【解決手段】粒子治療システムは、粒子ビームを出力する粒子加速器と、粒子ビームを照射ターゲットの少なくとも一部にわたって走査させる粒子加速器用の走査システムとを備える。走査システムは粒子ビームを粒子ビームの方向に対してある角度を成す2次元内で走査するように構成される。構造体が縁を画成する。構造体は、構造体の少なくとも一部が粒子ビームの少なくとも一部と照射ターゲットとの間にあるように照射ターゲットに対して2次元内で移動するように制御可能である。構造体は、粒子ビームの透過を抑制する材料を含む。
前記構造体は、前記縁が前記照射ターゲットの異なる部分と前記粒子ビームとの間で移動され得るように少なくとも前記2次元内で回転可能である請求項1に記載の粒子治療システム。
前記走査システムは、前記粒子ビームの移動を制御して前記粒子ビームを走査するための少なくとも1つの磁石を備え、前記少なくとも1つの磁石は印加される電流に応答して磁場を発生するためのものであり、前記磁場は前記移動に影響を及ぼす請求項1に記載の粒子治療システム。
前記走査システムは、前記照射ターゲットの縁よりも、前記照射ターゲットの内側部分においてより速く前記粒子ビームを走査するように構成される請求項1に記載の粒子治療システム。
前記1つまたは複数の処理デバイスは、前記粒子ビームの移動を少なくとも部分的に辿るように前記ビームエネルギー吸収材料の前記1つまたは複数の個別部品の移動を制御するようにプログラムされた請求項21に記載の粒子治療システム。
治療計画を記憶するためのメモリをさらに備え、前記治療計画は、前記照射ターゲットに対する走査パターンを定義するための情報を含み、前記走査パターンは、前記デグレーダが前記粒子ビームの移動を少なくとも部分的に辿るように前記2次元における前記粒子ビームの移動および前記デグレーダの移動を定義する請求項21に記載の粒子治療システム。
前記1つまたは複数の処理デバイスは、前記粒子ビームの移動を少なくとも部分的に辿るように前記ビームエネルギー吸収材料の前記1つまたは複数の個別部品の移動を制御するようにプログラムされた請求項34に記載の粒子治療システム。
【発明を実施するための形態】
【0028】
様々な図面内の類似の参照記号は、類似の要素を示す。
【0029】
本明細書では、陽子またはイオン治療システムなどのシステムにおいて使用するための粒子加速器の一例について説明する。例示的な粒子治療システムは、ガントリー上に取り付けられた粒子加速器−−この例では、シンクロサイクロトロン−−を備える。ガントリーは、以下に詳述するように、加速器を患者の位置の周りに回転させることを可能にする。幾つかの実施例では、ガントリーは鋼製であり、患者の両側に配設された2つの軸受それぞれに回転するように取り付けられた2つの脚部を有する。粒子加速器は、患者が横たわる治療領域を跨設するに十分に長い鉄骨トラスによって支持されており、鉄骨トラスは、その両端においてガントリーの回転式脚部に取り付けられている。患者の周りをガントリーが回転する結果、粒子加速器も回転する。
【0030】
例示的な一実施例において、粒子加速器(例えば、シンクロサイクロトロン)は、磁場(B)を発生する電流を各々伝導するための、1つまたは複数の超電導コイルを保持する低温保持装置を備える。この例では、低温保持装置は、各コイルを超電導温度、例えば、4°ケルビン(K)に維持するために液体ヘリウム(He)を使用する。磁気ヨークまたはより小さい磁極片は、低温保持装置の内側に配置され、粒子が加速される空洞を画成する。
【0031】
この例示的な実施例では、粒子加速器は、プラズマ柱を空洞に供給するために粒子源(例えば、ペニングイオンゲージ−−PIG源)を備える。水素ガスは電離されてプラズマ柱を生成する。電圧源は、高周波(RF)電圧を空洞に印加して粒子のパルスをプラズマ柱から加速する。
【0032】
指摘されているように、一例では、粒子加速器はシンクロサイクロトロンである。したがって、プラズマ柱から粒子を加速するときに、粒子に対する相対論的効果(例えば、粒子質量が増加する)を考慮してRF電圧が一定範囲の周波数にわたって掃引される。超電導コイルに電流を流すことよって発生した磁場により、プラズマ柱から加速された粒子は空洞内の軌道上で加速する。他の実施例では、シンクロサイクロトロン以外の粒子加速器が使用され得る。例えば、サイクロトロン、シンクロトロン、直線加速器などは、本明細書で説明されているシンクロサイクロトロンの代替えとなり得る。
【0033】
シンクロサイクロトロンにおいて、磁場再生器(「再生器」)は、空洞の外側の近く(例えば、その内縁)に位置しており、空洞の内側の既存の磁場を調整し、これにより、プラズマ柱から加速された粒子の連続的な軌道の位置(例えば、ピッチおよび角度)を変更し、最終的に、粒子は低温保持装置を通る引き出しチャネルに出力される。再生器は、空洞内のある地点における磁場を増大し(例えば、空洞のある領域において磁場「バンプ」を作り出し)、これにより、その地点の粒子のそれぞれの連続的軌道が引き出しチャネルの入口点の方へ外向きに、引き出しチャネルに到達するまで歳差運動し得る。引き出しチャネルは、プラズマ柱から加速された粒子を受け、粒子ビームとして受けた粒子を空洞から出力する。
【0034】
超電導(「主」)コイルは、比較的高い磁場を発生することができる。主コイルによって生成される磁場は、4Tから20Tまたはそれ以上の範囲内にあり得る。例えば、主コイルは、4.0T、4.1T、4.2T、4.3T、4.4T、4.5T、4.6T、4.7T、4.8T、4.9T、5.0T、5.1T、5.2T、5.3T、5.4T、5.5T、5.6T、5.7T、5.8T、5.9T、6.0T、6.1T、6.2T、6.3T、6.4T、6.5T、6.6T、6.7T、6.8T、6.9T、7.0T、7.1T、7.2T、7.3T、7.4T、7.5T、7.6T、7.7T、7.8T、7.9T、8.0T、8.1T、8.2T、8.3T、8.4T、8.5T、8.6T、8.7T、8.8T、8.9T、9.0T、9.1T、9.2T、9.3T、9.4T、9.5T、9.6T、9.7T、9.8T、9.9T、10.0T、10.1T、10.2T、10.3T、10.4T、10.5T、10.6T、10.7T、10.8T、10.9T、11.0T、11.1T、11.2T、11.3T、11.4T、11.5T、11.6T、11.7T、11.8T、11.9T、12.0T、12.1T、12.2T、12.3T、12.4T、12.5T、12.6T、12.7T、12.8T、12.9T、13.0T、13.1T、13.2T、13.3T、13.4T、13.5T、13.6T、13.7T、13.8T、13.9T、14.0T、14.1T、14.2T、14.3T、14.4T、14.5T、14.6T、14.7T、14.8T、14.9T、15.0T、15.1T、15.2T、15.3T、15.4T、15.5T、15.6T、15.7T、15.8T、15.9T、16.0T、16.1T、16.2T、16.3T、16.4T、16.5T、16.6T、16.7T、16.8T、16.9T、17.0T、17.1T、17.2T、17.3T、17.4T、17.5T、17.6T、17.7T、17.8T、17.9T、18.0T、18.1T、18.2T、18.3T、18.4T、18.5T、18.6T、18.7T、18.8T、18.9T、19.0T、19.1T、19.2T、19.3T、19.4T、19.5T、19.6T、19.7T、19.8T、19.9T、20.0T、20.1T、20.2T、20.3T、20.4T、20.5T、20.6T、20.7T、20.8T、20.9T、もしくはそれ以上のうちの1つまたは複数の大きさの、またはこれらを超える大きさの磁場を発生するために使用され得る。さらに、主コイルは、上に特には挙げられていない4Tから20T(またはそれ以上、またはそれ以下)の範囲内にある磁場を発生するために使用され得る。
【0035】
図1および
図2に示されている実施例などの、幾つかの実施例では、大型の強磁性磁気ヨークは、超電導コイルによって生成される漂遊磁場に対する帰還として働く。例えば、幾つかの実施例では、超電導磁石は、例えば、4Tまたはそれ以上の比較的高い磁場を発生することができ、その結果、かなりの漂遊磁場が生じる。
図1および
図2に示されているような幾つかのシステムでは、比較的大型の強磁性帰還ヨーク100は、超電導コイルによって生成される磁場に対する帰還として使用される。磁気シールドがヨークを囲む。帰還ヨークおよびシールドは、一緒になって漂遊磁場を散逸させ、それによって、漂遊磁場が加速器の動作に悪影響を及ぼす確率を低減する。
【0036】
幾つかの実施例では、帰還ヨークおよびシールドは、能動的帰還システムによって置き換えられるか、または増強され得る。例示的な一能動的帰還システムは、主超電導コイルを通る電流と反対の方向に電流を流す1つまたは複数の能動的帰還コイルを備える。幾つかの例示的な実施例では、それぞれの超電導コイルに対して能動的帰還コイルがある、例えば、2つの能動的帰還コイル−−それぞれの超電導コイルに対して1つ−−がある(「主コイル」と称される)。それぞれの能動的帰還コイルは、対応する主超電導コイルの外側を囲む超電導コイルであってもよい。
【0037】
電流は、主コイルを通過する電流の方向と反対の方向で能動的帰還コイルを通過する。これにより、能動的帰還コイルを通過する電流は、主コイルによって生成される磁場と極性が反対である磁場を発生する。その結果、能動的帰還コイルによって生成される磁場は、対応する主コイルから結果として生じる比較的強い漂遊磁場の少なくとも一部を散逸することができる。幾つかの実施例では、それぞれの能動的帰還は、2.5Tから12Tまたはそれ以上の磁場を発生するために使用され得る。使用され得る能動的帰還システムの一例は、その内容が参照により本明細書に組み込まれている、2013年5月31日に出願した米国特許出願第13/907,601号で説明されている。
【0038】
図3に表すように、粒子加速器105(
図1および
図2に示されている構成を有するものとしてよい)の引き出しチャネル102の出力のところに、照射ターゲットの少なくとも一部にわたって粒子ビームを走査するために使用され得る例示的な一走査システム106がある。
図4は、走査システムの構成要素の例を示している。これらは、限定はしないが、走査磁石108、電離箱109、およびエネルギーデグレーダ110を含む。走査システム内に組み込まれ得る他の構成要素は、
図4には示されていないが、例えば、ビームスポットサイズを変えるための1つまたは複数の散乱体を含む。
【0039】
動作例において、走査磁石108は、2次元内で制御可能であり(例えば、直交座標のXY次元)、これにより、粒子ビームを照射ターゲットの一部(例えば、断面)に導く。電離箱109では、ビームの線量を検出し、その情報を制御システムにフィードバックしてビーム移動を調整する。エネルギーデグレーダ110は、材料を粒子ビームの経路内におよび経路外に移動させて、粒子ビームのエネルギー、したがって粒子ビームが照射ターゲットを貫通する深さを変化させるように制御可能である。
【0040】
図5および
図6は、例示的な走査磁石108を示している。走査磁石108は、X方向の粒子ビーム移動を制御する2つのコイル111と、Y方向の粒子ビーム移動を制御する2つのコイル112とを備える。制御は、幾つかの実施例では、一方のコイルの組または両方の組を通る電流を変化させ、それによって、発生する磁場を変化させることによって達成される。磁場を適切に変化させることによって、粒子ビームは、照射ターゲット全体にわたってXおよび/またはY方向に移動することができる。幾つかの実施例では、走査磁石は、粒子加速器に対して物理的に移動可能でない。他の実施例では、走査磁石は、加速器に対して移動可能であるものとしてよい(例えば、ガントリーによってもたらされる移動に加えて)。幾つかの実施例では、走査磁石は、粒子ビームを連続的に移動するように制御可能であるものとしてよい。他の実施例では、走査磁石は、間隔を置いて、または特定の時刻に制御可能である。幾つかの実施例では、Xおよび/またはY方向のビームの移動を制御するために異なる走査磁石があり得る。幾つかの実施例では、Xおよび/またはY方向のいずれかのビームの部分的な移動を制御するために異なる走査磁石があり得る。
【0041】
幾つかの実施例では、電離箱109は、入射放射線によって引き起こされるガス内に形成されるイオン対の数を検出することによって粒子ビームによって印加される線量を検出する。イオン対の数は、粒子ビームによってもたらされる線量に対応する。その情報は、粒子治療システムの動作を制御するコンピュータシステムにフィードバックされる。コンピュータシステム(図示せず)は、メモリおよび1つまたは複数の処理デバイスを備えるものとしてよく、電離箱によって検出された線量が意図された線量であるかどうかを判定する。その線量が意図された通りでない場合、コンピュータシステムは、加速器を制御して、粒子ビームの発生および/または出力を中断し、および/または走査磁石を制御して照射ターゲットへの粒子ビームの出力を妨げることができる。例えば、粒子ビームの出力を妨げるか、または修正するために、コンピュータシステムは、イオン源をオフ/オンする、RF掃引の周波数を変更する、1つまたは複数のメカニズム(高速キッカーマグネット(図示せず)など)をアクティブ化してビームを吸収体材料に逸らし、それによってビーム出力を防ぐなどのことを行うことができる。
【0042】
図7は、エネルギーデグレーダ110の例示的な一実施例である、飛程変調装置115を示している。
図7に示されているような幾つかの実施例では、飛程変調装置は、一連のプレート116を備える。これらのプレートは、炭素、ベリリウム、または低原子番号の他の材料のうちの1つまたは複数から作ることができる。しかしながら、これらの例示的な材料の代わりに、またはそれに加えて、他の材料も使用され得る。
【0043】
これらのプレートのうちの1つまたは複数は、ビーム経路内に移動可能であるか、または経路から外に移動可能であり、それによって、粒子ビームのエネルギーに、したがって照射ターゲット内への粒子ビームの浸透深さに影響を及ぼす。例えば、粒子ビームの経路内に移動するプレートが多ければ多いほど、プレートによって吸収されるエネルギーが多くなり、粒子ビームが帯びるエネルギーは少なくなる。逆に、粒子ビームの経路内に移動するプレートが少なければ少ないほど、プレートによって吸収されるエネルギーは少なくなり、粒子ビームが帯びるエネルギーは多くなる。エネルギーが高い粒子ビームは、エネルギーが低い粒子ビームよりも照射ターゲット内により深く浸透する。この文脈において、「より高い」および「より低い」は、相対語としての意味であり、いかなる特定の数値的な含意も有するわけではない。
【0044】
プレートは、粒子ビームの経路内におよび経路外へ物理的に移動される。例えば、
図8に示されているように、プレート116aは、粒子ビームの経路内の位置と粒子ビームの経路外の位置との間の矢印117の方向に沿って移動する。プレートは、コンピュータ制御される。一般的に、粒子ビームの経路内に移動するプレートの数は、照射ターゲットの走査が行われるべき深さに対応する。例えば、照射ターゲットは、幾つかの断面に分割され、それぞれの断面は照射深さに対応するものとしてよい。飛程変調装置の1つまたは複数のプレートは、照射ターゲットへのビーム経路内にまたはビーム経路外へ移動することができ、これにより、照射ターゲットの断面のそれぞれを照射する適切なエネルギーを得ることができる。従来、飛程変調装置は、粒子ビームの経路内におよび経路外に移動する粒子を除き、照射ターゲットの一部(例えば、断面)の走査中に粒子ビームに対して静止していた。
【0045】
幾つかの実施例では、
図7および
図8の飛程変調装置は、少なくともときには、粒子ビームの移動を辿る飛程変調装置で置き換えられ得る。この種類のエネルギーデグレーダは、以下でより詳しく説明される。
【0046】
幾つかの実施例では、粒子加速器は、参照により本明細書に組み込まれている、2013年6月12日に出願した米国特許出願第13/916,401号明細書で説明されている例示的な粒子加速器などの、可変エネルギー粒子加速器とされる場合がある。可変エネルギー粒子加速器が使用される例示的なシステムでは、粒子ビームのエネルギー準位が粒子加速器によって制御され得るので、本明細書で説明されている種類のエネルギーデグレーダが必要になることは少ないと思われる。例えば、可変エネルギー粒子加速器を採用する幾つかのシステムでは、エネルギーデグレーダが必要とされない場合がある。可変エネルギー粒子加速器を採用する幾つかのシステムでは、エネルギーデグレーダは、それでも、ビームエネルギー準位を変えるために使用されることがある。
【0047】
幾つかの実施例では、照射ターゲットを治療する前に治療計画が立てられる。治療計画では、特定の照射ターゲットに対し走査をどのように実行すべきかを指定することができる。幾つかの実施例では、治療計画で指定する情報は、走査の種類(例えば、スポット走査またはラスター走査)、走査配置(例えば、走査すべきスポットの配置)、走査配置当たりの磁石電流、スポット当たりの線量、スポットサイズ、照射ターゲット断面の配置(例えば、深さ)、断面当たりの粒子ビームエネルギー、それぞれの粒子ビームエネルギーに対するビーム経路内に移動するプレートまたは他の種類の個別部品、などである。一般的に、スポット走査は、照射ターゲット上の飛び飛びのスポットに照射を行うことを伴い、ラスター走査は、照射ターゲットの端から端まで照射スポットを移動することを伴う。したがって、スポットサイズのコンセプトは、ラスター走査とスポット走査の両方に適用される。
【0048】
幾つかの実施例では、照射ターゲットの治療計画全体は、照射ターゲットの異なる断面に対する異なる治療計画を含む。異なる断面に対する治療計画は、上で与えられているような、同じ情報または異なる情報を含み得る。
【0049】
幾つかの実施例では、走査システムは、粒子ビームを平行光線にするコリメータ120(
図3)を備えるものとしてよく、これは粒子ビームの範囲を制限し、それによって照射ターゲットに適用されるスポットの形状を変化させるために照射ターゲットに対して配置可能である開口を備えるものとしてよい。例えば、コリメータは、エネルギーデグレーダのビーム下流側の、粒子ビームが照射ターゲットに当たる前の、ビーム経路内に配置され得る。コリメータは、粒子ビームが通過する領域(例えば、穴または透過材料)および粒子ビームの通過を抑制するか、または妨げる穴の周りの他の材料(例えば、真鍮)を含み得る。
【0050】
幾つかの実施例では、コリメータは、縁を画成する構造体を備え得る。構造体は、粒子ビームの透過を抑制する、真鍮などの材料を含み得る。構造体は、構造体の少なくとも一部が粒子ビームの少なくとも一部と照射ターゲットとの間にあるように照射ターゲットに対して2次元内で移動するように制御可能であるものとしてよい。例えば、構造体は、粒子ビームと交差し、治療される照射ターゲットの断面に平行である、または実質的に平行である平面のXおよびY方向に移動可能であり得る。このようにしてコリメータを使用することは、患者に到達する粒子ビームの断面形状をカスタマイズし、それによって照射ターゲットを超えて伸長する粒子ビームの量を制限するために使用することができるという点で有益であり得る。例えば、
図9に示されているように、コリメータ内の構造体220は、粒子ビーム222の一部分221がターゲット224に到達するのを妨げ、それによって、ビームを照射ターゲットに制限し、健常組織225の放射線被曝を低減する。縁のある構造体を粒子ビームの一部と患者との間に置くことによって、例示的なコリメータは、また、患者に到達する粒子ビーム部分への定められたまたは鋭い縁を与え、それによってより正確な線量適用を推進する。
【0051】
コリメータの位置決めおよび移動は、本明細書で説明されている粒子治療システムの他の特徴を制御する制御コンピュータシステムによって制御され得る。例えば、コリメータは、照射ターゲットの少なくとも一部にわたって粒子ビームの運動を辿る(例えば、追随する)ように治療計画に従って制御され得る。幾つかの実施例では、コリメータの軌跡は、照射ターゲットに対する粒子ビームのすべての運動を辿るように制御される。例えば、幾つかの実施例では、コリメータは、照射ターゲットの全体を通して、例えば、照射ターゲットの縁および照射ターゲットの内側の両方で、粒子ビームの運動を辿るように制御され得る。幾つかの実施例では、コリメータは、照射ターゲットに対する粒子ビームの一部の運動のみを辿るように制御される。例えば、コリメータは、粒子ビームが照射ターゲットの縁に到達したときに対して照射ターゲットの縁に沿ってのみ粒子ビームの移動を辿るように制御され得る。
【0052】
図10に表すように、例えば、粒子ビームは、矢印付き線230によって示されている照射ターゲット229内の経路に従うものとしてよい。コリメータ231は、照射ターゲット229の内側233上の粒子ビームの運動を辿り得ない。しかし、コリメータ231は、照射ターゲットの縁にのみ沿って(例えば、おおよそ矢印232に沿って)粒子ビームの運動を辿るものとしてよい。例えば、粒子ビームが照射ターゲットの縁234に到達する毎に、コリメータは移動し得るか、またはすでに移動している可能性があり、縁のところで粒子ビームをインターセプトし、それによって、周辺組織235のビームへの被爆を制限することができる。コリメータがいつどれだけ移動するかは、粒子ビーム断面(スポット)のサイズ、および粒子ビームがスキャンする速度に依存し得る。この例では、照射ターゲットの内側で粒子ビームへの被曝を制限する必要はなく、したがって、コリメータは、内側でビームを辿る必要はない。
【0053】
コリメータの移動は、様々な方法で制御され得る。例えば、磁石108中を流れる電流は、磁石による粒子ビームの偏向に、したがって、照射ターゲット上の粒子ビームスポットの配置に対応し得る。したがって、例えば、磁石中を流れる電流および磁石に対する照射ターゲットの配置を知ることで、走査システムの動作を制御するコンピュータシステムは、放射スポットの投射配置を決定することができる。および、本明細書で説明されているように、放射スポットの配置を知ることで、コンピュータシステムは、走査システム、特にコリメータを制御して、運動のすべてまたは一部に沿って照射スポットの移動を辿ることができる。幾つかの実施例では、コンピュータシステムは、走査システム、特にコリメータを制御することを、以下でより詳しく説明されているように、コリメータが粒子ビームスポットが配置に届く前にその配置に届くように行うことができる。
【0054】
上で説明されているような、コリメータの使用には都合のよい点があり得る。例えば、幾つかの場合において、粒子ビーム走査の目標は、照射ターゲットの縁のところでの精度および照射ターゲットの内側の線量または被覆率の均一さを達成することを含み得る。コリメータの使用は、比較的大きい粒子ビームスポットを走査のために使用することを可能にすることによってこれらの目標を推進するのに役立ち得る。この文脈において、スポットサイズは、照射ターゲットの領域の指定されたパーセンテージ範囲内にある領域を有する場合に「大きい」と考えられ得る。このパーセンテージは、典型的には、2.5%であり得るが、例えば、0.25%から25%の間の値も使用することが可能である。比較的大きいスポットサイズを使用する走査は、各ビームパルスに対する照射ターゲットの分数面積被覆率(fractional areal coverage)を高める。典型的には、このスポットのサイズが大きければ大きいほど、ターゲット(患者)の運動によりターゲットの均一さに及ぼされる悪影響は小さい。しかしながら、縁では、コリメータは、側方半影を低減することによって大きいスポットからの照射が照射ターゲットの外側の組織(例えば、健常組織)に影響を及ぼす確率を低減する。従来、より小さいスポットサイズが好まれたが、それは、より大きいスポットサイズに比べて、縁においてより正確な投与を可能にするからであった。しかし、平行にされた縁と比較して、それらのより小さいスポットサイズは結果として、与えられた治療容積に対する治療時間が遅延し、縁における解像度の低下および半影の増加のせいで縁における正角性が小さくなり得る。
【0055】
コリメータは、任意の数の異なる形状または構成を有することができ、1つまたは複数の可動部分を含む、または含み得ない。例示的な一実施例では、コリメータは、真鍮および/または他の放射線遮蔽材からなり、数センチメートル程度の厚さを有する。しかしながら、異なるコリメータは、異なる組成および厚さを有し得る。
【0056】
例示的な実施例では、コリメータは、1つまたは複数の画成された縁を有する構造体である。例えば、コリメータは、開口を含む構造体、すなわち穴であってよい。
図11は、この種類のコリメータ239の一例を示している。コリメータ239は、開口が中にある、適切な任意の形状を有するものとしてよい。開口の縁は、例えば
図9に示されているように、粒子ビームの印加を制限するために使用されるものとしてよく、それによって、ビーム222を照射ターゲット224に印加することを許し、他の何らかの形でビーム経路内にあるコリメータ220によって被覆される組織に印加することを許さない。上で説明されているように、開口は、走査動作の全体を通してまたは一部において粒子ビームを辿り得る(例えば、追随し得る)。例えば、開口は、照射ターゲットの縁でのみまたは粒子ビームの運動全体を通して粒子ビームの移動を辿り得る。すなわち、コリメータそれ自体が、照射ターゲットの縁に沿って移動し、粒子ビームの移動を辿り得る(例えば、それにより、コリメータの配置が、粒子ビームが照射ターゲットの縁に到達したときに粒子ビームと一致する)。
【0057】
幾つかの実施例では、コリメータは、重なり合い、それによって特定のサイズをもたらすように制御される2つまたはそれ以上の開口を備え得る。例えば、
図12に示されているように、開口244および245は、それぞれの構造体246および247の一部である。構造体は、
図13に示されているように互いに対して移動し、それによって、開口244、245が重なり合い、サイズを変え、幾つかの場合において、粒子ビームが通過することを許されるその結果得られる穴248の形状を変えることを引き起こす。図示されているもの以外の形状も、使用され得る。
【0058】
幾つかの実施例では、コリメータは、照射ターゲットの内側での粒子ビームの運動における粒子ビームの移動を辿ることができる。例えば、幾つかの実施例では、開口は、粒子ビームスポットの直径未満の直径を有し得る。幾つかのシステムでは、すべての照射位置(照射ターゲットの内側の位置を含む)で特定の直径を有するスポットを使用することが望ましい場合がある。したがって、これらのシステムでは、開口は、治療に適切な粒子ビームスポット直径を達成するために粒子ビームのすべての移動を辿り得る。幾つかの実施例では、コリメータの開口は、サイズおよび/または形状が異なり得る。例えば、コリメータは、1つまたは複数の可動部分を有し、開口のサイズおよび形状を変化させることができる(例えば、その直径、表面積、または同様のものを縮小する)。
【0059】
例示的な実施例では、コリメータは、1つまたは複数の真っ直ぐな縁を有する構造体であってよい。例えば、コリメータは、正方形、矩形、または実質的に直線状の構造体を備え、各々粒子ビームの経路内に配置され得る少なくとも1つの縁を有する。
【0060】
真っ直ぐな縁を使用する例示的な一実施例では、コリメータは、
図14のように、多葉構造体を有し得る。
図14では、コリメータ250は、照射ターゲット251の縁に沿って移動を辿る。フィンガ252は、上もしくは下、または照射ターゲットの方へ、もしくは照射ターゲットから遠ざかって移動し、照射ターゲットの縁の形状と実質的にマッチし、粒子ビームを健常組織(または照射されるべきでない組織)に到達しないよう遮蔽する縁の形状253を形成し得る。例えば、各フィンガは、上もしくは下に移動されるか、または伸長され、引っ込められるか、または縁の形状に実質的にマッチするそのような移動の組合せがなされ得る。コリメータそれ自体は、照射ターゲット251の縁に沿って(例えば、おおよそ矢印255の方向に)移動し、粒子ビームの移動を辿り得る(例えば、それにより、コリメータの配置が、粒子ビームが照射ターゲットの縁に到達したときに粒子ビームと一致する)。幾つかの実施例では、コリメータ250は、走査動作中に照射ターゲットの内側内に移動することも、移動しないこともあり得る。
【0061】
従来の多葉コリメータは、照射ターゲットに対して静止し、互いに向き合い互いに対して移動して適切な平行を実現する2セットのフィンガを備える。このようなコリメータに使用されるフィンガは数十個、数百個、さらには数千個もあり得、そのサイズは、照射場それ自体と同程度の大きさであるものとしてよい。幾つかの実施例では、照射場は、平面によって画成されるものとしてよく、これはビームに対してある角度を成し、粒子ビームが照射ターゲットに対してXおよびY方向に移動することができる最大の範囲を定める。しかしながら、本明細書で説明されている例示的な実施例では、コリメータは、照射ターゲットに対して移動し(例えば、照射ターゲットの縁に沿って辿るかまたは移動し)、スポットがその点に当たる、また当たるときの照射ターゲットの点のところで定められた縁をもたらすだけでよい。したがって、多葉コリメータ(単一セットのフィンガのみであることに加えて)は、従来のその対応物に比べてかなり小さくされ得る。例えば、本明細書で説明されている多葉コリメータは、10個以下(例えば、2、3、4、5、6、7、8、または9個)のフィンガ(または必要ならばそれ以上)を備え得る。
【0062】
図15に示されているように、真っ直ぐな縁を使用する例示的な一実施例では、コリメータ260は、形状が矩形で、照射ターゲット261の縁に沿って移動するものとしてよい。コリメータ260は、照射ターゲットの縁に沿って移動し、粒子ビームの移動を辿り得る(例えば、それにより、コリメータの配置が、粒子ビームが照射ターゲットの縁に到達したときに粒子ビームと一致する)。照射ターゲットの縁に沿って運動しているときに、コリメータ260は、2または3次元内で、例えば、矢印262のXY次元内、またZ次元内でも回転し得る。この回転は、コリメータ260の縁の少なくとも一部が照射ターゲットの縁と比較的よくマッチすることを可能にする。したがって、コリメータ260は、粒子ビームが照射ターゲットの縁に到達したときに、コリメータが縁を越えて伸長する組織を遮蔽する。その結果、コリメータは、照射ターゲットに対して定められた放射線縁(radiation edge)をもたらし、隣接する組織を放射線粒子ビームから保護する。照射ターゲットの縁上の適切な点へのコリメータの移動は、粒子ビームの移動と一致するか、または粒子ビームの移動に先行するものとしてよい。
【0063】
幾つかの実施例では、コリメータは、
図15に示されているように、1つまたは複数の真っ直ぐな縁を有する単一構造体を含み得る。他の実施例では、コリメータは、
図16に示されているように、照射ターゲットの異なる(例えば、対向する)縁のところで2つまたはそれ以上のそのような構造体を備え得る。そこでは、コリメータは、2つの構造体265、266を備える。構造体265および266の各々は、粒子ビームの移動を辿る。すなわち、構造体265は、構造体265の配置が、粒子ビームが照射ターゲットの縁269に到達したときに粒子ビームと一致するように移動し、構造体266は、構造体266の配置が、粒子ビームが照射ターゲットの縁270に到達したときに粒子ビームと一致するように移動する。照射ターゲットの縁上の適切な点への各構造体の移動は、粒子ビームの移動と一致するか、または粒子ビームの移動に先行するものとしてよい。例えば、構造体266は、スポットが矢印271の方向に走査されるときに移動されるものとしてよく、したがって、構造体266は、スポットが縁270に戻ったときに適切な配置にあり、構造体265は、スポットが矢印272の方向に走査されるときに移動されるものとしてよく、したがって、構造体265は、スポットが縁269に戻ったときに適切な配置にある。構造体265および266は、同時に、異なる時刻に移動し得るか、またはその移動の時間に重なりがあり得る。この種類の配置構成は、粒子ビームが照射ターゲットの縁から縁まで移動されることを可能にし、コリメータは両方の縁において定められた照射場を可能にする。そして、コリメータは、複数の構造体から成るので、走査速度は、コリメータの移動を待って著しく低速にされる必要はない。幾つかの実施例では、コリメータは、
図16に示されている種類および動作の2つよりも多い(例えば、3、4つなど)構造体を備え得る。幾つかの実施例では、コリメータを構成する2つまたはそれ以上の構造体は、
図11に示されているものなどの、穴を備える構造体であってよい。2構造体コリメータの動作は、さもなければ上で説明されている通りである。
【0064】
幾つかの実施例では、コリメータは、
図17に示されているように、真っ直ぐな縁を有する必要はなく、むしろ、その縁は湾曲していてもよい。コリメータは、ただ1つのそのような構造体または2つもしくはそれ以上のそのような構造体を備え得る。幾つかの実施例では、コリメータを構成する2つまたはそれ以上の構造体は、湾曲した縁を備える構造体であってよい。例えば、
図17に示されている種類の2つの構造体は、
図16の2つの構造体を置き換え得る。2構造体コリメータの動作は、さもなければ上で説明されている通りである。
【0065】
この点で、例示的な実施例では、コリメータは、その縁に沿って連続的に変化する曲率半径を有する湾曲した形状を有する構造体であってよく、それによって、縁の少なくとも一部が直接的に、または縁を適切な角度に回転させることによって、のいずれかで、照射ターゲットの縁とよくマッチするようにできる。この例では、コリメータ275は、部分的にまたは完全に、のいずれかで、ビームを辿るように移動され得る、また照射ターゲットに対して2または3次元内で回転させて粒子ビームの印加を制御することができる雲形定規の形状をとる。適切な湾曲を有する構造体が、コリメータ内に備えられ得る。上記の場合と同様に、コリメータ275は、照射ターゲットの縁に沿って移動し、粒子ビームの移動を辿ることしかできない(例えば、それにより、コリメータの配置が、粒子ビームが照射ターゲットの縁に到達したときに粒子ビームと一致する)。上記の場合と同様に、コリメータは、照射ターゲットの内側で粒子ビームの移動を辿る場合も辿らない場合もある。
【0066】
コリメータは、
図17に示されている種類のただ1つの構造体を含み得るか、またはコリメータは、2つまたはそれ以上のそのような構造体を含み得る。例えば、
図17に示されている種類の2つの構造体は、
図16の2つの構造体を置き換え得る。2構造体コリメータの動作は、さもなければ上で説明されている通りである。
【0067】
幾つかの実施例では、治療計画システムは、照射ターゲットの内側での走査速度(例えば、粒子ビームスポットが照射ターゲットを横断する速度)が照射ターゲットの縁での走査速度と異なるように設計され得る。例えば、走査速度は、照射ターゲットの縁のところに比べて、照射ターゲットの内側でより高速であり得る。この配置構成は、照射ターゲットの内側と比べて、照射ターゲットの縁のところでの走査精度をより高くすることができる。この種類の可変速度走査は、本明細書で説明されているものを含む、適切な任意の種類のコリメータを使用して実装され得るか、またはこの種類の可変速度走査は、いかなるコリメータをも使用することなく実装され得る。いずれの場合も、照射ターゲットの縁のところでの速度を遅くすることは、そこでのより正確な走査を可能にし、それにより、粒子ビームが照射ターゲットの外側に影響を及ぼす確率を低減することができる。
【0068】
幾つかの実施例では、本明細書で説明されているコリメータは、強度変調陽子治療プロセスにおいて使用され得る。そのようなプロセスでは、陽子ビームは、線量全体のうちのあるパーセンテージの線量が各方向から送達されるように異なる方向から照射ターゲットに投射される。その結果、照射ターゲットの外側の容積部に送達される線量の量は、低減され得る。例えば、
図18は、3つの異なる角度から照射ターゲット281に印加される粒子ビーム280を示している。この例では、全線量の1/3が、1つの角度から印加されるものとしてよく、全線量の1/3が、別の角度から印加されるものとしてよく、全線量の1/3が、さらに別の角度から印加されるものとしてよい。すなわち、粒子ビームは、水平285に対して角度282で走査され、線量の1/3を印加するものとしてよく、粒子ビームは、角度283で走査され、線量の1/3を印加するものとしてよく、粒子ビームは、角度284で走査され、線量の1/3を印加するものとしてよい。その結果、周辺組織287に印加される放射線の量は、適切な角度で広げられ、それによって、周辺組織が有害な量の放射線に曝される確率を低減する。任意の適切な数の角度および角度当たりの適切な線量が使用され得る。
【0069】
腫瘍などの照射ターゲットは、典型的には対称的でない。したがって、粒子ビームの異なる印加角度に対して異なるビーム平行が典型的には必要である。本明細書で説明されている例示的なコリメータは、照射の角度が与えられた場合に照射ターゲットの縁(上で説明されているような)に沿った適切な配置に位置決めされ、適切な平行をもたらし得る。幾つかの実施例では、例示的なコリメータは、照射ターゲットの縁でのみ、またはすべての印加角度での粒子ビームの運動の一部(または全部)全体にわたって、のいずれかで、粒子ビームの運動を辿ることができる。
【0070】
幾つかの実施例では、本明細書で説明されている例示的なコリメータは、粒子ビームを遮蔽することによって周辺組織への粒子ビームの透過を防ぐ。幾つかの実施例では、例示的なコリメータは、粒子ビームの部分的透過を可能にし、それによって、結果として、周辺組織への放射線レベルを照射ターゲットへの放射線レベルよりも低くすることができる。本明細書で説明されている例示的なコリメータはどれも、このように生産され得る。
【0071】
本明細書で説明されている例示的なコリメータは、1つまたは複数のコンピュータ制御ロボットアームまたは他の構造体に取り付けられ、それにより、照射ターゲットに対するその移動を制御することができる。コリメータは、走査システムそれ自体にも取り付けられ得る。典型的には、コリメータは、粒子ビーム走査システムの他の要素に対して本特許に最も近い位置に取り付けられる(例えば、走査システムの他の要素のビーム下流側)。コリメータが複数の個別部品を備える実施例では(例えば、
図16)、治療計画に従ってコリメータの異なる個別部品を独立制御するため複数のロボットアームまたは他の構造体があり得る。幾つかの実施例では、単一のロボットアームが、コリメータの異なる個別部品を制御するか、または事前に組み立てられた個別部品の組合せを制御するように構成され得る。
【0072】
幾つかの実施例では、エネルギーデグレーダも、粒子ビームの運動を辿るように構成され得る。この点で、
図7および
図8に関して説明されている例示的な実施例などの、幾つかの実施例では、エネルギーデグレーダは、ビームのエネルギーの量を制御し、それによってビーム粒子が照射ターゲットを貫通する深さを制御するように粒子ビームの経路内に移動可能である複数のプレートを備え得る。この方法で、エネルギーデグレーダは、照射ターゲット内の深さ走査(ビーム粒子の方向またはZ方向)を実行するために使用される。典型的には、各プレートは、一定量の粒子ビームのエネルギーを吸収する。したがって、粒子ビームの前に置かれるプレートが多ければ多いほど、ビームが有するエネルギーが少なくなり、ビームが照射ターゲット内に貫通する深さはより小さくなる。逆に、粒子ビームの前に置かれるプレートが少なければ少ないほど、ビームが有するエネルギーが大きくなり(プレートによって吸収されるエネルギーが少ないので)、ビームが照射ターゲット内に貫通する深さはより大きくなる。幾つかの実施例では、各プレートは、ほぼ同じ厚さを有し、したがって、ほぼ同じ量のビームエネルギーを吸収する。他の実施例では、異なるプレートは、異なる厚さを有する可能性があり、プレートの厚さはプレートが吸収するエネルギーの量に対応する。
【0073】
幾つかの実施例では、プレートは各々、照射場のほぼサイズである表面積を有する。この文脈において、照射場は、粒子ビームが照射ターゲットに対してXおよびY方向に移動することができる最大の範囲を定める平面によって画成され得る。例えば、
図19は、照射ターゲット291の前にある照射場290を示している。物理的なシステム制限により、粒子ビームは、照射場を画成する平面にわたって、ただし、それを超えることなく、移動可能である。したがって、エネルギーデグレーダが照射場内の任意の配置に施され得ることを確実にするために、幾つかの実施例では、エネルギーデグレーダ内のプレートは各々、少なくとも照射場のサイズ程度の大きさ、および場合によってはそれを超える大きさの表面積を有する。しかしながら、この構成は、結果として、大きい(場合によっては1平方メートルまたは数平方メートルの)、および重く、比較的移動が遅いプレートをもたらし得る。プレートの低速移動は、結果として、治療を遅くする可能性がある。
【0074】
幾つかの実施例では、エネルギーデグレーダは、照射場のサイズよりも小さく、粒子ビームの運動の少なくとも一部を辿り得る。その結果、エネルギーデグレーダは、比較的軽く、それにより、粒子ビームの経路内のエネルギーデグレーダプレートを位置決めするのに要する時間を短縮することができ、したがって治療時間を短縮することができる。エネルギーデグレーダは、2つの方向(例えば、XY)または3つの方向(例えば、XYZ)で粒子ビームを辿ることができる。すなわち、エネルギーデグレーダは、粒子ビームに垂直な平面内で移動し得るか、またはエネルギーデグレーダは、粒子ビームに垂直な平面内で、粒子ビームの縦方向に沿って移動し得る。この点で、本明細書で説明されているどのコリメータも、粒子ビームに垂直な平面内で移動し得るか、または本明細書で説明されているどのコリメータも、粒子ビームに垂直な平面内で、粒子ビームの縦方向に沿って移動し得る。コリメータおよびエネルギーデグレーダの移動は、独立しているか、または調整され得る。
【0075】
例えば、エネルギーデグレーダは、複数の個別部品から成るものとしてよく、これは治療中に粒子ビームエネルギーを吸収するように製作されたプレートまたは他の構造体とすることができる。各個別部品は、同じ面積(XY)および厚さ(Z)を有するか、または異なる個別部品は、異なる面積および厚さを有し得る。
図20に表すように、同じまたは異なる厚さを有する2つまたはそれ以上の個別部品294は、特定の量のエネルギー吸収を達成するために粒子ビーム293の経路内の照射ターゲット295の前に配置され得る。代替的に、指定された厚さを有する単一個別部品は、特定の量のエネルギー吸収を達成するためにビームの前に配置され得る。さらに、特定のエネルギー吸収が必要な場合、制御コンピュータは、その吸収を達成するために適切な厚さを有する個別部品を選択し得る。
【0076】
2つまたはそれ以上の個別部品がビームの前に配置される例では、これらの個別部品は、配置の前に組み立てられるか、または配置のときに動的に組み立てられ得る。例えば、制御コンピュータは、2つの個別部品を選択し、それらを配置構成し、次いで、2つの個別部品の組合せをビーム経路内に移動することができる。代替的に、制御コンピュータは、2つの個別部品を選択し、次いで、それら2つの個別部品の組合せをビーム経路内に同時に移動するが、組み合わせては移動し得ない(例えば、各々が別のロボットアームで移動され得る)。
【0077】
エネルギーデグレーダは、またはその個別部品は、照射場の少なくとも一部にわたって粒子ビームの移動を辿り、照射ターゲット上の様々な点で、適切なエネルギー吸収、したがってビーム深さ貫通(beam depth penetration)を達成し得る。治療計画では、エネルギーデグレーダが治療中の特定の時刻にどこにある必要があるかを指定することができ、また電離箱からのフィードバックが、必要ならば、位置決めおよび位置補正に使用され得る。幾つかの実施例では、エネルギーでグレーが粒子ビームを辿る際の必要とされる精度は、デグレーダのサイズと、粒子ビームがエネルギーデグレーダと交差する点における粒子ビームのスポットサイズとに基づいている。
【0078】
より具体的には、幾つかの例では、エネルギーデグレーダの表面積が小さければ小さいほど、粒子ビームの移動を辿るべきエネルギーデグレーダの移動はより精密になる。逆に、他の例では、エネルギーデグレーダの表面積が大きければ大きいほど、粒子ビームの移動を辿る必要のあるエネルギーデグレーダの移動はあまり精密でなくなる。例えば、
図21に表すように、エネルギーデグレーダ299が、粒子ビームがエネルギーデグレーダと交差する点においてスポット300の表面積に近い表面積を有する場合、エネルギーデグレーダは、エネルギーデグレーダが治療中の適切な時刻に照射ターゲット301に対して粒子ビームの前にあることを確実にするために粒子ビームの運動をかなり精密に辿るべきである。例えば、配置302から配置303への粒子ビーム304の運動も、スポットおよびデグレーダの面積が比較的近いサイズであるので、エネルギーデグレーダ299が矢印305の方向に移動し、ビーム経路内に留まることを必要とする。指示されているように、粒子ビームの運動は、治療計画によって指定され、電離箱の使用および制御コンピュータへのフィードバックを通じて検出され得る。この情報も、エネルギーデグレーダの移動を制御するために使用され得る。
【0079】
幾つかの実施例では、移動可能なエネルギーデグレーダは、粒子ビームスポットよりもかなり大きいものとしてよい。これらの場合、エネルギーデグレーダは、エネルギーデグレーダが治療中の適切な時刻において粒子ビームの前にあることを確実にするために粒子ビームの運動を精密に辿る必要はない。実際、エネルギーデグレーダのサイズによっては、エネルギーデグレーダは、粒子ビームが移動する幾つかの場合において全く移動する必要はない。すなわち、粒子ビームの一部の運動について、エネルギーデグレーダは、静止したままであってよく、粒子ビームの他の運動については、エネルギーデグレーダは、粒子ビームをインターセプトするようにも移動する。例えば、
図22は、エネルギーデグレーダ310が、粒子ビームがエネルギーデグレーダと交差する点において粒子ビームスポット311よりもかなり大きい場合を示している。粒子ビームが点314aから点314bに移動するときに、エネルギーデグレーダは、エネルギーデグレーダが移動していなくてもビーム経路内に留まる。制御コンピュータシステムは、デグレーダのサイズおよび2つのスポット位置を知って、この場合にはエネルギーデグレーダを移動しない。したがって、この場合に、エネルギーデグレーダは、粒子ビームスポットの移動を辿る必要はない。しかしながら、スポットが点314cに移動したときに、エネルギーデグレーダ(またはその個別部品)は、ビーム経路内に留まるように、移動してビームを辿りインターセプトする。したがって、ビームスポットに対するエネルギーデグレーダのサイズは、いつ、どれだけ、エネルギーデグレーダが走査中に移動することが要求されるかを決定する際の一要因である。
【0080】
幾つかの実施例では、エネルギーデグレーダは、複数の部分または個別部品を含み得る。例えば、照射ターゲットの一部にわたって粒子ビームの移動を辿るために一方の部分または個別部品が使用されるものとしてよく(例えば、照射ターゲットの頂部から印加される照射)、照射ターゲットの別の部分にわたって粒子ビームの移動を辿るために別の部分または個別部品が使用され得る(例えば、ターゲットの底部から印加される照射)。
【0081】
エネルギーデグレーダ(またはその個別部品)は、任意の形状、例えば、正方形、矩形、円形、長円形、不規則な形状、規則正しい形状、多角形、球形、立方体、四面体などの形状を有し得る。エネルギーデグレーダ(またはその個別部品)は、任意の適切なサイズを有し得る。例えば、エネルギーデグレーダ(またはその個別部品)は、照射場の面積未満、照射場の面積の3/4未満、照射場の面積の1/2未満、照射場の面積の1/3未満、照射場の面積の1/4未満、照射場の面積の1/5未満、などの表面積を有し得る。エネルギーデグレーダ(またはその個別部品)は、照射場における粒子ビームスポットの面積の20倍未満、照射場における粒子ビームスポットの面積の15倍未満、照射場における粒子ビームスポットの面積の10倍未満、照射場における粒子ビームスポットの面積の9倍未満、照射場における粒子ビームスポットの面積の8倍未満、照射場における粒子ビームスポットの面積の7倍未満、照射場における粒子ビームスポットの面積の6倍未満、照射場における粒子ビームスポットの面積の5倍未満、照射場における粒子ビームスポットの面積の4倍未満、照射場における粒子ビームスポットの面積の3倍未満、または照射場における粒子ビームスポットの面積の2倍未満、表面積を有し得る。幾つかの実施例では、エネルギーデグレーダ(またはその個別部品)は、スポットサイズの倍数、例えば、スポットサイズの2倍、スポットサイズの3倍、スポットサイズの5倍、スポットサイズの10倍、などの表面積を有し得る。
【0082】
幾つかの実施例では、各個別部品(例えば、複数の層からなる層)は、同じサイズ、形状、厚さ、および組成を有する。他の実施例では、異なる個別部品は、異なるサイズ、形状、厚さ、および組成を有し得る。
【0083】
本明細書で説明されている例示的なエネルギーデグレーダの移動は、様々な方法で制御され得る。例えば、磁石108中を流れる電流は、磁石による粒子ビームの偏向に、したがって、照射ターゲット上の粒子ビームスポットの配置に対応し得る。したがって、例えば、磁石中を流れる電流および磁石に対する照射ターゲットの配置を知ることで、走査システムの動作を制御するコンピュータシステムは、照射スポットの投射配置を決定することができる。および、本明細書で説明されているように、放射スポットの配置、およびスポットサイズに対するエネルギーデグレーダのサイズを知ることで、コンピュータシステムは、エネルギーデグレーダを制御して、その運動の全部または一部に沿って照射スポットの移動を(必要ならば)辿ることができる。
【0084】
本明細書で説明されている例示的な移動可能なエネルギーデグレーダは、走査システムの要素も含む1つまたは複数のコンピュータ制御ロボットアームまたは他の構造体に取り付けられ、それにより、照射ターゲットに対する移動を制御することができる。エネルギーデグレーダが複数の個別部品(例えば、多数の個別部品またはプレート)を備える実施例では、治療計画に従ってエネルギーデグレーダの異なる個別部品を独立制御するため複数のロボットアームがあり得る。幾つかの実施例では、単一のロボットアームは、異なる個別部品を独立制御するように構成され得る。
【0085】
照射ターゲットの異なる断面は、異なる治療計画に従って走査され得る。上で説明されているように、走査深さを制御するためにエネルギーデグレーダが使用される。幾つかの実施例では、粒子ビームは、エネルギーデグレーダの構成時に中断されるか、または向きを変えられ得る。他の実施例では、これは必ずしもその場合である必要はない。
【0086】
本明細書では、照射ターゲットの断面を治療する例が説明されている。これらは、粒子ビームの方向に対しておおよそ垂直である断面であり得る。しかしながら、本明細書で説明されている概念は、粒子ビームの方向に対して垂直である断面ではない照射ターゲットの他の部分を治療するステップにも等しく適用可能である。例えば、照射ターゲットは、球体、立方体、または他の形状の容積部にセグメント分割され、それらの容積部は本明細書で説明されている例示的なプロセス、システム、および/またはデバイスを使用して治療され得る。
【0087】
本明細書で説明されているプロセスは単一の粒子加速器とともに使用され、本明細書で説明されているこれらの特徴の任意の2つまたはそれ以上は単一の粒子加速器とともに使用され得る。粒子加速器は、任意の種類の医療または非医療用途に使用され得る。使用することができる粒子治療システムの一例が、以下に提示されている。とりわけ、本明細書で説明されている概念は、特には説明されていない他のシステムでも使用され得る。
【0088】
図23に表すように、荷電粒子線治療システム400の例示的な実施例は、ビーム発生粒子加速器402を備えており、ビーム発生粒子加速器402の重量および大きさは、ビーム発生粒子加速器402の出力が加速器ハウジングから患者406に向かう直線方向に(すなわち、実質的に直接)方向づけられている状態において、回転式ガントリー404に取り付け可能とされる大きさである。粒子加速器402は、本明細書で説明されている種類の走査システム(例えば、
図3から
図22)も備える。
【0089】
幾つかの実施例では、鋼製ガントリーは、2つの脚部408、410を有しており、2つの脚部408、410は、患者の両側に配設された2つの軸受412、414それぞれに回転するように取り付けられている。加速器は、患者が横たわる治療領域418を跨設するに十分に長い(患者の所望のターゲット領域をビームライン上に維持した状態で空間内において背の高いヒトを完全に回転させることができるように、例えば当該ヒトの身長の2倍の長さとされる)鉄骨トラス416によって支持されており、その両端においてガントリーの回転式脚部に安定に取り付けられている。
【0090】
幾つかの実施例では、ガントリー404の回転が360°未満の範囲420、例えば、約180°に制限され、これにより、治療システムを収納するボールト424の壁から患者治療領域内部に至るまで床422を延在させることができる。また、ガントリー404の回転範囲420が制限されることによって、患者治療領域の外側に居る人々を放射線から遮蔽するための壁のうちの幾つかの壁(ビームと直接的には整列されない、例えば、壁430)の必要な厚さを薄くすることができる。ガントリー404の回転範囲420を180°とすれば、すべての治療アプローチ角に対応するのに十分であるが、移動範囲を拡大することは優位である。例えば、回転範囲420は、180°〜330°としても、依然として治療のための床面積に対するクリアランスを確保することができる。他の実施例では、回転は、上で説明されているように制限されない。
【0091】
ガントリー404の水平回転軸線432は、患者と療法士とが治療システムをインタラクティブに操作する場所の床より公称1メートル上方に配置されている。この床は、荷電粒子線治療システム400を遮蔽しているボールト424の最下床より約3メートル上方に位置決めされている。ビーム発生粒子加速器402は、治療ビームを回転軸線の下方から照射するために高床の下方において旋回可能とされる。患者用カウチは、ガントリー404の回転軸線432に対して略平行とされる水平面内において移動および回転する。カウチは、このような構成によって水平面内において約270°の範囲434にわたって回転可能とされる。ガントリー404および患者の回転範囲420、434と自由度との組合せによって、療法士は、ビームについての任意のアプローチ角を実質的に選択することができる。必要に応じて、患者を反対の向きでカウチに載置することによって、想定し得るすべての角度が利用可能となる。
【0092】
幾つかの実施例では、ビーム発生粒子加速器402は、高磁界超電導電磁構造体を有しているシンクロサイクロトロンを利用する。所定の運動エネルギーを具備する荷電粒子の曲率半径は、当該荷電粒子に印加される磁場の増大に正比例して小さくなるので、高磁界磁場超電導磁気構造体を利用することによって、加速器を小型かつ軽量にすることができる。シンクロサイクロトロンは、回転角度が一様とされる磁場であって、半径が大きくなるに従って強度が低下する磁場を利用する。このような磁場形状は、磁場の規模に関係なく実現されるので、シンクロサイクロトロン内で利用可能とされる磁場の強度(ひいては、固定された半径において結果として得られる粒子エネルギー)についての上限は理論上存在しない。
【0093】
シンクロサイクロトロンは、ビームが患者に対して直接生成されるようにガントリーに支持されている。ガントリーは、患者の体内の点または患者の近傍の点(アイソセンター440)を含む水平回転軸線を中心としてシンクロサイクロトロンを回転させることができる。水平回転軸線に対して平行とされる分割式トラスが、シンクロサイクロトロンをその両側で支持している。
【0094】
幾つかの例示的な実施例ではガントリーの回転範囲は制限されているので、患者支持領域は、等角点の周りの広い領域内に収容され得る。アイソセンターを中心として広範囲にわたって床を延在させることができるので、患者支持台は、アイソセンターを通過する垂直軸線442に対して相対的に移動するように、かつ垂直軸線442を中心として回転するように位置決めされ、ガントリーの回転と患者支持台の移動および回転との組合せによって、患者の任意の部位に向けて任意の角度でビームを方向づけることができる。幾つかの実施例では、2つのガントリーアームは、背の高い患者の身長の2倍を超える長さで離隔されているので、高床の上方に位置する水平面内において、患者を乗せたカウチを回転および並進運動させることができる。
【0095】
ガントリーの回転角度を制限することによって、治療室を囲む壁のうちの少なくとも1つの壁の厚さを低減することができる。一般にコンクリートから構成された厚肉の壁によって、治療室の外に居るヒトは放射線から防護される。陽子ビームを阻止するための下流側の壁は、同等のレベルの防護を実現するために、治療室の反対側の壁の約2倍の厚さとされる場合がある。ガントリーの回転を制限することによって、治療室を3つの側面においてアースグレード(earth grade)より低く設定することができる一方、占有領域を最も薄肉の壁に隣接させることができるので、治療室を建築するコストを低減することができる。
【0096】
図23に示されている例示的な実施例では、超電導シンクロサイクロトロン402は、シンクロサイクロトロンの磁極間隙において8.8テスラのピーク磁場で動作する。シンクロサイクロトロンは、250MeVのエネルギーを有する陽子ビームを発生する。幾つかの実施例では、シンクロサイクロトロンは、可変エネルギー機械であり、異なるエネルギーを有する陽子ビームを出力することができる。幾つかの実施例では、シンクロサイクロトロンは、固定されたエネルギーを有するビームを発生することができる。幾つかの実施例では、場の強度は、4Tから20Tの範囲内とすることが可能であり、陽子エネルギーは、150から300MeVの範囲内とすることが可能である。
【0097】
この例で説明されている放射線治療システムは陽子放射線治療に使用されるが、同じ原理および詳細は、重イオン(イオン)治療システムで使用するための類似のシステムにおいて適用され得る。
【0098】
図1、
図2、
図24、
図25、および
図26に示されているように、例示的なシンクロサイクロトロン10(例えば、
図23の402)は、粒子源190を収容する磁石システム122、高周波駆動システム191、およびビーム引き出しシステム318を含む。この例では、磁石システムによって確立される磁場は、環状超電導コイル140、142の分割されたペアと成形された強磁性(例えば、低炭素鋼)磁極面144、146のペアとの組合せを使用して、内部に存在する陽子ビームの集束を維持するのに適切な形状を有する。
【0099】
2つの超電導磁気コイルは、共通軸147を中心とし、この軸に沿って相隔てて並ぶ。コイルは、撚り合わせたケーブルインチャネル導体形態で配設される直径0.8mmのNb
3Sn系超電導線(最初に、銅シースによって囲まれているニオブスズコアを備える)から形成され得る。7本の個別の線がまとめられてケーブルにされた後、これらは加熱され、ワイヤ状の最終(脆い)超電導体を形成する反応を引き起こす。材料が反応した後、ワイヤは銅チャネル(外径3.18×2.54mmおよび内径2.08×2.08mm)内にハンダ付けされ、絶縁体(この例では、ガラス繊維織布)で覆われる。次いで、ワイヤを収容する銅チャネルコイル状に巻き取られ、これは矩形の断面を有する。次いで、この巻きコイルは、エポキシ化合物で真空含浸される。完成したコイルは、環状ステンレスリバースボビン上に取り付けられる。ヒーターブランケットは間隔をあけて巻線の層内に入れられ、磁石クエンチが生じた場合にアセンブリを保護し得る。
【0100】
次いで、コイル全体を銅板で覆って熱伝導性および機械的安定性を付与し、次いで、追加エポキシ層内に収容する。コイルの事前圧縮は、ステンレス製リバースボビンを加熱し、コイルをリバースボビン内に嵌め込むことによって行われ得る。リバースボビンの内径は、質量全体が4Kまで冷却されたときに、リバースボビンがコイルと接触したままになり、ある程度の圧縮をもたらすように選択される。ステンレス製のリバースボビンを約50℃に加熱し、コイルを100度のケルビン温度でコイルを嵌合すると、これが達成され得る。
【0101】
コイルの幾何学的形状は、コイルを矩形「リバース」ボビン内に取り付けて、コイルが通電されたときに発生する歪みを起こす力に抗して作用する復元力を与えることによって維持される。
図25に示されているように、幾つかの実施例では、コイル位置は、一組の高温−低温支持ストラップ402、404、406を使用して対応する磁極片および低温保持装置に対して維持される。低温質量を細いストラップで支持することにより、剛体支持システムによって低温質量に与えられる熱漏洩が低減される。ストラップは、磁石が搭載された状態でガントリーを回転するときにコイルにかかる変化する重力に耐えるように構成される。これらは、重力と、磁気ヨークに対して完全対称位置から摂動したときにコイルによって生じる大きな偏心力との複合効果に耐える。それに加えて、リンクは、位置が変わった場合にガントリーが加減速する際にコイルに与えられる動的な力を低減する働きをする。それぞれの高温−低温支持体は、1つのS2ガラス繊維リンクと1つの炭素繊維リンクとを含み得る。炭素繊維リンクは、高温のヨークと中間温度(50〜70K)との間のピン上で支持され、S2ガラス繊維リンク408は、中間温度ピンおよび低温質量に取り付けられたピン上で支持される。それぞれのピンは、高張力ステンレス鋼から作ることができる。
【0102】
図1を参照すると、半径の関数としての場の強度プロファイルは、大部分がコイルの幾何学的形状および磁極面の形状の選択によって決定され、透磁性ヨーク材料の磁極面144、146は、磁場の形状を微調整して加速時に粒子ビームの収束を確実に保つように、起伏が付けられ得る。
【0103】
超電導コイルは、限定された一組の支持点171、173を除き、コイル構造体の周りに自由空間を設ける真空にされた環状アルミニウムまたはステンレス製低温保持槽170(低温保持装置)の内側にコイルアセンブリ(コイルおよびボビン)を封じ込めることによって絶対零度近くの温度(例えば、約4ケルビン)に維持される。代替的バージョン(例えば、
図2)において、低温保持装置の外壁は、低炭素鋼で作られ、磁場に対する追加の帰還磁路をもたらすことができる。
【0104】
幾つかの実施例では、絶対零度近くの温度は、1つの単段ギフォードマクマホン冷凍機と3つの2段ギフォードマクマホン冷凍機とを使用して達成され、維持される。それぞれの2段冷凍機は、ヘリウム蒸気を液体ヘリウムに再凝縮する凝縮器に取り付けられた第2段低温端部を有する。幾つかの実施例では、液体ヘリウムを収容する冷却チャネル(図示せず)を使用して絶対零度に近い温度が達成され、維持されるが、この冷却チャネルは超電導コイル支持構造体(例えば、リバースボビン)の内側に形成され、チャネル内の液体ヘリウムと対応する超電導コイルとの間の熱的接続部を含む。上で説明されている種類の、使用され得る、液体ヘリウム冷却システムの一例は、米国特許出願第13/148,000号(Beggら)において説明されている。
【0105】
幾つかの実施例では、コイルアセンブリおよび低温保持槽は、ピルボックス形状の磁石ヨーク100の2つの半分181、183内に取り付けられ、完全に封じ込められる。ヨーク100は、帰還磁束184に対する経路となり、磁極面144、146の間の容積部186を磁気遮蔽して外部からの磁気的影響がその容積部内の磁場の形状を摂動するのを防ぐ。ヨークは、加速器の付近の漂遊磁場を減少させる働きもする。他の実施例では、コイルアセンブリおよび低温保持槽は、非磁気エンクロージャ内に取り付けられ、それによって完全に封じ込められ、帰還磁束は、能動的帰還システムを使用して実装され、その一例は上で説明されている。
【0106】
図1および
図27に示されているように、シンクロサイクロトロンは、磁気構造体182の幾何学的中心192の近くに配置されているペニングイオンゲージ形態の粒子源190を含む。粒子源は、以下に説明されている通りであるか、または粒子源は、参照により本明細書に組み込まれている米国特許出願第11/948,662号で説明されている種類のものであってよい。
【0107】
粒子源190は、水素の供給部399からガス管路393および気体水素を送達する管394を通して供給される。電気ケーブル294は電流源から電流を運び、磁場400の方向に揃えられた陰極392、390からの電子の放出を刺激する。
【0108】
この例では、放出される電子は、管394から小さな穴を通して出て来るガスを電離し、磁石構造体と1つのダミーディープレートとによって囲まれた空間の半分にかかる1つの半円形(ディー形状)高周波プレートによって加速する陽イオン(陽子)の供給部を形成する。遮断された粒子源の場合(その一例は、米国特許出願第11/948,662号で説明されている)、プラズマを収容する管の全部(または実質的な部分、例えば大半)が加速領域で取り除かれる。
【0109】
図28に示されているように、ディープレート500は、磁石構造体によって囲まれた空間の周りの回転の半分において陽子が加速される空間507を囲む2つの半円形表面503、505を有する中空金属構造体である。空間507内に開いているダクト509は、エンクロージャ(例えば、ヨークまたは磁極片)を通り、真空ポンプが取り付けられ得る外部の場所に延在し、これにより、空間507および、加速が行われる真空槽内の空間の残り部分を真空にする。ダミーディー502は、ディープレートの露出されている縁の近くに間隔をあけて並ぶ矩形の金属リングを備える。ダミーディーは、真空槽および磁気ヨークに接地される。ディープレート500は、高周波伝送路の終端部に印加される高周波信号によって駆動され、電場を空間507内に発生させる。高周波電場は、加速された粒子ビームが幾何学的中心からの距離を増やすにつれ時間に対して変化させられる。高周波電場は、参照により本明細書に組み込まれている米国特許出願第11/948,359号、名称「Matching A Resonant Frequency Of A Resonant Cavity To A Frequency Of An Input Voltage」で説明されているように制御され得る。
【0110】
ビームが中央に配置された粒子源から現れて粒子源構造体をクリアし、外向きに螺旋を描き始めると、高い電圧差が高周波プレート上に印加され得る。高周波プレートに20,000Vが印加される。幾つかのバージョンでは、8,000から20,000ボルトが高周波プレートに印加され得る。この高い電圧を駆動するために必要な電力を低減するために、磁石構造体は、高周波プレートと接地との間の静電容量を減らすように構成される。これは、高周波構造から外側ヨークおよび低温保持装置ハウジングまで十分な間隔をあけて穴を形成し、磁極面の間に十分な空間を確保することによって行われ得る。
【0111】
ディープレートを駆動するこの高電圧の交流電位は加速サイクルにおいて、陽子の増大する相対論的質量と減少する磁場とを考慮して、周波数が低くなるように掃引される。ダミーディーは、真空槽壁と共に接地電位にあるので中空半円筒形構造体を必要としない。基本周波数の異なる位相または倍数の周波数で駆動される加速電極の複数のペアなどの、他のプレート構成も使用することが可能である。RF構造は、例えば、互いにかみ合う回転および静止ブレードを有する回転コンデンサを使用することによって、必要な周波数掃引においてQを高く保つように調整することができる。ブレードのかみ合い毎に、静電容量が増加し、したがって、RF構造の共振周波数が下がる。ブレードは、必要な正確な周波数掃引がもたらされる形状に成形され得る。回転コンデンサ用の駆動モータは、正確な制御を行うためにRF発生器に位相固定され得る。一群の粒子が、回転コンデンサのブレードのかみ合い毎に加速され得る。
【0112】
加速が行われる真空槽は、中央が薄く、縁が厚い、一般的に円筒形の容器である。真空槽は、RFプレートおよび粒子源を封じ込め、真空ポンプによって真空にされる。高真空を維持することで、加速するイオンが気体分子との衝突で失われる確率が低減され、アーク地絡を生じることなくRF電圧をより高いレベルに保つことが可能になる。
【0113】
陽子(または他のイオン)は、粒子源から始まる一般的に螺旋状の軌道経路を横断する。螺旋経路のそれぞれのループの半分において、陽子は、RF電場を通過するときにエネルギーを獲得する。陽子がエネルギーを獲得すると、螺旋経路のそれぞれの連続するループの中心軌道の半径は、ループ半径が磁極面の最大半径に達するまで前のループより大きくなる。その位置で、磁場および電場摂動は陽子を磁場が急速に減少する領域内に導き、陽子は高い磁場の領域から出て、本明細書では引き出しチャネルと称される真空管に通され、シンクロサイクロトロンから出る。磁場摂動を変えて陽子の向きを決めるために磁気再生器が使用され得る。出て来る陽子は、シンクロサイクロトロンの周りの部屋内に存在する著しく減少する磁場の領域に入ると分散する傾向を有する。引き出しチャネル138(
図25)内のビーム成形要素507、509は、陽子が空間的広がりを制限された真っ直ぐなビーム状態を保つように陽子の向きを変える。
【0114】
ビームが引き出しチャネルから出るときに、ビームは本明細書で説明されている種類の走査システムを備え得る、ビーム形成システム525(
図25)を通過する。ビーム形成システム525は、ビームの印加を制御する内側ガントリーと共に使用され得る。
【0115】
シンクロサイクロトロンから出る漂遊磁場は、磁石ヨーク(シールドとしても働く)と別の磁気シールド514(例えば、
図1)の両方によって制限され得る。別の磁気シールドは、空間516によって隔てられる、ピルボックスヨークを囲む強磁性体(例えば、鋼または鉄)の層517を含む。ヨーク、空間、およびシールドのサンドイッチを含むこの構成は、より低い重量で所定の漏れ磁場に対する適切な遮蔽を形成する。上で説明されているように、幾つかの実施例では、能動的帰還システムが、磁気ヨークおよびシールドの動作の代わりに、または増強するために使用され得る。
【0116】
図23に表すように、ガントリーは、シンクロサイクロトロンを水平回転軸線432を中心として回転させる。トラス構造体416は、2つの略平行なスパン480、482を有する。シンクロサイクロトロンは、脚部と脚部との間における略中央にかつスパン580、582の間に配設されている。ガントリーは、トラスの反対側に位置する脚部の端部に取り付けられた釣合いおもり622、624を利用することによって軸受を中心として回転するようにバランスされている。
【0117】
ガントリー404は電気モータによって回転駆動され、電気モータはガントリー404の少なくとも1つの脚部に取り付けられており、駆動歯車を介して軸受ハウジングに接続されている。ガントリー404の回転位置は、ガントリー404の駆動モータおよび駆動歯車に組み込まれた軸角エンコーダによって付与される信号から導き出される。
【0118】
イオンビームがシンクロサイクロトロンから出る位置において、ビーム形成システム525はイオンビームに作用し、患者治療に適した特性をそれに与える。例えば、ビームを拡散させ、ビームの貫入深さを変化させることによって、所定の目標体積に対して均一に放射することができる。ビーム形成システムは、本明細書で説明されているような能動的走査要素を備え得る。
【0119】
シンクロサイクロトロンの能動的システムのすべて(例えば、電流駆動超電導コイル、RF駆動プレート、真空加速室および超電導コイル冷却室用の真空ポンプ、電流駆動粒子源、水素ガス源、およびRFプレート冷却装置)は、例えば、メモリからの命令を実行して制御を行う1つまたは複数の処理デバイスを含むものとしてよい、適切なシンクロサイクロトロン制御電子機器(図示せず)によって制御され得る。
【0120】
上で説明されているように、
図29のシステム602に表すように、ビーム発生粒子加速器が、この場合シンクロサイクロトロン604(本明細書で説明されている任意のおよびすべての特徴を含み得る)が回転式ガントリー605に取り付けられ得る。回転式ガントリー605は、本明細書で説明されている種類のものであり、患者支持体606の周りで角度的に回転することができる。この特徴は、シンクロサイクロトロン604が様々な角度から粒子ビームを患者に本質的に直接照射することを可能にする。例えば、
図29に表すように、シンクロサイクロトロン604が患者支持体606の上方に位置している場合には、粒子ビームは患者に向かって下方に方向づけられている。代替的には、シンクロサイクロトロン604が患者支持体606の下方に位置している場合には、粒子ビームは患者に向かって上方に方向づけられている。中間ビーム経路指定機構が必要ないという意味では、粒子ビームは患者に本質的に直接印加される。本発明では、成形またはサイズ決定機構がビームの経路変更をするのではなく、同一かつ一般的なビーム軌道を維持しつつビームのサイズおよび/または形状を決定するという点において、中間ビーム経路指定機構は成形またはサイズ決定機構と相違する。
【0121】
上述のシステムの例示的な実施例に関するさらなる詳細は、米国特許第7728311号明細書および米国特許出願第12/275103号に開示されている。これら特許文献の内容は、参照により本明細書に組み込まれている。幾つかの実施例では、シンクロサイクロトロンは、米国特許出願第13/916401号明細書で説明されている可変エネルギーデバイスとされる場合がある。当該特許文献の内容は、参照により本明細書に組み込まれている。
【0122】
可変エネルギー粒子加速器
本明細書で説明されている例示的な粒子治療システムおよび例示的な走査システムにおいて使用される粒子加速器は、可変エネルギー粒子加速器であるものとしてよく、その一例は以下で説明される。
【0123】
引き出される粒子ビーム(加速器から出力される粒子ビーム)のエネルギーは、治療時の粒子ビームの使用に影響を及ぼし得る。幾つかの機械では、粒子ビーム(または粒子ビーム中の粒子)のエネルギーは、引き出し後に増加しない。しかし、エネルギーは、引き出し後と治療前に治療の必要性に基づき低減され得る。
図30に表すように、例示的な治療システム910は、加速器912、例えば、シンクロサイクロトロンを備え、そこから可変エネルギーを有する粒子(例えば、陽子)ビーム914が引き出され、身体922のターゲット容積部924に照射される。適宜、走査ユニット916もしくは散乱ユニット916、1つまたは複数の監視ユニット918、およびエネルギーデグレーダ920などの、1つまたは複数の追加のデバイスが、照射方向928に沿って置かれる。これらのデバイスは、引き出されたビーム914の断面をインターセプトし、治療用の引き出されたビーム1つまたは複数の特性を変える。
【0124】
治療のため粒子ビームを照射されるターゲット容積部(照射ターゲット)は、典型的には、3次元構成を有する。幾つかの例では、治療を実施するために、ターゲット容積部は、照射が層毎に行われるように粒子ビームの照射方向に沿って幾つかの層に分割される。陽子などの幾つかの種類の粒子について、ターゲット容積部内の貫入深さ(またはビームが到達する層)は、もっぱら、粒子ビームのエネルギーによって決定される。所定のエネルギーの粒子ビームは、そのエネルギーに対する対応する貫入深さを実質的に超えて到達することはない。ターゲット容積部の一方の層から他方の層にビーム照射を移動するために、粒子ビームのエネルギーが変えられる。
【0125】
図30に示されている例において、ターゲット容積部924は、照射方向928に沿って9つの層926a〜926iに分割される。例示的なプロセスにおいて、照射は、最も深い層926iから始まり、1回に層1つずつ徐々により浅い層に進み、最も浅い層926aで終わる。身体922に印加する前に、粒子ビーム914のエネルギーは、実質的に身体またはターゲット容積部、例えば、層926e〜926iの中にさらに、または身体のさらに奥深くまで貫入することなく、粒子ビームが所望の層、例えば、層926dで停止できるレベルに制御される。幾つかの例では、粒子ビーム914の所望のエネルギーは、治療層が粒子加速に対して浅くなって行くにつれ減少する。幾つかの例では、ターゲット容積部924の隣接する層を治療するためのビームエネルギーの差は、約3MeVから約100MeV、例えば、約10MeVから約80MeVであるけれども、他の差も、例えば、層の厚さおよびビームの特性に応じて可能である。
【0126】
ターゲット容積部924の異なる層を治療するためのエネルギー変化は、幾つかの実施例では、加速器912から粒子ビームが引き出された後に追加のエネルギー変化が不要になるように加速器912において実行され得る(例えば、加速器側でエネルギーを変化させることができる)。したがって、治療システム10内のオプションのエネルギーデグレーダ920は、システムから排除され得る。幾つかの実施例では、加速器912は、約100MeVから約300MeVまでの間、例えば、約115MeVから約250MeVまでの間で変化するエネルギーを有する粒子ビームを出力することができる。変化は、連続的または非連続的、例えば、1回1ステップずつであってよい。幾つかの実施例では、連続的な、または非連続的な変化は、比較的高い率、例えば、毎秒約50MeVまでまたは毎秒約20MeVまでの率で生じ得る。非連続的変化は、約10MeVから約90MeVのステップサイズで1回に1ステップずつ実行され得る。
【0127】
1つの層で照射が完了すると、加速器912は、次の層を照射するために、例えば、数秒以内、または1秒未満の間に、粒子ビームのエネルギーを変化させることができる。幾つかの実施例では、ターゲット容積部924の治療は、実質的な中断なしで、またはいかなる中断も伴わずに、継続することができる。幾つかの状況において、非連続的エネルギー変化のステップサイズは、ターゲット容積部924の2つの隣接する層を照射するために必要とされるエネルギーの差に対応するように選択される。例えば、ステップサイズは、エネルギーの差と同じであるか、または何分の1かであってよい。
【0128】
幾つかの実施例では、加速器912およびデグレーダ920は、一体となって、ビーム914のエネルギーを変化させる。例えば、加速器912で粗調整を行い、デグレーダ920で微調整を行う、またはその逆を行う。この例では、加速器912は、約10〜80MeVの変化ステップでエネルギーを変化させる粒子ビームを出力することができ、デグレーダ920は、約2〜10MeVの変化ステップでビームのエネルギーを調整する(例えば、低減する)。
【0129】
飛程変調装置などの、エネルギーデグレーダの使用を減らす(か、または使用しない)ことで、加速器からの出力ビームの特性および品質、例えば、ビーム強度を維持しやすくできる。粒子ビームの制御は、加速器で実行され得る。副作用、例えば、粒子ビームがデグレーダ920を通るときに発生する中性子からの副作用が低減されるか、または排除され得る。
【0130】
粒子ビーム914のエネルギーは、ターゲット容積部924における治療の完了後に別の身体または身体部分922’内の別のターゲット容積部930を治療するように調整され得る。ターゲット容積部924、930は、同じ身体(または患者)内にあるか、または異なる患者にあってもよい。身体922’の表面からのターゲット容積部930の深さDは、パレット容積部924の深さと異なることがあり得る。デグレーダ920によって何らかのエネルギー調整が実行され得るが、デグレーダ912は、ビームエネルギーを低減するだけであって、ビームエネルギーを増大させることはあり得ない。
【0131】
この点で、幾つかの場合において、ターゲット容積部930を治療するのに必要なビームエネルギーは、ターゲット容積部924を治療するのに必要なビームエネルギーより大きい。このような場合に、加速器912は、ターゲット容積部924を治療した後、ターゲット容積部930を治療する前に、出力ビームエネルギーを増大させることができる。他の場合には、ターゲット容積部930を治療するのに必要なビームエネルギーは、ターゲット容積部924を治療するのに必要なビームエネルギーより小さい。デグレーダ920は、エネルギーを低減し得るけれども、加速器912は、デグレーダ920の使用を減らすか、または排除するためにより低いビームエネルギーを出力するように調整することができる。ターゲット容積部924、930の幾つかの層への分割は、異なることも、同じであることもあり得る。ターゲット容積部930は、ターゲット容積部924の治療と層毎に類似の仕方で治療され得る。
【0132】
同じ患者の異なるターゲット容積部924、930の治療は、実質的に連続的である、例えば、停止時間を2つの容積部が約30分以内より長くない、例えば、25分以内、20分以内、15分以内、10分以内、5分以内、または1分以内となるものとしてよい。本明細書で説明されているように、加速器912は、移動可能なガントリー上に取り付けることができ、ガントリーの移動で、加速器を異なるターゲット容積部を目指して移動させることができる。幾つかの状況において、加速器912は、治療システムがターゲット容積部924の治療を完了した後、およびターゲット容積部930の治療を開始する前に(ガントリーを移動するなどの)調整を行っているときに出力ビーム914のエネルギー調整を完了することができる。加速器とターゲット容積部930との整列の後、治療は調整された所望のビームエネルギーで開始することができる。異なる患者に対するビームエネルギー調整は、比較的効率よく完了させることもできる。幾つかの例において、ビームエネルギーを増大/低減するステップおよび/またはガントリーを移動するステップを含む、すべての調整は、約30分以内、例えば、約25分以内、約20分以内、約15分以内、約10分以内、または約5分以内に行われる。
【0133】
容積部の同じ層において、走査ユニット916を使用してビームを層の2次元表面の端から端まで移動する(走査ビームとも称される)ことによって照射線量が印加され得る。あるいは、層は、散乱ユニット16の1つまたは複数の散乱体に引き出されたビーム(散乱ビームとも称される)を通すことによって照射を受けるものとしてよい。
【0134】
エネルギーおよび強度などの、ビーム特性は、治療前に選択され得るか、または治療中に、加速器912および/または、走査ユニット/散乱体916、デグレーダ920、および図示されていない他のものなどの、他のデバイスを制御することによって調整され得る。例示的な実施例では、システム910は、システム内の1つまたは複数のデバイスと通信する、コンピュータなどの制御装置932を備える。制御は、1つまたは複数のモニター918によって実行される監視、例えば、ビーム強度、線量、ターゲット容積部内のビーム配置、などの監視の結果に基づくものとしてよい。モニター918は、デバイス916とデグレーダ920との間にあるものとして図示されているけれども、1つまたは複数のモニターをビーム照射経路に沿った他の適切な配置に置くことができる。制御装置932は、(同じ患者および/または異なる患者の)1つまたは複数のターゲット容積部に対する治療計画を格納することもできる。治療計画は治療が開始する前に決定され、ターゲット容積部の形状、照射層の数、それぞれの層に対する照射線量、それぞれの層が照射を受ける回数、などのパラメータを備えることができる。システム910内のビーム特性の調整は、治療計画に基づき実行され得る。追加の調整は、治療時、例えば、治療計画からの逸脱が検出されたときに実行され得る。
【0135】
幾つかの実施例では、加速器912は、粒子ビームが加速される磁場を変化させることによって出力粒子ビームのエネルギーを変化させるように構成される。例示的な一実施例では、1つまたは複数のコイルセットが、変動電流を受けて、空洞内に変動磁場を発生する。幾つかの例では、1つのコイルセットが固定電流を受けるが、1つまたは複数の他のコイルセットはコイルセットが受ける全電流が変化するように変動電流を受ける。幾つかの実施例では、すべてのコイルセットが超電導である。他の実施例では、固定電流に対するセットなどの幾つかのコイルセットは、超電導であるが、変動電流に対する1つまたは複数のセットなどの他のコイルセットは、非超電導である。幾つかの例では、すべてのコイルセットが非超電導である。
【0136】
一般的に、磁場の大きさは、電流の大きさと共に一定の比率で増減し得る。コイルの全電流を所定の範囲内に調整することで、対応する所定の範囲内で変化する磁場を発生させることができる。幾つかの例では、電流の連続的調整により、磁場の連続的変動および出力ビームエネルギーの連続的変動を引き起こすことができる。あるいは、コイルに印加される電流が、非連続的な段階的様式で調整される場合、磁場および出力ビームエネルギーも、それに応じて非連続的な(段階的)様式で変化する。磁場を電流に応じて一定の比率で増減させることにより、ビームエネルギーを比較的正確に変化させることができるけれども、ときには、入力電流以外の微調整を実施することができる。
【0137】
幾つかの実施例では、可変エネルギーを有する粒子ビームを出力するために、加速器912は、それぞれの範囲が異なる出力ビームエネルギーに対応する、異なる周波数範囲にわたって掃引するRF電圧を印加するように構成される。例えば、加速器912が、3つの異なる出力ビームエネルギーを発生するように構成されている場合、RF電圧は、3つの異なる周波数範囲にわたって掃引することができる。別の例では、連続的ビームエネルギー変化に対応することで、RF電圧は、連続的に変化する周波数範囲にわたって掃引する。異なる周波数範囲は、異なる下限周波数境界および/または上限周波数境界を有することができる。
【0138】
引き出しチャネルは、可変エネルギー粒子加速器によってもたらされる異なるエネルギーの範囲に適応するように構成され得る。例えば、引き出しチャネルは、粒子加速器によって生成される最高および最低のエネルギーを支える十分に大きいものとしてよい。すなわち、引き出しチャネルは、エネルギーのその範囲内で粒子を受け、透過するようなサイズであり得るか、またはそのように他の何らかの形で構成され得る。異なるエネルギーを有する粒子ビームは、単一のエネルギーを有する粒子ビームを引き出すために使用される再生器の特徴を変えることなく加速器912から引き出され得る。他の実施例では、可変粒子エネルギーに適応するために、再生器を移動して上で説明されている様式で異なる粒子軌道を乱し(例えば、変化させて)、および/または鉄製ロッド(磁気シム)を加えるか、または取り外して再生器によってもたらされる磁場バンプを変化させることができる。より具体的には、異なる粒子エネルギーは、典型的には、空洞内で異なる粒子軌道にある。再生器を移動することによって、粒子軌道を指定されたエネルギーのところでインターセプトし、それによって、指定されたエネルギーにおける粒子が引き出しチャネルに到達するようにその軌道の正しい摂動をもたらすことが可能である。幾つかの実施例では、再生器の移動(および/または磁気シムの追加/取り外し)は、加速器によって出力される粒子ビームエネルギーのリアルタイムの変化とリアルタイムで一致するように実行される。他の実施例では、粒子エネルギーは、治療毎に調整され、再生器の移動(および/または磁気シムの追加/取り外し)は、治療の前に実行される。いずれの場合も、再生器の移動(および/または磁気シムの追加/取り外し)は、コンピュータ制御され得る。例えば、コンピュータは、再生器および/または磁気シムの移動を引き起こす1つまたは複数のモータを制御することができる。
【0139】
幾つかの実施例では、再生器は、適切な配置に移動するように制御可能である1つまたは複数の磁気シムを使用して実装される。
【0140】
例えば、Table 1(表1)は、例示的な加速装置912が粒子ビームを出力することができる3つの例示的なエネルギー準位を示している。3つのエネルギー準位を生成するための対応するパラメータも一覧に挙げてある。この点で、磁石電流は、加速器912内の1つまたは複数のコイルセットに印加される全電流を指しており、最高および最低周波数は、RF電圧が掃引する範囲を定義し、「r」は、場所から粒子が加速される空洞の中心までの径方向距離である。
【0142】
可変エネルギーを有する荷電粒子を生成する例示的な粒子加速器に含まれ得る細部について以下で説明する。加速器はシンクロサイクロトロンであり、粒子は陽子であるものとしてよい。粒子は、パルスビームとして出力され得る。粒子加速器から出力されるビームのエネルギーは、患者体内の一方のターゲット容積部を治療している間、または同じ患者もしくは異なる患者の異なるターゲット容積部の治療から次の治療までの間に、変化させることができる。幾つかの実施例では、加速器のセッティングは、加速器からビーム(または粒子)が出力されないときにビームエネルギーを変化させるように変更される。エネルギー変化は、所望の範囲にわたって連続的または非連続的であってよい。
【0143】
図1に示されている例に表すように、上で説明されている粒子加速器912のような可変エネルギー粒子加速器であってよい、粒子加速器(例えば、シンクロサイクロトロン502)は、可変エネルギーを有する粒子ビームを出力するように構成され得る。可変エネルギーの範囲は、約200MeVから約300MeV以上、例えば、200MeV、約205MeV、約210MeV、約215MeV、約220MeV、約225MeV、約230MeV、約235MeV、約240MeV、約245MeV、約250MeV、約255MeV、約260MeV、約265MeV、約270MeV、約275MeV、約280MeV、約285MeV、約290MeV、約295MeV、または約300MeV以上である上限境界を有することができる。この範囲は、約100MeV以下から約200MeVまで、例えば、約100MeV以下、約105MeV、約110MeV、約115MeV、約120MeV、約125MeV、約130MeV、約135MeV、約140MeV、約145MeV、約150MeV、約155MeV、約160MeV、約165MeV、約170MeV、約175MeV、約180MeV、約185MeV、約190MeV、約195MeV、約200MeVである下限境界も有することができる。
【0144】
幾つかの例では、この変化は、非連続的であり、変化ステップは、約10MeV以下、約15MeV、約20MeV、約25MeV、約30MeV、約35MeV、約40MeV、約45MeV、約50MeV、約55MeV、約60MeV、約65MeV、約70MeV、約75MeV、または約80MeV以上のサイズを有することができる。エネルギーを1ステップサイズだけ変化させるのに要する時間は、30分以内、例えば、約25分以内、約20分以内、約15分以内、約10分以内、約5分以内、約1分以内、または約30秒以内であり得る。他の例では、この変化は、連続的であり、加速器は粒子ビームのエネルギーを比較的高い率、例えば、毎秒最大約50MeVまで、毎秒最大約45MeVまで、毎秒最大約40MeVまで、毎秒最大約35MeVまで、毎秒最大約30MeVまで、毎秒最大約25MeVまで、毎秒最大約20MeVまで、毎秒最大約15MeVまで、または毎秒最大約10MeVまでに調整することができる。加速器は、粒子エネルギーを、連続的にも、非連続的にも調整するように構成され得る。例えば、連続的変化と非連続的変化の組合せを、一方のターゲット容積部の治療に、または異なるターゲット容積部の治療に使用することができる。柔軟な治療計画および柔軟な治療が実現され得る。
【0145】
可変エネルギーを有する粒子ビームを出力する粒子加速器は、照射治療を正確にすることができ、また治療に使用される追加のデバイス(加速器以外)の数を減らすことができる。例えば、治療の全部または一部について出力粒子ビームのエネルギーを変化させるためのデグレーダの使用が低減されるか、または使用しないようにできる。強度、集束などの粒子ビームの特性は、粒子加速器側で制御され、粒子ビームは、追加のデバイスからの実質的な妨害を受けることなくターゲット容積部に到達することができる。ビームエネルギーの比較的高い変化率は、治療時間を短縮し、治療システムの効率的な使用を可能にし得る。
【0146】
幾つかの実施例では、
図1のシンクロサイクロトロン502などの、加速器は、加速器内の磁場を変化させることによって粒子または粒子ビームを可変エネルギー準位まで加速するが、これは、磁場を発生させるためにコイルに印加される電流を変化させることによって実現され得る。上で説明されているように、例示的なシンクロサイクロトロン(例えば、
図1の502)は、粒子源を収容する磁石システム、高周波駆動システム、およびビーム引き出しシステムを備える。
図33は、可変エネルギー加速器で使用され得る磁石システムの一例を示している。この例示的な実施例では、磁石システム1012によって確立される磁場は、2つのコイルセット40aと40b、および42aと42bが発生することができる磁場の最大値の約5%から約35%まで変化し得る。磁石システムによって確立される磁場は、2つのコイルセットと成形された強磁性(例えば、低炭素鋼)構造体のペアとの組合せを使用して収容されている陽子ビームの集束を維持するのに適切な形状を有し、その例は上に提示されている。
【0147】
それぞれのコイルセットは、電流を受けるための環状コイルの分割ペアであってよい。幾つかの状況において、両方のコイルセットが超電導である。他の状況では、ただ1つのコイルセットのみが超電導であり、他のセットは非超電導または常電導である(以下でさらに説明されているように)。また、両方のコイルセットが非超電導であることも可能である。コイルに使用するのに適した超電導体は、ニオブ3スズ(Nb
3Sn)および/またはニオブチタンを含む。他の常電導体は、銅を含むことができる。コイルセットの作製例について以下でさらに説明する。
【0148】
2つのコイルセットは、直列または並列に電気的に接続され得る。幾つかの実施例では、2つのコイルセットが受ける全電流は、約200万アンペア回数から約1000万アンペア回数、例えば、約250万から約750万アンペア回数、または約375万アンペア回数から約500万アンペア回数までを含み得る。幾つかの例では、一方のコイルセットは、全可変電流の固定(または一定)部分を受けるように構成され、他方のコイルセットは、全電流の可変部分を受けるように構成される。2つのコイルセットの全電流は、一方のコイルセット内の電流の変化と共に変化する。他の状況では、両方のコイルセットに印加される電流は変化し得る。2つのコイルセット内の可変全電流は、変化する大きさを有する磁場を発生することができ、次いで、これは、粒子の加速経路を変化させ、可変エネルギーを有する粒子を発生する。
【0149】
一般的に、コイルによって生成される磁場の大きさは、コイルに印加される全電流の大きさに応じて一定の比率で増減し得る。この一定の比率の増減に基づき、幾つかの実施例では、磁場強度の直線的変化はコイルセットの全電流を直線的に変化させることによって実現され得る。全電流は比較的高速で調整することができ、これにより、磁場およびビームエネルギーが比較的高速で調整される。
【0150】
上記のTable 1(表1)に反映されている例では、コイルリングの幾何学的中心における電流の値と磁場の値との比は、1990:8.7(約228.7:1)、1920:8.4(約228.6:1)、1760:7.9(約222.8:1)である。したがって、超電導コイルに印加される全電流の大きさを調整することで、磁場の大きさを比例調整することができる(比に基づき)。
【0151】
Table 1(表1)の例における全電流に対する磁場の一定の比率の増減も、
図31のプロットに示されており、BZは、Z方向に沿った磁場であり、Rは、Z方向に垂直な方向に沿ったコイルリングの幾何学的中心から測定された径方向距離である。磁場は、幾何学的中心に最高値を有し、距離Rが増大するにつれ減少する。曲線1035、1037は、それぞれ1760アンペアおよび1990アンペアである異なる全電流を受ける同じコイルセットによって生成される磁場を表す。引き出される粒子の対応するエネルギーは、それぞれ、211MeVおよび250MeVである。2つの曲線1035、1037は、実質的に同じ形状を有し、曲線1035、1037の異なる部分は、実質的に平行である。結果として、曲線1035または曲線1037のいずれかが、他方の曲線と実質的に一致するように直線的にシフトされるものとしてよく、これは磁場がコルセットに印加される全電流に応じて一定の比率で増減し得ることを示す。
【0152】
幾つかの実施例では、全電流に対する磁場の一定の比率の増減は、完全でない場合がある。例えば、磁場とTable 1(表1)に示されている例に基づき計算された電流との間の比は一定でない。また、
図31に示されているように、一方の曲線を直線的にシフトさせても、他方の曲線と完全には一致し得ない。幾つかの実施例では、全電流は、一定の比率の増減が完全であるという仮定の下でコイルセットに印加される。ターゲット磁場(一定の比率の増減が完全であるという仮定の下)は、それに加えてコイルの特徴、例えば、幾何学的形状を、一定の比率の増減の不完全さを相殺するように変えることによって生成され得る。一例では、強磁性体(例えば、鉄)のロッド(磁気シム)を磁気構造体(例えば、ヨーク、磁極片など)の一方または両方から挿入するか、または取り出すことができる。コイルの特徴は、一定の比率の増減が完全であり電流のみを調整すればよいという状況と比較して磁場調整の速度が実質的な影響を受けないように比較的高速に変えることができる。鉄製ロッドの例では、ロッドは、秒または分の時間尺度、例えば、5分以内、1分以内、30秒未満、または1秒未満の時間で追加または取り外しを行うことができる。
【0153】
幾つかの実施例では、コイルセットに印加される電流などの、加速器のセッティングは、コイルセット内の全電流に対する磁場の一定の比率の実質的な増減に基づき選択され得る。
【0154】
一般的に、所望の範囲内で変化する全電流を発生させるために、2つのコイルセットに印加される電流の適切な組合せが使用され得る。一例において、コイルセット42a、42bは、磁場の所望の範囲の下限境界に対応する固定された全電流を受けるように構成され得る。Table 1(表1)に示されている例では、固定された電流は、1760アンペアである。それに加えて、コイルセット40a、40bは、磁場の所望の範囲の上限境界と下限境界との間の差に対応する上限境界を有する可変電流を受けるように構成され得る。Table 1(表1)に示されている例では、コイルセット40a、40bは、0アンペアと230アンペアとの間で変化する電流を受けるように構成される。
【0155】
別の例では、コイルセット42a、42bは、磁場の所望の範囲の上限境界に対応する固定された電流を受けるように構成され得る。Table 1(表1)に示されている例では、固定された電流は、1990アンペアである。それに加えて、コイルセット40a、40bは、磁場の所望の範囲の下限境界と上限境界との間の差に対応する上限境界を有する可変電流を受けるように構成され得る。Table 1(表1)に示されている例では、コイルセット40a、40bは、−230アンペアと0アンペアとの間で変化する電流を受けるように構成される。
【0156】
粒子を加速するための可変全電流によって生成される全可変磁場は、4テスラより大きい、例えば5テスラより大きい、6テスラより大きい、7テスラより大きい、8テスラより大きい、9テスラより大きい、または10テスラより大きく、最大約20テスラまで、例えば、最大約18テスラまで、最大約15テスラまで、または最大約12テスラまでの、最大の大きさを有するものとしてよい。幾つかの実施例では、コイルセット内の全電流の変化により、磁場は約0.2テスラから約4.2テスラ以上、例えば、約0.2テスラから約1.4テスラまたは約0.6テスラから約4.2テスラだけ変化し得る。幾つかの状況において、磁場の変化量は、最大の大きさに比例し得る。
【0157】
図32は、粒子ビームのそれぞれのエネルギー準位について一定のRF周波数範囲にわたってディープレート500上で電圧を掃引し、粒子ビームエネルギーが変化するときに周波数範囲を変化させるための例示的なRF構造体を示している。ディープレート500の半円形表面503、505は、内部導体1300に接続され、外部導体1302内に収納される。電源を内部導体に結合する電力結合デバイス1304を通して電源(図示せず、例えば、振動する電圧入力)から高電圧がディープレート500に印加される。幾つかの実施例では、結合デバイス1304は、内部導体1300上に位置し、電源からディープレート500への電力伝送を行う。それに加えて、ディープレート500は可変リアクタンス素子1306、1308に結合されており、それぞれの粒子エネルギー準位についてRF周波数掃引を実行し、異なる粒子エネルギー準位についてRF周波数範囲を変更する。
【0158】
可変リアクタンス素子1306は、モータ(図示せず)によって回転可能である複数のブレード1310を有する回転コンデンサであってよい。RF掃引のそれぞれのサイクルにおいてブレード1310をかみ合わせるか、またはかみ合わせを外すことによって、RF構造体のキャパシタンスが変化し、そのため、RF構造体の共振周波数が変化する。幾つかの実施例では、モータの1/4サイクル毎に、ブレード1310は互いにかみ合う。RF構造体のキャパシタンスが大きくなり、共振周波数が下がる。このプロセスは、ブレード1310のかみ合わせが外れるときに逆転する。結果として、ディープレート103に印加される高電圧を発生させるために要求される、またビームを加速するために必要な電力を、大幅に減らすことができる。幾つかの実施例では、ブレード1310の形状を、時間に対する共振周波数の必要な依存性を生じるように機械加工する。
【0159】
RF周波数の発生は、共振器内のRF電圧の位相を感知し、RF空洞の共振周波数の近くでディープレート上の交流電圧を維持することによってブレード回転と同期する。(ダミーディーは、接地されるが、
図32には示されていない)。
【0160】
可変リアクタンス素子1308は、プレート1312と内部導体1300の表面1316とによって形成されるコンデンサであるものとしてよい。プレート1312は、表面1316に向かう、または表面1316から遠ざかる方向1314に沿って移動可能である。コンデンサのキャパシタンスは、プレート1312と表面1316との間の距離Dが変化すると変化する。1つの粒子エネルギーについて掃引されるそれぞれの周波数範囲について、距離Dは設定値にあり、周波数範囲を変化させるために、プレート1312は出力ビームのエネルギーの変化に応じて移動される。
【0161】
幾つかの実施例では、内部導体1300および外部導体1302は、銅、アルミニウム、または銀などの、金属材料から形成される。ブレード1310およびプレート1312も、導体1300、1302と同じ、または異なる金属材料から形成され得る。結合デバイス1304は、導電体とすることができる。可変リアクタンス素子1306、1308は他の形態を有することができ、他の方法でディープレート100に結合し、それによりRF周波数掃引および周波数範囲変更を実行することができる。幾つかの実施例では、単一の可変リアクタンス素子は、両方の可変リアクタンス素子1306、1308の機能を実行するように構成され得る。他の実施例では、2つよりも多い可変リアクタンス素子が使用され得る。
【0162】
治療セッションを実行するガントリー、患者支持体、能動的ビーム整形要素、およびシンクロサイクロトロンの制御は、適切な治療制御電子機器(図示せず)によって達成される。
【0163】
本明細書で説明されている粒子治療システムおよびその様々な特徴の制御は、ハードウェアまたはハードウェアとソフトウェアとの組合せを使用して実施され得る。例えば、本明細書で説明されているようなシステムは、様々な地点に配置された様々なコントローラおよび/または処理デバイスを備え得る。中央コンピュータは、様々なコントローラまたは処理デバイスの間の動作を調整することができる。中央コンピュータ、コントローラ、および処理デバイスは、テストおよび較正の制御および調整を行わせるために様々なソフトウェアルーチンを実行し得る。
【0164】
システム動作は、少なくとも一部は、1つまたは複数のデータ処理装置、例えば、プログラム可能なプロセッサ、コンピュータ、複数のコンピュータ、および/またはプログラム可能な論理構成要素による実行のため、またはその動作を制御するために、1つまたは複数のコンピュータプログラム製品、例えば、1つまたは複数の非一時的機械可読媒体中に明確に具現化された1つまたは複数のコンピュータプログラムを使用することで制御され得る。
【0165】
コンピュータプログラムは、コンパイル言語またはインタプリタ言語を含む、任意の形態のプログラミング言語で書かれ得、スタンドアロンプログラム、またはモジュール、コンポーネント、サブルーチン、またはコンピューティング環境において使用するのに適している他のユニットを含む、任意の形態で配備され得る。コンピュータプログラムは、1つのコンピュータ上で、または1つのサイトにあるか、または複数のサイトにまたがって分散され、ネットワークによって相互接続されている複数のコンピュータ上で実行されるように配備され得る。
【0166】
本明細書で説明されている粒子治療システムの動作の全部または一部を実施するステップに関連するアクションは、1つまたは複数のコンピュータプログラムを実行して本明細書で説明されている機能を実行する1つまたは複数のプログラム可能なプロセッサによって実行され得る。これらの動作の全部または一部は、専用論理回路、例えば、FPGA(フィールドプログラマブルゲートアレイ)、および/またはASIC(特定用途向け集積回路)を使用して実施され得る。
【0167】
コンピュータプログラムの実行に適しているプロセッサは、例として、汎用マイクロプロセッサと専用マイクロプロセッサを共に、および任意の種類のデジタルコンピュータの任意の1つまたは複数のプロセッサを含む。一般的に、プロセッサは、リードオンリー記憶領域またはランダムアクセス記憶領域またはその両方から命令およびデータを受け取る。コンピュータ(サーバを含む)の要素は、命令を実行するための1つまたは複数のプロセッサならびに命令およびデータを記憶するための1つまたは複数の記憶領域デバイスを含む。一般的に、コンピュータは、データを記憶するための大容量PCBなどの1つまたは複数の機械可読記憶媒体、例えば、磁気ディスク、磁気光ディスク、または光ディスクも備え、またはこれらからデータを受け取るか、もしくはこれらにデータを転送するか、もしくはその両方を行うように動作可能なように結合される。コンピュータプログラムの命令およびデータを具現化するのに好適な非一時的機械可読記憶媒体は、例として、半導体記憶領域デバイス、例えば、EPROM、EEPROM、およびフラッシュ記憶領域デバイス、磁気ディスク、例えば、内蔵ハードディスクまたはリムーバブルディスク、光磁気ディスク、ならびにCD−ROMおよびDVD−ROMディスクを含む、あらゆる形態の不揮発性記憶領域を含む。
【0168】
本明細書で使用されているような任意の「電気的接続」は、直接的物理的接続、または介在する構成要素を含むが、それにもかかわらず、電気的信号が接続されている構成要素間を流れることを許す接続を暗示するものとしてよい。本明細書において言及されている電気回路を伴う任意の「接続」は、断りのない限り、電気的接続であり、「電気的」という単語が「接続」を修飾するために使用されているかどうかに関係なく必ずしも直接的物理的接続ではない。
【0169】
前述の実施例のうちのさらに2つが、適切な粒子加速器(例えば、シンクロサイクロトロン)において適切な組合せで使用され得る。同様に、前記の実施例のうちのさらに2つの個別の特徴が、適切な組合せで使用され得る。
【0170】
本明細書で説明されている異なる実施例の要素は、特に上で述べていない他の実施例を形成するように組み合わせることもできる。要素は、その動作に悪影響を及ぼすことなく本明細書で説明されているプロセス、システム、装置などから外してもよい。本明細書で説明されている機能を実行するために、様々な別々の要素を1つまたは複数の個別の要素に組み合わせることができる。
【0171】
本明細書で説明されている例示的な実施例は、粒子治療システムと共に使用すること、または本明細書で説明されている例示的な粒子治療システムと共に使用することに限定されない。むしろ、例示的な実施例は、加速された粒子を出力に導く適切なシステム内で使用され得る。
【0172】
本明細書で説明されているようなシステム内で使用され得る粒子加速器の例示的な実施例の設計に関する追加の情報は、参照により本明細書に組み込まれている2006年1月20日に出願した米国仮出願第60/760,788号、名称「High−Field Superconducting Synchrocyclotron」、2006年8月9日に出願した米国特許出願第11/463,402号、名称「Magnet Structure For Particle Acceleration」、および2006年10月10日に出願した米国仮出願第60/850,565号、名称「Cryogenic Vacuum Break Pneumatic Thermal Coupler」に記載されている。
【0173】
以下の出願は、参照により本出願に組み込まれている。米国仮出願、名称「CONTROLLING INTENSITY OF A PARTICLE BEAM」(出願第61/707,466号)、米国仮出願、名称「ADJUSTING ENERGY OF A PARTICLE BEAM」(出願第61/707,515号)、米国仮出願、名称「ADJUSTING COIL POSITION」(出願第61/707,548号)、米国仮出願、名称「FOCUSING A PARTICLE BEAM USING MAGNETIC FIELD FLUTTER」(出願第61/707,572号)、米国仮出願、名称「MAGNETIC FIELD REGENERATOR」(出願第61/707,590号)、米国仮出願、名称「FOCUSING A PARTICLE BEAM」(出願第61/707,704号)、米国仮出願、名称「CONTROLLING PARTICLE THERAPY」(出願第61/707,624号)、および米国仮出願、名称「CONTROL SYSTEM FOR A PARTICLE ACCELERATOR」(出願第61/707,645号)。
【0174】
以下の参考文献も、参照により本出願に組み込まれている。2010年6月1日に発行された米国特許第7,728,311号、2007年11月30日に出願した米国特許出願第11/948,359号、2008年11月20日に出願した米国特許出願第12/275,103号、2007年11月30日に出願した米国特許出願第11/948,662号、2007年11月30日に出願した米国仮出願第60/991,454号、2011年8月23日に発行された米国特許第8,003,964号、2007年4月24日に発行された米国特許第7,208,748号、2008年7月22日に発行された米国特許第7,402,963号、2010年2月9日に出願した米国特許出願第13/148,000号、2007年11月9日に出願した米国特許出願第11/937,573号、2005年7月21日に出願した米国特許出願第11/187,633号、名称「A Programmable Radio Frequency Waveform Generator for a Synchrocyclotron」2004年7月21日に出願した米国仮出願第60/590,089号、2004年9月24日に出願した米国特許出願第10/949,734号、名称「A Programmable Particle Scatterer for Radiation Therapy Beam Formation」、および2005年7月21日に出願した米国仮出願第60/590,088号。
【0175】
本出願の特徴は、以下の1つまたは複数の適切な特徴と組み合わせることができる。米国仮出願、名称「CONTROLLING INTENSITY OF A PARTICLE BEAM」(出願第61/707,466号)、米国仮出願、名称「ADJUSTING ENERGY OF A PARTICLE BEAM」(出願第61/707,515号)、米国仮出願、名称「ADJUSTING COIL POSITION」(出願第61/707,548号)、米国仮出願、名称「FOCUSING A PARTICLE BEAM USING MAGNETIC FIELD FLUTTER」(出願第61/707,572号)、米国仮出願、名称「MAGNETIC FIELD REGENERATOR」(出願第61/707,590号)、米国仮出願、名称「FOCUSING A PARTICLE BEAM」(出願第61/707,704号)、米国仮出願、名称「CONTROLLING PARTICLE THERAPY」(出願第61/707,624号)、および米国仮出願、名称「CONTROL SYSTEM FOR A PARTICLE ACCELERATOR」(出願第61/707,645号)、2010年6月1日に発行された米国特許第7,728,311号、2007年11月30日に出願した米国特許出願第11/948,359号、2008年11月20日に出願した米国特許出願第12/275,103号、2007年11月30日に出願した米国特許出願第11/948,662号、2007年11月30日に出願した米国仮出願第60/991,454号、2013年5月31日に出願した米国特許出願第13/907,601号、2013年6月12日に出願した米国特許出願第13/916,401号、2011年8月23日に発行した米国特許第8,003,964号、2007年4月24日に発行した米国特許第7,208,748号、2008年7月22日に発行した米国特許第7,402,963号、2010年2月9日に出願した米国特許出願第13/148,000号、2007年11月9日に出願した米国特許出願第11/937,573号、2005年7月21日に出願した米国特許出願第11/187,633号、名称「A Programmable Radio Frequency Waveform Generator for a Synchrocyclotron」、2004年7月21日に出願した米国仮出願第60/590,089号、2004年9月24日に出願した米国特許出願第10/949,734号、名称「A Programmable Particle Scatterer for Radiation Therapy Beam Formation」、および2005年7月21日に出願した米国仮出願第60/590,088号。
【0176】
本明細書で特に説明されていない他の実装も、以下の請求項の範囲内に収まる。