【解決手段】積層鉄心Rの製造方法は、(A)被加工板Wを順送り金型に供給する工程と、(B)順送り金型によって被加工板Wの打ち抜き加工を行い、周方向に所定の間隔で並んだ複数の磁石収容領域112を形成すると共に、各磁石収容領域112間に挟まれた磁束の通路として本体部分113と該本体部分113と比べて周方向の幅が狭い連結部分とを形成する工程と、(C)順送り金型によって、連結部分に相当する領域である相当領域のつぶし加工を行い、該相当領域を加工硬化させる工程と、(D)被加工板Wから得られた加工体を複数積み重ね、これらを締結することによって積層鉄心を得る工程と、を含む。
前記(B)工程では、前記周方向において隣り合う前記磁石収容領域の、前記相当領域と接する領域が同時に形成されないように、複数工程に分けて、各磁石収容領域の前記相当領域と接する領域を形成し、
前記(C)工程は、前記相当領域における、前記相当領域と接する領域が後に形成された磁石収容領域側に対してのみ、前記金型によってつぶし加工を行う工程を含む、請求項3記載の積層鉄心の製造方法。
前記(C)工程は、前記相当領域における、前記相当領域と接する領域が先に形成された磁石収容領域側に対してのみ、前記金型によってつぶし加工を行う工程を含む、請求項4記載の積層鉄心の製造方法。
【発明の概要】
【発明が解決しようとする課題】
【0005】
打ち抜き加工によって加工体を得る場合においては、打ち抜き荷重に基づく加工体内の残留応力が問題となる。当該残留応力は、積層鉄心の変形の原因となりうる。特許文献1に記載されたような、複数の磁石収容領域が周方向に複数配列されている加工体を打ち抜き加工によって得る場合には、打ち抜く領域が大きくなることによって、打ち抜き荷重に基づく残留応力が大きくなり易い。このような残留応力は、特に強度の弱い箇所に存在することによって、積層鉄心の変形の原因となる。
【0006】
本発明は上記実情に鑑みてなされたものであり、残留応力を原因とした変形を抑制する積層鉄心及びその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明の一態様に係る積層鉄心の製造方法は、(A)被加工板を金型に供給する工程と、(B)上記金型によって上記被加工板の打ち抜き加工を行い、周方向に所定の間隔で並んだ複数の磁石収容領域を形成すると共に、各磁石収容領域間に挟まれた磁束の通路として本体部分と該本体部分と比べて周方向の幅が狭い連結部分とを形成する工程と、(C)上記金型によって上記連結部分に相当する領域である相当領域のつぶし加工を行い、該相当領域を加工硬化させる工程と、(D)上記(B)工程及び(C)工程を行うことによって上記被加工板から得られた加工体を複数積み重ね、これらを締結することによって積層鉄心を得る工程と、を含む。
【0008】
当該積層鉄心の製造方法では、上記(C)工程において、連結部分に相当する領域が、つぶし加工によって加工硬化させられる。連結部分は、周方向の幅が狭く領域が小さいため、強度が弱く、打ち抜き荷重に基づく残留応力により変形しやすい。この点、当該積層鉄心の製造方法では、連結部分に相当する領域が加工硬化させられているので、残留応力に基づく連結部分の変形を抑制することができる。以上より、当該積層鉄心の製造方法によれば、複数の磁石収容領域が配列された加工体の積層体である回転子の積層鉄心において、残留応力を原因とした変形を抑制することができる。
【0009】
(C)工程は、上記金型によって、上記相当領域の全域に対してつぶし加工を行う工程を含んでいてもよい。これにより、連結部分に相当する領域の全域が加工硬化することとなるので、加工硬化した領域が大きくなり、連結部分の変形をより効果的に抑制することができる。
【0010】
(C)工程は、上記金型によって、上記相当領域の周方向における片側に対してのみつぶし加工を行う工程を含んでいてもよい。片側に対してのみつぶし加工を行うことにより、当該片側が塑性変形し、当該片側方向と反対方向への力が発生する。このことにより、例えば当該片側方向に残留応力が加わる場合に、つぶし加工によって当該残留応力を相殺する力が発生するので、残留応力の方向への連結部分の変形を矯正することができる。
【0011】
(B)工程では、周方向において隣り合う上記磁石収容領域の、相当領域と接する領域が同時に形成されないように、複数工程に分けて、各磁石収容領域の相当領域と接する領域を形成し、(C)工程は、相当領域における、相当領域と接する領域が後に形成された磁石収容領域側に対してのみ、金型によってつぶし加工を行う工程を含んでいてもよい。連結部分には、磁石収容領域を形成する際の打ち抜き荷重に基づく残留応力が存在する。より詳細には、連結部分には、打ち抜かれた磁石収容領域方向への残留応力が存在する。ここで、複数の磁石収容領域の、相当領域と接する領域が複数工程に分けて形成される場合には、後の工程ほど、打ち抜き時に相当領域にかかる打ち抜き荷重が大きくなる。すなわち、後の工程ほど、打ち抜き荷重を受ける被加工板の領域が小さくなるため、より大きな打ち抜き荷重が相当領域にかかることとなる。このため、連結部分においては、後の工程において打ち抜かれた磁石収容領域方向の残留応力がより大きく存在することとなる。この点、相当領域における、相当領域と接する領域が後に形成された磁石収容領域側に対してつぶし加工を行うことによって、残留応力がより大きくかかる方向への連結部分の変形を効果的に矯正することができる。
【0012】
(C)工程は、相当領域における、相当領域と接する領域が先に形成された磁石収容領域側に対してのみ、金型によってつぶし加工を行う工程を含んでいてもよい。これにより、先の工程における磁石収容領域の打ち抜きに基づく残留応力を相殺する力を発生させることができる。このことで、後の工程の打ち抜きだけでなく先の工程の打ち抜きに基づく連結部分の変形についても適切に矯正することができる。
【0013】
本発明の一態様に係る積層鉄心は、円筒部と、円筒部の径方向外側において、周方向に所定の間隔で形成された、磁束の通路となる複数の本体部と、円筒部と本体部とを連結するように形成された、本体部と比べて周方向の幅が狭い連結部と、互いに隣り合う本体部間に形成された、磁石収容空間と、を備え、連結部は、少なくとも一部領域が加工硬化している。
【発明の効果】
【0014】
本発明の一態様によれば、残留応力を原因とした変形を抑制することができる。
【発明を実施するための形態】
【0016】
図面を参照しながら、本開示の実施形態について詳細に説明する。なお、以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。
【0017】
<積層鉄心及び加工体>
図1は回転子を構成する積層鉄心Rの斜視図である。積層鉄心Rの形状は略円筒形であり、中央部に位置する開口Raはシャフト(不図示)を装着するためのものである。開口Raを構成する内周面Rbにはシャフトを装着するための構成として凸状キー(不図示)が設けられていてもよい。
【0018】
積層鉄心Rは、複数の加工体PB(
図2参照)が積層されることにより構成されている。
図2は、
図1に示す積層鉄心Rに含まれた加工体PBを示す平面図である。加工体PBは、後述する金型による打ち抜き加工によって、電磁鋼板(被加工板)から得られる。加工体PBは、リング状の環状部111と、環状部111の周囲において周方向に所定の間隔で並んだ複数の磁石収容領域112と、該複数の磁石収容領域112間に挟まれた磁束の通路である本体部分113、及び、該本体部分と比べて周方向の幅が狭い連結部分115と、環状部111の外周面PBcから磁石収容領域112に向かって延びる凸部分114と、を備えている。
【0019】
磁石収容領域112は、例えば周方向に等間隔で8つ設けられている。各磁石収容領域112は、環状部111に接する内側領域112bと、該内側領域112bに連続し、該内側領域112bよりも径方向外側に位置する外側領域112cとを有している。内側領域112bは、例えば磁石収容領域112全体の半分以上の大きさとされる。内側領域112bは外側領域112cよりも先に形成される(詳細は後述)。周方向において互いに隣り合う磁石収容領域112の内側領域112bは、同時に形成されない。すなわち、まず、互いに隣り合わない一部の磁石収容領域112の内側領域112bである第1内側領域112xが形成され、その後に、互いに隣り合わない残りの磁石収容領域112の内側領域112bである第2内側領域112yが形成される(詳細は後述)。このため、周方向においては、第1内側領域112xと第2内側領域112yとが交互に位置している。
【0020】
本体部分113は、平面視において略扇型状に形成されている。本体部分113は、径方向外側及び径方向内側に接合部113a,113bを有している。接合部113a,113bにおいて、上下方向で重なり合う加工体PB同士がカシメにより締結されることで、積層鉄心Rが構成されている。すなわち、各加工体PBは、表面において凹部をなし且つ裏面において凸部をなす接合部113a,113bをそれぞれ有する。そして、上側の加工体PBの裏面(凸部)と下側の加工体PBの表面(凹部)とが嵌り込むことによって、上下の加工体が締結される。なお、複数の積層鉄心R同士が締結されないように、積層体の最下部に位置する加工体PBは、接合部113a,113bが凸部及び凹部ではなく穿孔とされている。
【0021】
なお、積層鉄心Rは、加工体PBを積み重ね、これらをカシメにより締結することにより構成されていると説明したが、加工体PBを締結する方法はいかなるものであってもよい。例えば、溶接、接着又は樹脂材料によって複数の加工体PB同士を締結してもよい。コスト及び作業効率性の点から、カシメ及び溶接が従来から広く採用されている。一方、モータの高いトルク及び低い鉄損を優先させる場合には、カシメ又は溶接の代わりに、樹脂材料又は接着剤を採用すればよい。また、加工体PBに仮カシメを設け、これによって加工体PB同士を締結させた後、最終的に仮カシメを積層体から除去することによって積層鉄心Rを得てもよい。なお、「仮カシメ」とは打抜き加工によって製造される複数の加工体を一時的に一体化させるのに使用され且つ製品(積層鉄心)を製造する過程において取り除かれるカシメを意味する。
【0022】
更に、本体部分113の径方向外側には、隣接する磁石収容領域112側に張り出した外つば113eが設けられている。
【0023】
連結部分115は、環状部111の外周面PBcから本体部分113に向かって延びており、複数の磁石収容領域112間において、環状部111と本体部分113とを連結(接続)している。
【0024】
図3は
図2に示す領域OEを拡大して示す斜視図である。
図3に示すように、連結部分115には、後述する金型によるつぶし加工によって塑性変形し加工硬化(ひずみ硬化)した変形部115a,115bが形成されている。変形部115aは、連結部分115の全域に亘って形成されている。また、変形部115bは、連結部分115の周方向における片側にのみ形成されている。より詳細には、変形部115bは、連結部分115における第2内側領域112yと接する側に形成されている。また、変形部115bは、連結部分115の径方向における中央部分に形成されており、径方向両端には形成されていない。
【0025】
上述した加工体PBが積層されることにより、
図1に示される積層鉄心Rが構成されている。積層鉄心Rは、シャフト(回転軸)を囲む円筒部11と、円筒部11の径方向外側において周方向に所定の間隔で形成された複数の磁石収容空間12と、互いに隣り合う磁石収容空間12間に形成された磁束の通路である本体部13と、を備えている。磁石収容空間12は、1つ又は複数の永久磁石(例えばネオジム磁石などの焼結磁石やボンド磁石)を収容するための空間である。円筒部11、磁石収容空間12、及び本体部13は、それぞれ、加工体PBの環状部111、磁石収容領域112、及び本体部分113が積層されることにより形成されている。
【0026】
本体部13の径方向外側には、本体部13の上面から下面にかけて、隣接する磁石収容空間12側に張り出した外つば部13eが設けられている。外つば部13eは、磁石収容空間12内の磁石(図示せず)を適切に固定する観点、及び、漏洩磁束を小さく抑える観点等から、適宜大きさ及び形状が決定されている。当該外つば部13eは、外つば113eが積層されることにより形成されている。
【0027】
また、積層鉄心Rは、円筒部11の外周面Rcから磁石収容空間12に向かって延びる凸部14と、外周面Rcから本体部13に向かって延びる連結部15とを備えている。当該凸部14及び連結部15は、加工体PBの凸部分114及び連結部分115が積層されることにより形成されている。連結部15は、互いに隣り合う磁石収容空間12間に形成されており、本体部13と比べて周方向の幅が狭く、また、上述した変形部115a,115bに対応する領域が加工硬化している。
【0028】
<打抜き装置>
図4は積層鉄心Rを構成する加工体PBを打抜き加工によって製造する打抜き装置の一例を示す概要図である。同図に示す打抜き装置100は、巻重体Cが装着されるアンコイラー110と、巻重体Cから引き出された電磁鋼板(以下「被加工板W」という。)の送り装置130と、被加工板Wに対して打抜き加工を行う順送り金型140(金型)と、順送り金型140を動作させるプレス機械120とを備える。
【0029】
アンコイラー110は、巻重体Cを回転自在に保持する。巻重体Cを構成する被加工板Wの長さは例えば500〜10000mである。巻重体Cを構成する被加工板Wの厚さは0.1〜0.5mm程度であればよく、積層鉄心Rのより優れた磁気的特性を達成する観点から、0.1〜0.3mm程度であってもよい。被加工板Wの幅は50〜500mm程度であればよい。
【0030】
送り装置130は被加工板Wを上下から挟み込む一対のローラ130a,130bを有する。被加工板Wは、送り装置130を介して順送り金型140へと導入される。順送り金型140は、被加工板Wに対して打抜き加工、曲げ加工、切曲げ加工、プッシュバック、及びつぶし加工などを連続的に実施するためのものである。
【0031】
<積層鉄心の製造方法>
次に積層鉄心Rの製造方法について説明する。積層鉄心Rは、加工体PBを製造するプロセス(下記(A)工程、(B)工程、及び(C)工程)と、複数の加工体PBから積層鉄心Rを製造するプロセス(下記(D)工程)とを経て製造される。より具体的には、積層鉄心Rの製造方法は以下の工程を備える。
(A)被加工板Wを順送り金型140に供給する工程。
(B)順送り金型140によって被加工板Wの打ち抜き加工を行い、周方向に所定の間隔で並んだ複数の磁石収容領域112を形成すると共に、各磁石収容領域112間に挟まれた磁束の通路として本体部分113と該本体部分113と比べて周方向の幅が狭い連結部分115とを形成する工程。
(C)順送り金型140によって、連結部分115に相当する領域である相当領域115zのつぶし加工を行い、該相当領域115zを加工硬化させる工程
(D)上記(B)工程及び(C)工程を行うことによって被加工板Wから得られた加工体PBを複数積み重ね、これらを締結することによって積層鉄心Rを得る工程。
【0032】
まず、電磁鋼板の巻重体Cを準備し、これをアンコイラー110に装着する。巻重体Cから引き出された電磁鋼板(被加工板W)を順送り金型140に供給する((A)工程)。
【0033】
順送り金型140において被加工板Wの打ち抜き加工を実施することにより、磁石収容領域112、本体部分113、及び連結部分115が形成された加工体PBを連続して製造する((B)工程)。また、本実施形態では、上記(B)工程の途中において、順送り金型140によって、後に連結部分115として形成される領域であって、磁石収容領域112に挟まれた連結部分115に相当する領域である相当領域115zのつぶし加工を行い、該相当領域115zを塑性変形させて加工硬化させる((C)工程)。より詳細には、(C)工程では、順送り金型140によって相当領域115zの全域に対してつぶし加工を行い、変形部115aを形成する。更に、(C)工程では、順送り金型140によって相当領域115zの周方向における片側に対してのみ更なるつぶし加工を行い、変形部115bを形成する。
【0034】
以下、
図5〜
図8を参照しながら(B)工程及び(C)工程について説明する。
図5(a)〜(f)は打ち抜き加工のレイアウトの全体を示す平面図である。
図6(a)(b)は
図5に示すレイアウトのうち
図5(a)(b)を拡大して示す平面図である。
図7(a)(b)は
図5に示すレイアウトのうち
図5(c)(d)を拡大して示す平面図である。
図8(a)(b)は
図5に示すレイアウトのうち
図5(e)(f)を拡大して示す平面図である。なお、打抜き加工のレイアウトは
図5に示すものに限定されるものではなく、プレス荷重のバランスをとるためのステップを加えてもよいし、例えば仮カシメを形成するためのステップを加えてもよい。(B)工程は、後述するB1ステップ〜B6ステップからなり、(C)工程は、後述するC1ステップ及びC2ステップからなる。
【0035】
B1ステップは、被加工板Wに対してパイロット孔Pを形成する工程である(
図5(a)及び
図6(a)参照)。パイロット孔Pは順送り金型140における被加工板Wの位置決めを行うためのものである。
【0036】
B2ステップは、複数の磁石収容領域112の内側領域112bのうち、先行して形成される第1内側領域112xを形成する工程である(
図5(b)及び
図6(b)参照)。B2ステップでは、8か所形成される磁石収容領域112のうち周方向で互いに隣り合わない4箇所の磁石収容領域112の内側領域112bである第1内側領域112xを形成する。
【0037】
B3ステップは、複数の磁石収容領域112の内側領域112bのうち、第1内側領域112xに続いて形成される第2内側領域112yを形成する工程である(
図5(c)及び
図7(a)参照)。B3ステップでは、8か所形成される磁石収容領域112のうち周方向で互いに隣り合わない4箇所(上述した第1内側領域112xを含んだ磁石収容領域112を除く4箇所)の磁石収容領域112の内側領域112bである第2内側領域112yを形成する。
【0038】
このように、内側領域112bを形成する工程(B2ステップ及びB3ステップ)では、周方向において隣り合う磁石収容領域112の内側領域112b(磁石収容領域112のうち相当領域115zと接する領域)が同時に形成されないように、複数工程、具体的には2工程に分けて、第1内側領域112x及び第2内側領域112yを形成している。
【0039】
B2ステップ及びB3ステップを行うことにより、周方向において隣り合う磁石収容領域112間(より詳細には、第1内側領域112x及び第2内側領域112y間)には、後に連結部分115となる相当領域115zが形成される(
図7(a)参照)。相当領域115zは、周方向の幅が連結部分115と同じである。
【0040】
B4ステップは、加工体PBにおける本体部分113の接合部113a,113bに相当する位置に、凹部(裏面から見ると凸部)又は穿孔を形成する工程である(
図5(d)及び
図7(b)参照)。すなわち、B4ステップでは、積層鉄心Rの最下部に位置する加工体PB以外を製造する場合には、曲げ加工により接合部113a,113bに相当する位置に凹部を形成し、積層鉄心Rの最下部に位置する加工体PBを製造する場合には、打ち抜き加工により接合部113a,113bに相当する位置に穿孔を形成する。
【0041】
また、当該B4ステップと共に、C1ステップが行われる。C1ステップは、相当領域115zの全域に対してつぶし加工を行う工程である。C1ステップでは、順送り金型140の上型(パンチ)の下面に取り付けられたストリッパ(不図示)を利用してつぶし加工を行う。ストリッパは、下型(ダイ)との間に被加工板Wを挟み込む等の用途で用いられる。本実施形態では、ストリッパに突起(不図示)を設け、該突起により上方から相当領域115zを押圧することにより、相当領域115zのつぶし加工を行う。すなわち、C1ステップでは、ストリッパの突起により相当領域115zの全域を押圧して、該全域のつぶし加工を行う。なお、C1ステップにおけるつぶし加工は、各磁石収容領域112間の全て(8つ)の相当領域115zに対して行われてもよいし、一部(例えば4つ)の相当領域115zに対してのみ行われてもよい。
【0042】
図9(a)は
図7(b)に示す領域SE1を拡大して示す図である。
図9(a)に示すように、C1ステップにおいて相当領域115zの全域に対してつぶし加工が行われると、相当領域115zの全域に亘って、塑性変形し加工硬化した変形部115aが形成される。変形部115aの凹み量、すなわちC1ステップにおけるつぶし加工によるつぶし量は、10〜50μm程度、例えば20〜30μm程度とされる。
【0043】
B5ステップは、環状部111の内側を打ち抜くことにより、中心領域111aを形成する工程である(
図5(e)及び
図8(a)参照)。
【0044】
また、当該B5ステップと共に、C2ステップが行われる。C2ステップは、相当領域115zの周方向における片側に対してのみつぶし加工を行う工程である。C2ステップでは、上述したC1ステップ同様、上型(パンチ)の下面に取り付けられたストリッパの突起(不図示)を利用してつぶし加工を行う。すなわち、C2ステップでは、ストリッパの突起により相当領域115zの周方向における片側を押圧し、該片側の領域のつぶし加工を行う。より具体的には、C2ステップでは、相当領域115zにおける第2内側領域112yと接する側(内側領域112bが後に形成された磁石収容領域112側)に対してのみつぶし加工が行われる。なお、C2ステップにおけるつぶし加工は、各磁石収容領域112間の全て(8つ)の相当領域115zに対して行われてもよいし、一部(例えば4つ)の相当領域115zに対してのみ行われてもよい。
【0045】
図9(b)は
図8(a)に示す領域SE2を拡大して示す図である。
図9(b)に示すように、C2ステップにおいて相当領域115zの周方向における片側(第2内側領域112yと接する側)に対してのみつぶし加工が行われると、相当領域115zにおける第2内側領域112yと接する側にのみ、塑性変形し加工硬化した変形部115bが形成される。すなわち、相当領域115zにおいては、全域に亘って変形部115aが形成され、また、第2内側領域112yと接する側には変形部115bが更に形成される。変形部115bの凹み量、すなわちC2ステップにおけるつぶし加工によるつぶし量は、10〜50μm程度、例えば30〜40μm程度とされる。
【0046】
B6ステップは、磁石収容領域112のうち、内側領域112bに続いて形成される外側領域112cを形成する工程である(
図5(f)及び
図8(b)参照)。B6ステップでは、複数の磁石収容領域112の外側領域112cを一括で形成する。具体的には、B6ステップでは、内側領域112bよりも磁石収容領域112の半径方向外側の領域を、外側領域112cとして形成する。
【0047】
また、B6ステップでは、内側領域112bに外側領域112cの一部が重なるように、外側領域112cを形成する。すなわち、B2ステップ又はB3ステップの内側領域112b(詳細には、第1内側領域112x又は第2内側領域112y)の打ち抜きにおいてパンチが通過する部分と、B6ステップの外側領域112cの打ち抜きにおいてパンチが通過する部分とが重なるように、被加工板Wの打ち抜きが行われる。これにより、内側領域112bと外側領域112cとは、領域が互いに重なる重複領域を有する。
【0048】
順送り金型140に対する被加工板Wの供給位置精度や、順送り金型140の組み付け精度が低下することにより、順送り金型140の打ち抜き精度が低下した場合には、内側領域112bと外側領域112cとが連続した打ち抜き領域とならず、バリの発生や切り残しが問題となるおそれがある。この点、内側領域112bと外側領域112cとが一部重なっていることにより、打ち抜き精度が低下したような場合においても、内側領域112bと外側領域112cとを連続した領域とし易くなり、バリの発生等を抑制することができる。
【0049】
なお、上述した重複領域において、隣接する本体部分113の側辺113cに切欠き(図示せず)が形成されるように、内側領域112bが形成されてもよい。本体部分113に切欠きが形成されることにより、内側領域112bと外側領域112cとが重なる領域をより広くすることが可能となる。これによって、打ち抜き精度が低下した場合において、内側領域112bと外側領域112cとが連続した打ち抜き領域とならないことをより確実に回避することができ、バリの発生等をより好適に抑制できる。
【0050】
また、B6ステップでは、外側領域112cを形成することと同時に、本体部分113の領域を打ち抜く(
図8(b)参照)。これにより、環状部111、磁石収容領域112、本体部分113、及び連結部分115が形成された加工体PBが得られる。
【0051】
そして、上記B1〜B6ステップと、C1及びC2ステップとを経て、被加工板Wから得られた加工体PB(
図2参照)を所定の枚数重ね合せ、これらをカシメにより締結することによって積層鉄心Rが得られる((D)工程)。
【0052】
次に、上述した積層鉄心の製造方法の作用効果について説明する。
【0053】
本実施形態に係る積層鉄心Rの製造方法は、(A)被加工板Wを順送り金型140に供給する工程と、(B)順送り金型140によって被加工板Wの打ち抜き加工を行い、周方向に所定の間隔で並んだ複数の磁石収容領域112を形成すると共に、各磁石収容領域112間に挟まれた磁束の通路として本体部分113と該本体部分113と比べて周方向の幅が狭い連結部分115とを形成する工程と、(C)順送り金型140によって、連結部分115に相当する領域である相当領域115zのつぶし加工を行い、該相当領域115zを加工硬化させる工程と、(D)上記(B)工程及び(C)工程を行うことによって被加工板Wから得られた加工体PBを複数積み重ね、これらを締結することによって積層鉄心Rを得る工程と、を含む。
【0054】
当該積層鉄心Rの製造方法では、加工硬化させる工程において、本体部分113と比べて周方向の幅が狭い連結部分115に相当する領域(相当領域115z)が、つぶし加工によって加工硬化させられる。打ち抜き加工により得られる連結部分115は、周方向の幅が狭く領域が小さいため、強度が弱く、打ち抜き荷重に基づく残留応力により変形しやすい。この点、当該積層鉄心Rの製造方法では、相当領域115zが加工硬化させられているので、残留応力に基づく連結部分115の変形を抑制することができる。以上より、当該積層鉄心Rの製造方法によれば、複数の磁石収容領域112が配列された加工体PBの積層体である回転子の積層鉄心Rにおいて、残留応力を原因とした変形を抑制することができる。
【0055】
上記(C)工程は、順送り金型140によって、相当領域115zの全域に対してつぶし加工を行う工程(C1ステップ)を含んでいる。これにより、相当領域115zの全域が加工硬化することとなるので、加工硬化した領域が大きくなり、連結部分115の変形をより効果的に抑制することができる。
【0056】
上記(C)工程は、順送り金型140によって、相当領域115zの周方向における片側に対してのみつぶし加工を行う工程(C2ステップ)を含んでいる。片側に対してのみつぶし加工を行うことにより、当該片側が塑性変形し、当該片側方向と反対方向への力が発生する。このことにより、例えば当該片側方向に残留応力が加わる場合に、つぶし加工によって当該残留応力を相殺する力が発生するので、残留応力の方向への連結部分115の変形を矯正することができる。
【0057】
上記(B)工程(より詳細には、B2ステップ及びB3ステップ)では、周方向において隣り合う磁石収容領域112の、相当領域115zと接する領域である内側領域112bが同時に形成されないように、複数工程に分けて、各磁石収容領域112の第1内側領域112x及び第2内側領域112yを形成し、上記(C)工程は、相当領域115zにおける、第2内側領域112y側(相当領域115zと接する領域が後に形成された磁石収容領域112側)に対してのみ、順送り金型140によってつぶし加工を行う工程を含んでいる。
【0058】
連結部分115には、磁石収容領域112を形成する際の打ち抜き荷重に基づく残留応力が存在する。より詳細には、連結部分115には、打ち抜かれた磁石収容領域112方向への残留応力が存在する。ここで、打ち抜き加工において、狭い範囲における打ち抜き領域が大きくなると、打ち抜きの際の順送り金型140にかかる負担が大きくなり好ましくない。そのため、本実施形態では、隣り合う磁石収容領域112の内側領域112bが同時に形成されないように、内側領域112bを2つの工程(B2ステップ及びB3ステップ)に分けて形成している。このように、複数の磁石収容領域112の、内側領域112bを複数工程に分けて形成する場合には、後の工程(第2内側領域112yを形成する工程)ほど、打ち抜き時に相当領域115zにかかる打ち抜き荷重が大きくなる。すなわち、後の工程ほど、打ち抜き荷重を受ける被加工板Wの領域が小さくなるため、より大きな打ち抜き荷重が相当領域115zにかかることとなる。このため、連結部分115においては、後の工程において打ち抜かれた磁石収容領域112方向(第2内側領域112y方向)の残留応力がより大きく存在することとなる。この点、相当領域115zにおける、第2内側領域112y側に対してつぶし加工を行うことによって、第2内側領域112y方向と反対方向への力が発生するため、残留応力がより大きくかかる方向への連結部分115の変形を効果的に矯正することができる。
【0059】
以上、本発明の実施形態について説明したが本発明は上記実施形態に限定されるものではない。例えば、(C)工程は、相当領域115zにおける、第2内側領域112y側(相当領域115zと接する領域が後に形成された磁石収容領域112側)に対してのみ、順送り金型140によってつぶし加工を行う工程を含むとして説明したが、更に、(C)工程は、相当領域115zにおける、第1内側領域112x側(相当領域115zと接する領域が先に形成された磁石収容領域112側)に対してのみ、順送り金型140によってつぶし加工を行う工程を含んでいてもよい。当該第1内側領域112x側に対してのみつぶし加工を行う工程は、例えば、第1内側領域112xが形成されるB2ステップと共に行われる。
【0060】
図10は、当該変形例に係る連結部分115を拡大して示す斜視図である。
図10に示すように、第1内側領域112x側に対するつぶし加工が行われることにより、連結部分115における第1内側領域112xと接する側にのみ、塑性変形し加工硬化した変形部115cが形成される。これにより、内側領域112bを形成する2つの工程のうち先の工程(第1内側領域112xを形成する工程)における磁石収容領域112の打ち抜きに基づく残留応力を相殺する力を発生させることができる。このことで、後の工程(第2内側領域112yを形成する工程)の打ち抜きだけでなく先の工程の打ち抜きに基づく連結部分115の変形についても適切に矯正することができる。
【0061】
C1ステップにおいて相当領域115zの全域に対してつぶし加工を行った後に、C2ステップにおいて相当領域115zにおける片側に対してのみつぶし加工を行うとして説明したがこれに限定されず、相当領域115zの全域に対するつぶし加工が、片側のみに対するつぶし加工よりも後の工程において行われてもよい。また、C1ステップ及びC2ステップのつぶし加工はいずれか一方のみが行われてもよい。すなわち、相当領域115zの全域に対するつぶし加工だけが行われてもよいし、相当領域115zの片側のみに対するつぶし加工だけが行われてもよい。
【0062】
打ち抜き加工後に連結部分115となる相当領域115zに対してつぶし加工を行うとして説明したがこれに限定されず、例えば上述したB6ステップ後(すなわち、連結部分115が形成された後)に、連結部分115に対してつぶし加工を行ってもよい。このように、実施形態中における「連結部分115に相当する領域」とは、相当領域115zだけでなく、連結部分115そのものも含んでいる。