特開2018-201947(P2018-201947A)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立製作所の特許一覧
特開2018-201947医療装置システム及び医療装置システムの空調電力低減法
<>
  • 特開2018201947-医療装置システム及び医療装置システムの空調電力低減法 図000003
  • 特開2018201947-医療装置システム及び医療装置システムの空調電力低減法 図000004
  • 特開2018201947-医療装置システム及び医療装置システムの空調電力低減法 図000005
  • 特開2018201947-医療装置システム及び医療装置システムの空調電力低減法 図000006
  • 特開2018201947-医療装置システム及び医療装置システムの空調電力低減法 図000007
  • 特開2018201947-医療装置システム及び医療装置システムの空調電力低減法 図000008
  • 特開2018201947-医療装置システム及び医療装置システムの空調電力低減法 図000009
  • 特開2018201947-医療装置システム及び医療装置システムの空調電力低減法 図000010
  • 特開2018201947-医療装置システム及び医療装置システムの空調電力低減法 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2018-201947(P2018-201947A)
(43)【公開日】2018年12月27日
(54)【発明の名称】医療装置システム及び医療装置システムの空調電力低減法
(51)【国際特許分類】
   A61B 5/055 20060101AFI20181130BHJP
   G01R 33/28 20060101ALI20181130BHJP
   A61B 6/03 20060101ALI20181130BHJP
【FI】
   A61B5/05 390
   G01N24/02 Y
   A61B6/03 321B
   A61B5/05 360
【審査請求】未請求
【請求項の数】11
【出願形態】OL
【全頁数】18
(21)【出願番号】特願2017-112193(P2017-112193)
(22)【出願日】2017年6月7日
(71)【出願人】
【識別番号】000005108
【氏名又は名称】株式会社日立製作所
(74)【代理人】
【識別番号】110000888
【氏名又は名称】特許業務法人 山王坂特許事務所
(72)【発明者】
【氏名】坂本 勲
【テーマコード(参考)】
4C093
4C096
【Fターム(参考)】
4C093AA22
4C093CA50
4C093FA45
4C093FA58
4C093GA10
4C096AB43
4C096AD09
4C096AD10
4C096AD19
4C096CB11
4C096CC32
4C096FC20
(57)【要約】      (修正有)
【課題】医療装置が被検体に対して行う処置(或いは撮像)に影響を与えずに、機械室に配置されている空調装置の消費電力を低減する。
【解決手段】処置室に処置部を、機械室に電気回路部及び制御部を、操作室に操作部を、それぞれ配置する。さらに、機械室に空調装置232を配置し、電気回路部と制御部を1つ以上のユニット301,302に纏めて収納し、空調装置と各ユニットとを空調装置232からの冷媒をユニット内に供給するための配管350,351,352で接続する。そして、空調装置232は、各ユニット内の温度及び/又は湿度を所定範囲内に維持するように、ユニット内に冷媒を供給する。
【選択図】図3
【特許請求の範囲】
【請求項1】
処置室に配置された処置部と、機械室に配置された電気回路部及び制御部と、操作室に配置された操作部と、からなる医療装置システムであって、
前記機械室には、空調装置が配置され、
前記電気回路部と制御部は、1つ以上のユニットに纏めて収納され、
前記空調装置と各前記ユニットとは、前記空調装置からの冷媒を当該ユニット内に供給するための配管で接続され、
前記空調装置は、各前記ユニット内の温度及び/又は湿度を所定範囲内に維持するように、当該ユニット内に前記冷媒を供給することを特徴とする医療装置システム。
【請求項2】
請求項1記載の医療装置システムにおいて、
各前記ユニット内にそれぞれ配置されて当該ユニット内の温度及び/又は湿度を計測するセンサを備え、
前記制御部は、前記センサを介して計測した各前記ユニット内の温度及び/又は湿度に基づいて、当該ユニット内の温度及び/又は湿度が所定範囲内となるように前記空調装置の出力を調整して、当該ユニット内への前記冷媒の供給を制御することを特徴とする医療装置システム。
【請求項3】
請求項1記載の医療装置システムにおいて、
各前記ユニットに接続された前記配管の各々に、当該配管が接続されたユニットへの前記冷媒の流量を調整する流量調整バルブが配置され、
前記制御部は、各前記ユニット内の温度及び/又は湿度を所定範囲内に維持するように前記空調装置の出力と前記流量調整バルブの開閉レベルとを調整して、各前記ユニットへの前記冷媒の供給を制御することを特徴とする医療装置システム。
【請求項4】
請求項3記載の医療装置システムにおいて、
各前記ユニット内にそれぞれ配置されて当該ユニット内の温度及び/又は湿度を計測するセンサを備え、
前記制御部は、前記センサを介して計測した各前記ユニット内の温度及び/又は湿度に基づいて、当該ユニット内の温度及び/又は湿度が所定範囲内となるように前記空調装置の出力と前記流量調整バルブの開閉レベルとを調整して、各前記ユニットへの前記冷媒の供給を制御することを特徴とする医療装置システム。
【請求項5】
請求項3記載の医療装置システムにおいて、
前記医療装置システムは、傾斜磁場電源と、傾斜磁場コイルを備えているMRI装置であって、
前記傾斜磁場電源は、前記1つ以上のユニットの内のいずれかのユニット内に配置され、
前記制御部は、前記傾斜磁場電源が前記傾斜磁場コイルを駆動する駆動電流に基づいて、前記傾斜磁場電源が配置されたユニット内の温度及び/又は湿度が所定範囲内となるように前記空調装置の出力と前記流量調整バルブの開閉レベルとを調整して、前記傾斜磁場電源が配置されたユニット内への前記冷媒の供給を制御することを特徴とする医療装置システム。
【請求項6】
請求項5記載の医療装置システムにおいて、
前記制御部は、前記傾斜磁場電源が前記傾斜磁場コイルを駆動する駆動電流に基づいて当該傾斜磁場電源の消費電力を求め、予め求めておいた前記傾斜磁場電源の消費電力と前記傾斜磁場電源が配置されたユニット内の温度との関係を表すテーブル又は関係式を記憶しておき、求めた前記傾斜磁場電源の消費電力と前記テーブル又は関係式とに基づいて、前記傾斜磁場電源が配置されたユニット内の温度及び/又は湿度が所定範囲内となるように前記空調装置の出力と前記流量調整バルブの開閉レベルとを調整して、当該傾斜磁場電源が配置されたユニット内への前記冷媒の供給を制御することを特徴とする医療装置システム。
【請求項7】
請求項3記載の医療装置システムにおいて、
前記医療装置システムは、RF増幅器を内蔵するRF送信部と、RF送信コイを備えているMRI装置であって、
前記RF送信部は、前記1つ以上のユニットの内のいずれかのユニット内に配置され、
前記制御部は、前記RF増幅器が前記RF送信コイルに供給する出力電力に基づいて、前記RF送信部が配置されたユニット内の温度及び/又は湿度が所定範囲内となるように前記空調装置の出力と前記流量調整バルブの開閉レベルとを調整して、前記RF送信部が配置されたユニット内への前記冷媒の供給を制御することを特徴とする医療装置システム。
【請求項8】
請求項7記載の医療装置システムにおいて、
前記制御部は、前記RF増幅器が前記RF送信コイルに供給する出力電力に基づいて当該RF増幅器の消費電力を求め、予め求めておいた前記RF増幅器の消費電力と前記RF送信部が配置されたユニット内の温度との関係を表すテーブル又は関係式を記憶しておき、求めた前記RF増幅器の消費電力と前記テーブル又は関係式とに基づいて、前記RF送信部が配置されたユニット内の温度及び/又は湿度が所定範囲内となるように前記空調装置の出力と前記流量調整バルブの開閉レベルとを調整して、当該RF送信部が配置されたユニット内への前記冷媒の供給を制御することを特徴とする医療装置システム。
【請求項9】
請求項3記載の医療装置システムにおいて、
前記医療装置システムは、設定された撮像パラメータの値に基づいて被検体を撮像するMRI装置であって、
前記制御部は、予め求めておいた前記撮像パラメータの値と各前記ユニット内の温度及び/又は湿度との関係を表すテーブル又は関係式を記憶しておき、前記設定された撮像パラメータの値と前記テーブル又は関係式とに基づいて、各前記ユニット内の温度及び/又は湿度が所定範囲内となるように前記空調装置の出力と前記流量調整バルブの開閉レベルとを調整して、各前記ユニット内への前記冷媒の供給を制御することを特徴とする医療装置システム。
【請求項10】
請求項1乃至9のいずれか一項に記載の医療装置システムにおいて、
前記制御部は、前記機械室に配置された前記1つ以上のユニット又は当該ユニットに収納されている電気回路部の内で非処置時に不必要なユニット又は電気回路部を、処置時より少ない消費電力の低消費電力モードにすることを特徴とする医療装置システム。
【請求項11】
処置室に配置された処置部と、機械室に配置された電気回路部及び制御部と、操作室に配置された操作部と、からなり、
前記機械室には、空調装置が配置され、
前記電気回路部と制御部は、1つ以上のユニットに纏めて収納され、
前記空調装置と各前記ユニットとは、前記空調装置からの冷媒を当該ユニット内に供給するための配管で接続され、
各前記ユニット内にそれぞれ配置されて当該ユニット内の温度及び/又は湿度を計測するセンサを備えて構成された医療装置システムの空調電力低減法であって、
前記制御部は、前記センサを介して計測した各前記ユニット内の温度及び/又は湿度に基づいて、当該ユニット内の温度及び/又は湿度が所定範囲内となるように当該ユニット内への前記冷媒の供給を制御することを特徴とする医療装置システムの空調電力低減法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、X線CT装置や磁気共鳴イメージング(以下、「MRI」という)装置等の医用装置における各種の電源や制御装置が配置される機械室に関し、特に、機械室に配置された空調装置の制御による消費電力の低減に関する。
【背景技術】
【0002】
医用装置は、X線CT装置やMRI装置等の被検体に対してその内部組織の撮像や治療を行う装置である。
【0003】
X線CT装置は、被検体にX線を照射するX線源と、被検体を透過したX線量を投影データとして検出するX線検出器と、を被検体の周囲で回転させることにより得られる複数角度からの投影データを用いて被検体の断層画像を再構成し、再構成された断層画像を表示するものである。X線CT装置で表示される画像は、被検体の中の臓器の形状を描写するものであり、画像診断に使用される。
【0004】
またMRI装置は、被検体、特に人体の組織を構成する原子核スピンが発生する核磁気共鳴(以下、「NMR」という)信号を計測し、その頭部、腹部、四肢等の形態や機能を2次元的に或いは3次元的に画像化する装置である。撮像においては、NMR信号には、傾斜磁場によって異なる位相エンコードが付与されるとともに周波数エンコードされて、時系列データとして計測される。計測されたNMR信号は、2次元又は3次元フーリエ変換されることにより画像に再構成される。
【0005】
上記X線CT装置やMRI装置等の医用装置には各種の電気回路部や制御部が付随する。医用装置は、処置室(或いは撮像室)に配置されて被検体に対して撮像や治療等の処置に用いられる。一方、各種の電気回路部や制御部は処置室や操作室とは異なる機械室に配置される。そして、処置室に配置された医用装置と機械室に配置された各種の電気回路部や制御部間で、有線又は無線で、給電や各種情報の送受信が行われるのが一般的である。以下、これらの構成全体を医療装置システムともいう。
【0006】
以上のような医療装置システムにおいて、機械室には、熱を発する電源とその制御回路や各種増幅回路等の電気回路部、及び熱に弱い制御部(コンピュータ)等が配置される。更に、これら電気回路部や制御部は全て水に弱いので、結露が生じてはいけない。そのため、一般的に機械室に空調装置が設置されて、機械室内の温度や湿度が所定範囲内になるように常時運転制御されているので、空調装置の消費電力が高くなる。そのため、医療装置と機械室を含む医療装置システム全体の消費電力を低減する上で、機械室に配置されている空調装置の消費電力を低減することが必要となる。
【0007】
この空調装置の消費電力低減として特許文献1には、医療装置の撮像中に、機械室の照明や空調装置等の医療装置での撮像に寄与しないユニットの電源を停止することによって、消費電力のピーク値を低減することが開示されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2014-100240号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、特許文献1に開示の技術では、単純に撮像中に空調装置の電源を停止すると、撮像中に機械室の温度や湿度が所定範囲を超えて当該撮像に影響が生じる可能性が考えられる。
【0010】
そこで本発明は、上記課題を鑑みてなされたものであり、医療装置が被検体に対して行う処置(或いは撮像)に影響を与えずに、機械室に配置されている空調装置の消費電力を低減することを目的とする。
【課題を解決するための手段】
【0011】
上記目的を達成するために、本発明の医療装置システムは以下のように構成される。即ち、処置室に処置部を、機械室に電気回路部及び制御部を、操作室に操作部を、それぞれ配置する。さらに、機械室に空調装置を配置し、電気回路部と制御部を1つ以上のユニットに纏めて収納し、空調装置と各ユニットとを当該空調装置からの冷媒を当該ユニット内に供給するための配管で接続する。そして、空調装置は、各ユニット内の温度及び/又は湿度を所定範囲内に維持するように、当該ユニット内に冷媒を供給する。
【0012】
また、上記医療装置システムにおける空調電力低減法は以下のように構成される。即ち、上記医療装置システムは、各ユニット内にそれぞれ配置されて当該ユニット内の温度及び/又は湿度を計測するセンサを備えており、センサを介して計測した各ユニット内の温度及び/又は湿度に基づいて、当該ユニット内の温度及び/又は湿度が所定範囲内となるように当該ユニット内への冷媒の供給を制御する。
【発明の効果】
【0013】
本発明の医療装置システム及びその空調電力低減法によれば、医療装置が被検体に対して行う処置(或いは撮像)に影響を与えずに、機械室に配置されたユニット内の温度及び/又は湿度を所定範囲に維持しつつ、機械室の空調装置の消費電力を低減することができる。
【0014】
さらに、機械室に配置されたユニットの負荷が処置室に配置されている場合は、処置室の空調装置の消費電力も低減できる。
【図面の簡単な説明】
【0015】
図1】本発明に係る医療装置システムの各部が配置される部屋の構成を示す図。
図2】医療装置システムの一例であるMRI装置から成るMRIシステムの構成を示す図。
図3】本発明の実施例1の構成を示す図。
図4】本発明の実施例2の構成を示す図。
図5】実施例2の処理フローを示すフローチャート。
図6】本発明の実施例3におけるユニット内に配置されたセンサからの情報を用いる場合の構成を示す図。
図7】本発明の実施例3における傾斜磁場電源の出力電流又は/且つRF増幅器の出力情報を用いる場合の構成を示す図。
図8】実施例3の処理フローを示すフローチャート。
図9】本発明の実施例3における撮像パラメータを用いる場合の撮像パラメータの値とユニット内の温度及び/又は湿度との関係を表すテーブルの一例。
【発明を実施するための形態】
【0016】
以下、医療装置としてMRI装置を有するMRIシステムを例に挙げて本発明を説明するが、本発明に係る医療装置及び医療装置システムはMRI装置及びMRIシステムに限定されることは無く、X線CT装置やX線撮像装置、PET装置、放射線治療装置、粒子線治療装置等の機械室を有する医療装置とこれらを含む医療装置システムにも適用できる。
【0017】
以下、添付図面に基づいて本発明を説明する。なお、本発明の実施例を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
【0018】
最初に、本発明に係る医療装置システムの各部が配置される部屋の構成を図1に基づいて説明する。医療装置システムは、医用装置の処置部(或いは撮像部)101の他に、これに付随する各種の電気回路部や制御部、及び操作部で構成される。処置部101は処置室(或いは撮像室)151に配置されて被検体に対して撮像や治療等の処置に用いられる。
【0019】
一方、処置室151に配置された処置部101を操作者が操作するための操作部102は、処置室151に隣接して設けられた操作室152に配置される。そして、各種の電気回路部及び制御部103は、処置室151や操作室152とは異なる機械室153に配置され、当該機械室153は処置室151の近傍又は処置室151に隣接して配置される。そして、操作室152に配置された操作部102からの制御情報に基づいて、処置室151に配置された処置部101と機械室153に配置された各種の電気回路部及び制御部103が連動して動作すると共にこれらの間で、有線又は無線で、給電や各種情報の送受信が行われる。
【0020】
次に、医療装置システムの一例として、MRI装置から成るMRIシステムを図2に基づいて説明する。図2は、本発明に係るMRIシステムの一実施例の全体構成を示すブロック図である。
【0021】
このMRI装置は、NMR現象を利用して被検体201の断層画像を得るもので、図2に示すように、静磁場発生磁石202と、傾斜磁場コイル203及び傾斜磁場電源209と、RF送信コイル204及びRF送信部210と、RF受信コイル205及びRF受信部206と、コントローラ211と、操作部102と、被検体201を搭載する天板を静磁場発生磁石102の内部に出し入れするベッド213と、を備えて構成される。
【0022】
そして、静磁場発生磁石202と、傾斜磁場コイル203と、RF送信コイル204と、RF受信コイル205と、ベッド213は処置(撮像)室101内に配置され、傾斜磁場電源209と、RF送信部210と、RF受信部206と、コントローラ211は機械室103内に配置され、操作部102は操作室102内に配置される。さらに、機械室153に配置される傾斜磁場電源209と、RF送信部210と、RF受信部206と、コントローラ211等は、纏められて1〜4つのユニット(筐体)に格納される。各ユニット(筐体)は金属製の外装カバーで覆われた密閉容器であって、その内部空間は機械室103の空間とは電磁的にも温度や湿度に関しても異なる環境とされる。
【0023】
静磁場発生磁石202は、垂直磁場方式であれば被検体201の体軸と直交する方向に、水平磁場方式であれば体軸方向に、それぞれ均一な静磁場を発生させるもので、被検体201の周りに永久磁石方式、常電導方式あるいは超電導方式の静磁場発生源が配置されている。図2は、超電導方式の静磁場発生源とする静磁場発生磁石202の例を示す。それ故、静磁場発生磁石202には、超電導状態を維持するためのヘリウム冷凍機225とヘリウム圧縮機226が付随する。
【0024】
傾斜磁場コイル203は、MRI装置の実空間座標系(静止座標系)であるX、Y、Zの3軸方向に巻かれたコイルであり、各傾斜磁場コイルは、それを駆動する傾斜磁場電源209に接続され電流が供給される。具体的には、各傾斜磁場コイルの傾斜磁場電源209は、それぞれ後述のコントローラ211からの命令に従って駆動されて、それぞれの傾斜磁場コイルに電流を供給する。これにより、X、Y、Zの3軸方向に傾斜磁場Gx、Gy、Gzが発生する。
【0025】
RF送信コイル204は、被検体201にRFパルスを照射するコイルであり、RF送信部210に接続され高周波パルス電流が供給される。これにより、被検体201の生体組織を構成する原子のスピンにNMR現象が誘起される。具体的には、RF送信部210は、後述のコントローラ211からの命令に従って駆動されて、高周波パルスを振幅変調し、内蔵するRF増幅器が増幅した後に被検体201に近接して配置されたRF送信コイル204に供給することにより、RFパルスが被検体201に照射される。
【0026】
RF受信コイル205は、被検体201の生体組織を構成するスピンのNMR現象により放出されるエコー信号(NMR信号)を受信するコイルであり、RF受信部206に接続されて受信したエコー信号がRF受信部206に送られる。
【0027】
RF受信部206は、RF受信コイル205で受信されたエコー信号の検出処理を行う。具体的には、後述のコントローラ211からの命令に従って、RF受信部206が、受信されたエコー信号を増幅し、直交位相検波により直交する二系統の信号に分割し、それぞれを所定数(例えば128、256、512等)サンプリングし、各サンプリング信号をA/D変換してディジタル量に変換する。従って、エコー信号は所定数のサンプリングデータからなる時系列のデジタルデータ(以下、エコーデータという)として得られる。そして、RF受信部206は、エコーデータに対して各種処理を行い、処理したエコーデータをコントローラ211に送る。
【0028】
コントローラ211は、被検体201の断層画像の再構成に必要なエコーデータ収集のための種々の命令を、主に、傾斜磁場電源209と、RF送信部210と、RF受信部206に送信してこれらを制御する制御部である。具体的には、コントローラ211は、後述する操作部102の制御で動作し、ある所定のパルスシーケンスの制御データに基づいて、傾斜磁場電源209、RF送信部210及びRF受信部206を制御して、被検体201へのRFパルスの照射及び傾斜磁場パルスの印加と、被検体201からのエコー信号の検出と、を繰り返し実行し、被検体201の撮像領域についての画像の再構成に必要なエコーデータの収集を制御する。繰り返しの際には、2次元撮像の場合には位相エンコード傾斜磁場の印加量を、3次元撮像の場合には更にスライスエンコード傾斜磁場の印加量も、変えて行なう。位相エンコードの数は通常1枚の画像あたり128、256、512等の値が選ばれ、スライスエンコードの数は、通常16、32、64等の値が選ばれる。これらの制御によりRF受信部206からのエコーデータを操作部102に出力する。
【0029】
操作部102は、コントローラ211の制御、及び、各種データ処理と処理結果の表示及び保存等の制御を行うものであって、演算処理部(CPU)214と、光ディスクや磁気ディスク等の記憶部215と、入出力部218と、を有して成る。具体的には、コントローラ211に撮像シーケンスの実行によりエコーデータを収集させ、コントローラ211からのエコーデータが入力されると、演算処理部214がそのエコーデータに対して信号処理やフーリエ変換による画像再構成等の処理を実行し、その結果である被検体201の画像を、後述の表示部に表示させ、記憶部215に記録させる。
【0030】
入出力部218は、再構成された被検体201の画像を表示する表示部と、MRI装置の各種制御情報や上記操作部102で行う処理の制御情報を入力するトラックボール又はマウス及びキーボード等の入力部と、から成る。この入力部は表示部に近接して配置され、操作者が出力部を見ながら入力部を介してインタラクティブにMRI装置の各種処理を制御する。
【0031】
次に、機械室153内の構成について図3に基づいて説明する。前述したように、機械室153には、傾斜磁場電源209と、RF送信部210と、RF受信部206と、コントローラ211が配置される。RF送信部210とRF受信部206とコントローラ211が纏められて制御ユニット(筐体)301を構成し、傾斜磁場電源209はそれ一つで傾斜磁場電源ユニット(筐体)302を構成する。なお、全てを纏めて一つのユニット(筐体)としても良いし、或いは、より細分化してユニット(筐体)数を3つ以上にしても良い。
【0032】
以上のMRIシステムの構成において、少なくとも各ユニット内の温度及び/又は湿度を所定範囲に維持しつつ、機械室153に配置されている空調装置232の消費電力の低減を行う各実施例を以下に説明する。なお、以下に説明する全ての実施例において、被検体201の撮像(処置)が行われていない非撮像時(非処置時)には、そのような非撮像時に不必要なユニット(例えば傾斜磁場電源ユニット302)やユニット内に配置された構成要素で非撮像時に必要の無い電気回路部(例えば、RF送信部210)を、撮像(処置)動作時より消費電力が少ない低消費電力モードや電源オフにすることがきる。或いは、低消費電力モードや電源オフにする条件を、非撮像時(非処置時)で機械室153又はユニット301,302内の温度が所定閾値(例えば25℃)を超えた場合とすることができる。なお、低消費電力モードや電源オフにされたユニットや電気回路部は撮像前(処置前)に再び撮像(処置)動作が可能な待機モードにされる。これにより、以下に説明する各実施例で得られる効果に加えて、更に、ユニット301,302内の空調に必要な空調装置232及びMRIシステム全体の消費電力を低減できる。さらに、機械室に配置されたユニットの負荷が処置室に配置されている場合は、処置室の空調装置の消費電力も低減できる。
【実施例1】
【0033】
本発明に係る医療装置システムの空調電力低減法の実施例1について説明する。本実施例1は、機械室に配置された空調装置と各ユニットとをそれぞれ配管で接続し、空調装置から配管を通して各ユニット内に直接冷媒を供給する構成とする。以下、図3を用いて本実施例1を詳細に説明する。
【0034】
図3に示すように、機械室153には、空調装置232と制御ユニット301及び傾斜磁場電源ユニット302が配置されている。そして、空調装置232と制御ユニット301及び傾斜磁場電源ユニット302とは、空調装置232からの冷媒(例えば、調整された温度及び/又は湿度の空気)をユニット301,302に供給するための配管350,351,352でそれぞれ接続された構成とする。図3では、空調装置232から出る配管350を一つとし、制御ユニット301に接続する配管351と傾斜磁場電源ユニット302に接続する配管352とに途中で分岐する構成を示しているが、空調装置232とユニット301,302とはそれぞれ独立の配管で接続されても良い。
【0035】
空調装置232が、機械室153内又は外の空気を吸い込んでこれを冷媒として、当該冷媒の温度及び/又は湿度を予め設定された値に調整して、当該調整した冷媒を配管350,351,352経由でユニット301,302内に供給する。温度及び/又は湿度の設定値は、操作者が空調装置232に直接又は操作部102及びコントローラ211を介して設定する。ユニット301,302内では、350,351,352を通して供給された冷媒によりユニット301,302内に格納された各種の電器回路部や制御部が冷却されると共に、ユニット301,302内の温度及び/又は湿度が所定範囲内に維持される。そして、ユニット301,302内を流れて高温になった冷媒は、制御ユニット301の排出口361と傾斜磁場電源ユニット302の排出口362からユニット301,302外に排出され、機械室153内又は外に高温冷媒が排出される。好ましくは、配管351,352はユニット301,302の底部にそれぞれ接続され、排出口361,362がユニット301,302の上部にそれぞれ配置された構成とする。このような構成により、ユニット301,302内の各種の電器回路部や制御部を冷却して高温になった冷媒が上昇して排出口361,362からユニット301,302外に排出されることになり、ファン等の電力を消費する強制循環手段を用いることなく、電力を消費しない自然循環でユニット301,302内の温度及び/又は湿度を所定範囲内に維持することができる。
【0036】
なお、空調装置232は、機械室153内にも冷媒を循環させて空調し、機械室153内の温度及び/又は湿度を所定範囲内に維持する構成にしてもよい。この構成では、ユニット301,302からの高温冷媒を機械室153外に排出して、機械室153内の空調に必要な消費電力を低減するのが好ましい。しかし、機械室153内に高温冷媒が排出される構成であっても、空調装置232による機械室153の空調は、機械室153内の温度及び/又は湿度を所定範囲内に維持する上で有効となる。
【0037】
以上説明したように本実施例1の構成は、処置室に配置された処置部と、機械室に配置された電気回路部及び制御部と、操作室に配置された操作部と、からなる医療装置システムであって、機械室には、空調装置が配置され、電気回路部と制御部は、1つ以上のユニットに纏めて収納され、空調装置と各ユニットとは、空調装置からの冷媒を当該ユニット内に供給するための配管で接続され、空調装置は、各ユニット内の温度及び/又は湿度を所定範囲内に維持するように、当該ユニット内に冷媒を供給する。このような構成によれば、処置(撮像)に影響を与えずに、空調装置は、機械室より狭い空間であるユニット内を直接空調してそれらの温度及び/又は湿度を所定範囲内に維持できるので、ユニット内を含めて機械室全体の温度及び/又は湿度を所定範囲内に維持する場合と比較して、空調装置の消費電力を低減することができる。さらに、ユニットからの高温冷媒を機械室外に排出する構成にすれば、機械室の空調に必要な消費電力も低減することができる。
【実施例2】
【0038】
次に、本発明に係る医療装置システムの空調電力低減法の実施例2について説明する。本実施例2は、コントローラ211はセンサを介して検出したユニット内の温度及び/又は湿度の情報に基づいて、当該ユニット内の温度及び/又は湿度が所定範囲内となるように、空調装置232の出力を制御する。以下、図4、5に基づいて本実施例2を説明する。
【0039】
図4に示すように、制御ユニット301内に当該ユニット301内の温度及び/又は湿度を検出するセンサ401を配置し、傾斜磁場電源ユニット302内に当該ユニット302内の温度及び/又は湿度を検出するセンサ402を配置し、センサ401、402とコントローラ211とを接続する構成とする。
【0040】
このような構成において、コントローラ211は、センサ401を介して制御ユニット301内の温度及び/又は湿度を所定時間間隔で監視(計測)し、それらの所定範囲(例えば、温度25℃〜40℃、湿度50%)と比較する。同様に、コントローラ211は、センサ402を介して傾斜磁場電源ユニット302内の温度及び/又は湿度を所定時間間隔で監視(計測)し、それらの所定範囲(例えば、25℃〜40℃、湿度50%)と比較する。そして、いずれかのユニット内の温度及び/又は湿度が所定範囲を逸脱した場合には、コントローラ211は、当該ユニット301内の温度及び/又は湿度が所定範囲内となるように、空調装置232の出力を増大する。好ましくは、計測した温度及び/又は湿度とそれらの所定範囲との差が大きいほど空調装置232の出力量を増大させる。一方、両ユニット301,302内の温度及び/又は湿度が共に所定範囲の場合には、コントローラ211は空調装置232の出力を維持又は減少する。
【0041】
次に本実施例2の処理フローを図5に示すフローチャートに基づいて説明する。
【0042】
ステップS501で、コントローラ211は、MRI装置の電源がオン(On)かオフ(Off)かを確認する。オン(On)の場合(Yes)はステップS502へ移行し、オフ(Off)の場合(No)は処理終了となる。
【0043】
ステップS502で、コントローラ211は、被検体201を撮像するための待機モードか否かを確認する。待機モード中の場合(Yes)はステップS503へ移行し、待機モードでない場合(No)はS508へ移行する。
【0044】
ステップS503で、コントローラ211は、低消費電力モード又は電源オフ状態のユットや構成要素を、撮像動作が可能であって低消費電力モードより消費電力が増大する待機モードにする。既に待機モード又は撮像動作中であれば、本ステップS503をスキップする。
【0045】
ステップS504で、コントローラ211は、制御ユニット301内に配置されたセンサ401と、傾斜磁場電源ユニット302内に配置されたセンサ402から、ユニット301,302内の温度及び/又は湿度の情報を所定時間間隔でそれぞれ取得する。
【0046】
ステップS505で、コントローラ211は、ユニット301,302内の温度及び/又は湿度とそれらの所定範囲とを比較し、所定範囲内(Yes)であればステップS506に移行し、所定範囲外(No)であればステップS507に移行する。
【0047】
ステップS506で、コントローラ211は、空調装置232の出力を減少し、ステップS501に戻る。
【0048】
ステップS507で、コントローラ211は、空調装置232の出力を増大し、ステップS501に戻る。
【0049】
ステップS508で、コントローラ211は、被検体の撮像が行われていないときは、そのような非撮像時に不必要なユニットや、ユニット内に配置された電気回路部の内で非撮像時に必要の無い電気回路部を、低消費電力モードや電源オフにする。そしてステップS501に戻る。
【0050】
なお、上記処理フローにおいて、ユニット/電気回路部の消費電力モード変更をしない場合には、ステップS502,S503,S508は無くて良い。以上までが本実施例2の処理フローの概要である。
【0051】
以上説明したように、本実施例2の構成は、各ユニット内にそれぞれ配置されて当該ユニット内の温度及び/又は湿度を計測するセンサを備え、制御部は、センサを介して計測した各ユニット内の温度及び/又は湿度に基づいて、当該ユニット内の温度及び/又は湿度が所定範囲内となるように空調装置の出力を調整して、当該ユニット内への冷媒の供給を制御する。このような構成によれば、前述の実施例1に記載の効果に加えて、センサを介してユニット内の温度及び/又は湿度を検出し、検出したユニット内の温度及び/又は湿度とその所定範囲との比較結果に応じて空調装置の出力を制御できるので、ユニット内の温度及び/又は湿度の制御をより精密にできると共に、空調装置の消費電力をより低減できる。
【実施例3】
【0052】
次に、本発明に係る医療装置システムの空調電力低減法の実施例3について説明する。本実施例3は、機械室に配置されている各ユニットと空調装置とを接続する配管に、ユニット毎に配管を流れる冷媒流量を調整する流量調整バルブを設け、ユニット毎に供給される冷媒流量を制御できる構成とする。以下、図6〜8を用いて本実施例3を説明する。
【0053】
図6に示すように、制御ユニット301に接続された配管351に流量調整バルブ601を設け、傾斜磁場電源ユニット302に接続された配管352に流量調整バルブ602を設ける。そして、コントローラ211は、流量調整バルブ601,602の開閉レベルを調整して、ユニット301,302に供給される冷媒流量をそれぞれ制御する構成とする。
【0054】
具体的には、コントローラ211は、ユニット301,302内の温度及び/又は湿度が、所定範囲の上限値又は下限値に近づいた場合、或いは、所定範囲の上限値を上回った/下限値を下回った場合には、流量調整バルブ601,602を緩めて当該ユニットに供給される冷媒流量を増やす。流量調整バルブ601,602を全開にして冷媒流量を最大にしても、ユニット301,302内の温度及び/又は湿度が所定範囲の上限値を上回る又は下限値を下回る場合は、コントローラ211は、空調装置232の出力を増大させて全体の冷媒流量を増大させる。そして、ユニット301,302内の温度及び/又は湿度が所定範囲内となったら、コントローラ211は、空調装置232の出力を低下させて全体の冷媒流量を減少させる、或いは、流量調整バルブを絞めてユニット301,302に供給される冷媒量を減らす。このように、ユニット301,302内の温度及び/又は湿度が共に所定範囲内になるように、コントローラ211は流量調整バルブ601、602の開閉レベルと空調装置232の出力を制御する。なお、空調装置232が、流量調整バルブ601、602の開閉レベルの如何に係らず、常に配管350内の冷媒圧力が一定になるように自身の出力を自己制御すれば、流量調整バルブの開閉レベルに応じて、ユニット301,302に供給される冷媒量が制御される。
【0055】
上述した流量調整バルブ601,602の開閉レベルと空調装置232の出力の制御の際に、コントローラ211は、外部から各種情報を取得して当該制御に用いることができる。以下、制御に用いる情報の例を説明する。
【0056】
1.ユニット内に配置されたセンサからの情報を用いる場合
図6に示すように、前述の実施例2で説明したように、制御ユニット301内に温度及び/又は湿度を計測するセンサ401を配置し、傾斜磁場電源ユニット302内に温度及び/又は湿度を計測するセンサ402を配置して、センサ401,402とコントローラ211とを接続し、コントローラ211がセンサ401、402を介してユニット301,302内の温度及び/又は湿度をそれぞれ監視(計測)する。そして、コントローラ211は、計測データに基づいてユニット301,302内の温度及び/又は湿度が共に所定範囲内になるように、流量調整バルブ601,602の開閉レベル及び/又は空調装置232の出力を調整してユニット301,302にそれぞれ供給される冷媒流量を制御する構成とする。
【0057】
具体的には、コントローラ211は、センサ401を介して制御ユニット301内の温度及び/又は湿度を所定時間毎に監視(計測)する。そして、制御ユニット301内の温度及び/又は湿度が所定範囲の上限値を上回る又は下限値を下回る場合(つまり所定範囲外の場合)には、コントローラ211は、以下の1-1)と2-1)のいずれか一方又は両方同時に行うことによって、制御ユニット301に供給される冷媒流量を増やす。
【0058】
1-1) 流量調整バルブ601を緩め、傾斜磁場ユニット302に供給される冷媒流量が変わらないように空調装置232の出力を増大する。
【0059】
2-1) 空調装置232の出力を増大させ、傾斜磁場電源ユニット302に供給される冷媒流量が変わらないように、流量調整バルブ602を絞る。
【0060】
一方、制御ユニット301内の温度及び/又は湿度が所定範囲内の場合には、コントローラ211は、以下の3-1)と4-1)のいずれか一方又は両方同時に行うことによって、制御ユニット301に供給される冷媒流量を減らす。
【0061】
3-1) 流量調整バルブ601を絞り、傾斜磁場ユニット302に供給される冷媒流量が変わらないように空調装置232の出力を減少する。
【0062】
4-1) 空調装置232の出力を減少させ、傾斜磁場電源ユニット302に供給される冷媒流量が変わらないように、流量調整バルブ602を緩める。
【0063】
同様に、コントローラ211は、センサ602を介して傾斜磁場電源ユニット302内の温度及び/又は湿度を所定時間毎に監視(計測)する。そして、傾斜磁場電源ユニット302内の温度及び/又は湿度が所定範囲の上限値を上回る又は下限値を下回る場合(つまり所定範囲外の場合)には、コントローラ211は、以下の1-2)と2-2)のいずれか一方又は両方同時に行うことによって、傾斜磁場電源ユニット302に供給される冷媒流量を増やす。
【0064】
1-2) 流量調整バルブ602を緩め、制御ユニット301に供給される冷媒流量が変わらないように空調装置232の出力を増大する。
【0065】
2-2) 空調装置232の出力を増大させ、制御ユニット301に供給される冷媒流量が変わらないように、流量調整バルブ601を絞る。
【0066】
一方、傾斜磁場電源ユニット302内の温度及び/又は湿度が所定範囲内の場合には、コントローラ211は、以下の3-2)と4-2)のいずれか一方又は両方同時に行うことによって、傾斜磁場電源ユニット302に供給される冷媒流量を減らす。
【0067】
3-2) 流量調整バルブ602を絞り、制御ユニット301に供給される冷媒流量が変わらないように空調装置232の出力を減少する。
【0068】
4-2) 空調装置232の出力を減少させ、制御ユニット301に供給される冷媒流量が変わらないように、流量調整バルブ601を緩める。
【0069】
2.傾斜磁場電源の出力電流及び/又はRF増幅器の出力
機械室103に設置されるMRI装置の構成要素の内で、特に、傾斜磁場電源209とRF送信部内のRF増幅器の発熱量が多い。傾斜磁場電源209の発熱量は、X,Y,Z軸毎の傾斜磁場コイルへの出力電流から求められる傾斜磁場電源209の大凡の消費電力に基づいて推定することができるので、当該推定した傾斜磁場電源209の消費電力に基づいて傾斜磁場電源ユニット302内の冷却に必要な冷却能力を見積もることができる。具体的には、X,Y,Z軸それぞれの傾斜磁場コイル駆動電流(A)をIx, Iy, Iz、とし、消費電力換算係数をEx,Ey,Ezとすると、傾斜磁場電源203の消費電力PGPA(W)は、式(1)で表される。
【0070】
PGPA=Ex・Ix2 + Ey・Iy2 + Ez・Iz2 ・・・・・(1)
この(1)式で表される傾斜磁場電源203の消費電力に基づいて傾斜磁場電源ユニット302内の温度及び/又は湿度の制御を行えば、より無駄のない空調装置232の制御ができる。
【0071】
同様に、RF増幅器の出力電力(RFコイルに照射されるRF電力)(W)をPRF、消費電力換算係数をERFとすると、RF増幅器の消費電力PRFPA(W)は
PRFPA =ERF・ PRF ・・・・・(2)
となり、この(2)式に基づいて制御ユニット301内の温度及び/又は湿度の制御を行えば、より無駄のない空調装置232の制御ができる。
【0072】
そこで、図7に示すように、制御ユニット301に格納されているRF送信部210とコントローラ211と接続し、コントローラ211がRF送信コイル204を駆動するRF送信部210内のRF増幅器の出力電力を監視(計測)する。同様に、傾斜磁場電源ユニット302内に格納されている傾斜磁場電源209の波形制御基板701とコントローラ211とを接続し、コントローラ211がX,Y,Z軸毎の傾斜磁場コイル203を駆動する傾斜磁場電源209の出力電流を監視(計測)する。そして、コントローラ211は、これらの計測データを用いて、(1)式で表される傾斜磁場電源203の消費電力と(2)式で表されるRF送信部210内のRF増幅器の消費電力をそれぞれ求める。
【0073】
また、コントローラ211には、RF送信部210内のRF増幅器の消費電力と制御ユニット301内の温度との関係を表すテーブル又は関係式と、傾斜磁場電源209の消費電力と傾斜磁場電源ユニット302内の温度との関係を表すテーブル又は関係式とを記憶する記憶部を備える。これらのテーブル又は関係式は、例えば、予め実験やシミュレーション等を通して取得した複数のデータを統計処理して求めることができる。
【0074】
そして、コントローラ211は、求めたRF送信部210内のRF増幅器の消費電力情報と、RF送信部210の消費電力と制御ユニット301内の温度との関係を表すテーブル又は関係式とに基づいて、制御ユニット301内の温度及び/又は湿度を推定する。このようにして制御ユニット301内の温度及び/又は湿度を推定した後のコントローラ211の制御動作は、前述の「1.ユニット内に配置されたセンサからの情報を用いる場合」で説明した、1-1),2-1),3-1),及び4-1)と同じである。なお、RF送信部210内のRF増幅器の出力電力から直接制御ユニット301内の温度及び/又は湿度を推定してもよい。この場合には、RF送信部210内のRF増幅器の出力電力と制御ユニット301内の温度との関係を表すテーブル又は関係式とする。
【0075】
同様に、コントローラ211は、求めた傾斜磁場電源209の消費電力情報と、傾斜磁場電源209の消費電力と傾斜磁場電源ユニット302内の温度との関係を表すテーブル又は関係式とに基づいて、傾斜磁場電源ユニット302内の温度及び/又は湿度を推定する。このようにして傾斜磁場電源ユニット302内の温度及び/又は湿度を推定した後のコントローラ211の制御動作は、前述の「1.ユニット内に配置されたセンサからの情報を用いる場合」で説明した、1-2),2-2),3-2),及び4-2)と同じである。なお、X,Y,Z軸毎の傾斜磁場コイル203を駆動する傾斜磁場電源209の出力電流から直接傾斜磁場電源ユニット302内の温度及び/又は湿度を推定してもよい。この場合には、傾斜磁場電源209の出力電流と傾斜磁場電源ユニット302内の温度との関係を表すテーブル又は関係式とする。
【0076】
3.撮像パラメータ
MRI装置では、多くの撮像パラメータを事前に設定し、当該設定された撮像パラメータに基づいて各種制御情報を生成し、当該生成された制御情報でMRI装置の各部の動作を制御して被検体の撮像が行われる。したがって、MRI装置の各部の発熱量が撮像パラメータの設定値に依存することになり、それ故、制御ユニット301内と傾斜磁場電源ユニット302内の温度及び/又は湿度も撮像パラメータの設定値に依存することになる。
【0077】
そこで、撮像パラメータの設定値からユニット301,302内の温度及び/又は湿度も推定することができる。このように、ユニット301,302内の温度及び/又は湿度の推定に支配的に寄与する撮像パラメータとしては、被検体の年齢、体重、身長や、画像に関するFOVやマトリックスサイズ、撮像シーケンスに関するシーケンス種、TR,TE,フリップ角等がある。
【0078】
そこで、コントローラ211には、これらの撮像パラメータの値と制御ユニット301内と傾斜磁場電源ユニット302内の温度との関係を表すテーブル又は関係式を記憶する記憶部を備える。これらのテーブル又は関係式は、例えば、予め実験やシミュレーション等を通して取得した複数のデータを統計処理して求めることができる。
【0079】
図9に、撮像パラメータの値と、空調装置が無い場合の制御ユニット301内と傾斜磁場電源ユニット302内の温度との関係を表すテーブの一例を示す。
【0080】
そして、コントローラ211は、設定された撮像パラメータの値と、撮像パラメータの値と制御ユニット301内の温度との関係を表すテーブル又は関係式とに基づいて、制御ユニット301内の温度及び/又は湿度を推定する。このようにして制御ユニット301内の温度及び/又は湿度を推定した後のコントローラ211の制御動作は、前述の「1.ユニット内に配置されたセンサからの情報を用いる場合」で説明した、1-1),2-1),3-1),4-1),及び5-1)と同じである。
【0081】
同様に、コントローラ211は、設定された撮像パラメータの値と、撮像パラメータの値と傾斜磁場電源ユニット302内の温度との関係を表すテーブル又は関係式とに基づいて、傾斜磁場電源ユニット302内の温度及び/又は湿度を推定する。このようにして傾斜磁場電源ユニット302内の温度及び/又は湿度を推定した後のコントローラ211の制御動作は、前述の「1.ユニット内に配置されたセンサからの情報を用いる場合」で説明した、1-2),2-2),3-2),4-2),及び5-2)と同じである。
【0082】
次に本実施例3の処理フローを図8に示すフローチャートに基づいて説明する。なお、図5のフローチャートに基づいて説明した実施例2の処理フローと同一処理内容の処理ステップについては同じステップ番号として説明を省略する。
【0083】
ステップS804-1で、コントローラ211は、前述の1,2,3のいずれかの情報又はこれらの情報を取得する。
【0084】
ステップS804-2で、コントローラ211は、ステップS804-1で取得した情報に基づいて、制御ユニット301内と、傾斜磁場電源ユニット302内の温度及び/又は湿度を求める。情報種毎の求め方は前述したとおりである。
【0085】
ステップS505で、コントローラ211は、ユニット301,302内の温度及び/又は湿度とそれらの所定範囲とを比較し、所定範囲内(Yes)であればステップS805に移行し、所定範囲外(No)であればステップS806に移行する。
【0086】
ステップS805で、コントローラ211は、ユニット301及び/又は302に供給する冷媒の流量を減らす。具体的には、コントローラ211は、前述の3-1), 4-1), 3-2), 4-2)のいずれかの処理を行う。
【0087】
ステップS806で、コントローラ211は、ユニット301及び/又は302に供給する冷媒の流量を増やす。具体的には、コントローラ211は、前述の1-1), 2-1), 1-2), 2-2)のいずれかの処理を行う。
【0088】
以上までが本実施例3の処理フローの概要である。
【0089】
以上説明したように、本実施例3の構成は、各ユニットに接続された配管の各々に、当該配管が接続されたユニットへの冷媒の流量を調整する流量調整バルブが配置され、制御部は、各ユニット内の温度及び/又は湿度を所定範囲内に維持するように空調装置の出力と流量調整バルブの開閉レベルとを調整して、各ユニットへの冷媒の供給を制御する。
【0090】
好ましくは、各ユニット内にそれぞれ配置されて当該ユニット内の温度及び/又は湿度を計測するセンサを備え、制御部は、センサを介して計測した各ユニット内の温度及び/又は湿度に基づいて、当該ユニット内の温度及び/又は湿度が所定範囲内となるように空調装置の出力と流量調整バルブの開閉レベルとを調整して、各ユニットへの冷媒の供給を制御する。
【0091】
また好ましくは、医療装置システムが、RF増幅器を内蔵するRF送信部及びRF送信コイルと、傾斜磁場電源及び傾斜磁場コイルを備えているMRI装置の場合には、傾斜磁場電源は、1つ以上のユニットの内のいずれかのユニット内に配置され、制御部は、傾斜磁場電源が傾斜磁場コイルを駆動する駆動電流に基づいて、傾斜磁場電源が配置されたユニット内の温度及び/又は湿度が所定範囲内となるように空調装置の出力と流量調整バルブの開閉レベルとを調整して、傾斜磁場電源が配置されたユニット内への冷媒の供給を制御する。
【0092】
例えば、制御部は、傾斜磁場電源が傾斜磁場コイルを駆動する駆動電流に基づいて傾斜磁場電源の消費電力を求め、予め求めておいた傾斜磁場電源の消費電力と傾斜磁場電源が配置されたユニット内の温度との関係を表すテーブル又は関係式を記憶しておき、求めた傾斜磁場電源の消費電力とテーブル又は関係式とに基づいて、傾斜磁場電源が配置されたユニット内の温度及び/又は湿度が所定範囲内となるように空調装置の出力と流量調整バルブの開閉レベルとを調整して、当該傾斜磁場電源が配置されたユニット内への冷媒の供給を制御する。
【0093】
或いは、RF送信部は、1つ以上のユニットの内のいずれかのユニット内に配置され、制御部は、RF送信部内のRF増幅器がRF送信コイルに供給する出力電力に基づいて、RF送信部が配置されたユニット内の温度及び/又は湿度が所定範囲内となるように空調装置の出力と流量調整バルブの開閉レベルとを調整して、RF送信部が配置されたユニット内への冷媒の供給を制御する。
【0094】
例えば、制御部は、RF送信部内のRF増幅器がRF送信コイルに供給する出力電力に基づいて当該RF増幅器の消費電力を求め、予め求めておいたRF増幅器の消費電力とRF送信部が配置されたユニット内の温度との関係を表すテーブル又は関係式を記憶しておき、求めたRF増幅器の消費電力とテーブル又は関係式とに基づいて、RF送信部が配置されたユニット内の温度及び/又は湿度が所定範囲内となるように空調装置の出力と流量調整バルブの開閉レベルとを調整して、当該RF送信部が配置されたユニット内への冷媒の供給を制御する。
【0095】
また好ましくは、制御部は、予め求めておいた撮像パラメータの値と各ユニット内の温度との関係を表すテーブル又は関係式を記憶しておき、設定された撮像パラメータの値とテーブル又は関係式とに基づいて、各ユニット内の温度及び/又は湿度が所定範囲内となるように空調装置の出力と流量調整バルブの開閉レベルとを調整して、各ユニット内への冷媒の供給を制御する。
【0096】
以上のような構成によれば、前述の実施例1,2の効果に加えて、各ユニットに接続された配管毎に流量調整バルブを備えて、ユニット毎にその流量調整バルブの開閉レベル及び/又は空調装置の出力を調整して当該ユニットへの冷媒流量を制御できるので、ユニット毎にその内部の温度及び/又は湿度の制御をより精密にできると共に、空調装置の消費電力をより低減できる。
【符号の説明】
【0097】
101…処置部(或いは撮像部)、102…操作部、103…制御部、151…処置室(或いは撮像室)、152…操作室、153…機械室、201…被検体、202…静磁場発生磁石、203…傾斜磁場コイル、204…RF送信コイル、205…RF受信コイル、206…RF受信部、209…傾斜磁場電源、210…RF送信部、211…コントローラ、213…ベッド、214…演算処理部、215…光ディスク・磁気ディスク、218…入出力部、232…空調装置、301…制御ユニット、302…傾斜磁場電源ユニット、350,351,352…配管、361,362…排出口、401,402…センサ、601,602…流量調整バルブ、701…波形制御基板
図1
図2
図3
図4
図5
図6
図7
図8
図9