【実施例9】
【0097】
ラットニューロン幹細胞の再プログラミング
ラットニューロン幹細胞をDMEM/F12(HYCLONE)において培養した。ラットニューロン幹細胞を、生後1日のラット脳からの一次分離により取得した。
【0098】
3D培養について、(1%融解アガロースゲルを同量の2×DMEM培地と混合することにより作製された)軟質ゲルで細胞培養ディッシュをコーティングすることにより、低接着性培養ディッシュを調製した。3×10
6個のラットニューロン幹細胞を、60mm
低接着性ディッシュへ移した。
【0099】
2、3日後、3D培養で培養されたラットニューロン幹細胞は球へ成長したが(
図11A右参照)、従来の2D細胞培養ディッシュで培養されたラットニューロン幹細胞は単層を形成した(
図11A左参照)。
【0100】
数個の幹細胞マーカー遺伝子の発現を、2D培養において形成された単層および3D培養において形成された球の両方について、Q−PCRによって調べた。
図11Bにおいて示されているように、Nanog、Klf4、Fgf4、およびNodalを含む、試験された幹細胞マーカーの一部が、ラットニューロン幹細胞球においてアップレギュレートされた。Sox2、c−Myc、Lin28、およびGa1などのマーカー遺伝子の一部がダウンレギュレートされた。これらのデータにより、球培養がラットニューロン幹細胞を再プログラミング過程へ誘導し、その結果として、いくつかの幹細胞マーカー遺伝子のアップレギュレートを生じることが明らかにされた。
【0101】
【表3】
参考文献
Anokye-Danso, F., Trivedi, C.M., Juhr, D., Gupta, M., Cui, Z., Tian, Y., Zhang, Y., Yang, W., Gruber, P.J., Epstein, J.A., et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell
8, 376-388.
Birgersdotter, A., Sandberg, R., and Ernberg, I. (2005). Gene expression perturbation in vitro--a growing case for three-dimensional (3D) culture systems. Semin
Cancer Biol 15, 405-412.
Cukierman, E., Pankov, R., Stevens, D.R., and Yamada, K.M. (2001). Taking cell-matrix adhesions to the third dimension. Science 294, 1708-1712.
Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., Sekiguchi, K., Adachi, T., and Sasai, Y. (2011). Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51-56.
Eiraku, M., Watanabe, K., Matsuo-Takasaki, M., Kawada, M., Yonemura, S., Matsumura, M., Wataya, T., Nishiyama, A., Muguruma, K., and Sasai, Y. (2008). Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519-532.
Episkopou, V. (2005). SOX2 functions in adult neural stem cells. Trends Neurosci
28, 219-221.
Eshghi, S., and Schaffer, D.V. (2008). Engineering microenvironments to control stem cell fate and function.
Fischbach, C., Chen, R., Matsumoto, T., Schmelzle, T., Brugge, J.S., Polverini, P.J., and Mooney, D.J. (2007). Engineering tumors with 3D scaffolds. Nat Methods
4, 855-860.
Golebiewska, A., Brons, N.H., Bjerkvig, R., and Niclou, S.P. Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell 8, 136-147.
Griffith, L.G., and Swartz, M.A. (2006). Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7, 211-224.
Hendrix, M.J., Seftor, E.A., Seftor, R.E., Kasemeier-Kulesa, J., Kulesa, P.M., and Postovit, L.M. (2007). Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 7, 246-255.
Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A.E., and M
elton, D.A. (2008). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26, 795-797.
Ingber, D. (1991). Extracellular matrix and cell shape: potential control points
for inhibition of angiogenesis. J Cell Biochem 47, 236-241.
Jensen, U.B., Lowell, S., and Watt, F.M. (1999). The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view
based on whole-mount labelling and lineage analysis. Development 126, 2409-2418.
Jones, P.H., Harper, S., and Watt, F.M. (1995). Stem cell patterning and fate in
human epidermis. Cell 80, 83-93.
Keung, A.J., Kumar, S., and Schaffer, D.V. (2010). Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues. Annu Rev Cell Dev Biol 26, 533-556.
Kim, D., Kim, C.H., Moon, J.I., Chung, Y.G., Chang, M.Y., Han, B.S., Ko, S., Yang, E., Cha, K.Y., Lanza, R., et al. (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4, 472-476.
Kim, J., Efe, J.A., Zhu, S., Talantova, M., Yuan, X., Wang, S., Lipton, S.A., Zhang, K., and Ding, S. (2011). Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A 108, 7838-7843.
Li, R., Liang, J., Ni, S., Zhou, T., Qing, X., Li, H., He, W., Chen, J., Li, F.,
Zhuang, Q., et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7, 51-63.
Liu, J., Kuznetsova, L.A., Edwards, G.O., Xu, J., Ma, M., Purcell, W.M., Jackson, S.K., and Coakley, W.T. (2007). Functional three-dimensional HepG2 aggregate cultures generated from an ultrasound trap: comparison with HepG2 spheroids. J Cell Biochem 102, 1180-1189.
Liu, Y., Clem, B., Zuba-Surma, E.K., El-Naggar, S., Telang, S., Jenson, A.B., Wang, Y., Shao, H., Ratajczak, M.Z., Chesney, J., et al. (2009). Mouse fibroblasts
lacking RB1 function form spheres and undergo reprogramming to a cancer stem cell phenotype. Cell Stem Cell 4, 336-347.
Manasek, F.J., Burnside, M.B., and Waterman, R.E. (1972). Myocardial cell shape change as a mechanism of embryonic heart looping. Dev Biol 29, 349-371.
Mani, S.A., Guo, W., Liao, M.J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., Reinhard, F., Zhang, C.C., Shipitsin, M., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704-715.
McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K., and Chen, C.S. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6, 483-495.
Nelson, C.M., and Bissell, M.J. (2006). Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 22, 287-309.
Osafune, K., Takasato, M., Kispert, A., Asashima, M., and Nishinakamura, R. (2006). Identification of multipotent progenitors in the embryonic mouse kidney by a
novel colony-forming assay. Development 133, 151-161.
Pampaloni, F., Reynaud, E.G., and Stelzer, E.H. (2007). The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8, 839-845.
Shi, Y., Do, J.T., Desponts, C., Hahm, H.S., Scholer, H.R., and Ding, S. (2008).
A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2, 525-528.
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and
Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872.
Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from
mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.
Vazin, T., and Schaffer, D.V. (2010). Engineering strategies to emulate the stem
cell niche. Trends Biotechnol 28, 117-124.
Warren, L., Manos, P.D., Ahfeldt, T., Loh, Y.H., Li, H., Lau, F., Ebina, W., Mandal, P.K., Smith, Z.D., Meissner, A., et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618-630.
Yamada, K.M., and Cukierman, E. (2007). Modeling tissue morphogenesis and cancer
in 3D. Cell 130, 601-610.
Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920.
Zhou, H., Wu, S., Joo, J.Y., Zhu, S., Han, D.W., Lin, T., Trauger, S., Bien, G.,
Yao, S., Zhu, Y., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4, 381-384.
Zhu, S., Li, W., Zhou, H., Wei, W., Ambasudhan, R., Lin, T., Kim, J., Zhang, K.,
and Ding, S. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7, 651-655.