すように、第1上流部1Aaよりも下流側に位置している部位である。中間カバー部材1Aを、平板状の第1カバー部材1と接合することによって、第1カバー部材1および中間カバー部材1Aによって素子配置部5が形成されることとなる。すなわち、凹部形成部位4の内側に位置する第1カバー部材1の上面が素子配置部5の底面となり、凹部形成部位4の内壁が素子配置部5の内壁となる。
【0023】
図1および
図3に示すように、検出素子3よりも下流において、第1カバー部材1の上に、中間カバー部材1Aは存在しない。これにより、中間カバー部材1Aのうち第1上流部1Aaよりも下流側における気泡の発生を抑制あるいは低減することが可能となる。その結果、検体液を、気泡を含むことなく検出素子3上に液体状で到達させることが可能となり、検出の感度あるいは精度を向上させることが可能となる。
【0024】
中間カバー部材1Aの材料としては、例えば、樹脂(プラスチックを含む)、紙、不織布、ガラスを用いることができる。より具体的には、ポリエステル樹脂、ポリエチレン樹脂、アクリル樹脂、シリコーン樹脂などの樹脂材料を用いることが好ましい。なお、第1カバー部材1の材料と中間カバー部材1Aの材料とを同一としてもよく、異なるようにしてもよい。
【0025】
また、本実施形態において、中間カバー部材1Aは、第1上流部1Aaを有しており、
図1(a)および
図1(b)に示すように、上面視において、検出素子3は、第1上流部1Aaよりも下流に位置している。これによれば、流路15のうち第1上流部1Aaを通って検出素子3上を流れる検体液は、測定に必要な量を超える量が下流側に流れていくことから、検出素子3に適切な量の検体液を供給することが可能となる。
【0026】
(第2カバー部材2)
第2カバー部材2は、
図1(b)および
図3(e)に示すように、検出素子3を覆うとともに、第1カバー部材1および中間カバー部材1Aに接合されている。ここで、第2カバー部材2は、
図1(b)および(c)に示すように、第3基板2aと第4基板2bとを有する。
【0027】
第2カバー部材2の材料としては、例えば、樹脂(プラスチックを含む)、紙、不織布、ガラスを用いることができる。より具体的には、ポリエステル樹脂、ポリエチレン樹脂、アクリル樹脂、シリコーン樹脂などの樹脂材料を用いることが好ましい。なお、第1カバー部材1の材料と第2カバー部材2の材料とを同一としてもよい。これによって、互いの熱膨張係数の差に起因する変形を抑制することが可能となる。なお、第2カバー部材2は、中間カバー部材1Aにのみ接合される構成、あるいは第1カバー部材1および中間カバー部材1Aの双方に接合される構成にしてもよい。
【0028】
第3基板2aは、
図1(c)、
図3(c)および
図3(d)に示すように、中間カバー部材1Aの上面に貼り合わされている。第3基板2aは平板状であり、その厚みは、例えば0.1mm〜0.5mmである。第4基板2bは、第3基板2aの上面に貼り合わされている。第4基板2bは、平板状であり、その厚みは、例えば0.1mm〜0.5mmである。そして、第4基板2bが第3基板2aと接合されることによって、
図1(b)に示すように、第2カバー部材2の下面に流路15が形成されることとなる。流路15は、流入部14から少なくとも反応部13の直上領域まで延びており、断面形状は、例えば矩形状である。なお、第3基板2aと第4基板2bとを同一材料としてもよく、両者が一体化されたものを用いてもよい。
【0029】
本実施形態において、流路15の端部は、
図1(b)に示すように、中間カバー部材1Aおよび第3基板2aが存在せず、第4基板2bと第1カバー部材1との隙間が排気孔18として機能する。排気孔18は、流路15内の空気などを外部に放出するためのものである。排気孔18の開口の形状は、円形状または矩形状など、流路15内の空気を抜くことができればどのような形状であってもよい。例えば、円形の排気孔18の場合にはその直径を2mm以下となるようにし、矩形からなる排気孔18の場合にはその1辺が2mm以下となるようにしている。
【0030】
なお、第1カバー部材1、中間カバー部材1Aおよび第2カバー部材2は、すべて同じ材料によって形成することもできる。それによれば、各部材の熱膨張係数をほぼ揃えることができるため、部材ごとの熱膨張係数の差に起因するセンサ装置100の変形が抑制される。また、反応部13には生体材料が塗布されることがあるが、その中には紫外線などの外部の光によって変質しやすいものもある。その場合は、第1カバー部材1、中間カバー部材1Aおよび第2カバー部材2の材料として、遮光性を有する不透明なものを用いるとよい。一方、反応部13の外部の光による変質がほとんど起こらない場合は、流路15を構成する第2カバー部材2を透明に近い材料によって形成してもよい。この場合は、流路15内を流れる検体液の様子を視認することができるため、光による検出方式と組み合わせて用いることも可能となる。
【0031】
(検出素子3)
本実施形態に係る検出素子3について、
図1〜
図6、特に
図4〜
図6を用いて説明する。
検出素子3は、
図6に示すように、概略として、第1カバー部材1の上面に位置している素子基板10a、および素子基板10aの上面に位置しており且つ検体液に含まれる被検出物(検出対象)の検出を行なう少なくとも1つの検出部10bを有する。
【0032】
具体的には、本実施形態の検出素子3は、素子基板10aと、素子基板10aの上面に位置している、固定化膜13aを有して被検出物の検出を行なう反応部13、反応部13に向かって伝搬する弾性波を発生させる第1IDT(Inter Digital Transducer)電極11、および反応部13を通過した弾性波を受信する第2IDT電極12、を有する検出部10bと、第1IDT電極11および第2IDT電極12を覆っている保護膜28とを備えており、素子基板10aの上面は、第1IDT電極11および第2IDT電極12が位置している領域10a1よりも反応部13が位置している領域10a2の方が低い。なお、検出部10bは、第1IDT電極11、反応部13、および第2IDT電極12に加えて、保護膜28、第1引出し電極19および第2引出し電極20などを有している。なお、保護膜28は、第1IDT電極11および第2IDT電極12を覆っていれば、その形態は限定されない。例えば、第1IDT電極11から第2IDT電極12までに跨って覆っていてもよいし、第1IDT電極11および第2IDT電極12を断続的に覆っていてもよい。
【0033】
(素子基板10a)
素子基板10aは、例えば、水晶、タンタル酸リチウム(LiTaO
3)単結晶、またはニオブ酸リチウム(LiNbO
3)単結晶などの圧電性を有する単結晶の基板からなる。素子基板10aの平面形状および各種寸法は適宜設定すればよい。素子基板10aの厚みは、例えば0.3mm〜1mmである。
【0034】
本実施形態において、上述の通り、
図6(a)、(b)に示すように、素子基板10aの上面は、第1IDT電極11および第2IDT電極12が位置している領域10a1よりも反応部13が位置している領域10a2の方が低い。これによれば、反応部13において、第1IDT電極11と第2IDT電極12との間を伝搬する弾性表面波(SAW:Surface Acoustic Wave)のエネルギーが固定化膜13aに集中し易くなるため、高い感度で検体液に含まれる被検出物の検出が可能となる。第1IDT電極11および第2IDT電極12が位置している領域10a1に対して、反応部13が位置している領域10a2を、第1IDT電極11と第2IDT電極12との間を伝搬するSAWの波長をλとしたとき、例えば0.02λ以下の範囲で低く設定すればよい。
【0035】
素子基板10aの上面は、第1IDT電極11および第2IDT電極12が位置している領域10a1の表面粗さよりも反応部13が位置している領域10a2の表面粗さの方が大きい。これによれば、反応部13において、後述するアプタマーや抗体などを高密度に固定化することができ、検出感度を向上させることが可能となる。ここで、各構成要素の表面粗さは、算術平均粗さRaを用いて判断すればよく、測定対象である上面に電極その他の膜が設けられている場合には、例えばSEM(走査型電子顕微鏡)やTEM(透過型電子顕微鏡)などの分析手法を用いた断面写真において断面形状を図形解析することによって測定すればよい。また、測定対象である上面を直接測定できる場合には、通常の接触式または非接触式の表面粗さ測定機を用いて測定すればよい。以下においても、特記しない限り、同様とする。
【0036】
素子基板10aのうち固定化膜13aが位置している領域の表面粗さは、固定化膜13aの上面の表面粗さよりも大きい。これによれば、素子基板10aと固定化膜13aとの接合強度を向上させるとともに、固定化膜13aに、アプタマーや抗体などを高密度に固定化することができ、検出感度を向上させることが可能となる。
【0037】
(IDT電極11、12)
図4および
図6に示すように、第1IDT電極11は、1対の櫛歯電極を有する。各櫛歯電極は、互いに対向する2本のバスバーおよび各バスバーから他のバスバー側へ延びる複数の電極指11a〜11e(11a,11b,11c,11d)を有している。そして、1対の櫛歯電極は、複数の電極指11a〜11eが互いに噛み合うように配置されている。第2IDT電極12も、第1IDT電極11と同様に構成されている。第1IDT電極11および第2IDT電極12は、トランスバーサル型のIDT電極を構成している。
【0038】
第1IDT電極11は、所定のSAWを発生させるためのものであり、第2IDT電極12は、第1IDT電極11で発生したSAWを受信するためのものである。第1IDT電極11で発生したSAWを第2IDT電極12が受信できるように、第1IDT電極11と第2IDT電極12とは同一直線上に配置されている。第1IDT電極11および第2IDT電極12の電極指の本数、隣接する電極指同士の距離、ならびに電極指の交差幅などをパラメータとして周波数特性を設計することができる。
【0039】
IDT電極によって励振されるSAWとしては、種々の振動モードのものが存在するが、本実施形態に係る検出素子3においては、例えばSH波とよばれる横波の振動モードを利用している。SAWの周波数は、例えば数メガヘルツ(MHz)から数ギガヘルツ(GHz)の範囲内において設定可能である。中でも、数百MHzから2GHzとすれば、実用的であり、かつ検出素子3の小型化ひいてはセンサ装置100の小型化を実現することができる。本実施形態では、SAWの中心周波数を数百MHzとした場合を例にとって、所定の構成要素の厚みや長さを記載する。
【0040】
第1IDT電極11および第2IDT電極12は、例えば金の薄膜層などからなる単層構造としてもよく、素子基板10a側からチタン層、金層およびチタン層の3層構造、あるいはクロム層、金層およびクロム層の3層構造などの複数層構造としてもよい。
【0041】
第1IDT電極11および第2IDT電極12の厚みは、例えば0.005λ〜0.015λの範囲で設定すればよい。
【0042】
なお、第1IDT電極11および第2IDT電極12のSAWの伝搬方向(幅方向)における外側に、SAWの反射抑制のための弾性部材を設けてもよい。
【0043】
(反応部13)
図4および
図6に示すように、反応部13は、第1IDT電極11と第2IDT電極12との間に設けられている。
【0044】
本実施形態において、反応部13は、素子基板10aの上面に形成された固定化膜13a(例えば金属膜)と、固定化膜13aの上面に固定化された、被検出物と反応する反応物質とを有する。反応物質は、検出対象の被検出物に応じて適宜選択すればよく、例えば、検体液中の特定の細胞または生体組織などを被検出物とするときは、核酸やペプチドからなるアプタマーを用いることができる。本実施形態において、反応物質と被検出物との反応は、例えば、化学反応または抗原抗体反応など反応物質と被検出物とが結合するものであってもよく、また、これらの反応に限らず、被検出物と反応物質との相互作用によって被検出物が反応物質とが結合したり、被検出物が反応物質に吸着したりするようなものであってもよい。反応部13に検体が接触したときに、反応物質が存在することで被検出物の種類や含有量に応じて弾性表面波の特性を変化させるものであれば、本実施形態の反応物質として反応部13に用いることができる。反応部13は、検体液中の被検出物と反応するためのものであり、具体的には、検体液が反応部13に接触すると、検体液中の特定の被検出物がその被検出物に対応するアプタマーと結合する。
【0045】
固定化膜13a(金属膜)としては、例えば金層からなる単層構造としてもよく、チタン層およびチタン層上に位置する金層の2層構造、あるいはクロム層およびクロム層上に位置する金層の2層構造などの複数層構造とすることができる。また、固定化膜13aの材料は、第1IDT電極11および第2IDT電極12の材料と同一にしてもよい。これによれば、両者を同一工程で形成することが可能となる。なお、固定化膜13aの材料は、上述の金属膜に代えて、例えばSiO
2、TiO
2などの酸化膜を用いてもよい。
【0046】
ここで、流路の幅方向に沿って配置された第1IDT電極11、第2IDT電極12および反応部13を1セットとすると、本実施形態に係るセンサ装置100には、
図4に示すように、そのセットが2つ設けられている。これにより、一方の反応部13と反応する被検出物を、他方の反応部13と反応する被検出物と異なるように設定することによって、1つのセンサ装置で2種類の被検出物の検出を行なうことが可能となる。
【0047】
本実施形態において、固定化膜13aの上面は、
図6(b)に示すように、素子基板10aの上面のうち第1IDT電極11および第2IDT電極12が位置している領域10a1の少なくとも一方の上面よりも高い。これによれば、反応部13において、第1IDT電極11と第2IDT電極12との間を伝搬するSAWのエネルギーが固定化膜13aの上面に集中し易くなるため、より高い感度で被検出物を検出することが可能となる。
【0048】
また、固定化膜13aの上面は、
図6(b)に示すように、第1IDT電極11の上面および第2IDT電極12の上面の少なくとも一方よりも低い。これによれば、反応部13において、第1IDT電極11と第2IDT電極12との間を伝搬するSAWのエネルギーが固定化膜13aの上面に集中し易くなるため、より高い感度で被検出物を検出することが可能となる。
【0049】
固定化膜13aの厚みは、例えば0.005λ〜0.015λの範囲で設定すればよい。本実施形態において、固定化膜13aの厚みは、
図6(b)に示すように、第1IDT電極11の厚みおよび第2IDT電極12の厚みの少なくとも一方よりも小さい。これによれば、固定化膜13aの厚みが比較的薄い場合においても、反応部13において、第1IDT電極11と第2IDT電極12との間を伝搬するSAWのエネルギーの損失を低減することが可能になる。それに加えて、SAWのエネルギーが固定化膜13aの上面に集中し易くなるため、より高い感度で被検出物を検出することが可能となる。
【0050】
固定化膜13aの上面の表面粗さは、第1IDT電極11の上面の表面粗さおよび第2IDT電極12の上面の表面粗さの少なくとも一方よりも大きい。これによれば、反応部13において、表面積を大きくしてアプタマーや抗体などを高密度に固定化することができ、検出感度をより向上させることが可能となる。固定化膜13aの上面の表面粗さは、Raで例えば0.5〜2.0nmの範囲で設定すればよく、測定対象である上面を、通常の接触式または非接触式の表面粗さ測定機を用いて測定すればよい。また、第1IDT電極11の上面および第2IDT電極12の上面の表面粗さは、いずれかの櫛歯電極の部分あるいはそれらを連結する部分のいずれかで、測定対象である上面を、通常の接触式または非接触式の表面粗さ測定機を用いて測定すればよい。
【0051】
(保護膜28)
保護膜28は、
図6に示すように、第1IDT電極11および第2IDT電極12を覆っている。これによって、検体液が第1IDT電極11および第2IDT電極12に接触することを抑制することができ、IDT電極の酸化などによる腐食を低減することが可能となる。保護膜28の材料としては、例えば酸化珪素、酸化アルミニウム、酸化亜鉛、酸化チタン、窒化珪素またはシリコンが挙げられる。なお、これらの材料は、保護膜28を構成する材料中で質量比率が最も多い主成分として用いられればよく、極僅かに不純物として混入などしている場合は材料として判断されないものとする。
【0052】
本実施形態において、保護膜28は、
図6(b)に示すように、第1IDT電極11および第2IDT電極12の少なくとも一方と反応部13との間にも位置している。この位置する部分28aによれば、IDT電極の側部が検体液と接触することを抑制あるいは低減することが可能となる。ここで、保護膜28は、
図6(b)に示すように、反応部13と接することなく離れて位置している。これによれば、反応部13におけるSAWに対する感度に与える影響を低減することができる。
【0053】
また、保護膜28は、
図6(b)に示すように、側断面視で、反応部13の側の端部のうち上端よりも下端の方が、反応部13との距離が近い。ここで、側断面視とは、例えば
図1(b)にも示されるように、
図1(a)をa−a線あるいはそれに垂直な方向に切断して得られた断面を、センサ装置の側面側から見た状態を意味する。また、反応部13の側の端部とは、例えば、上述のように、保護膜28が、第1IDT電極11および第2IDT電極12の少なくとも一方と反応部13との間にも位置しており、反応部13の全領域を覆っていない場合において、第1IDT電極11および第2IDT電極12の少なくとも一方の側の端部と反対側の端部のことを意味する。さらに、保護膜28は、
図6(b)に示すように、側断面視で、反応部13の側の端部のうち上端から下端へと向かうにつれて、反応部13の側に近づくように傾斜している。これにより、検体液が第1IDT電極11および第2IDT電極12に接触することをより効果的に抑制することができる。また、保護膜28が素子基板10aの上面を覆うように形成されている場合には、素子基板10aとの間の結合の安定性が向上する。
【0054】
本実施形態において、保護膜28の厚みは、例えば0.001λ〜0.05λの範囲で設定すればよい。ここで、保護膜28の厚みは、第1IDT電極11および第2IDT電極12を覆っていない部位で測定した素子基板10aの上面から保護膜28の上面までの距離とすればよいが、それ以外の部位での測定は排除されない。
【0055】
なお、保護膜28の厚みは、第1IDT電極11の厚みおよび第2IDT電極12の厚みの少なくとも一方よりも小さくしてもよい。これによれば、第1IDT電極11と第2IDT電極12との間を伝搬するSAWに対する保護膜28の影響を低減することができ、SAWのエネルギーの損失を低減することが可能になる。この場合において、保護膜28の上面の少なくとも一部が第1IDT電極11の上面および第2IDT電極12の上面の少なくとも一方よりも低くなるように設定してもよい。
【0056】
図4および
図6に示すように、第1IDT電極11および第2IDT電極12は互いに離れて位置している複数の電極指11a〜11e,12a〜12e(12a,12b,12c,12d,12e)をそれぞれ有しており、保護膜28は、
図6(b)に示すように、複数の電極指11a〜11e,12a〜12eのうち隣接する2つの電極指、例えば電極指11a,11b、電極指12a,12bの上に、およびこれら2つの電極指11a,11bおよび電極指12a,12bの間に露出している素子基板10aの上に、跨って(連続して、繋がって)位置している。これによれば、IDT電極の複数の電極指が検体液によって相互間で短絡を生じることを抑制することが可能となる。
【0057】
(引出し電極19、20)
図4に示すように、第1引出し電極19は第1IDT電極11と接続されており、第2引出し電極20は第2IDT電極12と接続されている。第1引出し電極19は、第1IDT電極11から反応部13とは反対側に引き出され、第1引出し電極19の端部19eは第1カバー部材1に設けた配線7と電気的に接続されている。第2引出し電極20は、第2IDT電極12から反応部13とは反対側に引き出され、第2引出し電極20の端部20eは配線7と電気的に接続されている。
【0058】
第1引出し電極19および第2引出し電極20は、第1IDT電極11および第2IDT電極12と同様の材料・構成とすればよく、例えば、金の薄膜層などからなる単層構造としてもよく、素子基板10a側からチタン層、金層およびチタン層の3層構造、あるいはクロム層、金層およびクロム層の3層構造などの複数層構造としてもよい。
【0059】
(検出素子3を用いた被検出物の検出)
以上のようなSAWを利用した検出素子3において試料液中の被検出物の検出を行なうには、まず、第1IDT電極11に、配線7および第1引出し電極19などを介して外部の測定器から所定の電圧を印加する。
【0060】
この電圧の印加によって、素子基板10aの表面のうち第1IDT電極11の形成領域10a1が励振され、所定の周波数を有するSAWが発生する。発生したSAWは、その一部が反応部13に向かって伝搬し、反応部13を通過した後、第2IDT電極12に到達する。反応部13では、反応部13のアプタマーが検体液中の特定の被検出物と反応して結合し、結合した分だけ反応部13の重さ(質量)が変化するため、反応部13を通過するSAWの位相などの特性が変化する。このように特性が変化したSAWが第2IDT電極12に到達すると、それに応じた電圧が第2IDT電極12に生じる。
【0061】
このようにして生じた電圧は、第2引出し電極20、配線7などを介して外部に出力され、それを外部の測定器で読み取ることによって、被検出物を含む検体液の性質や成分を調べることができる。
【0062】
ここで、検体液を反応部13に誘導するために、センサ装置100では毛細管現象を利用する。具体的には、上述のように、流路15は、
図1に示すように、第2カバー部材2が中間カバー部材1Aに接合されることによって、第2カバー部材2の下面に細長い管状となる。そのため、検体液の種類、中間カバー部材1Aおよび第2カバー部材2の材質などを考慮して、流路15の幅あるいは径などを所定の値に設定することによって、細長い管状の流路15に毛細管現象を生じさせることができる。流路15の幅は、例えば0.5mm〜3mmであり、深さは、例えば0.1mm〜0.5mmである。なお、流路15は、
図1(b)に示すように、反応部13を超えて延びた部分である下流部(延長部)15bを有し、第2カバー部材2には延長部15bにつながった排気孔18が形成されている。そして、検体液が流路15内に入ってくると、流路15内に存在していた空気は排気孔18から外部へ放出される。
【0063】
このような毛細管現象を生じる管を、中間カバー部材1Aおよび第2カバー部材2を含むカバー部材によって形成すれば、流入部14に検体液を接触させることによって、検体液が流路15を流れてセンサ装置100の内部に吸い込まれていく。このように、センサ装置100は、それ自体が検体液の吸引機構を備えているため、ピペットなどの器具を使用することなく検体液の吸引を行なうことができる。
【0064】
(流路15と検出素子3との位置関係)
本実施形態において、検体液の流路15は深さが0.3mm程度であるのに対し、検出素子3は厚みが0.3mm程度であり、
図1(b)に示すように、流路15の深さと検出素子3の厚さとがほぼ等しい。そのため、流路15上に検出素子3を第1カバー部材1の上面にそのまま置くと流路15が塞がれてしまう。そこで、センサ装置100においては、
図1(b)および
図5に示すように、検出素子3が実装される第1カバー部材1と第1カバー部材1上に接合される中間カバー部材1Aとによって素子配置部5を設けている。この素子配置部5の中に検出素子3を収容することによって、検体液の流路15が塞がれないようにしている。すなわち、素子配置部5の深さを検出素子3の厚みと同程度にし、その素子配置部5の中に検出素子3を実装することによって、流路15を確保することができる。
【0065】
検出素子3は、例えば、エポキシ樹脂、ポリイミド樹脂またはシリコーン樹脂などを主成分とするダイボンド材によって、素子配置部5の底面に固定されている。
【0066】
第1引出し電極19の端部19eと配線7とは、例えばAuなどからなる金属細線27によって電気的に接続されている。第2引出し電極20の端部20eと配線7との接続も同様である。なお、第1引出し電極19および第2引出し電極20と配線7との接続は、金属細線27によるものに限らず、例えばAgペーストなどの導電性接着材によるものでもよい。第1引出し電極19および第2引出し電極20と配線7との接続部分には空隙が設けられているため、第2カバー部材2を第1カバー部材1に貼り合わせた際に、金属細線27の破損が抑制される。また、第1引出し電極19、第2引出し電極20、金属細線27および配線7は、保護膜28によって覆われている。第1引出し電極19、第2引出し電極20、金属細線27および配線7が保護膜28で覆われていることによって、これらの電極などが腐食することを抑制することができる。
【0067】
以上のように、本実施形態に係るセンサ装置100によれば、検出素子3を第1カバー部材1の素子配置部5に収容したことによって、流入部14から反応部13に至る検体液の流路15を確保することができ、毛細管現象などによって流入部14から吸引された検体液を反応部13まで流すことができる。すなわち、所定の厚みを有する検出素子3を用いた場合であっても、センサ装置100自体に検体液の吸引機構を備えることができるため、検体液を検出素子3に効率的に導くことができるセンサ装置100を提供することができる。
【0068】
<検出素子の製造工程>
本発明の実施形態に係るセンサ装置100が備える検出素子3の製造工程について説明する。
図7は、検出素子3の製造工程を示す概略図である。
【0069】
まずは、水晶からなる素子基板10aを洗浄する。その後、必要に応じて、素子基板10aの下面にAl膜をRFスパッタリングによって形成する(
図7(a))。
【0070】
次に、素子基板10aの上面に、電極パターンを形成する。ここでは、電極パターンを形成するための画像反転型のフォトレジストパターン51を、フォトリソグラフィー法を用いて形成する(
図7(b))。
【0071】
次に、素子基板10aの上面のうち、フォトレジストが形成された部位と形成されていない部位とに、電子ビーム蒸着機を用いてTi/Au/Tiの三層構造の金属層52を成膜する(
図7(c))。
【0072】
次に、フォトレジストパターン51を、溶剤を用いてリフトオフし、その後、酸素プラズマによってアッシングを行なうことによって、Ti/Au/Tiの電極パターン53が形成される(
図7(d))。本実施形態において、Ti/Au/Tiの電極パターン53は、一対のIDT電極11、12に加えて、反射器および実装用の引出し電極19、20を構成する。一対のIDT電極11、12は、相対向する配置とし、一方が発信器、他方が受信器の機能を有するようにした。
【0073】
次に、素子基板10aの上面に、例えばTEOS(Tetra Ethyl Ortho Silicate)−プラズマCVDによって、Ti/Au/Tiの電極パターンを覆うように保護膜28を成膜する(
図7(e))。
【0074】
次に、保護膜28の上面に、ポジ型のフォトレジスト54を形成し、保護膜28を、RIE装置を用いてエッチングすることによって、保護膜28のパターンを形成する(
図7(f))。この際、保護膜28素子基板10aの中央部分、すなわち固定化膜13aを形成しようとする部分をオーバーエッチングすることによって周辺よりも低い凹部を形成する。その後に溶剤を用いてフォトレジスト54をリフトオフすることによって、IDT電極11,12を覆うように保護膜28のパターンが形成される。
【0075】
次に、固定化膜13aを形成するためのフォトレジストパターン55を、フォトリソグラフィー法を用いて形成し、電子ビーム蒸着機を用いて、反応部13となるAu/Tiの二層構造の金属層を形成する(
図7(g))。フォトレジストパターン55を、溶剤を用いてリフトオフし、その後、酸素プラズマによってアッシングを行なうことによって、Au/Tiの二層構造の固定化膜13aを一対のIDT電極11、12によって挟む構成とした(
図7(h))。ここで、1つのセンサ上には、一対のIDT電極11、12とAu/Tiの固定化膜13aとのセットを2セット形成し、一方を「検出側」、他方を「参照側」として用いる。その後、素子基板10aの下面に形成されていたAl膜50を、フッ硝酸を用いて除去する。
【0076】
固定化膜13aの上面に核酸やペプチドからなるアプタマーを固定化して反応部13を形成する。
【0077】
以上のようにして、検出素子3が形成される。
【0078】
次に、素子基板10aのダイシングを行なって所定のサイズに裁断する(
図7(i))。その後、裁断して得られた個々の検出素子3を、予め配線が形成された第1カバー部材1に相当するガラスエポキシ実装基板(以下、実装基板と記す。)上に、エポキシ系接着剤を用いて裏面固定する。そして、導線27としてAu細線を用いて、検出素子3上の引出し電極の端部19e、20eと実装基板上の端子6に繋がっている配線7との間を電気的に接続する(
図7(j))。
【0079】
その後、中間カバー部材1Aおよび第2カバー部材2などを設けてセンサ装置100が形成される。
【0080】
検出素子3の製造工程およびセンサ装置100の製造工程は、
図7で示した上記の工程に限定されず、第1IDT電極11および第2IDT電極12が位置している領域10a1よりも反応部13が位置している領域10a2の方が低い上面を有する素子基板10aを製造できる方法であれば、どのような製造工程を採用してもよい。
【0081】
本発明は、以上の実施形態に限定されず、種々の態様で実施されてよい。
【0082】
上述した実施形態においては、反応部13が固定化膜13aと固定化膜13aの上面に固定化されたアプタマーとからなるものについて説明したが、アプタマーに限らず、検体液中の被検出物と反応し、反応部13を通過する前後でSAWの特性が変化する反応物質であれば、固定化膜13aの上面に固定して用いることができる。また、例えば、検体液中の被検出物と固定化膜13aとが反応する場合には、アプタマーなどの反応物質を使用せず、固定化膜13aだけで反応部13を構成してもよい。さらに、固定化膜13aを用いずに、圧電基板である素子基板10aの表面における第1IDT電極11と第2IDT電極12との間の領域を反応部13としてもよい。この場合は、素子基板10aの表面に検体液を直接付着させることにより、検体液の粘性などの物理的性質を検出することができる。より具体的には、反応部13上の検体液の粘性などが変化することによるSAWの位相変化を計測する。また、固定化膜13aとして、金属膜に代えて、導電性を有さない膜の上面にアプタマーを固定化してもよい。
【0083】
また、検出素子3として、1つの基板上に複数種類のデバイスを混在させても構わない。例えば、SAW素子の隣に酵素電極法の酵素電極を設けてもよい。この場合は、抗体やアプタマーを用いた免疫法に加えて酵素法での測定も可能となり、一度に検査できる項目を増やすことができる。
【0084】
また、上述した実施形態においては、検出素子3が1個設けられている例について説明したが、検出素子3を複数個設けてもよい。この場合は、検出素子3ごとに素子配置部5を設けてもよいし、全ての検出素子3を収容できるような長さあるいは幅を有する素子配置部5を形成するようにしてもよい。
【0085】
また、上述した実施形態においては、第1カバー部材1、中間カバー部材1Aおよび第2カバー部材2がそれぞれ別部材である例を示したが、これに限らず、いずれかの部材同士が一体化されたものを用いてもよい。また、これら全ての部材同士が一体化されたものを用いてもよい。