特開2017-219322(P2017-219322A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ DMG森精機株式会社の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2017-219322(P2017-219322A)
(43)【公開日】2017年12月14日
(54)【発明の名称】変位検出装置
(51)【国際特許分類】
   G01D 5/347 20060101AFI20171117BHJP
   G01B 11/00 20060101ALI20171117BHJP
   G01D 5/38 20060101ALI20171117BHJP
【FI】
   G01D5/347 110U
   G01B11/00 G
   G01D5/38 A
【審査請求】未請求
【請求項の数】9
【出願形態】OL
【全頁数】33
(21)【出願番号】特願2016-111342(P2016-111342)
(22)【出願日】2016年6月2日
(71)【出願人】
【識別番号】000146847
【氏名又は名称】DMG森精機株式会社
(74)【代理人】
【識別番号】110000925
【氏名又は名称】特許業務法人信友国際特許事務所
(72)【発明者】
【氏名】松下 憲司
(72)【発明者】
【氏名】中村 勇輔
(72)【発明者】
【氏名】野本 康人
(72)【発明者】
【氏名】加藤 瞬
【テーマコード(参考)】
2F065
2F103
【Fターム(参考)】
2F065AA06
2F065AA07
2F065AA09
2F065DD04
2F065FF48
2F065FF49
2F065GG06
2F065GG07
2F065HH04
2F065JJ05
2F065JJ18
2F065LL02
2F065LL04
2F065LL12
2F065LL36
2F065LL37
2F065LL42
2F065LL46
2F103BA08
2F103BA10
2F103CA04
2F103CA08
2F103DA12
2F103DA13
2F103EB02
2F103EB12
2F103EB16
2F103EC11
2F103EC14
2F103EC15
2F103FA15
(57)【要約】
【課題】回折格子が計測方向以外へ変位したり傾いたりした場合でも計測誤差を軽減することができる変位検出装置を提供する。
【解決手段】変位検出装置1は、光を照射する光源2と、光束分割部3と、回折格子4と、回折光反射部6と、補正レンズ7と、光束結合部9と、受光部8と、を備えている。回折光反射部6は、第1の光束L1及び第2の光束L2を回折格子4の測定面の一面に対して垂直に、かつ互いに平行となるように反射させる。補正レンズ7は、回折光反射部6と回折格子4の間に配置されている。
【選択図】図1
【特許請求の範囲】
【請求項1】
光を照射する光源と、
前記光源から出射された光を第1の光束と、第2の光束に分割する光束分割部と、
前記光束分割部により分割された前記第1の光束と前記第2の光束を回折する回折格子と、
前記光束分割部により分割された前記第1の光束を前記回折格子に所定の角度で入射させる第1のミラーと、
前記光束分割部により分割された前記第2の光束を前記回折格子に所定の角度で入射させる第2のミラーと、
前記回折格子によって回折された前記第1の光束と前記第2の光束を反射させて、再び前記回折格子に入射させる回折光反射部と、
前記回折光反射部と前記回折格子の間に配置された補正レンズと、
前記回折格子によって再度回折された前記第1の光束と前記第2の光束を重ね合わせる光束結合部と、
前記光束結合部により重ね合わされた前記第1の光束及び前記第2の光束の干渉光を受光する受光部と、を備え、
前記回折光反射部は、その反射面が前記回折格子の格子面と平行に配置され、
前記補正レンズは、その中心軸が前記格子面に対して垂直となるように配置された
変位検出装置。
【請求項2】
前記第1の光束及び前記第2の光束における前記回折格子での1回目の回折の方向が、前記格子面に対して垂直に向く
請求項1に記載の変位検出装置。
【請求項3】
前記補正レンズにおける一方の焦点位置は、前記格子面の上に位置し、前記補正レンズにおける他方の焦点位置は、前記回折光反射部の前記反射面の上に位置する
請求項1又は2に記載の変位検出装置。
【請求項4】
前記第1の光束における前記光束分割部から前記回折格子までの光路長と、前記第2の光束における前記光束分割部から前記回折格子までの光路長が、異なる長さに設定され、
前記第1の光束における前記光束分割部から前記光束結合部までの光路長と、前記第2の光束における前記光束分割部から前記光束結合部までの光路長が同じ長さに設定される
請求項1から3のいずれか1項に記載の変位検出装置。
【請求項5】
前記第1の光束における前記光束分割部から前記回折格子までの光路長と、前記第2の光束における前記光束分割部から前記回折格子までの光路長の差である光路長差の整数倍の長さ、前記回折格子から前記回折光反射部までの光路長の整数倍の長さ、前記光路長差の整数倍と前記回折格子から前記回折光反射部までの光路長の整数倍の和、前記光路長差の整数倍と前記回折格子から前記回折光反射部までの光路長の整数倍の差が、前記光源の可干渉距離以上に設定される
請求項4に記載の変位検出装置。
【請求項6】
前記第1の光束における前記光束分割部から前記回折格子までの光路長と、前記第2の光束における前記光束分割部から前記回折格子までの光路長の差である光路長差の整数倍の長さ、前記回折格子から前記回折光反射部までの光路長の整数倍の長さ、前記光路長差の整数倍と前記回折格子から前記回折光反射部までの光路長の整数倍の和、前記光路長差の整数倍と前記回折格子から前記回折光反射部までの光路長の整数倍の差が、前記光源が複数の干渉ピークを有する場合、前記複数の干渉ピークの間の長さと同じ、あるいは前記干渉ピークが生じない長さに設定される
請求項4又は5に記載の変位検出装置。
【請求項7】
前記第1の光束の光路、又は前記第2の光束の光路のうち少なくとも一方の光路に配置され、前記第1の光束の光路長、又は前記第2の光束の光路長を調整する光路調整部を有する
請求項4から6のいずれか1項に記載の変位検出装置。
【請求項8】
前記第1の光束における前記光束分割部から前記受光部までの反射の回数と、前記第2の光束における前記光束分割部から前記受光部までの反射の回数が、同一、あるいは回数の差が偶数回である
請求項1から7のいずれか1項に記載の変位検出装置。
【請求項9】
前記回折格子は、格子配列の一方に沿った第1の格子ベクトルと、前記格子配列の他方に沿った第2の格子ベクトルと、を有し、
前記第1の光束が、前記回折格子によって前記第1の格子ベクトルに沿って回折され、前記回折光反射部により再び前記回折格子に入射し、再度回折が行われた際に、前記第2の格子ベクトルに沿って生成された第3の光束を反射させる第3のミラーと、
前記第2の光束が、前記回折格子によって前記第1の格子ベクトルに沿って1回回折され、前記回折光反射部により再び前記回折格子に入射し、再度回折が行われた際に、前記第2の格子ベクトルに沿って生成された第4の光束を反射させる第4のミラーと、
前記第3のミラーによって反射された前記第3の光束と、前記第4のミラーによって反射された前記第4の光束を重ね合わせる第2光束結合部と、
前記第2光束結合部により重ね合わされた前記第3の光束及び前記第4の光束の干渉光を受光する第2の受光部と、
を備えた請求項1〜8のいずれかに記載の変位検出装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、格子干渉計を用いた変位検出装置に関するものである。
【背景技術】
【0002】
従来、直線変位や回転変位の精密な測定を行う測定器として、周期的な明暗や凹凸を形成した格子とLEDなどの光源を用いて光学的に変位計測を行う装置が広く用いられている。近年では、半導体製造装置を中心として、1nm以下の変位の計測が行える高分解能化された変位検出装置が求められている。
【0003】
従来の、この種の変位検出装置としては、例えば、特許文献1に記載されているようなものがある。この特許文献1に記載された変位検出装置では、光源から照射された光を回折格子に垂直に入射させて、2つの回折光を生成している。さらに、この回折光を再び回折格子に照射させて、2回回折された回折光を生成している。そして、2つの2回回折された回折光を重ね合わせて干渉させ、干渉光を得ている。そして、干渉光を受光素子で受光することで、回折格子の変位を検出している。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2012−2787号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、従来の特許文献1に記載された変位検出装置では、回折格子が計測方向以外へ変位したり傾いたりした場合、計測誤差が発生する、という問題を有していた。
【0006】
本発明の目的は、上記の問題点を考慮し、回折格子が計測方向以外へ変位したり傾いたりした場合でも計測誤差を軽減することができる変位検出装置を提供することにある。
【課題を解決するための手段】
【0007】
上記課題を解決し、本発明の目的を達成するため、本発明の変位検出装置は、光源と、光束分割部と、回折格子と、第1のミラーと、第2のミラーと、回折光反射部と、補正レンズと、光束結合部と、受光部と、を備えている。光源は、光を照射する。光束分割部は、光源から出射された光を第1の光束と、第2の光束に分割する。回折格子は、光束分割部により分割された第1の光束と第2の光束を回折する。第1のミラーは、光束分割部により分割された第1の光束を回折格子に所定の角度で入射させる。第2のミラーは、光束分割部により分割された第2の光束を回折格子に所定の角度で入射させる。回折光反射部は、回折格子によって回折された第1の光束と第2の光束を反射させて、再び回折格子に入射させる。補正レンズは、回折光反射部と回折格子の間に配置されている。光束結合部は、回折格子によって再度回折された第1の光束と第2の光束を重ね合わせる。受光部は、光束結合部により重ね合わされた第1の光束及び第2の光束の干渉光を受光する。回折光反射部は、その反射面が回折格子の測定面と平行に配置されている。そして、補正レンズは、その中心軸が回折格子の測定面に対して垂直となるように配置されている。
【発明の効果】
【0008】
本発明の変位検出装置によれば、回折格子が傾きその姿勢が変化しても計測誤差を軽減することができる。
【図面の簡単な説明】
【0009】
図1】本発明の第1の実施の形態例にかかる変位検出装置の構成を示す概略構成図である。
図2】本発明の第1の実施の形態例にかかる変位検出装置における回折格子の一例を示す図である。
図3】本発明の第1の実施の形態例にかかる変位検出装置の相対位置検出器を示すブロック図である。
図4】本発明の第1の実施の形態例にかかる変位検出装置における光束分割部から受光部までの光路長を示す説明図である。
図5】本発明の第1の実施の形態例にかかる変位検出装置における補正レンズの作用を示す説明図であり、回折格子が傾いた状態を示す説明図である。
図6】本発明の第1の実施の形態例にかかる変位検出装置における補正レンズの作用を示す説明図であり、回折格子が傾いた状態を示す説明図である。
図7】本発明の第1の実施の形態例にかかる変位検出装置における補正レンズの作用を示す説明図であり、回折格子が高さ方向に移動した状態を示す説明図である。
図8】本発明の第1の実施の形態例にかかる変位検出装置における補正レンズの作用を示す説明図であり、回折格子が高さ方向に移動し、かつ傾いた状態を示す説明図である。
図9】本発明の第1の実施の形態例にかかる変位検出装置における補正レンズの作用を示す説明図である。
図10】本発明の第1の実施の形態例にかかる変位検出装置における補正レンズの作用を示す説明図である。
図11】補正レンズの光軸が回折格子の測定面に対して傾いた光学系を示す説明図であり、回折格子が傾いた状態を示す説明図である。
図12】補正レンズの光軸が回折格子の測定面に対して傾いた光学系を示す説明図であり、回折格子が高さ方向に移動し、かつ傾いた状態を示す説明図である。
図13】補正レンズの光軸が回折格子の測定面に対して傾いた光学系を示す説明図である。
図14】補正レンズの光軸が回折格子の測定面に対して傾いた光学系を示す説明図である。
図15】補正レンズの光軸が回折格子の測定面に対して傾いた光学系を示す説明図である。
図16図15の要部を拡大して示す説明図である。
図17図16の要部を拡大して示す説明図である。
図18】本発明の第1の実施の形態例にかかる変位検出装置における回折格子が傾いた場合の光路長差を示すグラフである。
図19】回折格子が傾いた場合の光路長差を示すグラフであり、回折角度9°の例を示すグラフである。
図20】本発明の第1の実施の形態例にかかる変位検出装置における受光部に到達する不要光の光路を示す説明図である。
図21】マルチモードの半導体レーザの特性を示すビジビリティー(干渉強度)曲線図である。
図22】本発明の第2の実施の形態例にかかる変位検出装置の構成を示す概略構成図である。
図23】本発明の第2の実施の形態例にかかる変位検出装置における光束分割部から受光部までの光路長を示す説明図である。
図24】本発明の第3の実施の形態例にかかる変位検出装置の構成を示す概略構成図である。
図25】本発明の第3の実施の形態例にかかる変位検出装置における光束分割部から受光部までの光路長を示す説明図である。
図26】本発明の第3の実施の形態例にかかる変位検出装置における受光部に到達する不要光の光路を示す説明図である。
図27】本発明の第4の実施の形態例にかかる変位検出装置の構成を示す概略構成図である。
図28】本発明の第4の実施の形態例にかかる変位検出装置における光束分割部から受光部までの光路長を示す説明図である。
図29】本発明の第4の実施の形態例にかかる変位検出装置における受光部に到達する不要光の光路を示す説明図である。
図30】本発明の第4の実施の形態例にかかる変位検出装置における光学系の製造方法を示す説明図である。
図31】本発明の第5の実施の形態例にかかる変位検出装置の構成を模式的に示す斜視図である。
図32】本発明の第5の実施の形態例にかかる変位検出装置の構成を示す概略構成図である。
図33】本発明の第5の実施の形態例にかかる変位検出装置における回折格子の一例を示す図である。
【発明を実施するための形態】
【0010】
以下、本発明の変位検出装置の実施の形態例について、図1図33を参照して説明する。なお、各図において共通の部材には、同一の符号を付している。また、本発明は、以下の形態に限定されるものではない。
また、以下の説明において記載される各種のレンズは、単レンズであってもよいし、レンズ群であってもよい。
【0011】
1.第1の実施の形態例
1−1.変位検出装置の構成例
まず、本発明の変位検出装置の第1の実施の形態例(以下、「本例」という。)の構成を図1図3に従って説明する。
図1は、変位検出装置の構成を示す概略構成図、図2は、変位検出装置の回折格子の一例を示す図、図3は、変位検出装置における相対位置検出器の概略構成を示すブロック図である。また、図4は、変位検出装置の光路長を示す説明図である。
【0012】
本例の変位検出装置1は回折格子の一方向の変位、図1の場合はX方向の変位を検出する装置である。
【0013】
以下、図1図4を用いて説明する。
光源2から出射した発散する光ビームは、レンズ11によってコリメートビームに変換される。光源2としては、マルチモードのレーザーダイオード、スーパールミネッセントダイオード等の可干渉光源ではあるが可干渉距離が比較的短い光源を使用する。ただし、光源としてはこれら特定の種類の光源に限定されるわけではない。ここで言う可干渉距離とは干渉光強度がピークに対しておおむね1/e2以下に低下する時の光束の光路長差である。
【0014】
光源の位置としては、図1に示された光源2の位置に置いてもよいし、光源の発熱の影響を避けるため、光源は離れた場所に設置し、光ファイバーを用いて光を伝搬させ、光ファイバーの出射端を図1に示された光源2の位置に置いてもよい。この時も光ファイバーを出射した発散する光ビームはレンズ11によってコリメートビームに変換される。光源からのビームが直線偏光の場合は光ファイバーには偏波保持ファイバー等の偏波面を保持できるものを用いる。
【0015】
レンズ11でコリメートビームに変換された光線は偏光ビームスプリッター3からなる光束分割部に入射する。光源2から出射する光が直線偏光の場合は、入射光の偏光方向が偏光ビームスプリッターの透過偏光方向(P偏光)に対して45°になるようにする。光源2から出射する直線偏光の光を1/4波長板を用いて円偏光に変換した場合や、出射光がもともと無偏光や円偏光の場合は、光源の光軸周りの角度を特定の方向にする必要はない。いずれの場合も、偏光ビームスプリッター3で光線は透過側と反射側へ強度比1:1で分割される。
【0016】
偏光ビームスプリッター3の反射側へ出射したS偏光の光束L1は1/4波長板12で円偏光に変換される。光束L1はミラー13で反射され、回折格子4に[式1]を満たす角度で入射される。
[式1]
Λ:格子ピッチ λ:入射光の波長
θ:入射角度(格子の法線から光線向けて角度を測った時、反時計まわりを正とする。)
光束1は回折格子4で回折され、−1次光が回折格子4の格子面に対して垂直な方向に出射する。
【0017】
図2Bは回折格子4の断面構造を示している。基板4bの上に突起構造4aがx方向に一定の周期Λで並んだ構造となっている。また、図2Aに示した通り、突起構造4aは同じ断面形状のままx軸と垂直な方向に延伸した構造となっている。突起構造4aの断面形状は±1回折光の強度が最大となるように最適化される。
【0018】
偏光ビームスプリッター3の透過側へ出射したP偏光の光束L2は、偏光ビームスプリッター3と偏光ビームスプリッター16の間に置かれた1/2波長板15を通過し、P偏光からS偏光に変換される。S偏光に変換された光束L2は偏光ビームスプリッター16で反射され、1/4波長板17を通過し円偏光に変換される。光束L2はミラー18で反射され、回折格子4に[式2]を満たす角度で入射される。
[式2]
光束L2は回折格子4で回折され、+1次光が回折格子4の格子面に垂直な方向へ出射する。
【0019】
光束L1と光束L2の回折格子4上の入射点は、ほぼ同一点となるようにする。図1では光束1と光束2の光路を別々に説明するために光路の説明のために、光束1と光束2の回折格子4の入射点が異なるように図示しているが、入射点はなるべく近付けるようにする。
【0020】
偏光ビームスプリッター3、偏光ビームスプリッター16、ミラー13,18は光束1の偏光ビームスプリッター3の分割面からミラー6までの光路長(L+L+L)に比べ、光束2の偏光ビームスプリッター3の分割面からミラー6までの光路長(L+L+L+L)がΔLだけ長くなるように配置される。(図4参照)
【0021】
光束1と光束2は回折格子4の格子面に垂直に立てた軸に対して左右対称に入射させる。したがって、L=L、L=L、L=Lとなるので、L=ΔLとなる。ここで言う光路長とは単なる距離ではなく光線が通過する距離に光線が通過する物質の屈折率をかけたものである。光路長差は偏光ビームスプリッター3と偏光ビームスプリッター16の間隔で調整することができる。
【0022】
回折格子4で回折した光束1と光束2は、ほぼ重なった状態で、回折格子が傾いた場合に光束1、光束2の光路を補正する補正レンズ7を通過し、ミラー6からなる回折光反射部で反射し、元の光路を逆戻りする。レンズ7の中心軸は回折格子4の格子面に垂直となるようにし、光束1、光束2のミラー13、ミラー18から回折格子4までの光路の対称軸と一致させる。
【0023】
また、レンズ7の一方の焦点位置は回折格子4の格子面上に、もう一方の焦点位置はミラー6の反射面上に位置するように配置される。(レンズ7の働きは後述)
【0024】
光束1は回折格子4で再度回折して、1/4波長板12を通過する、光束2は回折格子4で再度回折して、1/4波長板17を通過する。
【0025】
1/4波長板12を再度通過した光束1は円偏光からP偏光に変換され偏光ビームスプリッター3を通過し、ミラー14で反射され、ミラー14と偏光ビームスプリッター9の間に配置された、1/2波長板19を通過し、P偏光からS偏光に変換される。S偏光に変換された光束1は偏光ビームスプリッター9からなる光束結合部で反射され受光部8へ向かう。
【0026】
一方、1/4波長板17を再度通過した光束2は円偏光からP偏光に変換され、偏光ビームスプリッター16および偏光ビームスプリッター9を通過し、受光部8へ向かう。
【0027】
ミラー14および偏光ビームスプリッター9は、光束1の偏光ビームスプリッター3の分割面から偏光ビームスプリッター9の分割面までの光路長(L+L)が光束2の偏光ビームスプリッター16の分割面から偏光ビームスプリッター9の分割面までの光路長(L10)よりΔLだけ長くなるように配置される(L+L=L10+ΔL)。光路長差はミラー14と偏光ビームスプリッター9の間隔によって調整することができる。
【0028】
以上より、光束1の偏光ビームスプリッター3の分割面で分割されてから偏光ビームスプリッター9の分割面で光束2と重ね合わされるまでの光路長と光束2の偏光ビームスプリッター3の分割面で分割されてから偏光ビームスプリッター9の分割面で光束1と重ね合わされるまでの光路長は等しくなる(2×L1+2×L2+2×L3+L8+L9=L4+2×L5+2×L6+2×L7+L10)。
上記の説明より、偏光ビームスプリッター9の分割面で重ねあわされた光束1と光束2の光路長が等しくなることがわかる。
【0029】
重ねあわされた光束1と光束2はレンズ21を通過し、フォトダイオード33,34,35,36上でビームが適当な大きさになるように絞られる。
【0030】
レンズ21を通過後、光束1と光束2は、光学軸が偏光方向に対して45°傾けられている1/4波長板22を通過し、偏光面が互いに反対方向に回転する円偏光に変換される。
【0031】
また、光束1と光束2は回折格子4で2回回折されているので、回折格子4がx方向に移動した場合、それぞれ+2Kx、−2Kxだけ位相が変化する。(K=2π/Λ:格子定数)
【0032】
互いに逆方向に回転する円偏光の光を重ね合わせた光は、2つの光の位相差にしたがって回転する直線偏光の光とみなすことができる。したがって、1/4波長板22を通過後、重ねあわされた光束は回折格子がxだけ移動すると偏光面が2Kx(ラジアン)回転する直線偏光とみなすことができる。
【0033】
重ねあわされた光束は無偏光ビームスプリッター23で分割され、一方は偏光ビームスプリッター24、もう一方は1偏光ビームスプリッター25に向かう。
【0034】
偏光ビームスプリッター24で光束はS偏光成分とP偏光成分に分割され、S偏光成分はフォトダイオード33、P偏光成分はフォトダイオード34で受光される。
フォトダイオード33、フォトダイオード34で受光される光量をI33、I34とすると、以下の通りとなる。
[式3]
δは初期位相。
回折格子4がx方向に移動すると、正弦波状に変動する干渉信号が得られる。フォトダイオードからはこれに比例した電流信号が出力される。フォトダイオード33、フォトダイオード34から得られる信号は位相が180°異なる反転信号となることが分かる。
【0035】
無偏光ビームスプリッター23で分割されたもう一方の光束は光軸周りに45°回転された偏光ビームスプリッター25に入射する。偏光ビームスプリッター25で光束はS偏光成分とP偏光成分に分割され、S偏光成分はフォトダイオード35、P偏光成分はフォトダイオード36で受光される。
フォトダイオード35、フォトダイオード36で受光される光量をI35、I36とすると、以下の通りとなる。

[式4]
となる。
【0036】
33とI34はSINθの対であるのに対して、I35とI36は90°位相のずれたCOSθの対となっている。I33とI34、35とI36はお互いに反転信号となっており、引き算することにより信号の直流成分の変動をキャンセルすることができる。また、引き算することにより90°位相のずれたSINθ、COSθの一対の信号が作られるため、一般によく知られている方法により、回折格子4がx方向の左右どちら側に動いているかの弁別をすることが可能となる。
【0037】
これらの信号は回折格子4がx方向にΛ/4移動すると1周期変動する信号となるが、SINθ、COSθ信号からθ=Atanθを計算することにより、Λ/4よりも小さな変位量を正確に検出することが可能となる。
【0038】
フォトダイオード33,34,35,36からの信号は相対位置検出器10へ送られる。
次に相対位置検出器10の動作について図3を用いて説明する。
【0039】
相対位置検出器10ではフォトダイオード33,34,35,36からの信号を電流電圧変換する。電流電圧変換後の電圧信号をそれぞれ、V33,V34,V35,V36とすると第1差動増幅器61aで(V33−V34)×α、第2差動増幅器61bで(V36−V35)×βの信号を作成する。増倍率α、βは、増幅後の二つの信号の振幅が等しくなるように、かつ、後段のA/D変換器の入力可能レンジに合わせて設定する。
【0040】
差動増幅されて得られた二つの信号は、A/D変換器62a、62bでアナログのSIN、COS信号からデジタル信号へと数値化され、波形補正処理部63で演算処理が行われる。波形補正処理部63、インクリメンタル信号発生器64ではDSPが組み込まれたプログラマブルロジックデバイス等で演算を行い、アナログ信号の乱れに起因するSINθ信号、COSθ信号の振幅変動、オフセット変動および位相変動の補正を行う。補正された信号からθ=Atanθを求めることにより、より正確なスケールの位置情報を生成し、必要な形式のインクリメンタル信号を発生させることができる。また、事前に取得してある回折格子の格子周期の変動により生じる誤差を演算により除いた上で、インクリメンタル信号を発生させることも可能である。
波形補正の方法については特開平06-167354号公報、インクリメンタル信号の発生方法については特開平08-201110号公報に具体的な構成例が述べられている。
【0041】
次に、光束1、光束2の光路を補正するレンズ7の効果と回折光が格子面に対して垂直に出射していることの効果について図5から図10を用いて説明する。
【0042】
レンズ7が存在しない場合、回折格子4が傾いた場合は、光束1と光束2の光路が変化し、二つの光束の重なりがずれるため干渉信号の最大値、最小値の差(以下振幅)が小さくなる。干渉信号の振幅が小さくなると相対位置検出器10で用いる電圧信号のS/N比の低下を招くことになる。また、光路の変化により二つの光束の光路長差が変化するため、このことによる干渉信号の変化も生じる。この変化は回折格子4がX軸方向に変位した場合の変化と区別がつかないため、X軸方向の変位の計測に於いては誤差となって現れる。
【0043】
本例1では、図6のように一方の焦点位置が回折格子4の格子面上に、もう一方の焦点位置がミラー6の反射面上に位置するようにレンズ7が配置される。このことにより、回折格子4が傾いた場合でも、特開2012−2787号にも述べられているように、偏光ビームスプリッター9で重ね合わせられる光束1と光束2に大きなずれが生じないため、干渉信号の振幅の低下が大幅に抑えられるという効果がある。この点について図5図6を用いて説明する。
【0044】
回折格子4が傾くと、図5にあるように、回折光は斜線で示した光線のように傾く。図6の一点鎖線は回折格子4の傾きがない場合、破線は傾いた場合の光束の光軸を表している。レンズ7の一方の焦点が回折格子4上にあるため、回折格子4が傾いた場合でも、レンズ7を通過後の回折光の光軸がミラー6に対して常に垂直になり、ミラー6の反射前後で光路にずれが生じない。また、レンズの作用により一点鎖線と破線の光路長は常に等しいため、回折格子4の傾きによる光路長の変化も生じないことが分かる。
【0045】
また、図5より、レンズ7のもう一方の焦点がミラー6の反射面上にあるため、レンズ7を通過した平行光束はミラー6の反射面上で一点に絞られ、ミラー6での反射前後で光束の形に変化が生じないことがわかる。
【0046】
以上、光束1の例のみ述べたが、光束2はレンズ7の中心軸に対して光束1と対称であることから、以上の説明が同様に適用でき、光束2も回折格子4の傾きによる光路のずれ、および光路長の変化を生じないことが分かる。光束1、光束2とも回折格子4の傾きによって光路のずれおよび光路長の変化を生じないため、回折格子4が傾いた場合でも、受光部8での干渉信号に変化が生じないため、誤差が発生しないことが分かる。
【0047】
さらに、レンズ7の中心軸が回折格子4の格子面に対して垂直であることと、回折の方向が格子面に対して垂直であることからは、以下の効果を生じる。
【0048】
回折格子4が上下方向に動いた場合は図7のように、回折格子4への一回目の入射点、二回目の入射点ともレンズ7の中心軸からずれた位置に移動する。(この図では説明のため光束1と光束2を別々に図示している。)回折格子4への入射点がずれると、回折光の位相は、ずれ量Δxに応じた−4KΔxだけ変化するが、レンズ7の一方の焦点位置が回折格子4の格子面上に、もう一方の焦点位置がミラー6の反射面上に位置するよう配置されているため格子面⇒レンズ7⇒ミラー6⇒格子面を一つの光学系とみた場合の横倍率が1倍であるため、図12のように、帰りの光路では、レンズ7の中心軸に対し左右対称に、同じ距離だけ入射点が移動する。このことにより、行きと帰りの位相ずれがお互いに相殺し光束の位相の変化は生じない。また、回折格子4の上下方向の移動により、光路長が長くなったり短くなったりするが、図7を見ればわかる通り、光束1と光束2の光路長が同じだけ変化するので、受光部8での干渉信号に変化が生じないため、誤差が発生しないことが分かる。
【0049】
回折格子4が上下方向に移動し、さらに傾いた場合は図8の斜線部のように光路が変化する。図6の光束を、図9のように行きと帰りの光線をひとまとめにして考えると、回折格子4上下方向の移動がレンズ7の焦点深度の範囲程度に収まっていれば、太い一点鎖線を光軸とする平行光線がミラー6の反射面上で焦点を結んでいることと同じであると考えることができるので、レンズの作用から太い破線の範囲内では光線の光路長がほぼ等しいことが分かる。
【0050】
この状態から回折格子4が傾いた状態を示したのが図10である。この場合も図9と同様に行きと帰りの光束をひとまとめにして、太い一点鎖線を光軸とする、一つの光束と考えることができる。これを図6と比較すると、図10の光軸を示している太一点鎖線が、図6の破線と同様にレンズ7を通過後にミラー6の反射面に対して垂直になる状態が保たれている範囲では、図5図6で説明したことが同様に適用できる。
【0051】
ただし、図10の場合は、回折格子4の格子面の位置がレンズ7の焦点位置からずれるため誤差は0にはならないが、図9の太破線内の光線の光路長と、図10の太破線内の光線の光路長は、ほぼ等しくなることが分かる。したがって、図10の回折格子4が傾く前の光束と回折格子4が傾いた後の斜線部で示した光束の光路長は、ほぼ等しいと言うことができる。このことにより、受光部8での干渉信号の変化がごく小さなものとなり、上記で説明した構成を取らない場合に比べ、回折格子4が上下に移動しかつ傾いた際の誤差が大幅に低減される。
【0052】
以上述べた効果は、レンズ7の中心軸が回折格子4の格子面に対して垂直であることと、回折の方向が格子面に対して垂直であることの二つが満たされることにより生じる。回折の方向が格子面に対して完全に垂直であることは必ずしも必要ではないが、回折方向が垂直から離れるほど、レンズ7の非軸収差の影響が大きくなるため、誤差の発生をより小さくするためには、回折方向が垂直に近いことがより望ましい。
【0053】
以下に、図11から図17を用いてレンズ7の中心軸と回折光の方向が格子面に対して、垂直ではなく傾いている場合に、回折格子4が上下に移動し、かつ傾いた場合に大きな誤差が発生する理由を説明する。
【0054】
図11は1回目の回折光が格子面に対して垂直な方向ではなく傾いた方向に出射している場合を示している。レンズ7の中心軸は回折光の光軸と一致させているため、回折格子の格子面に対して垂直ではなく傾いている。この場合、光束1と光束2で回折格子4での回折後の光路が異なるので、レンズ7はそれぞれに対して一つずつ必要になる。
【0055】
図中斜線部で示したのは回折格子4が傾いた時の光路である。レンズ7の一方の焦点位置は回折格子4の格子面と一致させ、もう一方の焦点位置はミラー6の反射面と一致させている。この場合も、回折格子4が傾いた場合でも光路長の変化や2回目の回折光の光路にずれは生じない。これは、図5図6で説明したことと同様の理由による。
【0056】
回折格子4が上下方向に動いた場合も図7で説明したことがほぼそのまま適用でき、入射点の移動による位相変化は相殺され、光束1と光束2の光路長が同じだけ変化するので、受光部8での干渉信号に変化が生じない。
【0057】
回折格子4が上下方向に移動し、さらに傾いた場合は図12の斜線部のように光路が変化する。図13のように、行きと帰りの光束をひとまとめにして考えると、図9で説明したのと同様に、回折格子4上下方向の移動がレンズ7の焦点深度の範囲程度に収まっていれば、太い破線内の光線の光路長は、ほぼ等しいと考えることができる。この状態から回折格子4が傾いた状態を同様に考えると図14の太線内の光線の光路長は、図10の説明の時と同様、ほぼ等しいと考えることができる。
【0058】
ただし、この光線の光路長は回折格子4が傾く前の光路長とは異なる。図15図14のひとまとめにした光線の仮想の光軸のみを示したもので、図16図15の丸で囲った部分を拡大した図である。図16から、回折格子4が上下に移動することによりレンズ7の中心軸と回折格子4の回転中心にずれが生じ、光路が図16の丸部分を拡大した図17の太線の部分だけ長くなっていることが分かる。この図は光束1の様子を示したものであるが、光束2は反対に光路が短くなることが容易に理解できる。したがって、回折格子4が上下方向に移動し、さらに傾いた場合は、光束1と光束2の光路長に大きな差が生じ、受光部8での干渉信号にも大きな変動が生じ、大きな誤差が発生することがわかる。
【0059】
レンズ7の中心軸が回折格子4の格子面に対して垂直であれば、回折格子4が上下方向に移動した場合でも、回折格子4の回転中心とレンズ7の中心軸は常に一致するので、上記のような誤差は生じない。
【0060】
以上により、回折格子4が上下方向に移動し、さらに傾いた場合にそれに伴う誤差を極力小さくするためには、レンズ7の中心軸が回折格子4の格子面に垂直で、1回目の回折光が格子面に対して垂直な方向に出射している必要があることが分かる。
【0061】
図18図19はレンズ7に焦点距離6.3mmのものを用い、回折格子4の周期を1μm、光源2の波長を790nmとした時に、回折格子4が傾いた場合の光束1と光束2の光路長差をシミュレーションにより計算した結果を示している。図中の回折角度とは、回折格子4の法線と回折光の角度のことである。このシミュレーションではレンズ7の中心軸と回折光の光軸は一致させてある。
【0062】
図18から分かるように、回折角度が0°(格子面に対して垂直方向に回折)の場合は、ΔZ(スケールの上下方向の移動)の増加により、回折格子4が傾いた場合に若干の光路長差が発生しているが、図19の回折角度が9°の場合に比べると、発生する光路長差は大幅に小さいことが分かる。量的には約1/8に低減されていることが分かる。したがって、シミュレーション結果からも、レンズ7の中心軸が回折格子4の回折面に対して垂直であり、回折光が格子面に対して垂直な方向に出射していることの効果は明らかである。
【0063】
次に、偏光ビームスプリッター3の分割面からミラー6までの光路長(L+L+L)に比べ、光束2の偏光ビームスプリッター3の分割面から回折格子4までの光路長(L+L+L+L)がΔLだけ長くなるように配置され、光束1の偏光ビームスプリッター3の分割面から偏光ビームスプリッター9までの光路長(L+L)が光束2の偏光ビームスプリッター16の分割面から偏光ビームスプリッター9の分割面までの光路長(L10)よりΔLだけ長くなるように配置されていることの効果を説明する。
【0064】
図20に示すように、受光部8には±1次の回折光である光束1と光束2以外の回折次数の光も到達する。これらの光は本来不要であり、これらの不要光どうし、あるいは不要光と光束1と光束2が干渉した場合は全てノイズとなり、光束1と光束2の干渉から得られるSIN、COS信号を歪ませ、SIN、COS信号を内挿して位置情報を得る場合の誤差要因となる。
【0065】
そこで、実施例1では、不要光どうし、不要光と光束1と光束2の光路長に差を設け、その差が光源の可干渉距離以上となるように設定することにより、これらの光どうしの干渉を抑制している。干渉しないで単に受光部に到達する不要光については、先に説明した61a、61bの差動増幅器で除去される。
【0066】
表1に各回折光どうしの光路長の差を示した。
【0067】
【表1】
【0068】
表中の項目欄で、+1次、−1次とあるのは1回目の回折が+1次、2回目の回折が−1次の光線であることを示している。例えば、+1次、−1次と−1次、+1次の交差している欄にある2ΔLはこの二つの光線の光路長差を示している。nは整数で回折格子4とミラー7の間を0次光が繰り返し反射することに対応している。
【0069】
この表から、ΔLとLが以下の条件を全て満たせば各回折光どうしの光路長が可干渉距離Δl以上になることが分かる。
[式5]
nは表中の対応する回折光で回折格子4とミラー6の間を繰り返し往復する反射光が十分減衰するまでの反射回数。例えば1回目と2回目の回折が共に+1次の光束の偏光ビームスプリッター3の分割面から偏光ビームスプリッター9の分割面までの光路長は2L+2L+2L3+L8+L9となるが、2回目の回折格子への入射の際には単純な反射光(0次光)も発生し、この光はミラー6へ向かい再び回折格子へ入射することになり、以後同じことを繰り返す。このことから、ミラー6での反射回数をn回とすると、先ほどの光路長は2L+2L+2nL3+L8+L9となる。表中のnはこの反射回数を表している。n=3で他の回折光と干渉した場合の干渉光強度が許容範囲内に収まる程度に減衰する場合はn=1,2,3で上式を満たすようにする。
【0070】
上記より、光束1の偏光ビームスプリッター3の分割面から偏光ビームスプリッター9の分割面までの光路長(L+L)が光束2の偏光ビームスプリッター16の分割面から偏光ビームスプリッター9の分割面までの光路長(L10)よりΔLだけ長くなるように配置されていることにより、不要光どうし、不要光と光束1と光束2の光路長に光源2の可干渉距離以上の差を設けることが可能であり、Lも同時に一定の長さに設定する必要があることが分かる。
【0071】
上記で、+2次光と−2次光については光路長が等しくなり干渉を抑制できないが干渉光の位相変化が4Kxと光束1と光束2の位相変化量と同相となるため、信号歪の要因としては影響が小さい。
【0072】
マルチモードの半導体レーザー等複数の発振周波数ピークを持った光源の場合、図21のようにコヒーレンス曲線に複数のピークが現れる。グラフの縦軸は干渉光のビジビリティーで横軸は光路長差である。このような光源の場合は[式5]のΔL,2L,|ΔL−2nL|,|2(ΔL−nL)|が図中の矢印のようにピークとピークの間の谷の部分に入るようにするか、ピークが現れない位大きな光路長差(ΔL >> 40mm)を取る必要がある。
以上、ΔLとLを特定の大きさにすることにより不要な干渉を抑制することが可能であることを示した。
【0073】
次に、偏光ビームスプリッター9の分割面で重ねあわされる光束1と光束2の光路長が等しくなっていることの効果について述べる。
【0074】
実施例1では可干渉距離の比較的短い光源2を用いるが、光束1と光束2の光路長が等しい場合、ビジビリティー曲線のピークで干渉し大きな振幅の干渉信号を得ることができる。
【0075】
逆に言えば、光束1と光束2の干渉信号の振幅が最大になるようにミラー14と偏光ビームスプリッター9の間隔を調整することで、光束1と光束2の光路長を等しくすることも可能である。
【0076】
光路長を等しくすることより、光源の波長変動により発生する誤差をなくすことができる。実施例1の場合、偏光ビームスプリッター9の分割面で光束1と光束2を重ね合わせた後の光路長にΔaの差がある場合、光源の波長がΔλ変化すると下記のΔEの誤差が生じる。
[式6]
Δλは光源の温度、気圧、湿度の変化によって生じるため、Δaが0でない場合これらの変動によってΔEが生じ、測定結果に誤差が生じることになる。逆に、Δa=0であればこれらの変動に影響されない安定した測定をすることが可能になる。
【0077】
2.変位検出装置の第2の実施の形態例
本例の変位検出装置40は回折格子の一方向の変位を検出する装置である。図22の場合はX方向の変位を検出する装置である。以下、図22図23を用いて説明する。以下の説明では、第1の実施の形態例と重複する部分は説明を省略する。
【0078】
光源の種類・位置および光源2から出射した光束がレンズ11でコリメートビームに変換され、偏光ビームスプリッター3からなる光束分割部で分割され、一方の光束1が回折光で回折され再び偏光ビームスプリッター3に戻ってくるまでの光路は第1の実施の形態例と同様である。
【0079】
戻ってきた光束1は偏光ビームスプリッター3を通過し、ミラー14で反射され1/2波長板45でP偏光からS偏光に変換され偏光ビームスプリッター49で反射され1/4波長板48に向かう、1/4波長板48の裏面は反射面となっており、光束1はその面で反射され、偏光ビームスプリッター49に戻る。光束1は1/4波長板48を2回通過することでS偏光からP偏光に変換されており、偏光ビームスプリッター49からなる光束結合部を通過し、受光部8へと向かう。
【0080】
偏光ビームスプリッター3で分割されたもう一方の光束2は、偏光ビームスプリッター41を通過し、1/4波長板43へと向かう。1/4波長板43の裏面は反射面となっており、光束2はその面で反射され、偏光ビームスプリッター41に戻る。光束2は1/4波長板43を2回通過することでP偏光からS偏光に変換されており、偏光ビームスプリッター41で反射され、ミラー44へと向かう。
【0081】
ミラー44で反射され回折格子4で回折されてから再び偏光ビームスプリッター41に戻ってくるまでの光路は第1の実施の形態例と同様である。
【0082】
戻ってきた光束2は偏光ビームスプリッター41を通過し、ミラー46で反射され1/2波長板47でP偏光からS偏光へ変換され偏光ビームスプリッター49で反射され、光束1と重ねあわされ受光部8へと向かう。受光部8と相対位置検出器10の動作は第1の実施の形態例と同様である。
【0083】
偏光ビームスプリッター3、偏光ビームスプリッター41、ミラー13,44は光束1の偏光ビームスプリッター3の分割面からミラー6までの光路長(L+L+L)に比べ、光束2の偏光ビームスプリッター3の分割面からミラー6までの光路長(L+L×2+L+L+L8)がΔLだけ長くなるように配置される。光束1と光束2はレンズ7の光軸に対して左右対称に入射するため、L=L、L=L、L=Lなので、L+L×2=ΔLとなる。
【0084】
ミラー14、ミラー46、1/4波長板48および偏光ビームスプリッター49、は、光束1の偏光ビームスプリッター3の分割面から1/4波長板48の裏面で反射して、偏光ビームスプリッター49の分割面に戻るまでの光路長(L+L10+L11×2)が光束2の偏光ビームスプリッター41の分割面から偏光ビームスプリッター49の分割面までの光路長(L12+L13)よりΔLだけ長くなるように配置される(L+L10+L11×2=L12+L13+ΔL)。光路長差は1/4波長板48と偏光ビームスプリッター49の間隔によって調整することができる。
【0085】
ここでは省略するが第1の実施形態例と同様に不要光の光路をたどり光路長差を求めると、ΔLの満たすべき条件は第1の実施形態例と同様[式9]になることがわかる。また、偏光ビームスプリッター49の分割面で重ねあわされた後の光束1、光束2の光路長は等しくなるので、光路長が等しくなることによる効果は第1の実施形態例と同様である。
【0086】
また、第2の実施形態例は第1の実施形態例に比べて以下のような利点がある。第1の実施形態例では光束1は8回の反射、光束2は7回の反射と反射の回数が異なるため、重ねあわされた後の波面が鏡の作用で左右反転している。このため、光束1、光束2の波面が左右対称でない場合、重ねあわされた波面にずれが生じ、干渉信号の低下をもたらす。
【0087】
これに対し、第2の実施形態例では光束1、光束2とも反射の回数が9回のため、重ねあわされた後の波面の左右方向が同じになり、光束1、光束2の波面が左右対称でない場合でも、重ねあわされた波面にずれが生じないため、干渉信号は低下しない。
【0088】
3.第3の実施形態例
本例の変位検出装置60は回折格子の一方向の変位、図24の場合はX方向の変位を検出する装置である。以下、図24図25および図26を用いて説明する。
【0089】
光源2から出射した発散する光ビームは、レンズ11によってコリメートビームに変換される。コリメートビームに変換された光線は偏光ビームスプリッター50からなる光束分割部に入射する。光源2の種類・位置、偏光ビームスプリッター50に入射する際の光線の偏光方向については、第1の実施形態例と同様である。
【0090】
偏光ビームスプリッター50を透過した光束1はミラー52で反射され、回折格子4に入射する。入射角度の条件は第1の実施形態例と同様である。回折格子4で回折された光束1はレンズ7を通過し、裏面に反射面を設けた1/4波長板53からなる回折光反射部に入射する。レンズ7の配置は第1の実施形態例と同様である。
【0091】
1/4波長板53の裏面で反射された光束1はP偏光からS偏光に変換され、元来た光路を逆行する。偏光ビームスプリッター50まで戻ってきた光束1は反射され、裏面に反射面を設けた1/4波長板51に入射する。1/4波長板51で反射された光束1はS偏光からP偏光へ変換され、偏光ビームスプリッター50を通過し1/2波長板55に入射する。光束1は1/2波長板55でP偏光からS偏光へ変換され偏光ビームスプリッター54からなる光束結合部で反射され、受光部8へ向かう。
【0092】
偏光ビームスプリッター50で分割された、もう一方の光束2は1/2波長板55に入射する。光束2は1/2波長板55でS偏光からP偏光へ変換され偏光ビームスプリッター54を通過する。偏光ビームスプリッター54を通過した光束2は裏面に反射面を設けた1/4波長板56に入射する。1/4波長板56で反射された光束2はP偏光からS偏光へ変換され、偏光ビームスプリッター54で反射され、さらにミラー57で反射され、回折格子4に入射する。
【0093】
光束2の入射角度の条件は第1の実施形態例と同様である。回折格子4で回折された光束2は、レンズ7を通過し、1/4波長板53の反射面で反射され、S偏光からP偏光に変換され元の光路を逆行する。偏光ビームスプリッター54に戻った光束2は偏光ビームスプリッター54の分割面を通過し、この面で反射した光束1と重ねあわされて受光部8へと向かう。受光部8と相対位置検出器10の動作は第1の実施形態例と同様である。
【0094】
偏光ビームスプリッター50、偏光ビームスプリッター54、ミラー52,57は光束1の偏光ビームスプリッター50の分割面からミラー6までの光路長(L+L+L)に比べ、光束2の偏光ビームスプリッター50の分割面からミラー6までの光路長(L+L×2+L+L+L)がΔLだけ長くなるように配置される。光路長は偏光ビームスプリッター50、54および1/4波長板56の位置を移動することにより調整される。光束1と光束2はレンズ7の中心軸に対して左右対称に入射するため、L=L、L=L、L=Lなので、L+L×2=ΔLとなる。
【0095】
光束1の偏光ビームスプリッター50の分割面から1/4波長板51の裏面で反射して、偏光ビームスプリッター54の分割面に達するまでの光路長(L×2+L)はΔLになるように設置される。光路長は偏光ビームスプリッター50、54および1/4波長板51の位置を移動することにより調整される。
【0096】
以上より、光束1と光束2の偏光ビームスプリッター50の分割面で分割され、回折格子4で回折して、偏光ビームスプリッター54の分割面まで到達するまでの光路長は等しくなる。((L+L+L+L)×2+L=L+(L+L+L+L)×2)
【0097】
第3の実施形態例では光束1と光束2以外に図26に示す光線が受光部8に到達する。
第1、第2の実施形態例と異なり、2次光が受光部へ到達することがなくなり、2次光どうしの干渉信号の影響を受けなくなるので、干渉信号のノイズは第1、第2の実施形態例に比べより抑制される。
【0098】
光束1と光束2の受光部8までの反射回数はともに8回で、第2の実施形態例と同様、重ねあわされた時の波面は同じになるが、実施例2に比べより少ない光学部品で構成が可能である。
【0099】
表2に各回折光どうしの光路長の差を示した。
【0100】
【表2】
【0101】
ΔLとLを以下のように設定することで、光束1と光束2どうし以外の干渉を抑制することができる。
[式7]
nは表中の対応する回折光が十分に減衰するまでの0次光の反射回数。Δlは光源の可干渉距離。
【0102】
4.第4の実施形態例
本例の変位検出装置80は回折格子の一方向の変位、図27の場合はX方向の変位を検出する装置である。以下、図27図28を用いて説明する。以下の説明では、第1の実施形態例と重複する部分は説明を省略する。
【0103】
光源2から出射した発散する光ビームは、レンズ11によってコリメートビームに変換される。コリメートビームに変換された光線は偏光ビームスプリッター91aからなる光束分割部に入射する。光源2の位置・種類、偏光ビームスプリッター91aに入射する際の光線の偏光方向については、第1の実施形態例と同様である。
【0104】
光源からのビームは偏光ビームスプリッター91aで強度の等しい光束1、光束2に分割される。光束1は1/2波長板92を通過し、偏光方向がS偏光からP偏光に変換されプリズム93で反射され回折格子4に入射する。入射角度の条件は第1の実施形態例と同様である。
【0105】
回折格子4で回折された光束1はレンズ7を通過し、裏面に反射面を設けた1/4波長板97からなる回折光反射部に入射する。レンズ7の配置は第1の実施形態例と同様である。1/4波長板97の裏面で反射された光束1はP偏光からS偏光に変換され、元来た光路を逆行し、1/2波長板92でS偏光からP偏光に変換され、偏光ビームスプリッター91aを透過し、裏面に反射面を設けた1/4波長板97に入射し反射される。反射された光束は、P偏光からS偏光に変換され、偏光ビームスプリッター91aで反射され、さらに偏光ビームスプリッター91bからなる光束結合部で反射されて、受光部8へと向かう。
【0106】
偏光ビームスプリッター91aを通過した光束2は偏光ビームスプリッター91bを通過し、裏面に反射面を設けた1/4波長板96で反射されP偏光からS偏光に変換される。S偏光に変換された光束2は偏光ビームスプリッター91bで反射され、ダミーガラス95を通過し、プリズム94で反射され、回折格子4に所定の角度で入射する。入射角度は第1の実施形態例と同様である。
【0107】
ダミーガラス95には厚さが1/2波長板92とほぼ同じ場合に光路長が1/2波長板92と同じになるような硝材を使用する。
【0108】
回折格子4で回折された光束2はレンズ7を通過し、裏面に反射面を設けた1/4波長板97で反射され、S偏光からP偏光に変換され、元の光路を逆行し、ダミーガラス95を通過し、偏光ビームスプリッター91bを通過し、光束1と重ねあわされて、受光部8に入射する。受光部8と相対位置検出器10の動作は第1の実施形態と同様である。
【0109】
偏光ビームスプリッター91a、偏光ビームスプリッター91b、プリズム93,94は光束1の偏光ビームスプリッター91aの分割面から裏面に反射面を設けた1/4波長板97の反射面までの光路長(L+L+L)に比べ、光束2の偏光ビームスプリッター91aの分割面から裏面に反射面を設けた1/4波長板97の反射面までの光路長(L+L×2+L+L+L)がΔLだけ長くなるように配置される。光束1と光束2はレンズ7の中心軸に対して左右対称に入射するため、L=L、L=L、L=Lなので、L+L×2=ΔLとなる。
【0110】
光束1の偏光ビームスプリッター91aから1/4波長板97の裏面で反射して、偏光ビームスプリッター91bに達するまでの光路長(L×2+L4)はΔLになるように設置される。
【0111】
以上より、光束1と光束2の偏光ビームスプリッター91aで分割され、回折格子4で回折され、偏光ビームスプリッター91bの分割面に到達するまでの光路長は等しくなる。((L+L+L+L)×2+L=L+(L+L+L+L)×2)
【0112】
第4の実施形態例では光束1と光束2以外に図29に示す光線が受光部8に到達する。
第3の実施形態例と同様、2次光が受光部へ到達することがないため、第1、第2の実施形態例に比べ、干渉信号のノイズはより抑制される。
【0113】
表3に各回折光どうしの光路長の差を示した。
【0114】
【表3】
【0115】
ΔLとLを以下のように設定することで、光束1と光束2どうし以外の干渉を抑制することができる。
[式8]
nは表中の対応する回折光が十分に減衰するまでの0次光の反射回数。Δlは光源の可干渉距離。
【0116】
この実施形態例では、光束1の受光部8までの反射回数は11回、光束2から受光部8までの反射回数は9であるため、第1の実施形態例とは異なり、第2、第3の実施形態例と同様、重ねあわされた時の波面は同じになる。
【0117】
この実施形態例では図27の通り、レンズ7以外の部品を一体として一つの部品としているため、図30のように、これらを一体とした長い部品から切断して必要な厚さの部品を作成することが可能で、製造コストの削減が可能である。
【0118】
5.第5の実施形態例
本例の変位検出装置70、71、72は回折格子の2方向の変位、図31の場合はX方向とY方向の変位を同時に検出する装置である。図31図32図33を用いて説明する。
【0119】
図31は第5の実施形態例の全体を示した斜視図、図32はX方向、Y方向に沿った光路図、図33は回折格子4Aの構造を示した図である。
【0120】
第5の実施形態例はX方向とY方向の2次元の変位を同時に検出する装置である。回折格子4は図33に示したように基板4bAの上に、円柱状の突起4aAがX軸、Y軸に沿って、等間隔Λで並んだ構造となっている。突起の形状は、円柱に限られず、その他の形状でもかまわない。突起構造4aAの断面形状はX軸、Y軸に沿って回折する±1回折光の強度が最大となるように最適化される。
X軸方向の格子ベクトルを
Y軸方向の格子ベクトルを
とする。
【0121】
本実施形態例のX軸に沿った光路は、図32の第1光学系71に示すように、回折格子4が4Aに代わっただけでその他は、第1の実施形態例と全く同じである。受光部8では回折格子4AがX軸方向にΔx変位すると、4K1Δx位相が変化する干渉信号が得られる。
【0122】
Y軸方向の光路は第2光学系72に示すように、第1光学系71の光路で、回折格子4Aで回折された±1次の回折光がミラー6で反射され、再度回折格子4Aに入射された際に発生するY軸方向に沿った±1回折光を利用する光路となっている。第1光学系71の光路の光束1がY軸方向に沿って回折された−1次光(光束1’)はミラー73で反射され、1/4波長板74で円偏光からP偏光へ変換されミラー75で反射され、1/2波長板76でP偏光からS偏光へ変換されて、偏光ビームスプリッター79からなる第2光束結合部で反射されて受光部80へ向かう。
【0123】
第1光学系71の光束2がY軸方向に沿って回折された+1次光(光束2’)はミラー77で反射され、1/4波長板78で円偏光からP偏光へ変換され、偏光ビームスプリッター79を通過し、受光部80へと向かう。
【0124】
光束1‘と光束2’のミラー73、ミラー74までの光路は、レンズ7の中心軸に対して対称になるように設定する。また、ミラー73,77,75と偏光ビームスプリッター79は光路長L10’+ΔL=L8’+L9’となるように配置される。ΔLは第1の実施形態例と同じ条件で設定される。
【0125】
受光部80の動作は受光部8と同じであるが、回折時に変化する位相が+2Kxと−2Kxではなく、+K1x+K2yと−K1x−K2yになるため、受光部80のPD33,34,35,36で受光される光束1’と光束2’の干渉光の強度をI33’、I34’、I35’、I36’とすると、以下のようになる。
[式9]
以上の通り、光束1’と光束2’の干渉光にはX軸方向の変位とY軸方向の変位の両方の位相情報が含まれている。
【0126】
これらの干渉信号は第2相対位置検出器81で実施例1と同様に処理され、演算部82でさらに処理される。演算部82では第2相対位置検出器81の位置情報から第1相対位置検出器10で算出されたX軸方向の変位量が差し引かれる。この時、第1光学系71の光路の干渉信号のX軸方向の変位に対する周期がΛ/4で、第2光学系72の光路の干渉信号のX軸方向とY軸方向の変位に対する周期がΛ/2であることを考慮して演算を行い(分解能が異なる)、Y軸方向のみの変位量を算出する。
【0127】
このように、実施例4では一つの光源でX軸、Y軸の2軸方向の変位を同時に検出できる。これは、X軸、Y軸それぞれに対応して、第1の実施形態例の装置を2台配置するのに比べ、光源の発熱を1/2に低減でき、2つの装置を別々に固定することにより発生する個別のドリフトの影響を小さくすることができる。
【0128】
以上、X軸、Y軸の2軸が直交する例を説明したが、二つの軸は直交している必要はなく、また、回折構造の周期Λが2軸で異なっていてもよい。
【0129】
なお、本発明は上述しかつ図面に示した実施の形態に限定されるものではなく、特許請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。上述した実施の形態例では、光源から照射される光は、気体中だけでなく、液体中又は真空中の空間を飛ばして光を供給するようにしてもよい。
【0130】
また、上述した実施の形態例にかかる変位検出装置は、回折格子がその平面と平行をなして回転するロータリーエンコーダや、高さ方向の変位を検出する変位検出装置と組み合わせて3次元の計測を行う変位検出装置等その他各種の変位検出装置に適用できるものである。
【0131】
さらに、上述した実施の形態例にかかる変位検出装置では、反射型の回折格子を用いたい例を説明したが、これに限定されるものではなく、第1の光束と第2の光束が透過する透過型の回折格子を用いてもよい。
【0132】
なお、本明細書において、「平行」及び「直交」等の単語を使用したが、これらは厳密な「平行」及び「直交」のみを意味するものではなく、「平行」及び「直交」を含み、さらにその機能を発揮し得る範囲にある、「略平行」や「略直交」の状態であってもよい。
【符号の説明】
【0133】
1…変位検出装置、 2…光源、 3…偏光ビームスプリッター(光束分割部)、 4、4A…回折格子、 4a…格子、 4aA…突起、 4b、4bA…基板(格子面)、 6…ミラー(回折光反射部)、 7…補正レンズ、 8…受光部、 9…偏光ビームスプリッタ(光束結合部)、 10…相対位置検出器、 11…レンズ、 13…第1のミラー、 14…ミラー(結合ミラー)、 18…第2のミラー、 19…1/2波長板(結合側位相板)、 22…1/4波長板(第1の受光側位相板)、 23…無偏光ビームスプリッター、24…偏光ビームスプリッター、25…偏光ビームスプリッタ、 33、34、35、36…フォトダイオード、 48…1/4波長板(光路調整部)、 71…第1光学系、 72…第2光学系、 73…第3のミラー、 77…第4のミラー、 79…偏光ビームスプリッター(第2光束結合部)、 80…第2の受光部、 81…第2相対位置検出器、 82…演算部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33