特開2018-73997(P2018-73997A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 帝人株式会社の特許一覧 ▶ 学校法人 関西大学の特許一覧

特開2018-73997組紐状圧電素子およびそれを用いたデバイス
<>
  • 特開2018073997-組紐状圧電素子およびそれを用いたデバイス 図000003
  • 特開2018073997-組紐状圧電素子およびそれを用いたデバイス 図000004
  • 特開2018073997-組紐状圧電素子およびそれを用いたデバイス 図000005
  • 特開2018073997-組紐状圧電素子およびそれを用いたデバイス 図000006
  • 特開2018073997-組紐状圧電素子およびそれを用いたデバイス 図000007
  • 特開2018073997-組紐状圧電素子およびそれを用いたデバイス 図000008
  • 特開2018073997-組紐状圧電素子およびそれを用いたデバイス 図000009
  • 特開2018073997-組紐状圧電素子およびそれを用いたデバイス 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2018-73997(P2018-73997A)
(43)【公開日】2018年5月10日
(54)【発明の名称】組紐状圧電素子およびそれを用いたデバイス
(51)【国際特許分類】
   H01L 41/087 20060101AFI20180406BHJP
   H01L 41/113 20060101ALI20180406BHJP
   H01L 41/047 20060101ALI20180406BHJP
   H01L 41/193 20060101ALI20180406BHJP
   H01L 41/04 20060101ALI20180406BHJP
   G01L 1/16 20060101ALI20180406BHJP
   G06F 3/041 20060101ALI20180406BHJP
   D02G 3/04 20060101ALI20180406BHJP
   D02G 3/38 20060101ALI20180406BHJP
【FI】
   H01L41/087
   H01L41/113
   H01L41/047
   H01L41/193
   H01L41/04
   G01L1/16 B
   G06F3/041 495
   G06F3/041 640
   D02G3/04
   D02G3/38
【審査請求】未請求
【請求項の数】8
【出願形態】OL
【全頁数】24
(21)【出願番号】特願2016-212243(P2016-212243)
(22)【出願日】2016年10月28日
(71)【出願人】
【識別番号】000003001
【氏名又は名称】帝人株式会社
(71)【出願人】
【識別番号】399030060
【氏名又は名称】学校法人 関西大学
(74)【代理人】
【識別番号】100099759
【弁理士】
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100077517
【弁理士】
【氏名又は名称】石田 敬
(74)【代理人】
【識別番号】100087413
【弁理士】
【氏名又は名称】古賀 哲次
(74)【代理人】
【識別番号】100128495
【弁理士】
【氏名又は名称】出野 知
(74)【代理人】
【識別番号】100102990
【弁理士】
【氏名又は名称】小林 良博
(72)【発明者】
【氏名】田實 佳郎
(72)【発明者】
【氏名】小野 雄平
(72)【発明者】
【氏名】兼松 俊介
【テーマコード(参考)】
4L036
【Fターム(参考)】
4L036MA04
4L036MA39
4L036PA33
4L036RA25
4L036UA25
(57)【要約】
【課題】比較的小さな変形で生じる応力によっても、大きな電気信号を取り出すことが可能で、更にノイズ信号を抑制できる繊維状の圧電素子を提供すること。
【解決手段】導電性繊維で形成された芯部と、前記芯部を被覆するように組紐状の圧電性繊維で形成された鞘部と、前記鞘部の周囲に設けられた導電層とを備え、前記芯部の半径Rcに対する圧電性繊維からなる層の厚みdの比d/Rcが1.0以上であることを特徴とする組紐状圧電素子。
【選択図】図1
【特許請求の範囲】
【請求項1】
導電性繊維で形成された芯部と、前記芯部を被覆するように組紐状の圧電性繊維で形成された鞘部と、前記鞘部の周囲に設けられた導電層とを備え、前記芯部の半径Rcに対する圧電性繊維からなる層の厚みdの比d/Rcが1.0以上であることを特徴とする組紐状圧電素子。
【請求項2】
前記導電層による前記鞘部の被覆率が25%以上である、請求項1記載の組紐状圧電素子。
【請求項3】
前記導電層が繊維で形成されている、請求項1または2記載の組紐状圧電素子。
【請求項4】
請求項1〜3のいずれか一項に記載の組紐状圧電素子を含む布帛状圧電素子。
【請求項5】
前記布帛は、前記組紐状圧電素子の少なくとも一部と交差して接触する導電性繊維を更に含む、請求項4に記載の布帛状圧電素子。
【請求項6】
前記布帛を形成する繊維であり且つ前記組紐状圧電素子と交差する繊維のうちの30%以上が導電性繊維である、請求項5記載の布帛状圧電素子。
【請求項7】
請求項1〜3のいずれか一項に記載の組紐状圧電素子と、
印加された圧力に応じて前記組紐状圧電素子から出力される電気信号を増幅する増幅手段と、
前記増幅手段で増幅された電気信号を出力する出力手段と、
を備えるデバイス。
【請求項8】
請求項5または6に記載の布帛状圧電素子と、
印加された圧力に応じて前記布帛状圧電素子から出力される電気信号を増幅する増幅手段と、
前記増幅手段で増幅された電気信号を出力する出力手段と、
を備えるデバイス。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、圧電性繊維を用いた組紐を導電層で被覆した組紐状圧電素子を用いた布帛状圧電素子およびそれを用いたデバイスに関する。
【背景技術】
【0002】
近年、いわゆるウェアラブルセンサーが注目を浴びており、眼鏡型や腕時計といった形状の商品が世に出始めた。しかし、これらのデバイスは、装着しているという感覚があり、究極のウェアラブルである、布状、つまり衣類のような形状のものが望まれている。そのようなセンサーとして、圧電性繊維の圧電効果を用いた圧電素子が知られている。例えば、特許文献1には、2本の導電性繊維および1本の圧電性繊維を含み、これらが互いに接点を有しつつ、略同一平面上に配置されている圧電単位を含む圧電素子が開示されている。また、特許文献2には、圧電高分子からなる繊維状物、または成形物であり、これの軸方向に付加される張力によって圧電性を発生させるために、かかる張力の付加方向と異なる方向に捩りを加えて構成したことを特徴とする圧電材が開示されている。
【0003】
一方、近年、いわゆるタッチパネル方式を採用した入力装置、すなわちタッチ式入力装置が大幅に増加している。銀行ATMや駅の券売機のみならず、スマートフォン、携帯電話機、携帯ゲーム機、携帯音楽プレーヤなどにおいて、薄型ディスプレイ技術の発展と相まって、入力インターフェースとしてタッチパネル方式を採用した機器が大幅に増加している。そのようなタッチパネル方式を実現する手段として、圧電シートや圧電性繊維を用いる方式が知られている。例えば、特許文献3には、所定方向に向く延伸軸を有するL型ポリ乳酸からなる圧電シートを用いるタッチパネルが開示されている。
【0004】
これらウェアラブルセンサーやタッチパネル方式のセンサーでは、圧電材料に印加される小さな変形により圧電材料内に生じる小さな応力に対しても、大きな電気信号を取り出すことが望まれる。例えば、指の曲げ伸ばし動作や指などで表面を擦る行為により圧電材料に生じる比較的小さな応力によっても大きな電気信号を安定的に取り出すことが望まれる。
【0005】
特許文献1の圧電性繊維は、様々な用途に適用可能な優れた素材であるが、比較的小さな変形で生じる応力に対して大きい電気信号を出力できるとは必ずしもいえず、大きな電気信号を得る技術についても明示していない。また、特許文献1に記載の圧電素子は、信号線となる導電性繊維がむき出しであるためノイズの影響を受けやすく、また、外部応力による損傷を受けやすい。特許文献1に記載の圧電素子では、実用化に対して依然として改善の余地があった。
【0006】
特許文献2の圧電性繊維は、特殊な製造方法で圧電性繊維をあらかじめ捩じらせておくことにより、圧電性繊維への引張や圧縮に対して電気信号を出力できる。しかし、特許文献2には、圧電性繊維を曲げたり伸ばしたりする屈曲や、圧電性繊維の表面を擦る行為によるせん断応力に対して十分な電気信号を発生させる技術は開示されていない。したがって、このような圧電性繊維を用いた場合、表面を擦るような比較的小さい変形で生じる応力だけで十分な電気信号を取り出すことは困難である。
【0007】
特許文献3の圧電シートは、圧電シートに対する変形(応力)によって電気信号を出力できる。しかしながら、そもそもシート状であるために柔軟性に乏しく布のように自由に屈曲できるような使い方は不可能である。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】国際公開第2014/058077号
【特許文献2】特開2000−144545号公報
【特許文献3】特開2011−253517号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明の目的は、比較的小さな変形で生じる応力によっても、大きな電気信号を取り出すことが可能で、またノイズ信号を抑制可能であり、さらに外部からの損傷を受けにくい繊維状の圧電素子を提供することである。
【課題を解決するための手段】
【0010】
本発明者らは、導電性繊維と圧電性繊維との組み合わせとして、芯となる導電性繊維の表面を組紐状の圧電性繊維で被覆し、更にその周囲に導電層を設けた組紐状圧電素子により効率よく電気信号を取り出すことが可能で、かつ、ノイズ信号を抑制できることを発見し、さらに芯部と圧電性繊維の太さの関係を特定の範囲とすることで外部からの損傷を受けにくくなることを見出し、本発明に到達した。
【0011】
すなわち、本発明は以下の発明を包含する。
(1)導電性繊維で形成された芯部と、前記芯部を被覆するように組紐状の圧電性繊維で形成された鞘部と、前記鞘部の周囲に設けられた導電層とを備え、前記芯部の半径Rcに対する圧電性繊維からなる層の厚みdの比d/Rcが1.0以上であることを特徴とする組紐状圧電素子。
(2)前記導電層による前記鞘部の被覆率が25%以上である、(1)に記載の組紐状圧電素子。
(3)前記導電層が繊維で形成されている、(1)または(2)に記載の組紐状圧電素子。
(4)(1)〜(3)のいずれか一項に記載の組紐状圧電素子を含む布帛状圧電素子。
(5)前記布帛は、前記組紐状圧電素子の少なくとも一部と交差して接触する導電性繊維を更に含む、(4)に記載の布帛状圧電素子。
(6)前記布帛を形成する繊維であり且つ前記組紐状圧電素子と交差する繊維のうちの30%以上が導電性繊維である、(5)に記載の布帛状圧電素子。
(7)(1)〜(3)のいずれか一項に記載の組紐状圧電素子と、
印加された圧力に応じて前記組紐状圧電素子から出力される電気信号を増幅する増幅手段と、
前記増幅手段で増幅された電気信号を出力する出力手段と、
を備えるデバイス。
(8)(5)または(6)に記載の布帛状圧電素子と、
印加された圧力に応じて前記布帛状圧電素子から出力される電気信号を増幅する増幅手段と、
前記増幅手段で増幅された電気信号を出力する出力手段と、
を備えるデバイス。
【発明の効果】
【0012】
本発明により、比較的小さな変形で生じる応力によっても、大きな電気信号を取り出すことが可能で、更にノイズ信号を抑制できる繊維状の圧電素子を提供できる。
【図面の簡単な説明】
【0013】
図1】実施形態に係る組紐状圧電素子の構成例を示す模式図である。
図2】実施形態に係る組紐状圧電素子の断面を示す顕微鏡写真である。
図3】実施形態に係る布帛状圧電素子の構成例を示す模式図である。
図4】実施形態に係る圧電素子を備えるデバイスを示すブロック図である。
図5】実施形態に係る組紐状圧電素子を備えるデバイスの構成例を示す模式図である。
図6】実施形態に係る布帛状圧電素子を備えるデバイスの構成例を示す模式図である。
図7】実施形態に係る布帛状圧電素子を備えるデバイスの他の構成例を示す模式図である。
図8】実施形態に係る布帛状圧電素子を備えるデバイスの他の構成例を示す模式図である。
【発明を実施するための形態】
【0014】
(組紐状圧電素子)
図1は実施形態に係る組紐状圧電素子の構成例を示す模式図である。
組紐状圧電素子1は、導電性繊維Bで形成された芯部3と、芯部3を被覆するように組紐状の圧電性繊維Aで形成された鞘部2と、鞘部2を被覆する導電層4とを備えている。導電層4は芯部3の導電繊維の対極となる電極としての機能と、芯部3の導電繊維を外部の電磁波から遮蔽し、芯部3の導電繊維に発生するノイズ信号を抑制するシールドとしての機能を同時に有する。
【0015】
導電層4による鞘部2の被覆率は25%以上が好ましい。ここで被覆率とは、導電層4を鞘部2へ投影した際の導電層4に含まれる導電性物質5の面積と鞘部2の表面積の比率であり、その値は25%以上が好ましく、50%以上がより好ましく、75%以上であることがさらに好ましい。導電層4の被覆率が25%を下回るとノイズ信号の抑制効果が十分に発揮されない場合がある。導電性物質5が導電層4の表面へ露出していない場合、例えば導電性物質5を内包する繊維を導電層4として使用して鞘部2を被覆している場合は、その繊維の鞘部2へ投影した際の面積と鞘部2の表面積の比率を被覆率とすることができる。
導電性物質5とは、導電層4に含まれる導電性物質のことであり、公知のあらゆるものが該当する。
【0016】
組紐状圧電素子1では、少なくとも一本の導電性繊維Bの外周面を多数の圧電性繊維Aが緻密に取り巻いている。組紐状圧電素子1に変形が生じると、多数の圧電性繊維Aそれぞれに変形による応力が生じ、それにより多数の圧電性繊維Aそれぞれに電場が生じ(圧電効果)、その結果、導電性繊維Bを取り巻く多数の圧電性繊維Aの電場を重畳した電圧変化が導電性繊維Bに生じる。すなわち圧電性繊維Aの組紐状の鞘部2を用いない場合と比較して導電性繊維Bからの電気信号が増大する。それにより、組紐状圧電素子1では、比較的小さな変形で生じる応力によっても、大きな電気信号を取り出すことが可能となる。なお、導電性繊維Bは複数本であってもよい。
【0017】
組紐状圧電素子1は、その中心軸方向への伸縮変形に対して選択的に大きな電気信号を出力するか、あるいはその中心軸を軸としたねじり変形に対して選択的に大きな電気信号を出力するものが好ましく、その中心軸方向への伸縮変形に対して選択的に大きな電気信号を出力するものがより好ましい。
中心軸方向への伸縮変形に対して選択的に大きな電気信号を出力する組紐状圧電素子1としては、例えば、圧電性繊維Aとして、配向した圧電性高分子を円筒形または円柱形に配置した構造体であり、圧電性高分子が配置された円筒形または円柱形の中心軸の方向に対する圧電性高分子の配向角度が15°以上75°以下であり、圧電性高分子は配向軸を3軸とした時の圧電定数d14の絶対値が0.1pC/N以上1000pC/N以下の値を有する結晶性高分子を主成分として含む、構造体であることが好ましい。さらに該圧電性高分子は、圧電定数d14の値が正の結晶性高分子を主成分として含むP体と、負の結晶性高分子を主成分として含むN体とを含み、該構造体の中心軸が1cmの長さを持つ部分について、配向軸がZ撚り方向にらせんを巻いて配置された該P体の質量をZP、配向軸がS撚り方向にらせんを巻いて配置された該P体の質量をSP、配向軸がZ撚り方向にらせんを巻いて配置された該N体の質量をZN、配向軸がS撚り方向にらせんを巻いて配置された該N体の質量をSN、とし、(ZP+SN)と(SP+ZN)とのうち小さい方をT1、大きい方をT2としたとき、T1/T2の値が0以上0.8以下である、そのような構造体であることがより好ましい。
【0018】
一方、中心軸を軸としたねじり変形に対して選択的に大きな電気信号を出力する組紐状圧電素子1としては、例えば、圧電性繊維Aとして、配向した圧電性高分子を円筒形または円柱形に配置した構造体であり、圧電性高分子が配置された円筒形または円柱形の中心軸の方向に対する圧電性高分子の配向角度が0°以上40°以下または50°以上90°以下であり、圧電性高分子は配向軸を3軸とした時の圧電定数d14の絶対値が0.1pC/N以上1000pC/N以下の値を有する結晶性高分子を主成分として含む、構造体であることが好ましい。さらに該圧電性高分子は、圧電定数d14の値が正の結晶性高分子を主成分として含むP体と、負の結晶性高分子を主成分として含むN体とを含み、該構造体の中心軸が1cmの長さを持つ部分について、配向軸がZ撚り方向にらせんを巻いて配置された該P体の質量をZP、配向軸がS撚り方向にらせんを巻いて配置された該P体の質量をSP、配向軸がZ撚り方向にらせんを巻いて配置された該N体の質量をZN、配向軸がS撚り方向にらせんを巻いて配置された該N体の質量をSN、とし、(ZP+SN)と(SP+ZN)とのうち小さい方をT1、大きい方をT2としたとき、T1/T2の値が0.8超1.0以下である、そのような構造体であることがより好ましい。
【0019】
なお、d14の値は成型条件や純度および測定雰囲気によって異なる値を示すが、本発明においては、実際に使用される圧電性高分子中の結晶性高分子の結晶化度および結晶配向度を測定し、それと同等の結晶化度および結晶配向度を有する1軸延伸フィルムを当該結晶性高分子を用いて作成し、そのフィルムのd14の絶対値が、実際に使用される温度において0.1pC/N以上1000pC/N以下の値を示せばよく、本実施形態の圧電性高分子に含まれる結晶性高分子としては、後述されるような特定の結晶性高分子には限定されない。フィルムサンプルのd14の測定は公知の様々な方法を取ることができるが、例えばフィルムサンプルの両面に金属を蒸着して電極としたサンプルを、延伸方向から45度傾いた方向に4辺を有する長方形に切り出し、その長尺方向に引張荷重をかけた時に両面の電極に発生する電荷を測定することで、d14の値を測定することができる。
【0020】
本発明の圧電性繊維として主成分としてポリ乳酸が含まれる繊維を用いる場合、ポリ乳酸中の乳酸ユニットは90モル%以上であることが好ましく、95モル%以上であることがより好ましく、98モル%以上がさらに好ましい。
【0021】
なお、組紐状圧電素子1では、本発明の目的を達成する限り、鞘部2では圧電性繊維A以外の他の繊維と組み合わせて混繊等を行ってもよいし、芯部3では導電性繊維B以外の他の繊維と組み合わせて混繊等を行ってもよい。
【0022】
導電性繊維Bの芯部3と、組紐状の圧電性繊維Aの鞘部2と、鞘部2を被覆する導電層4とで構成される組紐状圧電素子の長さは特に限定はない。例えば、その組紐状圧電素子は製造において連続的に製造され、その後に必要な長さに切断して利用してもよい。組紐状圧電素子の長さは1mm〜10m、好ましくは、5mm〜2m、より好ましくは1cm〜1mである。長さが短過ぎると繊維形状である利便性が失われ、また、長さが長過ぎると導電性繊維Bの抵抗値を考慮する必要が出てくるであろう。
以下、各構成について詳細に説明する。
【0023】
(導電性繊維)
導電性繊維Bとしては、導電性を示すものであればよく、公知のあらゆるものが用いられる。導電性繊維Bとしては、例えば、金属繊維、導電性高分子からなる繊維、炭素繊維、繊維状あるいは粒状の導電性フィラーを分散させた高分子からなる繊維、あるいは繊維状物の表面に導電性を有する層を設けた繊維が挙げられる。繊維状物の表面に導電性を有する層を設ける方法としては、金属コート、導電性高分子コート、導電性繊維の巻付けなどが挙げられる。なかでも金属コートが導電性、耐久性、柔軟性などの観点から好ましい。金属をコートする具体的な方法としては、蒸着、スパッタ、電解メッキ、無電解メッキなどが挙げられるが生産性などの観点からメッキが好ましい。このような金属をメッキされた繊維は金属メッキ繊維ということができる。
【0024】
金属をコートされるベースの繊維として、導電性の有無によらず公知の繊維を用いることができ、例えば、ポリエステル繊維、ナイロン繊維、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、塩化ビニル繊維、アラミド繊維、ポリスルホン繊維、ポリエーテル繊維、ポリウレタン繊維等の合成繊維の他、綿、麻、絹等の天然繊維、アセテート等の半合成繊維、レーヨン、キュプラ等の再生繊維を用いることができる。ベースの繊維はこれらに限定されるものではなく、公知の繊維を任意に用いることができ、これらの繊維を組み合わせて用いてもよい。
【0025】
ベースの繊維にコートされる金属は導電性を示し、本発明の効果を奏する限り、いずれを用いてもよい。例えば、金、銀、白金、銅、ニッケル、スズ、亜鉛、パラジウム、酸化インジウム錫、硫化銅など、およびこれらの混合物や合金などを用いることができる。
【0026】
導電性繊維Bに屈曲耐性のある金属コートした有機繊維を使用すると、導電性繊維が折れることが非常に少なく、圧電素子を用いたセンサーとしての耐久性や安全性に優れる。
【0027】
導電性繊維Bはフィラメントを複数本束ねたマルチフィラメントであっても、また、フィラメント一本からなるモノフィラメントであってもよい。マルチフィラメントの方が電気特性の長尺安定性の観点で好ましい。モノフィラメント(紡績糸を含む)の場合、その単糸径は1μm〜5000μmであり、好ましくは2μm〜100μmである。さらに好ましくは3μm〜50μmである。マルチフィラメントの場合、フィラメント数としては、1本〜100000本が好ましく、より好ましくは5本〜500本、さらに好ましくは10本〜100本である。ただし、導電性繊維Bの繊度・本数とは、組紐を作製する際に用いる芯部3の繊度・本数であり、複数本の単糸(モノフィラメント)で形成されるマルチフィラメントも一本の導電性繊維Bと数えるものとする。ここで芯部3とは、導電性繊維以外の繊維を用いた場合であっても、それを含めた全体の量とする。
【0028】
繊維の直径が小さいと強度が低下しハンドリングが困難となり、また、直径が大きい場合にはフレキシブル性が犠牲になる。導電性繊維Bの断面形状としては円または楕円であることが、圧電素子の設計および製造の観点で好ましいが、これに限定されない。
【0029】
また、圧電性高分子からの電気出力を効率よく取り出すため、電気抵抗は低いことが好ましく、体積抵抗率としては10-1Ω・cm以下であることが好ましく、より好ましくは10-2Ω・cm以下、さらに好ましくは10-3Ω・cm以下である。ただし、電気信号の検出で十分な強度が得られるのであれば導電性繊維Bの抵抗率はこの限りではない。
【0030】
導電性繊維Bは、本発明の用途から、繰り返しの曲げやねじりといった動きに対して耐性がなければならない。その指標としては、結節強さが、より大きいものが好まれる。結節強さはJIS L1013 8.6の方法で測定することができる。本発明に適当な結節強さの程度としては、0.5cN/dtex以上であることが好ましく、1.0cN/dtex以上であることがより好ましく、1.5cN/dtex以上であることがさらに好ましく、2.0cN/dtex以上であることが最も好ましい。また、別の指標としては、曲げ剛性が、より小さいものが好まれる。曲げ剛性は、カトーテック(株)製KES―FB2純曲げ試験機などの測定装置で測定されるのが一般的である。本発明に適当な曲げ剛性の程度としては、東邦テナックス(株)製の炭素繊維“テナックス”(登録商標)HTS40−3Kよりも小さいほうが好ましい。具体的には、導電性繊維の曲げ剛性が0.05×10-4N・m2/m以下であることが好ましく、0.02×10-4N・m2/m以下であることがより好ましく、0.01×10-4N・m2/m以下であることがさらに好ましい。
【0031】
(圧電性繊維)
圧電性繊維Aの材料である圧電性高分子としてはポリフッ化ビニリデンやポリ乳酸のような圧電性を示す高分子を利用できるが、本実施形態では上記のように圧電性繊維Aは主成分として配向軸を3軸とした時の圧電定数d14の絶対値が高い結晶性高分子、とりわけポリ乳酸を含むことが好適である。ポリ乳酸は、例えば溶融紡糸後に延伸によって容易に配向して圧電性を示し、ポリフッ化ビニリデンなどで必要となる電界配向処理が不要な点で生産性に優れている。しかしこのことは、本発明を実施するに際してポリフッ化ビニリデンその他の圧電性材料の使用を排除することを意図するものではない。
【0032】
ポリ乳酸としては、その結晶構造によって、L−乳酸、L−ラクチドを重合してなるポリ−L−乳酸、D−乳酸、D−ラクチドを重合してなるポリ−D−乳酸、さらに、それらのハイブリッド構造からなるステレオコンプレックスポリ乳酸などがあるが、圧電性を示すものであればいずれも利用できる。圧電率の高さの観点で好ましくは、ポリ−L−乳酸、ポリ−D−乳酸である。ポリ−L−乳酸、ポリ−D−乳酸はそれぞれ、同じ応力に対して分極が逆になるために、目的に応じてこれらを組み合わせて使用することも可能である。
【0033】
ポリ乳酸の光学純度は99%以上であることが好ましく、99.3%以上であることがより好ましく、99.5%以上であることがさらに好ましい。光学純度が99%未満であると著しく圧電率が低下する場合があり、圧電性繊維Aの形状変化よって十分な電気信号を得ることが難しくなる場合がある。特に、圧電性繊維Aは、主成分としてポリ−L−乳酸またはポリ−D−乳酸を含み、これらの光学純度が99%以上であることが好ましい。
【0034】
ポリ乳酸を主成分とする圧電性繊維Aは、製造時に延伸されて、その繊維軸方向に一軸配向している。さらに、圧電性繊維Aは、その繊維軸方向に一軸配向しているだけでなく、ポリ乳酸の結晶を含むものであることが好ましく、一軸配向したポリ乳酸の結晶を含むものであることがより好ましい。なぜなら、ポリ乳酸はその結晶性が高いことおよび一軸配向していることでより大きな圧電性を示し、d14の絶対値が高くなるためである。
【0035】
結晶性および一軸配向性はホモPLA結晶化度Xhomo(%)および結晶配向度Ao(%)で求められる。本発明の圧電性繊維Aとしては、ホモPLA結晶化度Xhomo(%)および結晶配向度Ao(%)が下記式(1)を満たすことが好ましい。
homo×Ao×Ao÷106≧0.26 (1)
上記式(1)を満たさない場合、結晶性および/または一軸配向性が十分でなく、動作に対する電気信号の出力値が低下したり、特定方向の動作に対する信号の感度が低下したりするおそれがある。上記式(1)の左辺の値は、0.28以上がより好ましく、0.3以上がさらに好ましい。ここで、各々の値は下記に従って求める。
【0036】
ホモポリ乳酸結晶化度Xhomo
ホモポリ乳酸結晶化度Xhomoについては、広角X線回折分析(WAXD)による結晶構造解析から求める。広角X線回折分析(WAXD)では、リガク製ultrax18型X線回折装置を用いて透過法により、以下条件でサンプルのX線回折図形をイメージングプレートに記録する。
X線源: Cu−Kα線(コンフォーカル ミラー)
出力: 45kV×60mA
スリット: 1st:1mmΦ,2nd:0.8mmΦ
カメラ長: 120mm
積算時間: 10分
サンプル: 35mgのポリ乳酸繊維を引き揃え3cmの繊維束とする。
得られるX線回折図形において方位角にわたって全散乱強度Itotalを求め、ここで2θ=16.5°,18.5°,24.3°付近に現れるホモポリ乳酸結晶に由来する各回折ピークの積分強度の総和ΣIHMiを求める。これらの値から下式(2)に従い、ホモポリ乳酸結晶化度Xhomoを求める。
ホモポリ乳酸結晶化度Xhomo(%)=ΣIHMi/Itotal×100 (2)
なお、ΣIHMiは、全散乱強度においてバックグランドや非晶による散漫散乱を差し引くことによって算出する。
【0037】
(2)結晶配向度Ao:
結晶配向度Aoについては、上記の広角X線回折分析(WAXD)により得られるX線回折図形において、動径方向の2θ=16.5°付近に現れるホモポリ乳酸結晶に由来する回折ピークについて、方位角(°)に対する強度分布をとり、得られた分布プロファイルの半値幅の総計ΣWi(°)から次式(3)より算出する。
結晶配向度Ao(%)=(360−ΣWi)÷360×100 (3)
【0038】
なお、ポリ乳酸は加水分解が比較的速いポリエステルであるから、耐湿熱性が問題となる場合においては、公知の、イソシアネート化合物、オキサゾリン化合物、エポキシ化合物、カルボジイミド化合物などの加水分解防止剤を添加してもよい。また、必要に応じてリン酸系化合物などの酸化防止剤、可塑剤、光劣化防止剤などを添加して物性改良してもよい。
【0039】
圧電性繊維Aはフィラメントを複数本束ねたマルチフィラメントであっても、また、フィラメント一本からなるモノフィラメントであってもよい。モノフィラメント(紡績糸を含む)の場合、その単糸径は1μm〜5mmであり、好ましくは5μm〜2mm、さらに好ましくは10μm〜1mmである。マルチフィラメントの場合、その単糸径は0.1μm〜5mmであり、好ましくは2μm〜100μm、さらに好ましくは3μm〜50μmである。マルチフィラメントのフィラメント数としては、1本〜100000本が好ましく、より好ましくは50本〜50000本、さらに好ましくは100本〜20000本である。ただし、圧電性繊維Aの繊度や本数については、組紐を作製する際のキャリア1つあたりの繊度、本数であり、複数本の単糸(モノフィラメント)で形成されるマルチフィラメントも一本の圧電性繊維Aと数えるものとする。ここで、キャリア1つの中に、圧電性繊維以外の繊維を用いた場合であっても、それを含めた全体の量とする。
【0040】
このような圧電性高分子を圧電性繊維Aとするためには、高分子から繊維化するための公知の手法を、本発明の効果を奏する限りいずれも採用することができる。例えば、圧電性高分子を押し出し成型して繊維化する手法、圧電性高分子を溶融紡糸して繊維化する手法、圧電性高分子を乾式あるいは湿式紡糸により繊維化する手法、圧電性高分子を静電紡糸により繊維化する手法、フィルムを形成した後に細くカットする手法、などを採用することができる。これらの紡糸条件は、採用する圧電性高分子に応じて公知の手法を適用すればよく、通常は工業的に生産の容易な溶融紡糸法を採用すればよい。さらに、繊維を形成後には形成された繊維を延伸する。それにより一軸延伸配向しかつ結晶を含む大きな圧電性を示す圧電性繊維Aが形成される。
【0041】
また、圧電性繊維Aは、上記のように作製されたものを組紐とする前に、染色、撚糸、合糸、熱処理などの処理をすることができる。
【0042】
さらに、圧電性繊維Aは、組紐を形成する際に繊維同士が擦れて断糸したり、毛羽が出たりする場合があるため、その強度と耐摩耗性は高い方が好ましく、強度は1.5cN/dtex以上であることが好ましく、2.0cN/dtex以上であることがより好ましく、2.5cN/dtex以上であることがさらに好ましく、3.0cN/dtex以上であることが最も好ましい。耐摩耗性は、JIS L1095 9.10.2 B法などで評価することができ、摩擦回数は100回以上が好ましく、1000回以上であることがより好ましく、5000回以上であることがさらに好ましく、10000回以上であることが最も好ましい。耐摩耗性を向上させるための方法は特に限定されるものではなく、公知のあらゆる方法を用いることができ、例えば、結晶化度を向上させたり、微粒子を添加したり、表面加工したりすることができる。また、組紐に加工する際に、繊維に潤滑剤を塗布して摩擦を低減させることもできる。
【0043】
また、圧電性繊維の収縮率は、前述した導電性繊維の収縮率との差が小さいことが好ましい。収縮率差が大きいと、組紐作製後や布帛作製後の後処理工程や実使用時に熱がかかった時や経時変化により組紐が曲がったり、布帛の平坦性が悪くなったり、圧電信号が弱くなってしまう場合がある。収縮率を後述の沸水収縮率で定量化した場合、圧電性繊維の沸水収縮率S(p)および導電性繊維の沸水収縮率S(c)が下記式(4)を満たすことが好適である。
|S(p)−S(c)|≦10 (4)
上記式(4)の左辺は5以下であることがより好ましく、3以下であればさらに好ましい。
【0044】
また、圧電性繊維の収縮率は、導電性繊維以外の繊維、例えば絶縁性繊維の収縮率との差も小さいことが好ましい。収縮率差が大きいと、組紐作製後や布帛作製後の後処理工程や実使用時に熱がかかった時や経時変化により組紐が曲がったり、布帛の平坦性が悪くなったり、圧電信号が弱くなってしまう場合がある。収縮率を沸水収縮率で定量化した場合、圧電性繊維の沸水収縮率S(p)および絶縁性繊維の沸水収縮率S(i)が下記式(5)を満たすことが好適である。
|S(p)−S(i)|≦10 (5)
上記式(5)の左辺は5以下であることがより好ましく、3以下であればさらに好ましい。
【0045】
また、圧電性繊維の収縮率は小さい方が好ましい。例えば収縮率を沸水収縮率で定量化した場合、圧電性繊維の収縮率は15%以下であることが好ましく、より好ましくは10%以下、さらに好ましくは5%以下、最も好ましくは3%以下である。収縮率を下げる手段としては、公知のあらゆる方法を適用することができ、例えば、熱処理により非晶部の配向緩和や結晶化度を上げることにより収縮率を低減することができ、熱処理を実施するタイミングは特に限定されず、延伸後、撚糸後、組紐化後、布帛化後などが挙げられる。なお、上述の沸水収縮率は以下の方法で測定するものとする。枠周1.125mの検尺機で捲数20回のカセを作り、0.022cN/dtexの荷重を掛けて、スケール板に吊るして初期のカセ長L0を測定した。その後、このカセを100℃の沸騰水浴中で30分間処理後、放冷し再び上記荷重を掛けてスケール板に吊るし収縮後のカセ長Lを測定した。測定されたL0およびLを用いて下記式(6)により沸水収縮率を計算する。
沸水収縮率=(L0−L)/L0×100(%) (6)
【0046】
(被覆)
導電性繊維B、すなわち芯部3は、圧電性繊維A、すなわち組紐状の鞘部2で表面が被覆されている。導電性繊維Bを被覆する鞘部2の厚みは1μm〜10mmであることが好ましく、5μm〜5mmであることがより好ましく、10μm〜3mmであることがさらに好ましい、20μm〜1mmであることが最も好ましい。薄すぎると強度の点で問題となる場合があり、また、厚すぎると組紐状圧電素子1が硬くなり変形し難くなる場合がある。なお、ここで言う鞘部2とは芯部3に隣接する層のことを指す。
【0047】
組紐状圧電素子1において、鞘部2の圧電性繊維Aの総繊度は、芯部3の導電性繊維Bの総繊度の1/2倍以上、20倍以下であることが好ましく、1倍以上、15倍以下であることがより好ましく、2倍以上、10倍以下であることがさらに好ましい。圧電性繊維Aの総繊度が導電性繊維Bの総繊度に対して小さ過ぎると、導電性繊維Bを囲む圧電性繊維Aが少な過ぎて導電性繊維Bが十分な電気信号を出力できず、さらに導電性繊維Bが近接する他の導電性繊維に接触するおそれがある。圧電性繊維Aの総繊度が導電性繊維Bの総繊度に対して大き過ぎると、導電性繊維Bを囲む圧電性繊維Aが多過ぎて組紐状圧電素子1が硬くなり変形し難くなる。すなわち、いずれの場合にも組紐状圧電素子1がセンサーとして十分に機能しなくなる。
ここでいう総繊度とは、鞘部2を構成する圧電性繊維A全ての繊度の和であり、例えば、一般的な8打組紐の場合には、8本の繊維の繊度の総和となる。
【0048】
また、組紐状圧電素子1において、鞘部2の圧電性繊維Aの一本あたりの繊度は、導電性繊維Bの総繊度の1/20倍以上、2倍以下であることが好ましく、1/15倍以上、1.5倍以下であることがより好ましく、1/10倍以上、1倍以下であることがさらに好ましい。圧電性繊維A一本あたりの繊度が導電性繊維Bの総繊度に対して小さ過ぎると、圧電性繊維Aが少な過ぎて導電性繊維Bが十分な電気信号を出力できず、さらに圧電性繊維Aが切断するおそれがある。圧電性繊維A一本あたりの繊度が導電性繊維Bの総繊度に対して大き過ぎると、圧電性繊維Aが太過ぎて組紐状圧電素子1が硬くなり変形し難くなる。すなわち、いずれの場合にも組紐状圧電素子1がセンサーとして十分に機能しなくなる。
【0049】
なお、導電性繊維Bに金属繊維を用いた場合や、金属繊維を導電性繊維Bあるいは圧電性繊維Aに混繊した場合は、繊度の比率は上記の限りではない。本発明において、上記比率は、接触面積や被覆率、すなわち、面積および体積の観点で重要であるからである。例えば、それぞれの繊維の比重が2を超えるような場合には、繊維の平均断面積の比率が上記繊度の比率であることが好ましい。
【0050】
圧電性繊維Aと導電性繊維Bとはできるだけ密着していることが好ましいが、密着性を改良するために、導電性繊維Bと圧電性繊維Aとの間にアンカー層や接着層などを設けてもよい。
【0051】
被覆の方法は導電性繊維Bを芯糸として、その周りに圧電性繊維Aを組紐状に巻きつける方法が取られる。一方、圧電性繊維Aの組紐の形状は、印加された荷重で生じる応力に対して電気信号を出力することが出来れば特に限定されるものではないが、芯部3を有する8打組紐や16打組紐が好ましい。
【0052】
導電性繊維Bと圧電性繊維Aの形状としては特に限定されるものではないが、できるだけ同心円状に近いことが、好ましい。なお、導電性繊維Bとしてマルチフィラメントを用いる場合、圧電性繊維Aは、導電性繊維Bのマルチフィラメントの表面(繊維周面)の少なくとも一部が接触しているように被覆していればよく、マルチフィラメントを構成するすべてのフィラメント表面(繊維周面)に圧電性繊維Aが被覆していてもよいし、被覆していなくともよい。導電性繊維Bのマルチフィラメントを構成する内部の各フィラメントへの圧電性繊維Aの被覆状態は、圧電性素子としての性能、取扱い性等を考慮して、適宜設定すればよい。
【0053】
(導電層)
導電層4は芯部3の導電繊維の対極となる電極としての機能と、芯部3の導電繊維を外部の電磁波から遮蔽し、芯部3の導電繊維に発生するノイズ信号を抑制するシールドとしての機能とを同時に有することができる。導電層4はシールドとして機能するため、接地(アースまたは電子回路のグランドに接続)されることが好ましい。それにより、例えば布帛状圧電素子7の上下に電磁波シールド用の導電性の布帛を重ねなくても、組紐状圧電素子7のS/N比(信号対雑音比)を著しく向上させることができる。導電層4の様態としては、コーティングの他、フィルム、布帛、繊維の巻き付けが考えられ、またそれらを組み合わせてもよい。
【0054】
導電層4を形成するコーティングには導電性を示す物質を含むものが使用されていればよく、公知のあらゆるものが用いられる。例えば、金属、導電性高分子、導電性フィラーを分散させた高分子が挙げられる。
【0055】
導電層4をフィルムの巻き付けにより形成する場合は、導電性高分子、導電性フィラーを分散させた高分子を製膜して得られるフィルムが用いられ、また表面に導電性を有する層を設けたフィルムが用いられてもよい。
【0056】
導電層4を布帛の巻き付けにより形成する場合は、後述する導電性繊維6を構成成分とする布帛が用いられる。
【0057】
導電層4を繊維の巻き付けにより形成する場合、その手法としては、カバーリング、編物、組物が考えられる。また、使用する繊維は、導電性繊維6であり、導電性繊維6は、上記導電性繊維Bと同一種であっても異種の導電性繊維であってもよい。導電性繊維6としては、例えば、金属繊維、導電性高分子からなる繊維、炭素繊維、繊維状あるいは粒状の導電性フィラーを分散させた高分子からなる繊維、あるいは繊維状物の表面に導電性を有する層を設けた繊維が挙げられる。繊維状物の表面に導電性を有する層を設ける方法としては、金属コート、導電性高分子コート、導電性繊維の巻付けなどが挙げられる。なかでも金属コートが導電性、耐久性、柔軟性などの観点から好ましい。金属をコートする具体的な方法としては、蒸着、スパッタ、電解メッキ、無電解メッキなどが挙げられるが生産性などの観点からメッキが好ましい。このような金属をメッキされた繊維は金属メッキ繊維ということができる。
【0058】
金属をコートされるベースの繊維として、導電性の有無によらず公知の繊維を用いることができ、例えば、ポリエステル繊維、ナイロン繊維、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、塩化ビニル繊維、アラミド繊維、ポリスルホン繊維、ポリエーテル繊維、ポリウレタン繊維等の合成繊維の他、綿、麻、絹等の天然繊維、アセテート等の半合成繊維、レーヨン、キュプラ等の再生繊維を用いることができる。ベースの繊維はこれらに限定されるものではなく、公知の繊維を任意に用いることができ、これらの繊維を組み合わせて用いてもよい。
【0059】
ベースの繊維にコートされる金属は導電性を示し、本発明の効果を奏する限り、いずれを用いてもよい。例えば、金、銀、白金、銅、ニッケル、スズ、亜鉛、パラジウム、酸化インジウム錫、硫化銅など、およびこれらの混合物や合金などを用いることができる。
【0060】
導電性繊維6に屈曲耐性のある金属コートした有機繊維を使用すると、導電性繊維が折れることが非常に少なく、圧電素子を用いたセンサーとしての耐久性や安全性に優れる。
【0061】
導電性繊維6はフィラメントを複数本束ねたマルチフィラメントであっても、また、フィラメント一本からなるモノフィラメントであってもよい。マルチフィラメントの方が電気特性の長尺安定性の観点で好ましい。モノフィラメント(紡績糸を含む)の場合、その単糸径は1μm〜5000μmであり、好ましくは2μm〜100μmである。さらに好ましくは3μm〜50μmである。マルチフィラメントの場合、フィラメント数としては、1本〜100000本が好ましく、より好ましくは5本〜500本、さらに好ましくは10本〜100本である。
【0062】
繊維の直径が小さいと強度が低下しハンドリングが困難となり、また、直径が大きい場合にはフレキシブル性が犠牲になる。導電性繊維6の断面形状としては円または楕円であることが、圧電素子の設計および製造の観点で好ましいが、これに限定されない。
【0063】
また、ノイズ信号の抑制効果を高めるため、電気抵抗は低いことが好ましく、体積抵抗率としては10-1Ω・cm以下であることが好ましく、より好ましくは10-2Ω・cm以下、さらに好ましくは10-3Ω・cm以下である。ただし、ノイズ信号の抑制効果が得られるのであれば抵抗率はこの限りではない。
【0064】
導電性繊維6は、本発明の用途から、繰り返しの曲げやねじりといった動きに対して耐性がなければならない。その指標としては、結節強さが、より大きいものが好まれる。結節強さはJIS L1013 8.6の方法で測定することができる。本発明に適当な結節強さの程度としては、0.5cN/dtex以上であることが好ましく、1.0cN/dtex以上であることがより好ましく、1.5cN/dtex以上であることがさらに好ましく、2.0cN/dtex以上であることが最も好ましい。また、別の指標としては、曲げ剛性が、より小さいものが好まれる。曲げ剛性は、カトーテック(株)製KES―FB2純曲げ試験機などの測定装置で測定されるのが一般的である。本発明に適当な曲げ剛性の程度としては、東邦テナックス(株)製の炭素繊維“テナックス”(登録商標)HTS40−3Kよりも小さいほうが好ましい。具体的には、導電性繊維の曲げ剛性が0.05×10-4N・m2/m以下であることが好ましく、0.02×10-4N・m2/m以下であることがより好ましく、0.01×10-4N・m2/m以下であることがさらに好ましい。
【0065】
また、芯部の導電体と電磁波シールド層の導電体を2極の電極として圧電性高分子(誘電体)を挟んだコンデンサ状の圧電素子とみなすことができる。変形により圧電性構造体に発生する分極を効果的に取り出すため、これらの電極間の絶縁抵抗の値としては、3Vの直流電圧で測定したとき、1MΩ以上であることが好ましく、10MΩ以上であることがより好ましく、100MΩ以上であることがさらに好ましい。また、これらの電極間に1MHzの交流電圧を与えた時の応答を解析して得られる、等価直列抵抗の値Rsおよび等価直列容量Csの値についても、変形により圧電性構造体に発生する分極を効果的に取り出し、応答性を良くするため、特定の値の範囲内であることが好ましい。即ち、Rsの値は1μΩ以上100kΩ以下が好ましく、1mΩ以上10kΩ以下がより好ましく、1mΩ以上1kΩ以下であることがさらに好ましく、Csの値を圧電性構造体の中心軸方向の長さ(cm)で割った値として、0.1pF以上1000pF以下が好ましく、0.2pF以上100pF以下がより好ましく、0.4pF以上10pF以下がさらに好ましい。
【0066】
上記の通り、圧電性繊維Aと電極からなる素子が好ましい状態で動作可能な場合、これらの電極間に1MHzの交流電圧を与えた時の応答を解析して得られる、等価直列抵抗の値Rsおよび等価直列容量Csの値は特定の範囲内の値を取るので、これらの値を組紐状圧電素子の検査に用いることも好ましい。また、交流電圧による解析で得られるRsおよびCsの値のみならず、その他の電圧の過渡応答を解析することで組紐状圧電素子の検査を行うこともできる。
【0067】
(保護層)
本発明の組紐状圧電素子1の最表面には保護層を設けてもよい。この保護層は絶縁性であることが好ましく、フレキシブル性などの観点から高分子からなるものがより好ましい。保護層に絶縁性を持たせる場合には、もちろん、この場合には保護層ごと変形させたり、保護層上を擦ったりすることになるが、これらの外力が圧電性繊維Aまで到達し、その分極を誘起できるものであれば特に限定はない。保護層としては、高分子などのコーティングによって形成されるものに限定されず、フィルム、布帛、繊維などを巻付けてもよく、あるいは、それらが組み合わされたものであってもよい。
【0068】
保護層の厚みとしては出来るだけ薄い方が、せん断応力を圧電性繊維Aに伝えやすいが、薄すぎると保護層自体が破壊される等の問題が発生しやすくなるため、好ましくは10nm〜200μm、より好ましくは50nm〜50μm、さらに好ましくは70nm〜30μm、最も好ましくは100nm〜10μmである。この保護層により圧電素子の形状を形成することもできる。
【0069】
さらには、圧電性繊維からなる層を複数層設けたり、信号を取り出すための導電性繊維からなる層を複数層設けたりすることもできる。もちろん、これらの保護層、圧電性繊維からなる層、導電性繊維からなる層は、その目的に応じて、その順番および層数は適宜決められる。なお、巻付ける方法としては、鞘部2のさらに外層に組紐構造を形成したり、カバーリングしたりする方法が挙げられる。
【0070】
本発明の組紐状圧電素子1は、前述した圧電効果による電気信号の出力を利用して変形や応力を検出することができる他、組紐状圧電素子1の芯部の導電性繊維Bと導電層4の間の静電容量変化を計測することで、組紐状圧電素子1へ加えられた圧力による変形を検出することも可能になる。更に、複数本の組紐状圧電素子1を組み合わせて使用する場合、各々の組紐状圧電素子1の導電層4間の静電容量変化を計測することで、組紐状圧電素子1へ加えられた圧力による変形を検出することも可能になる。
【0071】
(絶縁性繊維)
布帛状圧電素子7では、組紐状圧電素子1(及び導電性繊維10)以外の部分には、絶縁性繊維を使用することができる。この際、絶縁性繊維は布帛状圧電素子7の柔軟性を向上する目的で伸縮性のある素材、形状を有する繊維を用いることができる。
【0072】
このように組紐状圧電素子1(及び導電性繊維10)以外にこのように絶縁性繊維を配置することで、布帛状圧電素子7の操作性(例示:ウェアラブルセンサーとしての動き易さ)を向上させることが可能である。
【0073】
このような絶縁性繊維としては、体積抵抗率が106Ω・cm以上であれば用いることができ、より好ましくは108Ω・cm以上、さらに好ましくは1010Ω・cm以上がよい。
【0074】
絶縁性繊維として例えば、ポリエステル繊維、ナイロン繊維、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、塩化ビニル繊維、アラミド繊維、ポリスルホン繊維、ポリエーテル繊維、ポリウレタン繊維等の合成繊維他、綿、麻、絹等の天然繊維、アセテート等の半合成繊維、レーヨン、キュプラ等の再生繊維を用いることができる。これらに限定されるものではなく、公知の絶縁性繊維を任意に用いることができる。さらに、これらの絶縁性繊維を組み合わせて用いてもよく、絶縁性を有しない繊維と組み合わせ、全体として絶縁性を有する繊維としてもよい。
また、公知のあらゆる断面形状の繊維も用いることができる。
【0075】
(製造方法)
本発明の組紐状圧電素子1は少なくとも1本の導電性繊維Bの表面を組紐状の圧電性繊維Aで被覆しているが、その製造方法としては例えば以下の方法が挙げられる。すなわち、導電性繊維Bと圧電性繊維Aを別々の工程で作製し、導電性繊維Bに圧電性繊維Aを組紐状に巻きつけて被覆する方法である。この場合には、できるだけ同心円状に近くなるように被覆することが好ましい。
【0076】
この場合、圧電性繊維Aを形成する圧電性高分子としてポリ乳酸を用いる場合の好ましい紡糸、延伸条件として、溶融紡糸温度は150℃〜250℃が好ましく、延伸温度は40℃〜150℃が好ましく、延伸倍率は1.1倍から5.0倍が好ましく、結晶化温度は80℃〜170℃が好ましい。
【0077】
導電性繊維Bに巻きつける圧電性繊維Aとしては、複数のフィラメントを束ねたマルチフィラメントを用いてもよく、また、モノフィラメント(紡績糸を含む)を用いても良い。また、圧電性繊維Aを巻きつけられる導電性繊維Bとしては、複数のフィラメントを束ねたマルチフィラメントを用いてもよく、また、モノフィラメント(紡績糸を含む)を用いても良い。
【0078】
被覆の好ましい形態としては、導電性繊維Bを芯糸とし、その周囲に圧電性繊維Aを組紐状に製紐して、丸打組物(Tubular Braid)を作製することで被覆することができる。より具体的には芯部3を有する8打組紐や16打組紐が挙げられる。ただし、例えば、圧電性繊維Aを編組チューブのような形態とし、導電性繊維Bを芯として当該編組チューブに挿入することで被覆してもよい。
【0079】
導電層4は、コーティングや繊維の巻き付けによって製造されるが、製造の容易さの観点より、繊維の巻き付けが好ましい。繊維の巻き付け方法としてはカバーリング、編物、組物が考えられ、何れの方法により製造してもよい。
【0080】
以上のような製造方法により、導電性繊維Bの表面を組紐状の圧電性繊維Aで被覆し、さらにその周囲に導電層4を設けた組紐状圧電素子1を得ることができる。
ここで、本発明の組紐状圧電素子では、芯部の径と圧電性繊維からなる層(鞘部)の厚みの関係が非常に重要である。本発明の圧電素子は、そのまま繊維状のまま用いられたり、布帛状に織られたり、編まれたりするわけであるが、使用時および加工時において芯部信号線とシールド層(導電層)が短絡してしまう場合がある。本発明者は鋭意検討した結果、芯部の半径Rcと圧電性繊維からなる層の厚みdが、d/Rc≧1.0の関係である必要がある。
【0081】
組紐状圧電素子を曲率Rで曲げた場合に素子の中心が基準線となって曲がると仮定すると、芯部表面の変形率は、
(R+Rc)/R
となる。例えば曲率半径R=2mmの場合にはRc=0.2mmの場合で変形率は1.1であり、曲げの外側では10%伸長され、曲げの内側では10%弛むことになる。この際、組まれている圧電性繊維からなる層の組目が乱れてシールド層を形成する層と芯部の信号線が短絡してしまう場合がある。ここで、変形により圧電性繊維からなる層が乱れたとしてもシールド層が芯部の信号線と短絡しないためには、圧電性繊維からなる層の厚みが芯部との関係で以下の条件を満たす必要がある。
【0082】
組紐状圧電素子の実用上の芯部表面の変形は20%程度に抑えることが好ましく、そのため、芯部の太さによりほぼ一義的に実用上の曲率半径も決まる。さらに言えばその場合に短絡しないための圧電性繊維からなる層の厚みもほぼ一義的に決まる。つまりRc>R/20であることが好ましく、より好ましくはRc>R/10である。さらに、d/Rcは1.0以上であることが好ましく、より好ましくは1.2以上であり、さらに好ましくは1.5以上である。
【0083】
また、圧電性繊維からなる層は圧電性繊維を複数回積層してもよく。複数回積層した方が同じ厚みであっても短絡しにくくなる傾向にあり、積層回数をnとした場合に、d/Rc×nは0.8以上であることが好ましく、より好ましくは1.0以上であり、さらに好ましくは1.2以上である。
なお、短絡という点では圧電性繊維からなる層の厚みは厚い方がよいが、組紐状圧電素子の観点からは細い方がハンドリング性がよいため、シールド層は薄くすることが好ましい。
【0084】
ここで、組紐状圧電素子の芯部の半径Rcと、圧電性繊維からなる層の厚みdは、図2に示す断面の顕微鏡撮影画像から次のように算出する。なお、断面の観察については、組紐状圧電素子に低粘性の瞬間接着剤「アロンアルファEXTRA2000」(東亞合成)を染み込ませて固化させた後、組紐の長軸に垂直な断面を切り出して断面写真を撮影してもよい。芯部の半径Rcは、図2−1に示すように、芯部の繊維束のみからなる最大の円Xの半径と、該繊維束を完全に包含する最小の円Yの半径との平均値とする。圧電性繊維からなる層の厚みdは、図2−2に示すように、該芯部を包含する圧電性繊維の繊維束のみからなる最大の円X’の半径と、該繊維束を完全に包含する最小の円Y’の半径との平均値から、当該芯部の半径Rcを差し引いた値とする。
【0085】
(布帛状圧電素子)
図3は実施形態に係る組紐状圧電素子を用いた布帛状圧電素子の構成例を示す模式図である。
布帛状圧電素子5は、少なくとも1本の組紐状圧電素子1を含む布帛6を備えている。布帛6は、布帛を構成する繊維(組紐を含む)の少なくとも1本が組紐状圧電素子1であり、組紐状圧電素子1が圧電素子としての機能を発揮可能である限り何らの限定は無く、どのような織編物であってもよい。布状にするにあたっては、本発明の目的を達成する限り、他の繊維(組紐を含む)と組み合わせて、交織、交編等を行ってもよい。もちろん、組紐状圧電素子1を、布帛を構成する繊維(例えば、経糸や緯糸)の一部として用いてもよいし、組紐状圧電素子1を布帛に刺繍してもよいし、接着してもよい。図3に示す例では、布帛状圧電素子5は、経糸として、少なくとも1本の組紐状圧電素子1および絶縁性繊維9を配し、緯糸として導電性繊維8および絶縁性繊維9を交互に配した平織物である。導電性繊維8は導電性繊維Bと同一種であっても異種の導電性繊維であってもよく、また絶縁性繊維9については後述される。なお、絶縁性繊維9及び/又は導電性繊維8の全部又は一部が組紐形態であってもよい。
【0086】
この場合、布帛状圧電素子5が曲げられるなどして変形したとき、その変形に伴い組紐状圧電素子1も変形するので、組紐状圧電素子1から出力される電気信号により、布帛状圧電素子5の変形を検出できる。そして、布帛状圧電素子5は、布帛(織編物)として用いることができるので、例えば衣類形状のウェアラブルセンサーに適用することができる。
【0087】
また、図3に示す布帛状圧電素子5では、組紐状圧電素子1に導電性繊維8が交差して接触している。したがって、導電性繊維8は、組紐状圧電素子1の少なくとも一部と交差して接触し、それを覆っており、外部から組紐状圧電素子1へ向かおうとする電磁波の少なくとも一部を遮っている、と見ることができる。このような導電性繊維8は、接地(アース)されることにより、組紐状圧電素子1への電磁波の影響を軽減する機能を有している。すなわち導電性繊維8は組紐状圧電素子1の電磁波シールドとして機能することができる。それにより、例えば布帛状圧電素子5の上下に電磁波シールド用の導電性の布帛を重ねなくても、布帛状圧電素子5のS/N比を著しく向上させることができる。この場合、電磁波シールドの観点から組紐状圧電素子1と交差する緯糸(図3の場合)における導電性繊維8の割合が高いほど好ましい。具体的には、布帛6を形成する繊維であり且つ組紐状圧電素子1と交差する繊維のうちの30%以上が導電性繊維であることが好ましく、40%以上がより好ましく、50%以上が更に好ましい。このように布帛状圧電素子5において、布帛を構成する繊維の少なくとも一部として導電性繊維を入れることで、電磁波シールド付の布帛状圧電素子5とすることができる。
【0088】
織物の織組織としては、平織、綾織、朱子織等の三原組織、変化組織、たて二重織、よこ二重織等の片二重組織、たてビロードなどが例示される。編物の種類は、丸編物(緯編物)であってもよいし経編物であってもよい。丸編物(緯編物)の組織としては、平編、ゴム編、両面編、パール編、タック編、浮き編、片畔編、レース編、添え毛編等が好ましく例示される。経編組織としては、シングルデンビー編、シングルアトラス編、ダブルコード編、ハーフトリコット編、裏毛編、ジャガード編等が例示される。層数も単層でもよいし、2層以上の多層でもよい。更には、カットパイルおよび/またはループパイルからなる立毛部と地組織部とで構成される立毛織物、立毛編み物であってもよい。
【0089】
(複数の圧電素子)
また、布帛状圧電素子5では、組紐状圧電素子1を複数並べて用いることも可能である。並べ方としては、例えば経糸または緯糸としてすべてに組紐状圧電素子1を用いてもよいし、数本ごとや一部分に組紐状圧電素子1を用いてもよい。また、ある部分では経糸として組紐状圧電素子1を用い、他の部分では緯糸として組紐状圧電素子1を用いてもよい。
【0090】
このように組紐状圧電素子1を複数本並べて布帛状圧電素子5を形成するときには、組紐状圧電素子1は表面に電極を有さないため、その並べ方、編み方が広範に選択することができるという利点がある。
【0091】
また、組紐状圧電素子1を複数並べて用いる場合、導電性繊維B間の距離が短いため電気信号の取り出しにおいて効率的である。
【0092】
(圧電素子の適用技術)
本発明の組紐状圧電素子1や布帛状圧電素子7のような圧電素子はいずれの様態であっても、表面への接触、圧力、形状変化を電気信号として出力することができるので、その圧電素子に印加された応力の大きさおよび/又は印加された位置を検出するセンサー(デバイス)として利用することができる。また、この電気信号を他のデバイスを動かすための電力源あるいは蓄電するなど、発電素子として用いることもできる。具体的には、人、動物、ロボット、機械など自発的に動くものの可動部に用いることによる発電、靴底、敷物、外部から圧力を受ける構造物の表面での発電、流体中での形状変化による発電、などが挙げられる。また、流体中での形状変化により電気信号を発するために、流体中の帯電性物質を吸着させたり付着を抑制させたりすることも可能である。
【0093】
図4は、本発明の圧電素子12を備えるデバイス11を示すブロック図である。デバイス11は、圧電素子12(例示:組紐状圧電素子1、布帛状圧電素子7)と、任意選択で、印加された圧力に応じて圧電素子12から出力される電気信号を増幅する増幅手段13と、当該任意選択の増幅手段13で増幅された電気信号を出力する出力手段14、及び出力手段14から出力された電気信号を外部機器(図示せず)へ送信する送信手段15を有する電気回路とを備える。このデバイス11を用いれば、圧電素子12の表面への接触、圧力、形状変化により出力された電気信号に基づき、外部機器(図示せず)における演算処理にて、圧電素子に印加された応力の大きさおよび/又は印加された位置を検出することができる。
【0094】
任意選択の増幅手段13、出力手段14、及び送信手段15は、例えばソフトウェアプログラム形式で構築されてもよく、あるいは各種電子回路とソフトウェアプログラムとの組み合わせで構築されてもよい。例えば、演算処理装置(図示せず)に当該ソフトウェアプログラムがインストールされ、演算処理装置が当該ソフトウェアプログラムに従って動作することで、各部の機能を実現する。またあるいは、任意選択の増幅手段13、出力手段14、及び送信手段15を、これら各部の機能を実現するソフトウェアプログラムを書き込んだ半導体集積回路として実現してもよい。なお、送信手段15による送信方式を無線によるもの有線によるものにするかは、構成するセンサーに応じて適宜決定すればよい。あるいは、デバイス11内に、出力手段14から出力された電気信号に基づき圧電素子12に印加された応力の大きさおよび/又は印加された位置を演算する演算手段(図示せず)を設けてもよい。
【0095】
また、増幅手段だけではなく、ノイズを除去する手段や他の信号と組み合わせて処理する手段などの公知の信号処理手段を組み合わせて用いることができる。これらの手段の接続の順序は目的に応じて適宜変えることができる。もちろん、圧電素子12から出力される電気信号をそのまま外部機器へ送信した後で信号処理してもよい。
【0096】
図5は、実施の形態に係る組紐状圧電素子を備えるデバイスの構成例を示す模式図である。図5の増幅手段13は、図4を参照して説明したものに相当するが、図4の出力手段14および送信手段15については図5では図示を省略している。組紐状圧電素子1を備えるデバイスを構成する場合、増幅手段13の入力端子に組紐状圧電素子1の芯部3からの引出し線を接続し、接地(アース)端子には、組紐状圧電素子1の導電層4を接続する。例えば、図5に示すように、組紐状圧電素子1において、組紐状圧電素子1の芯部3からの引出し線を増幅手段13の入力端子に接続し、組紐状圧電素子1の導電層4を接地(アース)する。
【0097】
図6〜8は、実施の形態に係る組紐布帛状圧電素子を備えるデバイスの構成例を示す模式図である。図6〜8の増幅手段13は、図4を参照して説明したものに相当するが、図4の出力手段14および送信手段15については図6〜8では図示を省略している。布帛状圧電素子7を備えるデバイスを構成する場合、増幅手段13の入力端子に組紐状圧電素子1の芯部3(導電性繊維Bで形成される)からの引出し線を接続し、接地(アース)端子には、組紐状圧電素子1の導電層4または布帛状圧電素子7の導電性繊維10または増幅手段13の入力端子に接続した組紐状圧電素子1とは別の組紐状圧電素子を接続する。例えば、図6に示すように、布帛状圧電素子7において、組紐状圧電素子1の芯部3からの引出し線を増幅手段13の入力端子に接続し、組紐状圧電素子1の導電層4を接地(アース)する。また例えば、図7に示すように、布帛状圧電素子7において、組紐状圧電素子1の芯部3からの引出し線を増幅手段13の入力端子に接続し、組紐状圧電素子1に交差して接触した導電性繊維10を接地(アース)する。また例えば、図8に示すように、布帛状圧電素子7において組紐状圧電素子1を複数並べている場合、1本の組紐状圧電素子1の芯部3からの引出し線を増幅手段13の入力端子に接続し、当該組紐状圧電素子1に並んだ別の組紐状圧電素子1の芯部3からの引出し線を、接地(アース)する。
【0098】
組紐状圧電素子1に変形が生じると、圧電性繊維Aは変形して分極が発生する。圧電性繊維Aの分極により発生した正負各電荷の配列につられて、組紐状圧電素子1の芯部3を形成する導電性繊維Bからの引出し線上において、電荷の移動が発生する。導電性繊維Bからの引出し線上における電荷の移動は微小な電気信号(すなわち電流)の流れとして現れる。増幅手段13は、この電気信号を増幅し、出力手段14は、増幅手段13で増幅された電気信号を出力し、送信手段15は、出力手段14から出力された電気信号を外部機器(図示せず)へ送信する。
【0099】
本発明のデバイス11は柔軟性があり、紐状および布帛状いずれの形態でも使用できるため、非常に広範な用途が考えられる。本発明のデバイス11の具体的な例としては、帽子や手袋、靴下などを含む着衣、サポーター、ハンカチ状などの形状をした、タッチパネル、人や動物の表面感圧センサー、例えば、手袋やバンド、サポーターなどの形状をした関節部の曲げ、捩じり、伸縮を感知するセンサーが挙げられる。例えば人に用いる場合には、接触や動きを検出し、医療用途などの関節などの動きの情報収集、アミューズメント用途、失われた組織やロボットを動かすためのインターフェースとして用いることができる。他には、動物や人型を模したぬいぐるみやロボットの表面感圧センサー、関節部の曲げ、捩じり、伸縮を感知するセンサーとして用いることができる。他には、シーツや枕などの寝具、靴底、手袋、椅子、敷物、袋、旗などの表面感圧センサーや形状変化センサーとして用いることができる。
【0100】
さらに、本発明のデバイス11は組紐状あるいは布帛状であり、柔軟性があるので、あらゆる構造物の全体あるいは一部の表面に貼付あるいは被覆することにより表面感圧センサー、形状変化センサーとして用いることができる。
【0101】
さらに、本発明のデバイス11は、組紐状圧電素子1の表面を擦るだけで十分な電気信号を発生することができるので、タッチセンサーのようなタッチ式入力装置やポインティングデバイスなどに用いることができる。また、組紐状圧電素子1で被計測物の表面を擦ることによって被計測物の高さ方向の位置情報や形状情報を得ることができるので、表面形状計測などに用いることができる。
【実施例】
【0102】
以下、本発明を実施例によりさらに具体的に記載するが本発明はこれによって何らの限定を受けるものではない。
【0103】
圧電素子用の布帛は以下の方法で製造した。
(ポリ乳酸の製造)
実施例において用いたポリ乳酸は以下の方法で製造した。
L−ラクチド((株)武蔵野化学研究所製、光学純度100%)100質量部に対し、オクチル酸スズを0.005質量部加え、窒素雰囲気下、撹拌翼のついた反応機にて180℃で2時間反応させ、オクチル酸スズに対し1.2倍当量のリン酸を添加しその後、13.3Paで残存するラクチドを減圧除去し、チップ化し、ポリ−L−乳酸(PLLA1)を得た。得られたPLLA1の質量平均分子量は15.2万、ガラス転移点(Tg)は55℃、融点は175℃であった。
【0104】
(圧電性繊維)
240℃にて溶融させたPLLA1を24ホールのキャップから22g/minで吐出し、1300m/minにて引き取った。この未延伸マルチフィラメント糸を80℃、2.0倍に延伸し、150℃で熱固定処理することにより84dTex/24フィラメントの圧電性繊維A1を得た。
また、240℃にて溶融させたPLLA1を12ホールのキャップから8g/minで吐出し、1300m/minにて引き取った。この未延伸マルチフィラメント糸を80℃、2.0倍に延伸し、150℃で熱固定処理することにより33dTex/12フィラメントの圧電性繊維A2を得た。
【0105】
(導電性繊維)
ミツフジ(株)製の銀メッキナイロン、品名『AGposs』100d34fおよび30d10fを導電性繊維B、導電性繊維6および導電性繊維10として使用した。この繊維の体積抵抗率は1.1×10-3Ω・cmであった。
【0106】
(組紐状圧電素子)
実施例1の試料として、上記の導電性繊維『AGposs』100d34fを芯糸とし、上記の圧電性繊維A1を8本芯糸の周りに組紐状に巻きつけて、八打組紐とし、更に導電性繊維『AGposs』30d10fを鞘部の圧電性繊維A1の周りに組紐状に巻き付けてシールド層とし、組紐状圧電素子1Aを形成した。ここで、導電性繊維Bの繊維軸CLに対する圧電性繊維A1の巻きつけ角度αは30°とした。なお、組紐状圧電素子1Aのd/Rcは、1.76であった。
【0107】
実施例2の試料として、上記の導電性繊維『AGposs』100d34fを芯糸とし、上記の圧電性繊維A2を8本芯糸の周りに組紐状に巻きつけて、八打組紐とし、その組紐の上に更にもう一層、圧電性繊維2を8本組紐状に巻きつけた。さらに、導電性繊維『AGposs』30d10fを圧電性繊維A2の周りに組紐状に巻き付けてシールド層とし、組紐状圧電素子1Bを形成した。ここで、導電性繊維Bの繊維軸CLに対する圧電性繊維Aの巻きつけ角度αは30°とした。なお、組紐状圧電素子1Bのd/Rcは、1.52であった。
【0108】
比較例1の試料として、実施例1の圧電性繊維A1のかわりに圧電性繊維A2を用いた以外は実施例1と同様にして組紐状圧電素子1Cを形成した。なお、組紐状圧電素子1Cのd/Rcは、0.84であった。
【0109】
(製編)
上記組紐状圧電素子1〜3をそれぞれ用いて、丸編みニット1〜3を作製した。
【0110】
(性能評価及び評価結果)
組紐状圧電素子1〜3および丸編みニット1〜3の評価結果は以下のとおりである。
【0111】
(実施例1)
組紐状圧電素子1A中の導電性繊維Bを信号線としてオシロスコープ(横河電機(株)製デジタルオシロスコープDL6000シリーズ商品名『DL6000』)に配線を介して100倍増幅回路を経由して接続し、組紐状圧電素子1Aの導電層4を接地(アース)した。組紐状圧電素子1Aに捩じり変形を加えた。
その結果、組紐状圧電素子1Aからの出力として、オシロスコープにより約10mVの電位差が検出され、組紐状圧電素子1Aの変形により十分な大きさの電気信号を検出できることが確認された。
また、丸編みニット1についても、芯部とシールド線は短絡しておらず、変形に対応する信号が検出できた。
【0112】
(実施例2)
組紐状圧電素子1B中の導電性繊維Bを信号線としてオシロスコープ(横河電機(株)製デジタルオシロスコープDL6000シリーズ商品名『DL6000』)に配線を介して100倍増幅回路を経由して接続し、組紐状圧電素子1Bの導電層4を接地(アース)した。組紐状圧電素子1Bに捩じり変形を加えた。
その結果、組紐状圧電素子1Bからの出力として、オシロスコープにより約10mVの電位差が検出され、組紐状圧電素子1Bの変形により十分な大きさの電気信号を検出できることが確認された。
また、丸編みニット2についても、芯部とシールド線は短絡しておらず、変形に対応する信号が検出できた。
【0113】
(比較例1)
組紐状圧電素子1C中の導電性繊維Bを信号線としてオシロスコープ(横河電機(株)製デジタルオシロスコープDL6000シリーズ商品名『DL6000』)に配線を介して100倍増幅回路を経由して接続し、組紐状圧電素子1Cの導電層4を接地(アース)した。組紐状圧電素子1Cに捩じり変形を加えた。
その結果、組紐状圧電素子1Cからの出力として、オシロスコープにより約10mVの電位差が検出され、組紐状圧電素子1Cの変形により十分な大きさの電気信号を検出できることが確認された。
しかし、丸編みニット3については、芯部とシールド線が短絡しており、変形に対応する信号は検出することができなかった。
【符号の説明】
【0114】
A 圧電性繊維
B 導電性繊維
1 組紐状圧電素子
2 鞘部
3 芯部
4 導電層
5 導電性物質
6 導電性繊維
7 布帛状圧電素子
8 布帛
9 絶縁性繊維
10 導電性繊維
11 デバイス
12 圧電素子
13 増幅手段
14 出力手段
15 送信手段
CL 繊維軸
α 巻きつけ角度
X 芯部の繊維束のみからなる最大の円
Y 芯部の繊維束を完全に包含する最小の円Y
X’ 芯部を包含する圧電性繊維の繊維束のみからなる最大の円
Y’ 圧電性繊維の繊維束を完全に包含する最小の円
図1
図2
図3
図4
図5
図6
図7
図8