特開2017-228826(P2017-228826A)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

▶ 株式会社フジクラの特許一覧
<>
  • 特開2017228826-導波路および導波路の製造方法 図000003
  • 特開2017228826-導波路および導波路の製造方法 図000004
  • 特開2017228826-導波路および導波路の製造方法 図000005
  • 特開2017228826-導波路および導波路の製造方法 図000006
  • 特開2017228826-導波路および導波路の製造方法 図000007
  • 特開2017228826-導波路および導波路の製造方法 図000008
  • 特開2017228826-導波路および導波路の製造方法 図000009
  • 特開2017228826-導波路および導波路の製造方法 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2017-228826(P2017-228826A)
(43)【公開日】2017年12月28日
(54)【発明の名称】導波路および導波路の製造方法
(51)【国際特許分類】
   H01P 3/12 20060101AFI20171201BHJP
   H01P 5/107 20060101ALI20171201BHJP
   H01P 11/00 20060101ALI20171201BHJP
【FI】
   H01P3/12 100
   H01P5/107 B
   H01P11/00 101
【審査請求】未請求
【請求項の数】6
【出願形態】OL
【全頁数】14
(21)【出願番号】特願2016-121528(P2016-121528)
(22)【出願日】2016年6月20日
(71)【出願人】
【識別番号】000005186
【氏名又は名称】株式会社フジクラ
(74)【代理人】
【識別番号】100064908
【弁理士】
【氏名又は名称】志賀 正武
(74)【代理人】
【識別番号】100106909
【弁理士】
【氏名又は名称】棚井 澄雄
(74)【代理人】
【識別番号】100126882
【弁理士】
【氏名又は名称】五十嵐 光永
(74)【代理人】
【識別番号】100160093
【弁理士】
【氏名又は名称】小室 敏雄
(74)【代理人】
【識別番号】100169764
【弁理士】
【氏名又は名称】清水 雄一郎
(72)【発明者】
【氏名】額賀 理
【テーマコード(参考)】
5J014
【Fターム(参考)】
5J014DA03
(57)【要約】
【課題】導波路の側壁を構成する貫通孔内の導体層を容易に検査することが可能な導波路および導波路の製造方法を提供する。
【解決手段】導波領域102を囲む側壁が形成される領域に、一方の主面101aと他方の主面101bとの間を貫通する貫通孔115を有する基板101と、一方の主面101aに形成された第1接地導体層111と、他方の主面101bに形成された第2接地導体層112と、貫通孔115の壁面に形成されて第1接地導体層111と第2接地導体層112とを接続する接続導体層116から構成された側壁とを備える導波路100であって、接続導体層116は、貫通孔115の壁面のうち、少なくとも導波領域102に接する側に形成され、貫通孔115の壁面は、導波領域102の外側に向けた突出部分117を有し、突出部分117のうち、少なくとも導波領域102と対向する側において、接続導体層116が省略された領域を有する。
【選択図】図2
【特許請求の範囲】
【請求項1】
導波路の導波領域を囲む側壁が形成される領域に、一方の主面と他方の主面との間を貫通する貫通孔を有する基板と、
前記基板の前記一方の主面に形成された第1接地導体層と、
前記基板の前記他方の主面に形成された第2接地導体層と、
前記貫通孔の壁面に形成されて前記第1接地導体層と前記第2接地導体層とを接続する接続導体層から構成された側壁と、
を備える導波路であって、
前記接続導体層は、前記貫通孔の壁面のうち、少なくとも前記導波領域に接する側に形成され、
前記貫通孔の壁面は、前記導波領域の外側に向けて突出した部分を有し、前記突出した部分のうち、少なくとも前記導波領域と対向する側において、前記接続導体層が省略された領域を有することを特徴とする導波路。
【請求項2】
前記貫通孔の壁面のうち、少なくとも前記導波領域と対向する側が、前記導波領域の外側に向けて、前記基板の内部で凸形状となっていることを特徴とする請求項1に記載の導波路。
【請求項3】
前記貫通孔の壁面のうち、前記導波領域に接する側が、前記導波領域の外側に向けて、前記基板の内部で凸形状となっていることを特徴とする請求項1または2に記載の導波路。
【請求項4】
前記貫通孔の壁面のうち、前記導波領域に接する側が前記導波領域の外側に向けて最も突出した位置は、前記一方の主面における開口周縁のうち前記導波領域と対向する側の位置と、前記他方の主面における開口周縁のうち前記導波領域と対向する側の位置とを結ぶ直線よりも、前記導波領域の内側に向かう方向に存在することを特徴とする請求項1〜3のいずれか1項に記載の導波路。
【請求項5】
前記基板の前記一方の主面または前記他方の主面のいずれかの面に形成された平面回路と、前記平面回路に接続されて前記導波領域の内部に突出したピンと、を少なくとも備えたモード変換器を有することを特徴とする請求項1〜4のいずれか1項に記載の導波路。
【請求項6】
基板のうち導波路の導波領域を囲む側壁が形成される領域に、前記基板の一方の主面と他方の主面との間で連続する改質部を、前記基板へのレーザー照射により形成する第一工程と、
前記改質部に沿って、前記一方の主面と前記他方の主面との間を貫通し、前記導波領域の外側に向けて壁面が突出した部分を有する貫通孔を形成する第二工程と、
前記基板の前記一方の主面に形成された第1接地導体層と、前記基板の前記他方の主面に形成された第2接地導体層と、前記貫通孔の壁面に形成されて前記第1接地導体層と前記第2接地導体層とを接続する接続導体層とを形成する第三工程と、
を備え、
前記第三工程において、前記貫通孔の壁面のうち、少なくとも前記導波領域に接する側に前記接続導体層を形成し、前記貫通孔における前記突出した部分において、前記接続導体層が省略された領域を設けることを特徴とする導波路の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、導波路および導波路の製造方法に関する。
【背景技術】
【0002】
近年、ミリ波帯を利用した数G[bps]の高速大容量通信が提案され、その一部が実現されつつある。特に、60[GHz]帯で動作する無線通信機器は、より重要性を増している。国内においては、59[GHz]から66[GHz]までの広い周波数帯域を、無免許で利用可能であることから、民生分野への普及が期待されている。加えて70[GHz]から90[GHz]のEバンド帯についても、同様な理由から注目されており、安価で小型のミリ波通信モジュールの実現が急務となっている。
【0003】
小型で安価なミリ波通信モジュールを実現する形態として、例えば、特許文献1には、ポスト壁導波路(Post−wall Waveguide)を利用したモード変換器が提案されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2014−158243号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ポスト壁導波路が導波路として機能するのは、基板の両面に形成された接地導体層(広壁)と、貫通導体(ポスト)群により構成された側壁(狭壁、ショート壁)とにより囲まれた内側の領域(導波領域)に、信号(電磁波)が閉じ込められるためである。このため、導波領域に接する導体層は、欠損なく形成されていることが好ましい。
【0006】
しかし、従来のポスト壁導波路においては、側壁(狭壁、ショート壁)に貫通導体(ポスト)群が用いられ、貫通孔内の全壁面に金属からなる導体層が形成されている。そのため、ポスト壁導波路を製造する際の検査として、導波領域に接する導体層の状態(形成不良の有無等)を外観により検査することが非常に困難であるという問題があった。また、導体層の状態を導通により検査しようとしても、すべての貫通導体が基板上下面の接地導体層(広壁)と接しているため、非常に困難である。
【0007】
また、最終的な製品の検査として、ポスト壁導波路の高周波特性を測定することも可能である。しかし、ポスト壁導波路を製造した後の段階で貫通導体の一部に欠損が存在したとしても、欠損の大きさが微小である場合、初期の特性上は良品と判定される可能性がある。その場合、未発見の欠損から経年劣化により特性が悪化する等の懸念がある。このため、導波領域に接する導体層、特に側壁(狭壁、ショート壁)を構成する導体層を外観検査によって確実に検査できることが望まれる。
【0008】
本発明は、上記事情に鑑みてなされたものであり、導波路の側壁を構成する貫通孔内の導体層を容易に検査することが可能な導波路および導波路の製造方法を提供することを課題とする。
【課題を解決するための手段】
【0009】
前記課題を解決するため、本発明は、導波路の導波領域を囲む側壁が形成される領域に、一方の主面と他方の主面との間を貫通する貫通孔を有する基板と、前記基板の前記一方の主面に形成された第1接地導体層と、前記基板の前記他方の主面に形成された第2接地導体層と、前記貫通孔の壁面に形成されて前記第1接地導体層と前記第2接地導体層とを接続する接続導体層から構成された側壁と、を備える導波路であって、前記接続導体層は、前記貫通孔の壁面のうち、少なくとも前記導波領域に接する側に形成され、前記貫通孔の壁面は、前記導波領域の外側に向けて突出した部分を有し、前記突出した部分のうち、少なくとも前記導波領域と対向する側において、前記接続導体層が省略された領域を有することを特徴とする導波路を提供する。
【0010】
前記貫通孔の壁面のうち、少なくとも前記導波領域と対向する側が、前記導波領域の外側に向けて、前記基板の内部で凸形状となっていることが好ましい。
前記貫通孔の壁面のうち、前記導波領域に接する側が、前記導波領域の外側に向けて、前記基板の内部で凸形状となっていることが好ましい。
【0011】
前記貫通孔の壁面のうち、前記導波領域に接する側が前記導波領域の外側に向けて最も突出した位置は、前記一方の主面における開口周縁のうち前記導波領域と対向する側の位置と、前記他方の主面における開口周縁のうち前記導波領域と対向する側の位置とを結ぶ直線よりも、前記導波領域の内側に向かう方向に存在することが好ましい。
【0012】
前記導波路は、前記基板の前記一方の主面または前記他方の主面のいずれかの面に形成された平面回路と、前記平面回路に接続されて前記導波領域の内部に突出したピンと、を少なくとも備えたモード変換器を有することができる。
【0013】
また、本発明は、基板のうち導波路の導波領域を囲む側壁が形成される領域に、前記基板の一方の主面と他方の主面との間で連続する改質部を、前記基板へのレーザー照射により形成する第一工程と、前記改質部に沿って、前記一方の主面と前記他方の主面との間を貫通し、前記導波領域の外側に向けて壁面が突出した部分を有する貫通孔を形成する第二工程と、前記基板の前記一方の主面に形成された第1接地導体層と、前記基板の前記他方の主面に形成された第2接地導体層と、前記貫通孔の壁面に形成されて前記第1接地導体層と前記第2接地導体層とを接続する接続導体層とを形成する第三工程と、を備え、前記第三工程において、前記貫通孔の壁面のうち、少なくとも前記導波領域に接する側に前記接続導体層を形成し、前記貫通孔における前記突出した部分において、前記接続導体層が省略された領域を設けることを特徴とする導波路の製造方法を提供する。
【発明の効果】
【0014】
本発明によれば、貫通孔の壁面が導波領域の外側に向けて突出した部分において、接続導体層が省略された領域を有するので、この省略された領域を通じて、導波領域に接した接続導体層の状態を外観により容易に検査することができる。また、接続導体層が省略された領域は、貫通孔の壁面が外側に向けて突出した部分に設けられているので、容易に形成することができる。
【図面の簡単な説明】
【0015】
図1】導波路の第1実施形態を示す斜視図である。
図2図1のA−A線に沿う断面図である。
図3】導波路の第2実施形態を示す断面図である。
図4】第2実施形態において導体層の形成前の状態を示す断面図である。
図5】導波路の第3実施形態を示す断面図である。
図6】導波路の第4実施形態を示す断面図である。
図7】導波路の第5実施形態を示す断面図である。
図8】導波路の第6実施形態を示す断面図である。
【発明を実施するための形態】
【0016】
以下、好適な実施形態に基づき、図面を参照して本発明を説明する。
【0017】
図1は、導波路の第1実施形態を模式的に示す斜視図である。また、図2は、図1のA−A線に沿う断面図である。本実施形態の導波路100は、導波路本体110と、モード変換器120とを有する。導波路100の基板101としては、例えば、ガラス基板、サファイア基板、石英基板などの誘電体基板、半導体基板、単結晶基板、複合基板が挙げられる。この導波路100は、ミリ波などの高周波信号(電磁波)が伝搬される高周波デバイスとして利用することができる。
【0018】
図2に示すように、基板101は、厚さ方向で互いに対向する面として、一方の主面101aおよび他方の主面101bを有する。基板101の一方の主面101aには、第1接地導体層111が形成されている。基板101の他方の主面101bには、第2接地導体層112が形成されている。これらの接地導体層111,112は、基板101の両主面101a,101bに設けられた金属薄膜等の導体層である。接地導体層111,112は、導体部114、平面回路122、ピン123等の周辺領域を除いた、基板101の略全面に設けられている。接地導体層111,112は、グランド電位(図示せず)に接続されている。
【0019】
導波路本体110は、基板101の導波領域102が、接地導体層111,112と、側壁113(接続導体層116)とに囲まれた構成を有する。導波領域102の周囲が導体層に囲まれた構造であることにより、導波領域102は、高周波信号が伝搬する経路として機能する。
【0020】
側壁113は、基板101の面内において、導波領域102を囲む構造物である。図2は、導波路の側壁113のうち、図1のA−A線の方向、すなわち導波路本体110の幅方向に対向する2つの狭壁113A,113Aの構造を示している。側壁113は狭壁113Aに限定されるものではなく、導波路本体110の長手方向の端部に設けられるショート壁113Bも、狭壁113Aと同様な導体部114の列から構成することができる。
【0021】
狭壁113Aやショート壁113Bを構成する導体部114の形状は、図1のような円柱形状等の導体柱(ポスト)に限定されない。例えば、狭壁113Aやショート壁113Bの壁面に沿って連続した形状の導体部114、狭壁113Aとショート壁113Bとの隅部に沿って連続した形状の導体部114等を採用することもできる。
【0022】
導波路本体110の長手方向に沿って狭壁113Aの一部又は全部が連続した壁面状の導体部を用いる場合、電磁波進行方向の側壁が連続壁になるため、電磁波姿態の乱れを抑制することができる。この場合、基板101が連続した導体部114を有しても、導体部114の内側と外側の基板材料が分離しない構造とすることが好ましい。例えば、狭壁113A又はショート壁113Bの一部に、導体部114が不連続となる部分を設けることができる。具体的には、ショート壁113Bを導体柱で構成したり、狭壁113Aとショート壁113Bとの間の隅部や、狭壁113Aの一部に、連続した導体部を分断する導体柱を設けたりする等が挙げられる。
【0023】
導波路本体110の長さ方向の端部には、モード変換器120や、外部に高周波信号が放射される開口部130等を設けることができる。
【0024】
図1では、ピン123の後方壁となるショート壁113Bが、複数の導体柱から構成された例を示している。しかし、モード変換器120の周囲の側壁113の構成は、図1の例に限定されない。例えば、ピン123の側方の狭壁113A,113Aを連続した壁面状の導体部から構成することにより、導体柱に比べて、電磁波の漏洩を効果的に防止することができる。
また、モード変換器120の周囲で2つの狭壁113A,113A及びショート壁113Bの三辺が、連続した壁面状の導体部から構成されてもよい。この場合、ピン123の周囲が密閉空間となるので電磁波漏洩を抑制することができる。三辺を1つの連続した壁面状の導体部から構成することも可能である。また、辺ごとに連続した(辺の間では不連続となった)壁面状の導体部から構成することも可能である。
【0025】
図1では、開口部130に向けて2つの狭壁113A,113Aが平行に配置された例を示すが、狭壁113A,113Aのうち開口部130側の部分131,131は、開口部130に向けて間隔(導波領域102の幅)が拡大する構成とすることも可能である。この場合、H面扇型ホーンアンテナを構成することができ、アンテナ利得を向上させることが可能となる。
【0026】
図1に示すモード変換器120は、基板101のいずれかの面に形成された平面回路122と、この平面回路122に接続されて、基板101の導波領域102の内部に突出したピン123とを有する。平面回路122は、間隙を介して接地導体層111,112から分離されている。平面回路122から伝搬した信号をピン123から導波領域102に放射することにより、平面回路122から導波路本体110に信号を伝搬させることができる。また、導波路本体110を伝搬した信号をピン123に受信させることにより、導波路本体110から平面回路122に信号を伝搬させることができる。
【0027】
開口部130は、導波路本体110の長さ方向の端部において、側壁113をなくした領域である。狭壁113A、113A間の導波領域102と、基板101の側面との間に、導体層が形成されていないので、導波領域102と基板101の外部との間で、高周波信号が伝搬する経路として機能する。
【0028】
図1および図2に示す導体部114は、基板101に形成された貫通孔115の壁面に、接続導体層116が形成された構造を有する。貫通孔115は、一方の主面101aと他方の主面101bとの間を貫通している。また、接続導体層116は、第1接地導体層111と第2接地導体層112とを接続している。このため、接続導体層116は、接地導体層111,112を通じてグランド電位(図示せず)に接続されている。導体部114の平面形状と同様に、貫通孔115の平面形状は特に限定されず、円形孔状、長孔状、所定の区間にわたり連続したスリット状等が挙げられる。
【0029】
基板101は、導波路本体110の側壁113が形成される領域に、貫通孔115の列を有する。貫通孔115の列が並ぶ方向は、側壁113の延在方向に沿っている。各貫通孔115に形成された接続導体層116の列により、導波路本体110の側壁113が構成されている。導体部114が不連続に形成される場合の間隔は、高周波信号が導波領域102の外部に漏洩しないように設定されている。導体部114の間隔の設定の際に考慮されるパラメータとしては、高周波信号の波長、基板101を構成する誘電体の誘電率、貫通孔115の寸法等が挙げられる。
【0030】
図2に示すように、接続導体層116は、各貫通孔115の壁面のうち、少なくとも導波領域102に接する側に形成されている。また、各貫通孔115の壁面は、導波領域102の外側に向けて突出した形状の突出部分117を有する。突出部分117は、各貫通孔115の壁面のうち、少なくとも導波領域102と対向する側が、導波領域102の外側に向けて、基板101の内部で凸形状となっている部分である。
【0031】
本明細書において、導波領域102の外側とは、導波領域102の内部から外部に向かう方向であり、導波領域102の内側とは、導波領域102の外部から内部に向かう方向をいう。導波領域102を基準とした外側および内側という概念は、好ましくは基板101の厚さ方向に垂直な面内、あるいは基板101の主面方向(主面101a,101bに平行な方向)において適用される。
【0032】
導体部114は、突出部分117において、接続導体層116が省略された領域を有する。これにより、基板101の側面103と、導波領域102に接する接続導体層116との間には、透明な基板101および貫通孔115の内部空間(誘電体)が介在するだけとなる。従って、基板101の側面103から、接続導体層116の状態を外観により検査することができる。
なお、本明細書において、「省略」と「欠損」は、いずれも接続導体層116の部分的な不存在または厚さの不足を意味しているが、「欠損」は意図しない場合であるのに対し、「省略」は、外観検査に十分な範囲で設計的に設けられる場合を意味する。
【0033】
一般に、接続導体層116は、貫通孔115の各開口115aから内部に導体を供給することにより形成されるため、接続導体層116の欠損は、基板101の厚さ方向の中央付近で起こりやすい。このため、導波領域102と対向する側において接続導体層116が省略された領域は、貫通孔115のうち、基板101の内部(厚さ方向の中央部付近)に設けられることが好ましい。
【0034】
貫通孔115の壁面のうち、各開口115aに近い開口端部115cでは、導波領域102に接する側から、導波領域102と対向する側まで、全周にわたり接続導体層116が形成されてもよい。本実施形態によれば、外観検査による接続導体層116の良否判定が十分効果的に実施できる。
【0035】
また、貫通孔115の開口115aを通じて貫通孔115の壁面に、接続導体層116を構成する導体を堆積させる際、突出部分117には導体が付着しにくい。接続導体層116を形成する前に、貫通孔115に突出部分117を形成することにより、突出部分117における接続導体層116が省略された領域を容易に形成することができる。
【0036】
図2に示すように、各貫通孔115の壁面のうち、導波領域102に接する側は、基板101の両主面101a,101bに対して略垂直であってもよい。この場合、貫通孔115の太さが、突出部分117において開口115aよりも太くなっていてもよい。
【0037】
図3に、第2実施形態の導波路100Aの概略構造を示す。本実施形態では、各貫通孔115の壁面のうち、導波領域102に接する側が、導波領域102の外側に向けて、基板101の内部で凸形状となっている。本実施形態における各貫通孔115は、一方の主面101a側の開口115aから傾斜した部分と、他方の主面101b側の開口115aから傾斜した部分とが、基板101の内部で連通した構造の曲り部115bを有する。貫通孔115の太さは、曲り部115bと開口115aとで略同等でもよい。
【0038】
本実施形態の導波路100Aにおいて側壁を構成する導体部114Aは、少なくとも導波領域102と対向する側の曲り部115bにおいて、接続導体層116が省略された領域を有する。これにより、外観検査による接続導体層116の良否判定が十分効果的に実施できる。
【0039】
曲り部115bは、導波領域102と対向する側においては、第1実施形態の突出部分117と同様に、接続導体層116が省略された領域を形成しやすくする効果を奏する。さらに本実施形態によれば、異方性の高いスパッタ等により接続導体層116の一部(シード層など)を形成する際に、導波領域102に接する側において、貫通孔115の開口115a側から基板101の内部まで、欠損の少ない接続導体層116を得やすいので、好ましい。
【0040】
貫通孔115の壁面のうち、各開口115aに近い開口端部115cでは、導波領域102に接する側から、導波領域102と対向する側まで、全周にわたり接続導体層116が形成されてもよい。開口端部115cでは導波領域102と対向する側に接続導体層116が形成されていても、基板101の内部の曲り部115bにおいて、接続導体層116が省略された領域を有するので、外観検査による接続導体層116の良否判定が十分効果的に実施できる。
【0041】
図4に、図3に示す導波路100Aを製造する際に、各導体層(接地導体層111,112および接続導体層116)を形成する前の基板101を示す。
この基板101に形成された各貫通孔115において、位置115pは、貫通孔115の導波領域102に接する側の壁面が、導波領域102の外側に最も突出した位置を示す。位置115iは、一方の主面101aにおける開口115aの周縁のうち、導波領域102と対向する側の位置を示す。位置115jは、他方の主面101bにおける開口115aの周縁のうち、導波領域102と対向する側の位置を示す。直線Bは、位置115pを通る垂直線(主面101a,101bに垂直な線)である。また、直線Cは、位置115iと位置115jとを結ぶ直線である。
【0042】
図4に示すように、直線B上で、貫通孔115の壁面が最も突出した位置115pは、直線Cよりも、導波領域102の外側から内側に向かう方向に存在する。すなわち、直線Bは、両主面101a,101bにおける各開口115aの内部を通っている。また、直線Cは、各貫通孔115の壁面のうち、導波領域102に接する側115qに沿う線と交差していない。このような構成によれば、スパッタ等により貫通孔115の壁面に導体を堆積させる際、導波領域102に接する側で最も突出した位置115pが、開口端部115c(特に位置115i,115jの近傍部)の影とならず、導体が最も突出した位置115pに届きやすく、導波領域102に接する側の接続導体層116に欠損が生じにくいので、好ましい。
【0043】
次に、第1〜第2実施形態の導波路100,100Aの製造方法の一例を説明する。なお、この製造方法は、後述する第3〜第6実施形態の導波路100B,100C,100D,100Eにも適用可能である。ここでは、導波路100,100Aが、図1に示すように、導波路本体110及びモード変換器120を有する場合を例にとり、モード変換器120の製造工程も合わせて述べる。
【0044】
まず、第一工程として、基板101にレーザー光を照射することにより、基板101の一方の主面101aまたは他方の主面101bから所望の深さまで改質部を形成する。改質部は、基板101を構成するガラス、樹脂等の誘電体がレーザー光により改質された部分である。レーザー光としては、パルス幅が10ps以下の極短パルスレーザーが好ましく、例えばパルス幅が250fs程度のフェムト秒レーザーが挙げられる。
【0045】
改質部が形成される位置は、レーザー光を集光照射し、その焦点を走査することにより、基板101の厚さ方向および主面方向の任意の位置および方向に変化させることができる。改質部の寸法(長さ、太さ)は、レーザー照射の条件(焦点のサイズ、走査距離)により制御することができる。改質部の太さが大きい場合、レーザー光が同じ位置またはその近くを二度以上照射するように、焦点の位置を走査してもよい。
【0046】
基板101の一方の主面101aと他方の主面101bとの間で連続する改質部を形成する際、走査の方法は特に限定されない。一方の主面101aから形成した改質部と、他方の主面101bから形成した改質部とを、基板101の内部で連結させてもよい。また、一方の主面101aから他方の主面101bまで、あるいは、他方の主面101bから一方の主面101aまで走査を継続して、一度に改質部を形成してもよい。
【0047】
次に、第二工程として、第一工程により基板101に形成された改質部に沿って貫通孔を形成する。改質部は、改質を受けていない部分(非改質部)に比べて溶解性が高くなっているので、エッチング等により、改質部を優先的又は選択的に除去することができる。改質部に貫通孔を形成する際、改質部より低速度で非改質部の一部も除去されるか、改質部のみが除去されるかは、特に限定されない。
【0048】
改質部の除去に用いられる溶媒(エッチャント)は、基板101の材質により適宜選択することができる。例えば、基板101の材料がSiを含むガラス(石英ガラス、ホウケイ酸ガラス、ケイ酸塩ガラス等)である場合、エッチャントとしてフッ酸(HF)が挙げられる。
【0049】
エッチング工程は、エッチャントを含む薬液中に、改質部を有する基板101を浸漬することにより行うことができる。これにより、改質部は基板101の主面101a,101b側から薬液によりウェットエッチングされ、基板101から除去される。改質部が両主面101a,101bの間から除去されると、一方の主面101aと他方の主面101bとの間を貫通する貫通孔115が形成される。
【0050】
次に、第三工程として、貫通孔115が形成された基板101に対して、導体層(接地導体層111,112および接続導体層116)を形成する。
【0051】
接続導体層116を形成する方法としては、スパッタ、真空蒸着、めっき等の1種または2種以上が挙げられる。貫通孔115の壁面(基板101を構成する誘電体)に接して、Cr,Tiなどのシード層を、スパッタ、真空蒸着等で形成した後、シード層の上に、電解めっき、無電解めっき等でCu等の導体層を積層すると、基板101に対する密着性が高く、欠損の少ない接続導体層116を得やすいので、好ましい。
【0052】
接地導体層111,112は、接続導体層116と同様な方法に形成することができる。接地導体層111,112および接続導体層116を、同時に(並行して)形成することもできる。接地導体層111,112と接続導体層116とを異なる材料で形成する場合は、レジスト等の被覆層で基板101の主面101a,101bまたは貫通孔115の壁面を覆い、被覆層のない部分に導体を堆積させて接地導体層111,112または接続導体層116をそれぞれ異なる時期に形成してもよい。
【0053】
平面回路122およびピン123の形成方法は、接地導体層111,112および接続導体層116の形成方法と同様にすることができる。ピン123を接続導体層116と同様に形成する場合は、第一工程において、主面101a,101bから基板101の厚さ方向の途中まで改質部を形成し、第二工程において、基板101を貫通しない孔(微細孔)を形成し、第三工程において、基板101を貫通しない孔の内部に導体を堆積させればよい。
【0054】
さらに、第四工程として、第三工程において形成された接続導体層116の状態を、基板101の外部から検査する工程を設けることができる。第一工程から第三工程を経て製造される各実施形態の導波路は、貫通孔115の壁面のうち、導波領域102と対向する側において、接続導体層116が省略された領域を有するため、外観検査による接続導体層116の良否判定を効果的に実施できる。例えば、側壁113を構成する複数の接続導体層116のうち、1つまたは2以上の貫通孔115の内部で接続導体層116の全部または大部分が欠損している場合や、接続導体層116が貫通孔115の壁面から浮き上がっている場合を不良品と判定することにより、導波路が完成した後の特性検査では発見しにくい欠損を、より確実に排除することができる。
第四工程による検査は、導波路に信号を伝搬させずに実施することができるので、モード変換器120等の信号入力部等を通じて導波路に信号を入力させる構成が完成する前に行うことができる。
【0055】
次に、図5に、第3実施形態の導波路100Bの概略構造を示す。本実施形態の導体部114Bは概ね第2実施形態の導体部114Aと同様な構造を有する。ただし、本実施形態では、貫通孔115の壁面のうち、各開口115aに近い開口端部115cが、基板101の両主面101a,101bに対して略垂直である。
【0056】
開口端部115cには、導波領域102に接する側から、導波領域102と対向する側まで、全周にわたり接続導体層116が形成されてもよい。厚さ方向の中央部に近い曲り部115bにおいて、接続導体層116が省略された領域を有するので、外観検査による接続導体層116の良否判定が十分効果的に実施できる。
【0057】
また、本実施形態の導波路100Bを、第2実施形態の導波路100Aと比較すると、開口115aに近い開口端部115cにおいて貫通孔115が両主面101a,101bに対して略垂直であるため、開口115aの位置精度を向上することができ、特性が安定した製品を容易に製造することができる。
【0058】
次に、図6に、第4実施形態の導波路100Cの概略構造を示す。本実施形態の導体部114Cは概ね第2実施形態の導体部114Aと同様な構造を有する。ただし、本実施形態では、貫通孔115の壁面のうち、導波領域102の外側に向けて突出した形状が、なだらかに湾曲した湾曲部115dとなっている。開口端部115cは、第3実施形態のように基板101の両主面101a,101bに対して略垂直でもよく、第2実施形態のように傾斜していてもよい。
【0059】
また、開口端部115cには、導波領域102に接する側から、導波領域102と対向する側まで、全周にわたり接続導体層116が形成されてもよい。基板101の内部の湾曲部115dにおいて、接続導体層116が省略された領域を有するので、外観検査による接続導体層116の良否判定が十分効果的に実施できる。
【0060】
また、本実施形態の導波路100Cを、第2〜第3実施形態の導波路100A,100Bと比較すると、基板101の内部において、貫通孔115の壁面がなだらかに変化しているので、貫通孔115の壁面近傍における基板101および接続導体層116の材料の応力がより緩和され、経時的な信頼性の向上が期待される。
【0061】
次に、図7に、第5実施形態の導波路100Dの概略構造を示す。本実施形態では、基板101の両主面101a,101bにそれぞれ樹脂層118が形成されている。この場合、貫通孔115の内部に空気(気体)が充填されるため、外観検査による接続導体層116の良否判定が十分効果的に実施できる。樹脂層118は、2層以上が積層されていてもよい。樹脂層118を構成する樹脂は、電気絶縁体であればよく、無色透明でも着色されていてもよい。
【0062】
さらに、樹脂層118により、貫通孔115の開口115aが閉鎖される場合、貫通孔115の内部への異物の侵入を抑制することができる。樹脂層118は、貫通孔115の開口115a上で、開口していてもよい。樹脂層118を形成する方法は特に限定されず、主面101a,101b上に液状の樹脂を塗布した後、樹脂を硬化させる方法や、シート状の樹脂を基板101に接着する方法などが挙げられる。
【0063】
次に、図8に、第6実施形態の導波路100Eの概略構造を示す。本実施形態では、図7の貫通孔115の内部に、透明樹脂119が充填されているほかは、第5実施形態と同様にすることができる。第6実施形態の場合、基板101と透明樹脂119との屈折率差を小さくして、光の反射や屈折を抑制できるため、外観検査による接続導体層116の良否判定が十分効果的に実施できる。透明樹脂119は、光の透過性のある樹脂であればよい。
【0064】
樹脂層118と透明樹脂119とが同一の透明樹脂であってもよい。また、主面101a,101bに樹脂層118を積層する工程と、貫通孔115に透明樹脂119を充填する工程を一度に行うことにより、工程数を削減することができる。
また、透明樹脂119として微細孔への充填に適した樹脂を選択し、樹脂層118としてレベリング性に優れた樹脂を選択する等、透明樹脂119と樹脂層118とが異なる樹脂であってもよい。
【0065】
なお、図7および図8では、導体部114Aの構造は、第2の実施形態と同様にした場合を例示したが、他の実施形態の導体部114,114B,114Cと同様にしてもよい。
【0066】
以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
【0067】
貫通孔115の壁面が導波領域102の外側に向けて突出した部分は、貫通孔115の周方向において、導波領域102に接する側、導波領域102と対向する側、これらの中間部などのいずれか1または2以上の領域に存在すればよく、貫通孔115の全周に存在してもよい。
【0068】
貫通孔115の導波領域102と対向する側において、開口端部115cが導波領域102に近づく方向に突出した部分は、接続導体層116およびその省略部分が形成された後に、削り落とされてもよい。
【0069】
貫通孔115の壁面のうち、少なくとも導波領域102に接する側においては、接続導体層116が、一方の主面101aから他方の主面101bまで、連続して形成されていることが好ましいが、導波路の特性に支障のない程度で、わずかな欠損が生じていることもあり得る。例えば、導波路に伝搬される信号(電磁波)の波長に比べて十分に小さい(短い)、通常の外観検査で発見できない程度の欠損は、通常は導波路の特性に支障をもたらさない。例えば、電子顕微鏡でようやく発見される程度の超微視的な欠損の有無は、実用上考慮する必要がない。
【0070】
貫通孔115の壁面のうち、少なくとも導波領域102と対向する側において、接続導体層116が省略された領域においては、接続導体層116が貫通孔115の壁面上に形成されないことが好ましいが、接続導体層116の検査に支障のない程度で、わずかな導体が付着していても差し支えない。
【0071】
基板101を通して貫通孔115の内部の接続導体層116の状態を外観検査する際、基板101が可視光の波長領域において透明であれば、目視による観察が可能になるので、好ましい。しかし、基板101が可視光において透明でない場合でも、基板101を構成する誘電体と、接続導体層116を構成する導体(金属)とを区別できれば、赤外光、紫外光等の電磁波や、音波、超音波等の弾性波などにより、基板101の外部から接続導体層116の状態を観察して検査することが可能である。
【0072】
貫通孔115の内部は、空気や透明樹脂119に限らず、透明な材料(固体、液体、気体または混合物)を含むことができる。
【符号の説明】
【0073】
100,100A,100B,100C,100D,100E…導波路、101…基板、101a…一方の主面、101b…他方の主面、102…導波領域、110…導波路本体、111…第1接地導体層、112…第2接地導体層、113…側壁、114,114A,114B,114C…導体部、115…貫通孔、115a…開口、116…接続導体層、117…突出部分、120…モード変換器、122…平面回路、123…ピン。
図1
図2
図3
図4
図5
図6
図7
図8