本発明は、車載バッテリ以外の電力供給手段を利用して発光させることが可能であり、消灯を忘れても車載バッテリが上がってしまうことを防止でき、従来よりも軽量である車両用照明装置を提供することを目的とする。
本発明は、分子の振動エネルギーを電気エネルギーに変換する発電部と、発電部で発電された電力により発光する光源とを備えた車両用照明装置に関する。本発明は、さらに、発電部が、車両のエンジンルーム内、又はエンジンルーム近傍に設けられている車両用照明装置であることが好ましい。
【発明を実施するための形態】
【0021】
本発明の車両用照明装置は、熱エネルギーで発電する発電部と、発電部で発電された電力により発光する光源とを備える。車両用照明装置としては、上述の通り、電飾部材や照明部材が挙げられる。電飾部材には、フロントグリル、バンパグリル、ナンバープレート、又はエンブレムなどを光らせるものなどが挙げられ、照明部材には、ヘッドライト、スモールライト、ウィンカー、又はフォグライトなどが挙げられる。
【0022】
本発明の車両用照明装置は、エンジンルーム内、又はエンジンルーム近傍に発電部を設置して用いることができる。上記構成の車両は、車載バッテリ以外の電力供給手段を利用して、車両用照明装置を発光させることができる。その結果、消灯を忘れても車載バッテリが上がってしまうことを防止することができるとともに、車載バッテリの消耗を抑制することもできる。
【0023】
また、本発明の車両用照明装置は、フロントグリルやバンパグリル(以下、単にグリルと総称することがある)の近傍に光源を設置して、グリルを発光装飾したり、グリルに設けられた自動車のエンブレムを発光装飾したりすることができる。上記構成の車両は、車載バッテリ以外の電力供給手段を利用して、車両前方の意匠性を高めることができる。
【0024】
以下、本発明の車両用照明装置について説明する。以下に説明する車両用照明装置は、本発明を実施するための形態の一つであり、本発明の趣旨に反しない限り、以下の実施の形態に限定されない。
【0026】
図1は、本発明の車両用照明装置に関する第一の実施形態の一例を示す模式的な構成図である。また、特に、グリル周辺を模式的に示したものである。
【0027】
図1において、横格子のルーバー15を複数備えたグリル14の後方に発光部19を配置する形態を示している。該発光部19は、
図1のように、装飾部分であるグリル14の全体と同等の範囲を後方から投光できるように設けられている。このような構成とすることで、ルーバー15の格子の隙間が照らされて、グリル14が発光装飾される。
【0028】
発光部19は、光源17と、該光源17が発する光を導光する導光体16とを備える。光源17としては、LED、有機EL素子などの半導体発光素子や、電球など、公知の光源を用いることができる。中でも、LEDを用いることが省エネルギー化の観点から好ましい。
【0029】
導光体16の種類は、特に限定されないが、例えば、アクリル樹脂などの透明樹脂を用いることができる。導光体16に入射した光は、導光体16の内面反射によって、入射方向とは異なる方向へ導かれる。導光体16の表面に凹凸形状などの物理的な細工を施すことによって、所望の方向への投光が強化されるようにしてもよい。また、発光効率を高める観点から、導光体16の後方側に反射板(不図示)を配置したり、導光体16の前方側に拡散板(不図示)を配置したりしてもよい。加えて、導光体16の側面に光源を設ける構成とすることによって、発光効率を高めたり、光源の省エネルギー化を図ったりすることができる。
【0030】
本発明において、上記光源17は、発電部が発電した電力によって発光する。本発明の発電部に用いられる発電素子1は、熱エネルギーを分子の振動エネルギーに変換し、分子の振動エネルギーは電気エネルギーに変換する。そのため、熱エネルギーを得やすい環境に発電部を設置することにより、車載バッテリの電力を用いることなく、車両用照明装置を発光させることができる。
【0031】
発電部は、車載バッテリとは別に設けられるものであって、ボンネット内部の配線を考慮して任意の位置に設置することができる。発電部は、特に、車両のエンジンルーム内、又はエンジンルーム近傍に設けられていることが望ましい。エンジンルーム内、又はエンジンルーム近傍は、熱エネルギーを得やすい環境であるためである。
図1では、発電部は、グリル14の後方であってラジエータ(不図示)の前方に配置されている。
【0032】
なお、車両のエンジンルームは、車両の使用後も、ある程度の時間、熱を帯びているため、熱エネルギーを電力に変換して利用できる本発明の車両用照明装置は、車両の使用後も、ある程度の時間、発光し続けることが可能になる。
【0033】
発電部に用いる発電素子1の詳細な構成については、後述する。
【0034】
[第二の実施の形態]
図2(a)及び
図2(b)は、本発明の車両用照明装置に関する第二の実施形態の一例を示す模式的な構成図である。また、特に、グリル周辺を模式的に示したものである。
【0035】
図2(a)において発光部19は、グリル14を構成する横格子の複数のルーバー15の格子の隙間を後方から照らせるように設けられている。
図2(b)は、
図2(a)の発光部19の一部を車体前方からみた模式図である。上記発光部19は、グリル14を構成するルーバー15と同様の隙間を設けた基板18に、光源17としてLEDを直線上に複数設けた構造である。このようにグリル14の形状に沿って後方から投光することにより、グリル14の後方に設けられるラジエータへの外気の取り込みが低減されることを抑制したり、排熱効率が低減されることを抑制したりすることができる。
【0036】
光源17としては、第一の実施の形態と同様に、LED、有機EL素子などの半導体発光素子や、電球など、公知の光源を用いることができるが、LEDを用いることが省エネルギー化の観点から好ましい。
【0037】
上記光源17は、発電部が発電した電力により発光する。発電部は、第一の実施の形態と同様、ボンネット内部の配線を考慮して任意の位置に設置することができるが、車両のエンジンルーム内、又はエンジンルーム近傍に設けられていることが望ましい。
図2(a)では、発電部は、グリル14の後方であってラジエータ(不図示)の前方に配置されている。
【0038】
発電部に用いる発電素子1の詳細な構成については、後述する。
【0039】
[その他の形態]
第一の実施の形態及び第二の実施の形態においては、いずれも横格子のルーバーから構成されるグリルの電飾について説明したが、電飾を施すグリルの形状は、特に限定されるものではなく、従来公知の形状である。例えば、縦格子又は横格子のルーバー、縦横格子、斜め格子、種々の組子、パンチング、ハニカム、網型などいずれも採用することができる。また、グリルの材質も特に限定されず、樹脂製のルーバーや、ルーバーの一部に金属製のエンブレムを配置したものなど、従来公知の材質を採用することができる。
【0040】
また、本発明の車両用照明装置を電飾部材として用いる場合の発光部の構成としては、グリル等を後方から照らすことができるものであれば、特に限定されない。光源からの光を、反射板等を用いて反射させて電飾等を希望する部材に照射するなど、間接的な照明方法も採用することができる。
【0041】
本発明の車両用照明装置を照明部材として用いる場合も、光源から直接投光したり、導光体や反射板等を経由して間接投光したりする構成とすることができる。
【0042】
本発明の車両用照明装置においては、発電能力に応じて蓄電機構を備えて、蓄電機構に余剰電力を貯蔵できるようにしてもよい。発電部において発電された電力を蓄電する蓄電機構は、二次電池を備えることが好ましい。このような構成とすることで、発電部における発電量が充分でない場合でも、車両用照明装置を発光させることができる。特に、冬季の夜間など、エンジン始動時にエンジンルームの温度が非常に低い場合でも、蓄電した電力により車両用照明装置を稼働させて、グリル等の意匠性を高めることが可能となる。また、車載バッテリの充電量が不足している場合に、蓄電機構を介して車載バッテリの電力を補助することもできる。なお、発電部で発電された電力を蓄電した蓄電機構から供給される電力によって、光源が発光するような場合も、その光源は、発電部で発電された電力によって発光するものであるといえる。
【0043】
本発明の車両用照明装置は、車載バッテリの充電状態を検知する検知手段や、車載バッテリの充電状態に応じて、該車載バッテリへの電力の供給量を制御する制御部を備えることが好ましい。本発明の車両用照明装置が上記検知手段と上記制御部とを備えることで、車載バッテリの充電状態に応じて、自動的に適切な電力を分配して供給することが可能となる。
【0044】
また、本発明の車両用照明装置は、例えば、光源への電力供給を開始又は停止するスイッチなどを備えていてもよい。このような構成を採用することで、例えば、昼間などグリルの発光が目立たない場合は、これらの発光を停止させることができる。また、発光を停止させたために余った電力を、蓄電機構の二次電池に蓄えることも可能となる。
【0045】
本発明の車両用照明装置の発電部に用いる発電素子は、熱により発電する原理であり、発電に伴い吸熱現象が起こる。したがって、発電素子が熱により発電しても、発電素子を設置したエンジンルームを昇温させることがなく、むしろ発電素子の発電によりエンジンルームの温度を下げることができる。
【0046】
以下、発電部に用いる発電素子について、図面を参照しつつ説明する。
【0047】
[発電素子]
発電部に用いる発電素子1は、例えば、
図3に示すように、正極2と、ホール輸送層3と、発電層4と、負極5とがその順で配置された構造形態を有している。
【0048】
以下、発電部に用いる発電素子1の構成について説明する。
【0049】
(正極、負極)
正極2及び負極5は、導電性材料であり、正極2の仕事関数が負極5の仕事関数と同じか高い材料を用いる。正極2の仕事関数が負極5の仕事関数より高いことが好ましい。
【0050】
正極2としては、特に限定されないが、例えば、インジウム錫酸化物(ITO)等の導電性酸化物材料、炭素材料、銅、銅合金、SUS430等のステンレス鋼、錫めっき銅、白金、金、又はタングステンもしくはその酸化物などを用いることができる。正極2の材料は、仕事関数を考慮して決定することができ、負極5の材料の仕事関数よりも高いことが好ましい。例えば、負極5にアルミニウムを用いた場合、正極2の材料としては、負極5の材料より仕事関数が高く、安価に入手できるという観点から、インジウム錫酸化物、銅、又は炭素材料が好ましい。負極5にインジウム錫酸化物を用いた場合は、正極2の材料としては、負極5の材料より仕事関数が高いという観点から、白金、金、又はタングステンもしくはその酸化物が好ましい。また、正極2の材料は他の金属にコーティングした形で用いてもよい。
【0051】
負極5としては、特に限定されないが、例えば、アルミニウム、アルミニウム合金、Mg−Alなどのマグネシウム合金、銀、又は亜鉛などを用いることができる。負極5の材料は、仕事関数を考慮して決定することができ、正極2の材料の仕事関数よりも低いことが好ましい。例えば、正極2に銅又は炭素材料を用いた場合、負極5の材料としては、正極2の材料より仕事関数が低く、安価に入手できるという観点から、アルミニウム、又は亜鉛が好ましい。正極2に白金又は金を用いた場合は、負極5の材料としては、インジウム錫酸化物が好ましい。また、負極5の材料は他の金属にコーティングした形で用いてもよい。
【0052】
正極2及び負極5の形状は特に限定されず、発電素子1の形状に応じた形状に加工することができる。例えば、発電素子1が、平面配置型用の発電素子1である場合には、正極2と負極5が対向して配置され、正極2と負極5の間にホール輸送層3及び発電層4が設けられる。
【0053】
なお、この平面配置型の発電素子1は、複数の発電素子1の正極2と負極5とを順次、直列に接続することで直列配置型の発電素子複合体にする、或いは、複数の発電素子1の正極2と負極5とを順次、並列に接続することで並列配置型の発電素子複合体にすることができる。
【0054】
(ホール輸送層)
発電部に用いる発電素子は、正極2と発電層4との間に、ホール輸送層3を有することが好ましい。正極2と発電層4との間に、ホール輸送層3を有することによって、発電層4から正極2へのホールの取出しを安定化させ、発電効率を向上させることができ、また、逆電流が生じることを防止することができる。ホール輸送層3としては、ホール伝導が観測されるものであれば、特に限定されないが、例えば、ポリ(3,4−エチレンジオキシチオフェン)−ポリ(スチレンスルホン酸)(PEDOT−PSS)、ポリ(3,4−エチレンジオキシチオフェン)−ポリ(ビニルスルホン酸)、ポリアニリン、ポリピロール、ポリチオフェン、ポリ(p−フェニレン)、ポリフルオレン、ポリ(p−フェニレンビニレン)、ポリチエニレンビニレン、グラフェン、などのp型導電性高分子;MoO
3、CuAlO
2、CuGaO
2、LiNiO
2などのp型金属酸化物を用いることが好ましい。これらの中でも、ホールの移動度が高く、安価に入手できるという観点から、ポリ(3,4−エチレンジオキシチオフェン)−ポリ(スチレンスルホン酸)又はMoO
3が好ましい。
【0055】
(電子輸送層)
図3には図示されていないが、発電部に用いる発電素子は、負極5と発電層4との間に、さらに電子輸送層を有することが好ましい。負極5と発電層4との間に電子輸送層の薄膜を設けることで、発電層4から負極5への電子の取出し効率を安定化させ、発電効率を向上させることができ、また、正孔が負極5側に流れることを防止できる傾向にある。電子輸送層に用いる材料としては、特に制限はないが、例えば、n型半導体材料などを用いることができる。電子輸送層に用いる材料の具体例としては、例えば、フッ化リチウム、フッ化ナトリウム、フッ化セシウム、酸化アルミニウム、酸化スズ、酸化リチウム、酸化マグネシウム、又は酸化カルシウムなどが挙げられる。これらの中でも、化学的に安定であるという観点から、フッ化リチウム、酸化アルミニウム、又は酸化スズを用いることが好ましい。
【0056】
(発電層)
発電層4は、発電補助材料と、半導体材料(α)と、半導体材料(β)とを含んだ層である。発電層4では、例えば、発電補助材料が分子の振動エネルギー(熱エネルギー)を吸収することよって赤外線を放射し、その放射された赤外線を、半導体材料(α)及び半導体材料(β)のエネルギー準位の差を利用して電気エネルギーに変換することができる。
【0057】
発電補助材料は、振動エネルギーを赤外線に変換し放射することが可能な赤外線放射材料であることが好ましい。赤外線放射材料としては、特に限定されないが、赤外線の吸収強度の大きい物質、例えば、二酸化ケイ素、シリコーン、カーボン、又はフェライトなどを用いることが好ましい。赤外線の吸収強度が大きい物質は、赤外線の放射強度も大きいため、強い赤外線を放射することができ、発電効率が高くなる。上記の物質の中でも、特に、赤外線の吸収強度が大きく、また安価であるという理由から、二酸化ケイ素を用いることがより好ましい。なお、上記の赤外線放射材料は、1種単独もしくは2種以上を組み合わせて使用してもよい。
【0058】
赤外線の吸収強度は、赤外分光法、近赤外分光法、又はラマン分光法など公知の方法によって測定することができる。発電補助材料としては、例えば、近赤外分光法を用いて測定した場合、赤外領域(例えば、波数12500〜4000cm
−1)において、吸光度が1以上となるピークを有することが好ましく、吸光度が1以上となるピークを有することがより好ましい。発電補助材料が、赤外領域において、吸光度が1以上となるピークを有する場合は、赤外線の吸収強度及び放射強度が大きくなるため、発電効率を向上させることができる。
【0059】
発電補助材料の平均粒径は、入手の容易さや組成物作製上の問題がない範囲で各種の大きさのものを選択することができるが、発電補助材料の平均粒径は、4nm以上であることが好ましい。また、発電補助材料の平均粒径は、100nm以下であることが好ましく、40nm以下であることがより好ましい。発電補助材料の平均粒径が4nm未満の場合は、赤外線放射材料としての特徴を示さなくなる傾向にあり、発電補助材料の平均粒径が100nmを超えると、発電補助材料の体積が大きくなるため、体積あたりの赤外線の吸収強度(放射強度)が低下し、発電効率が下がる傾向にある。なお、本明細書において、平均粒径とは一次粒子の平均粒径をいい、原料の段階では走査型電子顕微鏡(SEM)によって測定することができ、組成物を構成した後も走査型電子顕微鏡(SEM)によって測定することができる。
【0060】
発電層4には、発電補助材料から放射された赤外線を電気エネルギーに変換するために、半導体材料(α)及び半導体材料(β)が含まれる。半導体材料(β)は、荷電子帯の上端のエネルギー準位が半導体材料(α)の荷電子帯の上端のエネルギー準位より高く、かつ、伝導帯の下端のエネルギー準位が半導体材料(α)の伝導帯の下端のエネルギー準位よりも高い半導体材料が用いられる。半導体材料(α)の荷電子帯の上端と、半導体材料(β)の荷電子帯の上端とのエネルギー差は、2.0eV以下であることが好ましく、0.9eV以上であることがより好ましく、1.7eV以下であることがより好ましい。また、半導体材料(α)の伝導帯の下端と、半導体材料(β)の伝導帯の下端とのエネルギー差は、2.0eV以下であることが好ましく、0.9eV以上であることがより好ましく、1.7eV以下であることがより好ましい。
【0061】
発電部に用いる発電素子における発電のメカニズムは明らかではないが、半導体材料(α)が相対的に電子受容体のような役割を果たし、半導体材料(β)が相対的に電子供与体のような役割を果たすことで、赤外線の光エネルギーを電気エネルギーに変換するものと考えられる。具体的には、次のような現象が起こっていると推測される。
【0062】
半導体材料(α)及び半導体材料(β)それぞれの伝導帯及び荷電子帯のエネルギー差が、例えば、2.0eV以下であることにより、赤外線が半導体材料(α)又は半導体材料(β)に照射された場合、半導体材料(α)と半導体材料(β)との接合面において、半導体材料(β)の伝導帯に存在していた電子が半導体材料(α)の伝導帯へと移動し、半導体材料(α)の価電子帯に存在していたホールが半導体材料(β)の価電子帯へと移動し、電荷分離状態を形成する。そして、電子は半導体材料(β)よりもエネルギー準位が低い半導体材料(α)の伝導帯を移動して正極2へ流れ、ホールは半導体材料(β)の荷電子帯を移動して負極5へと流れることで、外部回路に電流が流れるものと思われる。
【0063】
発電補助材料が熱エネルギーを吸収した場合、その熱エネルギーは、最終的に、半導体材料(α)及び半導体材料(β)によって、電気エネルギーに変換される。このことを別の側面から見れば、発電補助材料、半導体材料(α)、及び半導体材料(β)を有する素子は、吸熱反応を行っていると捉えることもできる。従って、発電補助材料、半導体材料(α)、及び半導体材料(β)を有する素子は、例えば、電子機器などの冷却手段として用いることも可能である。
【0064】
半導体材料(α)は、化学的安定性や電子移動度が高いことから、二酸化スズが好ましい。半導体材料(α)に二酸化スズを用いた場合、半導体材料(β)としては、半導体材料(α)に比べてエネルギー準位が高く、また、正極2の材料より仕事関数が低いといった観点から、酸化チタン、酸化ニオブ、酸化タンタル、又は酸化亜鉛などが好ましい。上記した好ましい半導体材料(α)と、好ましい半導体材料(β)との組合せは、荷電子帯の上端同士及び伝導帯の下端同士のエネルギー差が2.0eV以下であるという条件、さらには、0.9eV以上で、1.7eV以下であるという条件を満たしている。なお、半導体材料(α)及び半導体材料(β)は、1種単独もしくは2種以上を組み合わせて使用してもよい。
【0065】
半導体材料(α)及び半導体材料(β)の平均粒径は、入手の容易さや組成物作製上の問題がない範囲で各種の大きさのものを選択することができるが、半導体材料(α)の平均粒径は、4nm以上であることが好ましい。また、半導体材料(α)の平均粒径は、100nm以下であることが好ましく、10nm以下であることがより好ましい。半導体材料(α)の平均粒径が4nm未満の場合は、半導体としての特徴を示さなくなる傾向にあり、半導体材料(α)の平均粒径が100nmを超えると、半導体材料(α)の体積が大きくなるため、体積あたりの発電効率が下がる傾向にある。
【0066】
発電層4の構造としては、特に限定されず、例えば、積層構造としてもよく、バルクヘテロジャンクション構造としてもよいが、発電効率を向上させるという観点からは、バルクヘテロジャンクション構造とすることが好ましい。
【0067】
赤外線の照射強度は、光源からの距離の二乗に反比例する。赤外線の照射強度の減衰を防止し、発電効率を向上させる観点からは、発電補助材料、半導体材料(α)、及び半導体材料(β)は、それぞれ粒子状のものを用いて、発電層4中に均一に分散させることが好ましく、発電層4中に最密充填構造又は最密充填構造に近い構造をとるように配列させることがより好ましい。
【0068】
発電補助材料、半導体材料(α)、及び半導体材料(β)を発電層4中に均一に分散させるためには、各粒子を溶媒中に分散させ、その分散液を遠心分離などの公知の方法を用いて固形分と液分を分離させ、その固形分を十分に洗浄して得られる粉末を用いて、発電層4を形成することが好ましい。分散させる溶媒としては、発電補助材料、半導体材料(α)、及び半導体材料(β)を溶解させないものであれば、特に制限はないが、安全に使用でき、また安価であることから、水を用いることが好ましい。
【0069】
また、発電層4を形成する際において、半導体材料(β)としては、上記したような金属酸化物の粒子そのものを直接、分散媒に添加するのではなく、加水分解などによって該金属酸化物を生成することが可能な金属酸化物の前駆体を添加しても良い。金属酸化物の前駆体としては、特に限定されないが、例えば、塩化チタン、塩化ニオブ、塩化タンタル、塩化亜鉛などの金属塩化物や、チタンアルコキシド、ニオブアルコキシド、タンタルアルコキシド、亜鉛アルコキシドなどの金属アルコキシドを用いることが好ましい。
【0070】
発電層4の全質量は、発電補助材料と半導体材料(α)と半導体材料(β)との和からなる。半導体材料(α)の含有量は、発電層4の全質量に対して、1質量%以上であることが好ましく、10質量%以上であることがより好ましい。また、半導体材料(α)の含有量は、発電層4の全質量に対して、30質量%以下であることが好ましく、25質量%以下であることがより好ましい。半導体材料(α)の含有量が発電層4の全質量に対して1質量%未満の場合は、赤外線を十分に電力に変換することができず、発電効率が低下する傾向にあり、半導体材料(α)の含有量が30質量%を超えても、それ以上の発電効率の向上は見られない傾向にある。同様に、半導体材料(β)の含有量は、発電層4の全質量に対して、1質量%以上であることが好ましく、5質量%以上であることがより好ましい。また、半導体材料(β)の含有量は、発電層4の全質量に対して、30質量%以下であることが好ましい。半導体材料(β)の含有量が発電層4の全質量に対して1質量%未満の場合は、赤外線を十分に電力に変換することができず、発電効率が低下する傾向にあり、半導体材料(β)の含有量が30質量%を超えても、それ以上の発電効率の向上は見られない傾向にある。
【0071】
また、半導体材料(α)及び半導体材料(β)の混合比(半導体材料(α)/半導体材料(β))は、特に限定されないが、質量比で、1/5以上であることが好ましく、2/1以下であることが好ましい。半導体材料(α)及び半導体材料(β)の混合比が上記の範囲にあることで、赤外線を電気エネルギーへと変換する効率が向上し、発電効率を向上させることができる傾向にある。
【0072】
発電層4の厚さは、発電素子1の作製方法によって異なり、特に限定されないが、例えば0.05μm以上であることが好ましく、1000μm以下であることが好ましい。発電層4の厚さが0.05μm未満だと、短絡を起こしやすくなる傾向にあり、発電層4の厚さが1000μmを超えると、発電層4の内部抵抗が高くなる傾向にあり、また、電荷分離した電子とホールが再結合しやすくなることにより変換効率が下がる傾向にある。
【0073】
発電層4は、発電補助材料、半導体材料(α)及び半導体材料(β)の混合物によって形成された層であるが、本発明の効果を阻害しない範囲で、他の無機物や有機物を含んでいてもよい。
【0074】
[発電素子の作製方法]
発電素子1の作製方法は、特に限定されず、各種公知の方法で作製することができる。例えば、正極2上に、p型導電性高分子を滴下又は塗布することで、ホール輸送層3を形成することができる。次いで、ホール輸送層3上に、発電補助材料、半導体材料(α)、及び半導体材料(β)を溶媒に均一に分散させた分散液を滴下又は塗布することで、発電層4を形成することができる。最後に、発電層4上に、真空蒸着やスパッタリング等の方法を用いて、負極5を形成することができる。
【0075】
こうして作製された発電素子1は、平面的な直列構造又は並列構造になるように接続することができる。複数の発電素子1を直列に接続して発電素子複合体を構成する場合、隣り合う発電素子の正極2と負極5とを、カシメ、圧接、ロウ付け等で接続して直列構造にすることができる。また、発電素子1を並列接続して発電素子複合体を構成する場合、長く延びる電極に、発電素子1の正極2と負極5とをそれぞれ、カシメ、圧接、ロウ付け等で接続して並列構造にすることができる。
【0076】
このような発電素子複合体は、複数の発電素子1を接続して1次元的(直列配置)又は二次元的(並列配置)に作製することができるが、厚さ方向に積層して三次元的な立体構造にすることもできる。
【0077】
発電素子1や発電素子複合体において、発電素子1に水分が侵入するのを避けることが好ましい。水分の侵入防止手段としては、周囲を封止材で充填したり、全体を封止材で覆ったりすることが好ましい。こうした水分の侵入防止手段により、発電素子1の発電電流値の低下を抑制することができる。
【0078】
従来のゼーベック効果を利用する熱電発電素子は、2種類の異なる金属又は半導体の両端に生じる温度勾配に比例して出力電圧が大きく変動する。そのため、例えば、熱源が100℃以下であるような場合は、温度勾配も小さくなるため、大きな電流を発生させることが難しかった。他方、発電部に用いる上記発電素子によれば、発電補助材料が存在することにより、分子の振動エネルギー(熱エネルギー)を、半導体材料(α)及び半導体材料(β)のエネルギー準位の差を利用して電気エネルギーに変換することができる。それゆえ、発電部に用いる発電素子は、例えば、100℃以下の温度帯においても、高い出力電圧及び出力電流を発生させることができる。
【0079】
以下に参考例を示して、本発明に用いる発電素子をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
【0080】
[二酸化ケイ素、酸化ニオブ、及び二酸化スズの混合粉末の調製]
(参考例1)
五塩化ニオブ(純正化学株式会社製)25質量部をエタノール200質量部に溶解させた。次に、該五塩化ニオブ・エタノール溶液2.5質量部と、二酸化ケイ素の20%水分散体(日産化学工業株式会社製、「ST−O−40」、平均粒径40nm)10質量部と、二酸化スズの20%水分散体(ユニチカ株式会社製、酸化スズゾル「AS20I」、平均粒径7nm)1.5質量部とを、混合し撹拌した。該混合水分散体中で、五塩化ニオブは加水分解され、酸化ニオブとなった。次に、得られた二酸化ケイ素粒子、酸化ニオブ粒子、及び二酸化スズ粒子を含む混合水分散体から、固形分を分離した。得られた固形分を十分に洗浄した後、100℃で乾燥させることで、二酸化ケイ素粒子、酸化ニオブ粒子、及び二酸化スズ粒子からなる参考例1の混合粉末を得た。混合水分散体における二酸化ケイ素の20%水分散体、五塩化ニオブ・エタノール溶液、及び二酸化スズの20%水分散体の混合割合、及び混合粉末における各成分の含有率を、表1に示す。
【0081】
(参考例2〜5)
混合水分散体における混合割合を表1に示すように変更したこと以外は、参考例1と同様の方法を用いて、参考例2〜5の混合粉末を得た。混合粉末における各成分の含有率を、表1に示す。
【0083】
発電素子を以下のように作製した。先ず、平板状の銅部材を正極2として準備した。次いで、平板状のアルミニウム部材を負極5として準備し、アルミニウム部材上に1.8cm×1.5cmの窓を開けた厚さ0.8mmの両面テープを貼り付けた。両面テープの窓に、参考例1で得られた二酸化ケイ素粒子(平均粒径:40nm)、酸化ニオブ粒子、及び二酸化スズ粒子(平均粒径:7nm)からなる混合粉末を充填し、発電層4を形成した。発電層4の厚さは、両面テープの厚さと同じく、0.8mmである。最後に、上記の正極2を両面テープ上に積層させ、発電素子を得た。参考例2〜5で得られた混合粉末についても、同様の方法を用いて、発電素子を作製した。
【0084】
[評価]
図4に示す試験装置を用いて、上記のようにして得られた発電素子の出力電流及び出力電圧を測定した。
図4に示す試験装置では、負極5、抵抗負荷10、スイッチ11、電流計13、正極2を、この順でリード線によって接続し、回路を形成している。また、この回路に抵抗負荷10の両端の電圧を測定できるように電圧計12が接続されている。また、温度調節器8によって温度調節が可能なヒーター6上に、負極5が下側に、正極2が上側になるようにして、発電素子1が設置されている。また、ヒーター6上の発電素子1が設置されていない部分には、温度センサ9が設置されており、ヒーター6の温度が測定できる。断熱材7は、正極2とヒーター6とを上下から挟み込むように、対向して設置されている。なお、抵抗負荷10の抵抗は、1kΩ、10kΩ、100kΩ、又は∞に変化させて測定した。電流計13及び電圧計12は、FLUKE社製のデジタルマルチメーター 8808Aを用いた。また、Z、Cp、L、tanδは、日置電機株式会社製のLCRハイテスタ3532−50を用いて測定した。測定は、ヒーター6の温度を29℃(室温)、又は100℃に変化させて行った。測定結果を表2に示す。
【0086】
(参考例6〜13)
混合水分散体における混合割合を表3に示すように変更したこと以外は、参考例1と同様の方法を用いて、参考例6〜13の混合粉末を得た。混合粉末における各成分の含有率を、表3に示す。
【0088】
発電素子を以下のように作製した。先ず、平板状の銅部材を正極2として準備した。次いで、平板状のアルミニウム部材を負極5として準備し、アルミニウム部材上に1cm×1cmの窓を開けた厚さ0.8mmの両面テープを貼り付けた。両面テープの窓に、参考例6で得られた二酸化ケイ素粒子(平均粒径:40nm)、酸化ニオブ粒子、及び二酸化スズ粒子(平均粒径:7nm)からなる混合粉末を充填し、発電層4を形成した。発電層4の厚さは、両面テープの厚さと同じく、0.8mmである。最後に、上記の正極2を両面テープ上に積層させ、発電素子を得た。参考例7〜13で得られた混合粉末についても、同様の方法を用いて、発電素子を作製した。
【0089】
[評価]
参考例6〜13で得られた混合粉末を用いて作製した発電素子について、上記と同様の方法により、出力電流及び出力電圧を測定した。参考例6〜13で得られた発電素子についての測定結果を表4に示す。
【0091】
[二酸化ケイ素、酸化チタン、及び二酸化スズの混合粉末の調製]
(参考例14)
四塩化チタン(和光純薬工業株式会社製)25質量部をエタノール100質量部に溶解させた。次に、該四塩化チタン・エタノール溶液1.98質量部と、二酸化ケイ素の20%水分散体(日産化学工業株式会社製、「ST−O−40」、平均粒径40nm)5質量部と、二酸化スズの20%水分散体(ユニチカ株式会社製、酸化スズゾル「AS20I」、平均粒径7nm)1質量部とを、混合し撹拌した。該混合水分散体中で、四塩化チタンは加水分解され、酸化チタンとなった。次に、得られた二酸化ケイ素粒子、酸化チタン粒子、及び二酸化スズ粒子を含む混合水分散体から、固形分を分離した。得られた固形分を十分に洗浄した後、100℃で乾燥させることで、二酸化ケイ素粒子、酸化チタン粒子、及び二酸化スズ粒子からなる参考例14の混合粉末を得た。混合水分散体における二酸化ケイ素の20%水分散体、四塩化チタン・エタノール溶液、及び二酸化スズの20%水分散体の混合割合、及び混合粉末における各成分の含有率を、表5に示す。
【0092】
(参考例15〜18)
混合水分散体における混合割合を表5に示すように変更したこと以外は、参考例14と同様の方法を用いて、参考例15〜18の混合粉末を得た。混合粉末における各成分の含有率を、表5に示す。
【0094】
酸化ケイ素粒子、酸化ニオブ粒子、及び二酸化スズ粒子からなる混合粉末の代わりに、参考例14の混合粉末を用いて発電層4を形成したこと以外は、参考例6と同様の方法により、発電素子を作製した。参考例15〜18で得られた混合粉末についても、参考例14と同様の方法により、発電素子を作製した。
【0095】
[評価]
参考例14〜18で得られた混合粉末を用いて作製した発電素子について、上記と同様の方法により、出力電流及び出力電圧を測定した。測定結果を表6に示す。
【0097】
[二酸化ケイ素、酸化タンタル、及び二酸化スズの混合粉末の調製]
(参考例19)
四塩化タンタル(和光純薬工業株式会社製)5質量部をエタノール45質量部に溶解させた。次に、該四塩化タンタル・エタノール溶液1質量部と、二酸化ケイ素の20%水分散体(日産化学工業株式会社製、「ST−O−40」、平均粒径40nm)5質量部と、二酸化スズの20%水分散体(ユニチカ株式会社製、酸化スズゾル「AS20I」、平均粒径7nm)0.75質量部とを、混合し撹拌した。該混合水分散体中で、四塩化タンタルは加水分解され、酸化タンタルとなった。次に、得られた二酸化ケイ素粒子、酸化タンタル粒子、及び二酸化スズ粒子を含む混合水分散体から、固形分を分離した。得られた固形分を十分に洗浄した後、100℃で乾燥させることで、二酸化ケイ素粒子、酸化タンタル粒子、及び二酸化スズ粒子からなる参考例19の混合粉末を得た。混合水分散体における二酸化ケイ素の20%水分散体、四塩化タンタル・エタノール水溶液、及び二酸化スズの20%水分散体の混合割合、及び混合粉末における各成分の含有率を、表7に示す。
【0098】
(参考例20〜23)
混合水分散体における混合割合を表7に示すように変更したこと以外は、参考例19と同様の方法を用いて、参考例20〜23の混合粉末を得た。混合粉末における各成分の含有率を、表7に示す。
【0100】
酸化ケイ素粒子、酸化ニオブ粒子、及び二酸化スズ粒子からなる混合粉末の代わりに、参考例19の混合粉末を用いて発電層4を形成したこと以外は、参考例6と同様の方法により、発電素子を作製した。参考例20〜23で得られた混合粉末についても、参考例19と同様の方法により、発電素子を作製した。
【0101】
[評価]
参考例19〜23で得られた混合粉末を用いて作製した発電素子について、上記と同様の方法により、出力電流及び出力電圧を測定した。測定結果を表8に示す。