【実施例】
【0015】
以下、図面を参照して、本発明の実施例に係るカーボンヒーターを含む温風・温水ボイラー、該温風・温水ボイラーを含む温風・温水ボイラーシステム、及び該温風・温水ボイラーを含む農業ハウス用温風・温水ボイラーシステムについて詳細に説明する。
【0016】
(実施例1)
本発明の実施例1に係るカーボンヒーターを含む温風・温水ボイラーについて
図1乃至
図3を参照して説明する。
【0017】
本実施例1に係るカーボンヒーター11を含む温風・温水ボイラー1は、
図1に示すように、箱型状のハウジング2内に詳細は後述するカーボンヒーター11を配置するとともに、このカーボンヒーター11の近傍に温水を得るための熱交換器12を配置することにより構成している。
【0018】
また、前記ハウジング2の上部から上方に熱誘導管13を配置している。
【0019】
前記カーボンヒーター11は、
図2に拡大して示すように、一端側を閉塞した石英ガラス管21と、複数(本実施例1では10本)の分離配置(5本ずつ並列配置)のナノカーボン技術を基に作製したコンポジットカーボン(長さ25mm×直径14mm)22にカンタル線((直径0.9mm×150mm)23を連続的に巻き付け、電気的に直列接続構造とするとともに前記石英ガラス管21内に垂直配置した発熱体25と、前記石英ガラス管21を形成する開口端側のフランジ部21aには、前記開口端側を閉塞する状態に配置した+入力端子27a、−入力端子27bとして機能させる一対の真空端子部品27、27を備える例えばステンレス製の端子板26と、前記石英ガラス管21の内壁に対して、前記発熱体25の端部と前記端子板26との間の位置で密着嵌装した石英管28、石英棉29を用いた温度止めユニット30と、前記発熱体25の端部に位置する一対のコンポジットカーボン22、22と、前記一対の真空端子部品27、27とを前記温度止めユニット30を貫通する状態で接続する一対の接続用カンタル線(直径2.6mm×50mm)31、31と、により構成している。
【0020】
そして、給電系41から前記+入力端子27a、−入力端子27bへ直流電力を給電し、前記カーボンヒーター11を発熱させ、前記カーボンヒーター11の発熱に伴う温風を前記熱誘導管13により誘導し上方に放出するように構成している。
【0021】
更に、熱交換器12に対しては、給水・温水系42を配管接続し、前記カーボンヒーター11の発熱を利用して給水を温水に熱交換し、給水・温水系42から温水を取り出すように構成している。
【0022】
前記端子板26は、前記フランジ部21aに対してボルト43、ナット44により固着され、開口端側を密閉施封状態とするようにしている。
【0023】
上述したカーボンヒーター11によれば、+入力端子27a、−入力端子27bに前記給電系41から例えば50V×10Aの電力を供給することにより、前記石英ガラス管21の内部は3〜5秒で950℃の高温となりその熱を周囲に放射させることができる(カーボンヒーター11:500W仕様)。
【0024】
また、前記石英ガラス管21の内部に前記温度止めユニット30を配置したことにより、前記端子板26の内面側付近の温度を、石英ガラス管21の内部の高温領域より低温の100℃程度にとどめることができる(真空端子部品27、27は450℃以下)。
【0025】
本実施例1に係るカーボンヒーター11を含む温風・温水ボイラー1によれば、従来例のようなボイラーを採用することなく、カーボンヒーター11への給電に伴う発熱体25の発熱を利用して前記カーボンヒーター11を温風、温水生成用の熱源として動作させることができ、設備費用の低減、ランニングコストの削減を実現し、生産者における経営圧迫要因を確実に除去し、日本の農業の発展に大きく寄与するという斬新な効果を発揮させることができる。
【0026】
図3はカーボンヒーター11の変形例であるカーボンヒーター11Aを示すものであり、
図2に示すカーボンヒーター11の場合と同一の要素には同一の符号を付して示す。
【0027】
このカーボンヒーター11Aは、前記カーボンヒーター11よりも小電力仕様(300W仕様)としたものであり、前記コンポジットカーボン22を6本用いて
図2に示すカーボンヒーター11の場合と同様に構成したものである。
【0028】
このようなカーボンヒーター11Aを採用して温風・温水ボイラー1を構成した場合においても、実施例1の場合よりも小規模な装置構成に基に、設備費用の低減、ランニングコストの削減を実現し、生産者における経営圧迫要因を確実に除去し、日本の農業の発展に大きく寄与するという斬新な効果を発揮させることができる。
【0029】
なお、熱源としては、上述したカーボンヒーター11、カーボンヒーター11Aの他にも種々の変形実施が可能であることは言うまでもない、
【0030】
(実施例2)
次に、本発明の実施例2に係る温風・温水ボイラー1を含む温風・温水ボイラーシステム51について
図4を参照して説明する。
【0031】
本実施例2に係る温風・温水ボイラー1を含む温風・温水ボイラーシステム51は、基本的には
図1に示す温風・温水ボイラー1と同様な構成であるが、前記給電系41を、
図4に示すように、前記+入力端子27a、−入力端子27bに対して、AC(交流)電源52からのAC電力を変換した直流電力、又は、太陽光パネル61若しくは蓄電池71からの所要の直流電力を供給するように構成したことが特徴である。
【0032】
すなわち、前記給電系41は、AC電源52からのAC電力をDC(直流)電力に変換するAC/DC変換器53と、太陽光パネル61と、蓄電池71と、前記太陽光パネル61、蓄電池71からの直流電力を切り換え、いずれか一方の直流電力を出力する直流電力充電切換制御部54と、前記AC/DC変換器53からの直流電力、前記直流電力充電切換制御部54からの直流電力の切り換え制御を行いいずれか一方の直流電力を前記+入力端子27a、−入力端子27bに供給する切換制御部55と、を具備している。
【0033】
本実施例2に係る前記温風・温水ボイラー1を含む温風・温水ボイラーシステム51によっても、実施例1の温風・温水ボイラー1の場合と同様な効果を発揮させることができ、特に前記給電系41における前記太陽光パネル61又は蓄電池71からの直流電力を利用することにより、電力料金に関するランニングコストを大幅に低減できるという効果を奏する。
【0034】
(実施例3)
本発明の実施例3に係る温風・温水ボイラー1を含む農業ハウス用温風・温水ボイラーシステム81について
図5乃至
図7を参照して説明する。
【0035】
本実施例3に係る農業ハウス用温風・温水ボイラーシステム81は、基本的には
図4に示す温風・温水ボイラーシステム51と同様な構成であるが、前記温風・温水ボイラー1を
図6、
図7に示すような例えばトマト苗92の育成を行う農業ハウス91の内部に配置するとともに、給水・温水系42に配管接続されるとともに、前記農業ハウス91の地面91aの下の土中内に配置され温水による土中の保温を行う土中配管系82と、前記給水・温水系42に配管接続されるとともに、前記農業ハウス91の天井部に配置され天井側から農業ハウス91の室内への温水の散水を行う空中温水散水系83と、前記熱誘導管13からの温風を吸引し農業ハウス91の天井側から農業ハウス91の室内に送風する例えば2台の送風ファン84と、を備えることが特徴である。
【0036】
本実施例3に係る温風・温水ボイラー1を含む農業ハウス用温風・温水ボイラーシステム81において、前記温風・温水ボイラー1を運転した実験によれば、外気温度1℃の環境で、前記農業ハウス91の室内温度は14℃〜15℃、土中温度3℃に維持できることが判明した。なお、
図6、
図7において、93は温度計である。
【0037】
本実施例3に係る温風・温水ボイラー1を含む農業ハウス用温風・温水ボイラーシステム81によれば、従来例のようなボイラーを採用することなく、カーボンヒーター11への給電に伴う発熱体25の発熱を利用して土中配管系82による土中の保温、空中温水散水系83による農業ハウス91の室内への温水の散水、送風ファン84による農業ハウス91の室内への温風の送風を実行することができ、野菜や果物の良好な育成環境を実現でき、かつ、従来例のようなボイラーを採用することなく、設備費用の低減、ランニングコストの削減を実現し、生産者における経営圧迫要因を確実に除去し、日本の農業の発展に大きく寄与するという斬新な効果を発揮させることができる。