【国等の委託研究の成果に係る記載事項】(出願人による申告)平成27年度、国立研究開発法人科学技術振興機構、SIP(戦略的イノベーション創造プログラム)、産業技術力強化法第19条の適用を受ける特許出願
【解決手段】有機ハイドライド製造装置10は、プロトン伝導性を有する電解質膜110と、電解質膜110の一方の側に設けられ、プロトンで被水素化物を水素化して有機ハイドライドを生成するためのカソード触媒層、及びカソード触媒層を収容するカソード室を有するカソード120と、電解質膜110の一方の側とは反対側に設けられ、水を酸化してプロトンを生成するためのアノード触媒層、及びアノード触媒層を収容するアノード室を有するアノード150と、電解質膜110を通過してアノード液に混入する被水素化物及び有機ハイドライドの少なくとも一方を除去するための所定のガスを、所定の位置においてアノード液に導入するガス導入部70とを備える。
前記所定のガスは、空気、窒素、アルゴン及びヘリウムからなる群から選択される少なくとも1つである請求項1乃至3のいずれか1項に記載の有機ハイドライド製造装置。
【発明を実施するための形態】
【0014】
以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、特に言及がない限り、いかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。
【0015】
図1は、実施の形態に係る有機ハイドライド製造装置(電気化学還元装置)の模式図である。なお、
図1では、電解セルが備えるセパレータの図示を省略し、膜電極接合体の構造を簡略化している。有機ハイドライド製造装置10は、有機ハイドライドの脱水素化体である被水素化物を電気化学還元反応により水素化する装置であり、主な構成として、有機ハイドライド製造用電解セル100(以下では適宜、「有機ハイドライド製造用電解セル」を単に「電解セル」という)、電力制御部20、カソード液貯蔵槽30、分離槽36、アノード液貯蔵槽40、制御部60及びガス導入部70を備える。
【0016】
電力制御部20は、例えば、電力源の出力電圧を所定の電圧に変換するDC/DCコンバータである。電力制御部20の正極出力端子は、電解セル100のアノード150(酸素発生用電極)に接続される。電力制御部20の負極出力端子は、電解セル100のカソード120(還元電極)に接続される。これにより、電解セル100のアノード150とカソード120との間に所定の電圧が印加される。
【0017】
なお、電力制御部20には、正及び負極の電位検知の目的で参照極が設けられていてもよい。この場合、参照極入力端子は、電解セル100の電解質膜110に設けられる参照電極(図示せず)に接続される。参照電極は、カソード120及びアノード150から電気的に隔離されている。参照電極は、参照電極電位に保持される。本願における参照電極電位は、可逆水素電極(RHE)に対する電位を意味するものとする(参照電極電位=0V)。なお、参照電極電位は、Ag/AgCl電極に対する電位であってもよい(参照電極電位=0.199V)。カソード120とアノード150との間を流れる電流は、電流検出部(図示せず)によって検出される。電流検出部で検出された電流値は、制御部60に入力され、制御部60による電力制御部20の制御に用いられる。参照電極とカソード120との間の電位差は、電圧検出部(図示せず)によって検出される。電圧検出部で検出された電位差の値は制御部60に入力され、制御部60による電力制御部20の制御に用いられる。
【0018】
制御部60は、アノード150又はカソード120の電位が所望の電位となるように、電力制御部20の正極出力端子及び負極出力端子の出力を制御する。なお、電力源は、好ましくは太陽光、風力、水力、地熱発電等で得られる再生可能エネルギーであるが、特にこれに限定されない。
【0019】
カソード液貯蔵槽30には、電解セル100での電気化学還元反応により水素化される被水素化物が収容される。本実施の形態において用いられる有機ハイドライドは、水素化反応/脱水素反応を可逆的に起こすことにより、水素を添加/脱離できる有機化合物であれば特に限定されず、アセトン−イソプロパノール系、ベンゾキノン−ヒドロキノン系、芳香族炭化水素系等広く用いることができる。これらの中で、エネルギー輸送時の運搬性、毒性、安全性、保存安定性等の観点から、また、体積あるいは質量当たりに輸送できる水素量、水素添加及び脱水素反応の容易性、Gibbs自由エネルギー変化が著しく大きくない等のエネルギー変換効率の観点から、トルエン−メチルシクロヘキサン系に代表される芳香族炭化水素系が好ましい。
【0020】
有機ハイドライドの脱水素化体として用いられる芳香族炭化水素化合物は、少なくとも1つの芳香環を含む化合物であり、例えば、ベンゼン、アルキルベンゼン等が挙げられる。アルキルベンゼンには、芳香環の1〜4の水素原子が炭素数1〜2の直鎖アルキル基又は分岐アルキル基で置換された化合物が含まれ、例えば、トルエン、キシレン等が挙げられる。これらは単独で用いられても、組み合わせて用いられてもよい。芳香族炭化水素化合物は、好ましくはトルエン及びベンゼンの少なくとも一方である。なお、ピリジン、ピリミジン、ピラジン等の含窒素複素環式芳香族化合物も、脱水素化体として用いることができる。有機ハイドライドは、上述の脱水素化体が水素化されたものであり、メチルシクロヘキサン、ジメチルシクロヘキサン、ピペリジン等が例示される。
【0021】
有機ハイドライドの脱水素化体、すなわち被水素化物は、常温で液体であることが好ましい。また、上述の芳香族炭化水素化合物及び/又は含窒素複素環式芳香族化合物の複数種を混合したものを用いる場合は、混合物として液体であればよい。被水素化物が常温で液体である場合、加熱や加圧などの処理を行うことなく、液体の状態で被水素化物を電解セル100に供給することができる。これにより、有機ハイドライド製造装置10の構成の簡素化を図ることができる。以下では適宜、カソード液貯蔵槽30に貯蔵される液体を「カソード液」という。
【0022】
カソード液貯蔵槽30に貯蔵された被水素化物は、第1液体供給装置32によって電解セル100のカソード120に供給される。第1液体供給装置32としては、例えば、ギアポンプあるいはシリンダーポンプ等の各種ポンプ、または自然流下式装置等を用いることができる。カソード120とカソード液貯蔵槽30との間には、循環経路34が設けられる。循環経路34は、カソード液の流れにおけるカソード120の上流側でカソード液貯蔵槽30とカソード120とをつなぐ往路部34aと、カソード液の流れにおけるカソード120の下流側でカソード120とカソード液貯蔵槽30とをつなぐ復路部34bとを含む。往路部34aの途中には、第1液体供給装置32が設けられる。復路部34bの途中には、分離槽36が設けられる。
【0023】
電解セル100により水素化された被水素化物、すなわち有機ハイドライドと、未反応の被水素化物とは、循環経路34の復路部34bを経て分離槽36に到達する。分離槽36において、有機ハイドライド及び被水素化物の混合物から、副生成物である水素ガスや、電解質膜110を介してカソード120側に流入したアノード液等が分離される。分離されたガスは、分解触媒等を含む分解部38で処理される。分離されたアノード液は再利用される。その後、有機ハイドライド及び被水素化物は、カソード液貯蔵槽30に戻される。
【0024】
アノード液貯蔵槽40には、例えばイオン交換水、純水、あるいはこれらに硫酸、リン酸、硝酸、塩酸等の酸を加えた水溶液等(以下では適宜、「アノード液」という)が収容される。アノード液の20℃で測定したイオン伝導度は、好ましくは0.01S/cm以上である。アノード液のイオン伝導度を0.01S/cm以上とすることで、工業的に十分な電気化学反応を起こさせることができる。
【0025】
アノード液貯蔵槽40に貯蔵されたアノード液は、第2液体供給装置42によって電解セル100のアノード150に供給される。第2液体供給装置42としては、例えばギアポンプあるいはシリンダーポンプ等の各種ポンプ、または自然流下式装置等を用いることができる。アノード150とアノード液貯蔵槽40との間には、アノード150及びアノード液貯蔵槽40をつなぐ循環経路44が設けられる。循環経路44は、アノード液の流れにおけるアノード150の上流側でアノード液貯蔵槽40とアノード150とをつなぐ往路部44aと、アノード液の流れにおけるアノード150の下流側でアノード150とアノード液貯蔵槽40とをつなぐ復路部44bとを含む。往路部44aの途中には、第2液体供給装置42が設けられる。すなわち、有機ハイドライド製造装置10は、水を含むアノード液をアノード150に供給する、アノード液貯蔵槽40と循環経路44とで構成されるアノード液供給ラインを備える。
【0026】
電解セル100において未反応のアノード液は、循環経路44の復路部44bを経てアノード液貯蔵槽40に戻される。アノード液貯蔵槽40には気液分離部(図示せず)が設けられ、電解セル100におけるアノード液の電気分解によって生じる酸素や、電解質膜110を介してアノード液に混入する被水素化物及び有機ハイドライドの気化物等のガスは、気液分離部によってアノード液から分離されて、分解触媒や吸着剤等を含む分解部46で処理される。アノード液として硫酸水溶液等が用いられる場合、アノード液貯蔵槽40を構成する材料としては、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、繊維強化プラスチック等が好ましい。また、第2液体供給装置42の駆動部を構成する部品は、セラミクスやフッ素樹脂で被覆することが好ましい。
【0027】
電解セル100は、電解質膜110と、カソード120と、アノード150とを備える。
図2は、実施の形態に係る有機ハイドライド製造装置が備える電解セルの概略構造を示す断面図である。
図2に示すように、電解セル100は、膜電極接合体102と、膜電極接合体102を挟む一対のセパレータ170a,170bと、を備える。膜電極接合体102は、電解質膜110、カソード120、及びアノード150を有する。
【0028】
[電解質膜]
電解質膜110は、プロトン伝導性を有する材料(アイオノマー)で形成される。電解質膜110は、プロトンを選択的に伝導する一方で、カソード120とアノード150との間で物質が混合したり拡散したりすることを抑制する。プロトン伝導性を有する材料としては、ナフィオン(登録商標)、フレミオン(登録商標)などのパーフルオロスルホン酸ポリマーが挙げられる。電解質膜110の厚さは、特に限定されないが、好ましくは5〜300μmであり、より好ましくは10〜200μmであり、さらに好ましくは20〜100μmである。電解質膜110の厚さを5μm以上とすることで、電解質膜110のバリア性を確保して、被水素化物、有機ハイドライド及び酸素等のクロスリークの発生をより確実に抑制することができる。また、電解質膜110の厚さを300μm以下とすることで、イオン移動抵抗が過大になることを抑制することができる。
【0029】
電解質膜110の面積抵抗、即ち幾何面積当たりのイオン移動抵抗は、特に限定されないが、好ましくは2000mΩ・cm
2以下であり、より好ましくは1000mΩ・cm
2以下であり、さらに好ましくは500mΩ・cm
2以下である。電解質膜110の面積抵抗を2000mΩ・cm
2以下とすることで、プロトン伝導性が不足するおそれをより確実に回避することができる。カチオン交換型のアイオノマーのイオン交換容量(IEC)は、特に限定されないが、好ましくは0.7〜2meq/gであり、より好ましくは1〜1.3meq/gである。カチオン交換型のアイオノマーのイオン交換容量を0.7meq/g以上とすることで、イオン伝導性が不十分となるおそれをより確実に回避することができる。一方、当該イオン交換容量を2meq/g以下とすることで、アイオノマーのアノード液や被水素化物、有機ハイドライド等への溶解度が増大して電解質膜110の強度が不十分となるおそれをより確実に回避することができる。
【0030】
電解質膜110には、多孔性のPTFE(ポリテトラフルオロエチレン)等の補強材が混合されてもよい。補強材を導入することで、イオン交換容量の増加に伴う電解質膜110の寸法安定性の低下を抑制することができる。これにより、電解質膜110の耐久性を向上させることができる。また、被水素化物、有機ハイドライド及び酸素等のクロスオーバーを抑制することができる。また、電解質膜110の表面は、凹凸の付与、所定の無機物層の被覆、あるいはこれらの組み合わせによって親水化してもよい。
【0031】
[カソード]
カソード120は、電解質膜110の一方の側に設けられる。本実施の形態では、カソード120は電解質膜110の一方の主表面に接するように設けられている。カソード120は、カソード触媒層122と、カソード触媒層122を収容するカソード室124とを有する。また、カソード120は、スペーサ126、マイクロポーラス層128、拡散層130、流路部132、カソード室入口134及びカソード室出口136を備える。
【0032】
カソード触媒層122は、カソード室124内で電解質膜110の一方の主表面に接している。カソード触媒層122は、プロトンで被水素化物を水素化して有機ハイドライドを生成するための還元触媒を含む。還元触媒としては、例えばPt、Ru、Pd、Ir及びこれらの少なくとも1つを含む合金からなる群から選択される金属粒子を用いることができる。還元触媒は、市販品を用いてもよいし、公知の方法に従って合成したものを用いてもよい。また、還元触媒は、Pt、Ru、Pd、Irの少なくとも1つからなる第1の触媒金属(貴金属)と、Cr、Mn、Fe、Co、Ni、Cu、Zn、Mo、Ru、Sn、W、Re、Pb、Biから選択される1種又は2種以上の第2の触媒金属とを含む金属組成物で構成されてもよい。この場合、当該金属組成物の形態としては、第1の触媒金属と第2の触媒金属との合金、あるいは第1の触媒金属と第2の触媒金属からなる金属間化合物などが挙げられる。
【0033】
還元触媒の平均粒径は、好ましくは1nm〜1μmであり、より好ましくは1nm〜5nmである。還元触媒の平均粒径を1μm以下とすることで、触媒重量当たりの表面積(反応面積)を増加させることができる。また、還元触媒の平均粒径を1nm以上とすることで、触媒粒子同士の凝集が進んで耐久性が低下することをより確実に抑制することができる。
【0034】
還元触媒は、電子伝導性材料で構成される触媒担体によって担持される。還元触媒を触媒担体に担持させることで、カソード触媒層122の表面積を拡大することができる。また、還元触媒の凝集を抑制することができる。触媒担体に用いられる電子伝導性材料の電子伝導度は、好ましくは1.0×10
−2S/cm以上であり、より好ましくは3.0×10
−2S/cm以上であり、さらに好ましくは1.0×10
−1S/cm以上である。電子伝導性材料の電子伝導度を1.0×10
−2S/cm以上とすることで、カソード触媒層122に対してより確実に電子伝導性を付与することができる。
【0035】
触媒担体としては、例えば多孔性カーボン(メソポーラスカーボンなど)、多孔性金属、多孔性金属酸化物のいずれかを主成分として含有する電子伝導性材料を挙げることができる。多孔性カーボンとしては、例えばケッチェンブラック(登録商標)、アセチレンブラック、ファーネスブラック、バルカン(登録商標)などのカーボンブラックが挙げられる。
【0036】
窒素吸着法で測定した多孔性カーボンのBET比表面積は、好ましくは50m
2/g〜1500m
2/gであり、より好ましくは500m
2/g〜1300m
2/gであり、さらに好ましくは700m
2/g〜1000m
2/gである。多孔性カーボンのBET比表面積を50m
2/g以上とすることで、還元触媒を均一に担持させやすくすることができる。また、被水素化物や有機ハイドライドの拡散性をより確実に担保することができる。また、多孔性カーボンのBET比表面積を1500m
2/g以下とすることで、被水素化物の反応時や、有機ハイドライド製造装置10の起動時あるいは停止時に、触媒担体の劣化が生じやすくなることを回避することができる。これにより、触媒担体に十分な耐久性を付与することができる。また、触媒担体として用いられるカーボンブラック等の炭素微粒子の平均粒径は、好ましくは0.01μm〜1μmである。
【0037】
多孔性金属としては、例えばPtブラック、Pdブラック、フラクタル状に析出させたPt金属などが挙げられる。多孔性金属酸化物としては、例えばTi、Zr、Nb、Mo、Hf、Ta、Wの酸化物が挙げられる。また、触媒担体には、Ti、Zr、Nb、Mo、Hf、Ta、Wなどの金属の窒化物、炭化物、酸窒化物、炭窒化物、部分酸化した炭窒化物といった、多孔性の金属化合物(以下では適宜、多孔性金属炭窒化物等と呼ぶ)も用いることができる。窒素吸着法で測定した多孔性金属、多孔性金属酸化物及び多孔性金属炭窒化物等のBET比表面積は、好ましくは1m
2/g以上であり、より好ましくは3m
2/g以上であり、さらに好ましくは10m
2/g以上である。多孔性金属、多孔性金属酸化物及び多孔性金属炭窒化物等のBET比表面積を1m
2/g以上とすることで、還元触媒を均一に担持させやすくすることができる。
【0038】
還元触媒を担持した状態の触媒担体は、アイオノマーで被覆される。これにより、カソード120のイオン伝導性を向上させることができる。アイオノマーとしては、例えばナフィオン(登録商標)、フレミオン(登録商標)などのパーフルオロスルホン酸ポリマー等を挙げることができる。アイオノマーのイオン交換容量(IEC)は、好ましくは0.7〜3meq/gであり、より好ましくは1〜2.5meq/gであり、さらに好ましくは1.2〜2meq/gである。触媒担体が多孔性カーボンである場合、アイオノマー(I)/触媒担体(C)の質量比I/Cは、好ましくは0.1〜2であり、より好ましくは0.2〜1.5であり、さらに好ましくは0.3〜1.1である。質量比I/Cを0.1以上とすることで、十分なイオン伝導性をより確実に得ることができる。一方、質量比I/Cを2以下とすることで、還元触媒に対するアイオノマーの被覆厚みが過剰になることを抑制して、被水素化物の触媒活性点への接触が阻害されることを回避することができる。
【0039】
なお、カソード触媒層122に含まれるアイオノマーは、還元触媒を部分的に被覆していることが好ましい。これによれば、カソード触媒層122における電気化学反応に必要な3要素(被水素化物、プロトン、電子)を効率的に反応場に供給することができる。
【0040】
カソード触媒層122の厚さは、好ましくは1〜100μmであり、より好ましくは5〜30μmである。カソード触媒層122の厚さが増加すると、プロトンの移動抵抗が増大するだけでなく、被水素化物や有機ハイドライドの拡散性も低下する。このため、カソード触媒層122の厚さは、上述した範囲で調整することが望ましい。
【0041】
カソード触媒層122は、例えば以下の方法により作製することができる。すなわち、まず、触媒成分粉末と、ガス透過性材料である疎水性樹脂(フッ素成分)と、水と、ナフサ等の溶剤と、アイオノマー(例えばナフィオン(登録商標)分散液DE521(デュポン社製))とを混合する。アイオノマーの添加量は、乾燥後のアイオノマーの質量と触媒成分粉末中のカーボン質量との比率が1:10〜10:1となる量であることが好ましい。疎水性樹脂は粉末状であり、その粒径は好ましくは0.005〜10μmである。得られた混合物に適宜溶媒を添加して、触媒インクを調製する。
【0042】
続いて、得られた触媒インクを、マイクロポーラス層128に塗布し、乾燥させた後にホットプレスして、カソード触媒層122をマイクロポーラス層128に固着させる。上述の塗布及び乾燥を複数回に分けて行った後に、ホットプレスを実施することが好ましい。これにより、より均質なカソード触媒層122を得ることができる。以上の工程により、カソード触媒層122を作製することができる。なお、カソード触媒層122は、電解質膜110上に形成してもよい。例えば、バーコーターを用いて電解質膜110の一方の主表面に触媒インクを塗布することで、カソード触媒層122と電解質膜110の複合体を作製することができる。また、スプレー塗布により電解質膜110の一方の主表面に触媒インクを吹き付け、触媒インク中の溶剤成分を乾燥させることで、カソード触媒層122と電解質膜110の複合体を作製することができる。触媒インクは、カソード触媒層122中の還元触媒の質量が、電極面積あたり0.5mg/cm
2となるように塗布することが好ましい。
【0043】
カソード室124は、電解質膜110と、セパレータ170aと、電解質膜110及びセパレータ170aの間に配置される枠状のスペーサ126とで画成される。カソード室124には、カソード触媒層122だけでなく、マイクロポーラス層128、拡散層130、及び流路部132が収容される。また、スペーサ126には、カソード室124の内部と外部とを連通する、カソード室入口134及びカソード室出口136が配置される。
【0044】
マイクロポーラス層128は、カソード触媒層122に隣接して配置される。より具体的には、マイクロポーラス層128は、カソード触媒層122の電解質膜110とは反対側の主表面に接するように設けられている。拡散層130は、マイクロポーラス層128に隣接して配置される。より具体的には、拡散層130は、マイクロポーラス層128のカソード触媒層122とは反対側の主表面に接するように設けられている。
【0045】
拡散層130は、流路部132から供給される液状の被水素化物をカソード触媒層122に均一に拡散させる機能を担う。拡散層130を構成する材料は、被水素化物や有機ハイドライドに対して親和性が高いことが好ましい。拡散層130を構成する材料としては、例えば多孔性導電基材や繊維焼結体等が例示される。これらは、ガス及び液の供給や除去に適した多孔性を有し、且つ十分な電導性を保つことができるため好ましい。拡散層130は、好ましくは厚さが10〜5000μmであり、空隙率が30〜95%であり、代表的孔径が1〜1000μmである。また、拡散層130を構成する材料の電子伝導度は、好ましくは10
−2S/cm以上である。
【0046】
拡散層130を構成する材料のより具体的な例としては、カーボンの織布(カーボンクロス)、カーボンの不織布、カーボンペーパー等を挙げることができる。カーボンクロスは、数μmの径の細いカーボン繊維を数百本の束とし、この束を織布としたものである。また、カーボンペーパーは、カーボン原料繊維を製紙法にて薄膜の前駆体とし、これを焼結したものである。
【0047】
マイクロポーラス層128は、液体の被水素化物及び有機ハイドライドの、カソード触媒層122の面方向への拡散を促す機能を有する。マイクロポーラス層128は、例えば導電性粉末と撥水剤とを混練して得られるペースト状の混練物を、拡散層130の表面に塗布し、乾燥させることで形成することができる。導電性粉末としては、例えばバルカン(登録商標)等の導電性カーボンを用いることができる。撥水剤としては、例えば四フッ化エチレン樹脂(PTFE)などのフッ素系樹脂を用いることができる。導電性粉末と撥水剤の割合は、所望の導電性及び撥水性が得られる範囲内で適宜定められる。一例として、導電性粉末としてバルカン(登録商標)を用い、撥水剤としてPTFEを用いた場合の質量比(バルカン:PTFE)は、例えば4:1〜1:1である。なお、マイクロポーラス層128は、拡散層130と同様にカーボンクロスやカーボンペーパー等で構成することもできる。
【0048】
マイクロポーラス層128の平均流量細孔径(dm)は、ホットプレス後において、好ましくは100nm〜20μmであり、より好ましくは500nm〜5μmである。マイクロポーラス層128の平均流量細孔径は、水銀ポロシメーター等で測定することができる。平均流量細孔径を100nm以上とすることで、細孔の壁面と液体の被水素化物及び有機ハイドライドの接触面積が過大となって拡散抵抗が増加することをより確実に抑制することができる。また、平均流量細孔径を20μm以下とすることで、毛管現象による液体の被水素化物及び有機ハイドライドの吸引が小さくなって流動性が低下することをより確実に抑制することができる。また、平均流量細孔径を100nm〜20μmとすることで、毛管現象により液体の被水素化物及び有機ハイドライドをスムーズに吸引、排出することができる。
【0049】
また、マイクロポーラス層128の厚さは、好ましくは1〜50μmであり、より好ましくは2〜20μmである。なお、マイクロポーラス層128が拡散層130の表面よりも内部に落ち込むように形成されている場合には、拡散層130に潜っている部分を含めて、マイクロポーラス層128自体の膜厚の平均をマイクロポーラス層128の厚さと定義する。マイクロポーラス層128の表面には、金属成分を共存させてもよい。これにより、マイクロポーラス層128の電子伝導性が向上し、電流の均一化を図ることができる。
【0050】
なお、マイクロポーラス層128と拡散層130とは、それぞれ厚さ方向に圧力が加えられた状態で使用される。したがって、使用時の厚さ方向への加圧によって、それぞれの厚さ方向における導電性が変化することは好ましくない。このため、マイクロポーラス層128及び拡散層130は、予めプレス加工が施されることが好ましい。これにより、各層の炭素材料が圧縮されるため、各層の厚さ方向における導電性を高め、且つ安定させることができる。また、20〜50%の充填率を安定的に有するカソード120を実現できる。
【0051】
また、カソード触媒層122とマイクロポーラス層128との接合度を向上させることも、カソード120の導電性向上に寄与する。また、当該接合度の向上によって、原料物質の供給能力と生成物質の除去能力とが向上する。プレス加工装置としては、ホットプレス、ホットローラー等の公知の装置を利用することができる。また、プレス条件としては、温度:室温〜360℃、圧力:0.1〜5MPaが好ましい。
【0052】
流路部132は、拡散層130に隣接して配置される。より具体的には、流路部132は、拡散層130のマイクロポーラス層128とは反対側の主表面に接するように設けられている。流路部132は、板状の本体部132aの主表面に溝132bが設けられた構造を有する。溝132bは、被水素化物の流路を構成する。本体部132aは、導電性材料からなる。流路部132は、カソード室124内において、カソード触媒層122、マイクロポーラス層128及び拡散層130の位置決めをするカソード支持体としても機能する。
【0053】
カソード室入口134は、カソード室124の鉛直方向下方に配置される。カソード室入口134は、一端が流路部132の流路に接続され、他端が循環経路34の往路部34aを介して第1液体供給装置32に接続される。カソード室124の外部から供給される被水素化物は、カソード室入口134を介してカソード室124内に導入される。カソード室124に導入された被水素化物は、流路部132の溝132b、拡散層130及びマイクロポーラス層128を経由してカソード触媒層122に供給される。
【0054】
カソード室出口136は、カソード室124の鉛直方向上方に配置される。カソード室出口136は、一端が流路部132の流路に接続され、他端が循環経路34の復路部34bに接続される。カソード室124内の有機ハイドライドと未反応の被水素化物とは、カソード室出口136を介してカソード室124の外部に排出される。
【0055】
セパレータ170aは、電解セル100においてカソード120側に配置される。本実施の形態では、セパレータ170aは、流路部132の拡散層130とは反対側の主表面に積層されている。
【0056】
[アノード]
アノード150は、電解質膜110の一方の側とは反対側、すなわちカソード120とは反対側に設けられる。本実施の形態では、アノード150は電解質膜110の他方の主表面に接するように設けられている。アノード150は、アノード触媒層152と、アノード触媒層152を収容するアノード室154とを有する。また、アノード150は、スペーサ156、支持用弾性体158、アノード室入口160及びアノード室出口162を備える。
【0057】
アノード触媒層152は、アノード室154内において、電解質膜110の他方の主表面に接している。アノード触媒層152は、アノード液中の水を酸化してプロトンを生成するための触媒を含む層である。アノード触媒層152に含まれる触媒としては、例えばRu、Rh、Pd、Ir、Pt及びこれらの少なくとも1つを含む合金からなる群から選択される金属粒子を用いることができる。
【0058】
触媒は、電子伝導性を有する金属基材に分散担持、又はコーティングされてもよい。このような金属基材としては、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Nb、Mo、Ta、Wなどの金属、あるいはこれらを主成分とする合金などで構成される、金属繊維(繊維径:例えば10〜30μm)、メッシュ(メッシュ径:例えば500〜1000μm)、金属多孔体の焼結体、発泡成型体(フォーム)、エキスパンドメタル等を挙げることができる。
【0059】
アノード触媒層152に用いる基材としては、電解に必要な電流を流すための十分な電気伝導性を有する必要性と、電解セル100の機械的強度の必要性とから、厚さ0.1〜2mmの板状材料が好ましい。また、基材は、気泡による抵抗の増大を避けてアノード液の供給を促進するために、多孔体であるとともにアノード液に対する耐食性に優れることが好ましい。このような基材としては、チタン製のエキスパンドメッシュが汎用されている。エキスパンドメッシュは、短目方向中心間距離が好ましくは0.1〜4mmであり、長目方向中心間距離が好ましくは0.1〜4mmであり、開口率が好ましくは30〜70%程度である。
【0060】
アノード室154は、電解質膜110と、セパレータ170bと、電解質膜110及びセパレータ170bの間に配置される枠状のスペーサ156とで画成される。アノード室154には、アノード触媒層152だけでなく、支持用弾性体158が収容される。また、スペーサ156には、アノード室154の内部と外部とを連通する、アノード室入口160及びアノード室出口162が配置される。
【0061】
支持用弾性体158は、アノード触媒層152に隣接して配置される。より具体的には、支持用弾性体158は、アノード触媒層152の電解質膜110とは反対側の主表面に接するように設けられている。支持用弾性体158は、アノード触媒層152を電解質膜110に付勢する機能を有する。支持用弾性体158によりアノード触媒層152を電解質膜110に押し付けることで、電解セル100の電解特性を向上させることができる。支持用弾性体158は、例えば板ばね構造やコイル構造等の弾性体構造を有する導電性部材で構成される。また、支持用弾性体158は、耐酸性を有することが好ましい。支持用弾性体158を構成する材料としては、例えばチタンまたはチタン合金が挙げられる。弾性体構造の具体例としては、V字型スプリング、Xクロススプリング、クッションコイル、ビビリ繊維の集合体等が挙げられる。
【0062】
アノード室入口160は、アノード室154の鉛直方向下方に配置される。アノード室入口160は、一端がアノード室154内に接続され、他端が循環経路44の往路部44aを介して第2液体供給装置42に接続される。アノード室154の外部から供給されるアノード液は、アノード室入口160を介してアノード室154内に導入される。アノード室154に導入されたアノード液は、直に又は支持用弾性体158を介してアノード触媒層152に供給される。
【0063】
アノード室出口162は、アノード室154の鉛直方向上方に配置される。アノード室出口162は、一端がアノード室154内に接続され、他端が循環経路44の復路部44bに接続される。アノード室154内の酸素ガスと未反応のアノード液とは、アノード室出口162を介してアノード室154の外部に排出される。
【0064】
セパレータ170bは、電解セル100においてアノード150側に配置される。本実施の形態では、セパレータ170bは、支持用弾性体158のアノード触媒層152とは反対側の主表面に積層されている。
【0065】
上述した構造を備える電解セル100において、被水素化物の一例としてトルエン(TL)を用いた場合に起こる反応は、以下の通りである。被水素化物としてトルエンを用いた場合、得られる有機ハイドライドはメチルシクロヘキサン(MCH)である。
<アノードでの電極反応>
2H
2O→O
2+4H
++4e
−:E
0=1.23V
<カソードでの電極反応>
TL+6H
++6e
−→MCH:E
0=0.15V
<全反応>
2TL+6H
2O→2MCH+3O
2
【0066】
すなわち、アノード150での電極反応と、カソード120での電極反応とが並行して進行する。そして、アノード150における水の電気分解により生じたプロトン(H
+)が、電解質膜110を介してカソード120に供給される。カソード120に供給されたプロトンは、カソード120において被水素化物の水素化に用いられる。これにより、トルエンが水素化されて、メチルシクロヘキサンが生成される。したがって、本実施の形態に係る有機ハイドライド製造装置10によれば、水の電気分解と被水素化物の水添反応とを1ステップで行うことができる。
【0067】
有機ハイドライド製造装置10では、カソード120に供給される被水素化物及び有機ハイドライド(有機化合物)は、電解質膜110によってアノード150側への移動が阻害される。しかしながら、電解質膜110によって被水素化物及び有機ハイドライドの移動を完全に防ぐことは困難であり、一部の被水素化物及び有機ハイドライドは電解質膜110を通過してアノード150に至り、アノード液に混入する。アノード液に混入した被水素化物及び有機ハイドライドは、アノード触媒層152に吸着し得る。また、当該被水素化物及び有機ハイドライドは、アノード触媒層152において電解酸化されて酸化物となり、アノード触媒層152の腐食を促進し得る。このため、アノード液中に被水素化物及び有機ハイドライドが混入すると、アノード触媒層152の機能が低下し、これにより、有機ハイドライド製造装置10におけるセル電圧の増加等を招く。したがって、有機ハイドライドの製造効率が低下してしまう。
【0068】
これに対し、本実施の形態に係る有機ハイドライド製造装置10は、
図1及び2に示すように、アノード液に混入した被水素化物及び有機ハイドライドの少なくとも一方を除去するための所定のガスをアノード液に導入するためのガス導入部70を備える。以下では、被水素化物及び有機ハイドライドの両方をガスによって除去する構成を好ましい例として説明するが、いずれか一方のみを除去する構成も本実施の形態に含まれる。ガス導入部70は、例えば所定のガスとして、空気、窒素、アルゴン及びヘリウムからなる群から選択される少なくとも1つをアノード液に導入する。すなわち、ガス導入部70は、所定のガスを用いてアノード液をバブリングする。ガス導入部70は、ガスをアノード液に導入するための機構として、例えばポンプあるいはエジェクターを備える。
【0069】
ガス導入部70によってアノード液にガスを導入することで、アノード液中の被水素化物及び有機ハイドライドの気化を促進して、被水素化物及び有機ハイドライドをアノード液から排除することができる。これにより、アノード触媒層152への被水素化物及び有機ハイドライドの吸着や、被水素化物及び有機ハイドライドの酸化物によるアノード触媒層152の腐食を抑制することができる。気化した被水素化物及び有機ハイドライドは、分解部46を経て系外に排出される。
【0070】
アノード150での電極反応によって生成する酸素ガスによっても、被水素化物及び有機ハイドライドの気化はある程度促進される。しかしながら、ガス導入部70によってガスを導入することで、被水素化物及び有機ハイドライドの気化をさらに促進して、被水素化物及び有機ハイドライドをより多くまたより迅速に、アノード液から除去することができる。これにより、酸化物の生成量をより低減できるため、アノード触媒層152の劣化をより抑制することができる。
【0071】
例えば、被水素化物としては上述のようにトルエンが挙げられる。トルエンは、アノード液に対して最大で500mg/L程度溶解する。トルエンの沸点は110.6℃であり、比較的気化しやすい。しかしながら、アノード液に混入したトルエンは、少なからずアノード触媒層152において電解酸化してしまう。トルエンの電解酸化によって生成される化合物は、ベンジルアルコール、ベンズアルデヒド及び安息香酸である。これらの沸点は、205℃、178.1℃、249.2℃であり、ガス導入部70によるガスの導入では、アノード液から除去することが困難である。
【0072】
これに対し、ガス導入部70を設けることで、アノード液からより多くのトルエンをより迅速に除外することができる。これにより、電極酸化される前にアノード液から除去されるトルエンの量を増加させることができる。この結果、トルエンの酸化物の生成量が低減し、アノード触媒層152の劣化をより抑制することができる。なお、有機ハイドライド製造装置10への使用が想定される他の被水素化物や有機ハイドライドについても、必要に応じて導入するガスの温度や湿度等を調整することで、ガス導入部70によってアノード液から除去することができる。ガスの温度や湿度を調整する場合には、アノード電解液よりも被水素化物及び有機ハイドライドをより多くガス中に溶存できるように調整することが望ましい。
【0073】
ガス導入部70は、アノード液の経路における所定の位置において、アノード液にガスを導入する。本実施の形態では、ガス導入部70は、アノード室154にガスを導入するように配置されている。しかしながら、特にこの構成に限定されず、ガス導入部70は、アノード液の経路におけるアノード室154以外の位置、例えばアノード液貯蔵槽40や循環経路44に接続してもよい。また、ガス導入部70は、アノード室154、アノード液貯蔵槽40、及び循環経路44のいずれか1つのみに接続されてもよいし、2つ以上に接続されてもよい。
【0074】
アノード液中の被水素化物及び有機ハイドライドの濃度は、アノード液貯蔵槽40や往路部44aに比べて、アノード触媒層152や復路部44bにおいて高く、特にアノード触媒層152において高い。このため、ガス導入部70は、アノード室154又は復路部44bにおいてアノード液にガスを導入することがより好ましく、アノード室154においてアノード液にガスを導入することがさらに好ましい。これにより、アノード液中の被水素化物及び有機ハイドライドを除去する効率を高めることができる。
【0075】
アノード室154にガスを導入する場合、ガス導入部70は、アノード液の流れにおけるアノード触媒層152よりも下流側に接続されることが好ましい。これにより、ガス導入部70が供給するガスによって、アノード触媒層152における電極反応が阻害されることを、より確実に回避することができる。また、アノード液貯蔵槽40にガスを導入する場合、ガス導入部70は、アノード液貯蔵槽40の底部に接続されることが好ましい。循環経路44の往路部44aにガスを導入する場合、第2液体供給装置42のサクション部に接続してもよい。
【0076】
ガス導入部70によるガスの導入量は、アノード150に移行する被水素化物及び有機ハイドライドの単位時間当たりの量等に応じて、設定することができる。例えば、電極面積当たりの被水素化物及び有機ハイドライドの合計の移行量が0.01mmol/(h・cm
2)程度である場合、ガスの導入量は60L/(h・cm
2)以上であることが好ましい。また、ガスの導入量は、例えば、アノード150での電極反応で発生する酸素ガスの発生量と同量以上であり、当該発生量の200倍の量以下である。また、ガスの導入量は、分解部46から排出されるガス中の被水素化物及び有機ハイドライドの濃度が爆発限界濃度以下となるように調整することが好ましい。
【0077】
ガス導入部70は、好ましくは多孔性部材を備え、多孔性部材を介してアノード液にガスを導入する。多孔性部材を介すことで、ガスを微細な気泡の状態でアノード液に導入することができる。これにより、被水素化物及び有機ハイドライドを気化させやすくすることができる。また、ガス導入部70は、プロペラ等の従来公知の撹拌手段を備えてもよい。
【0078】
[有機ハイドライドの製造方法]
本実施の形態に係る有機ハイドライドの製造方法では、上述したアノード150のアノード触媒層152に、水を含むアノード液が供給される。そして、アノード触媒層152において、水が電気分解されてプロトンが生成される。生成されたプロトンは、電解質膜110を通過して、カソード120側に移動する。また、カソード120のカソード触媒層122に被水素化物が供給される。そして、カソード触媒層122において、電解質膜110を通過したプロトンで被水素化物が水素化されて、有機ハイドライドが生成される。また、この有機ハイドライドの生成と並行して、ガス導入部70によってアノード液に所定のガスが導入され、電解質膜110を通過してアノード液に混入した被水素化物及び有機ハイドライドがアノード液から除去される。プロトンの生成工程と、電解還元反応による有機ハイドライドの生成工程と、アノード液からの被水素化物及び有機ハイドライドの除去工程とは、少なくとも一時において並行して起こる。
【0079】
以上説明したように、本実施の形態に係る有機ハイドライド製造装置10は、電解質膜110と、カソード120と、アノード150と、被水素化物及び有機ハイドライドを除去するためのガスをアノード液に導入するガス導入部70とを備える。ガス導入部70によってアノード液中の被水素化物及び有機ハイドライドを除去することで、アノード液に混入した被水素化物及び有機ハイドライドの触媒への吸着や、被水素化物及び有機ハイドライドの酸化物による触媒の腐食を抑制することができる。
【0080】
この結果、アノード触媒層152の機能低下を抑制して、セル電圧の増加を回避することができる。このため、カソード120における被水素化体の還元反応を、より小さい電力原単位で長期間進行させることができる。よって、有機ハイドライドの製造効率を向上させることができる。また、アノード触媒層152の長寿命化を図ることができる。本実施の形態では、アノード液貯蔵槽40とアノード150との間でアノード液を循環させる構造を有する。このため、アノード液に混入した被水素化物及び有機ハイドライドは、アノード液貯蔵槽40に蓄積しやすい。したがって、ガス導入部70による被水素化物及び有機ハイドライドの除去は、有機ハイドライドの製造効率の向上やアノード触媒層152の長寿命化に対して特に有効である。
【0081】
また、本実施の形態に係る有機ハイドライドの製造方法は、アノード触媒層152にアノード液を供給し、アノード液中の水を電気分化してプロトンを生成する工程と、カソード触媒層122に被水素化物を供給し、電解質膜110を通過したプロトンで被水素化物を水素化して有機ハイドライドを生成する工程と、アノード液に所定のガスを導入し、電解質膜110を通過してアノード液に混入した被水素化物及び有機ハイドライドをアノード液から除去する工程とを含む。これにより、より長期間にわたって、より高い効率で有機ハイドライドを製造することができる。なお、ガスによって被水素化物及び有機ハイドライドのいずれか一方のみを除去する場合でも、当該除去を実施しない場合に比べて、有機ハイドライドの製造効率の向上やアノード触媒層152の長寿命化を図ることができる。
【0082】
本発明は、上述の実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。
【実施例】
【0083】
以下、本発明の実施例を説明するが、これら実施例は、本発明を好適に説明するための例示に過ぎず、なんら本発明を限定するものではない。
【0084】
(実施例1)
まず、PtRu/C触媒TEC61E54E(Pt23質量%、Ru27質量%、田中貴金属工業社製)の粉末に、ナフィオン(登録商標)分散液DE2020(デュポン社製)を添加し、適宜溶媒を用いてカソード触媒層用の触媒インクを調製した。ナフィオン(登録商標)分散液の添加量は、乾燥後のナフィオンの質量と触媒中のカーボンの質量との比率が1:1となるように添加した。また、電解質膜として、親水処理を施したナフィオン(登録商標)115(厚さ120μm、デュポン社製)を用意した。得られた触媒インクを電解質膜の一方の主表面にスプレー塗布した。触媒インクは、PtとRuの合計質量が電極面積あたり0.5mg/cm
2となるように塗布した。その後、塗膜を80℃で乾燥させて触媒インク中の溶媒成分を除去し、カソード触媒層と電解質膜の積層体を得た。
【0085】
続いて、電極面の形状に合わせて切り抜いたカソード拡散層SGL35BC(SGLカーボン社製)を、カソード触媒層の表面に貼り付けた。そして、カソード触媒層及びカソード拡散層を、温度120℃、圧力1MPaの条件で2分間熱接合した。これにより、電解質膜、カソード触媒層及びカソード拡散層からなる複合体を得た。
【0086】
また、カーボン/エポキシ樹脂をモールド成型したカーボン系構造体を用意した。このカーボン系構造体は、流路部132と、スペーサ126と、セパレータ170aとの接合体に相当する。カーボン系構造体における、流路部132に相当する側の表面に、複数の流路を形成した。各流路は、幅1mm、深さ0.5mmの直線状である。隣り合う流路の間隔は1mmとした。各流路の一端は、各流路を統合する液体供給用ヘッダーに接続した。各流路の他端は、各流路を統合する液体排出用ヘッダーに接続した。
【0087】
また、アノード基材として、厚さ1.0mm、短目方向中心間距離3.5mm、長目方向中心間距離6.0mm、刻み幅1.1mm、開口率42%のエキスパンドメッシュを用意した。そして、アノード基材の表面に乾式ブラスト処理を施し、ついで20%硫酸水溶液中での洗浄処理を施した。その後、アークイオンプレーティング装置とチタン−タンタル合金板を用い、基材温度150℃、真空度1.0×10
−2Torrの条件で、アノード基材の表面に厚さ2μmの被膜を形成した。被膜を設けたアノード基材に対して、四塩化イリジウム/五塩化タンタルの混合水溶液を塗布した。その後、アノード基材を電気炉に投入して、550℃の熱処理を施した。溶液の塗布と熱処理とを複数回繰り返すことにより、触媒として酸化イリジウムと酸化タンタルとを等モル含有するアノード触媒層を形成した。触媒の担持量は、Ir金属量換算で電極面積あたり12g/m
2とした。
【0088】
また、厚さ0.3mmのチタン板を加工して10mmピッチの平バネが並んだ形状とした弾性体を、アノード支持用弾性体として用意した。平バネにおけるアノード触媒層が接する面には、微量の白金層を形成した。また、アノード用スペーサ及びアノード用セパレータを用意した。
【0089】
用意したカーボン系構造体、複合体、アノード用スペーサ、アノード触媒層、アノード支持用弾性体及びアノード用セパレータを、この順に積層した。アノード触媒層は、複合体の電解質膜側の面に固定した。カーボン系構造体は、有機ハイドライド製造装置を設置した際に各流路が鉛直方向に延在するように配置して、複合体のカソード拡散層側の面に固定した。各流路の一端には、液体供給用ヘッダーを介して被水素化物の供給経路(循環経路34の往路部34aに相当)を接続した。各流路の他端には、液体排出用ヘッダーを介して有機ハイドライドの排出経路(循環経路34の復路部34bに相当)を接続した。また、アノード用スペーサのアノード室入口にアノード液の供給経路(循環経路44の往路部44aに相当)を接続し、アノード用スペーサのアノード室出口にアノード液の排出経路(循環経路44の復路部44bに相当)を接続した。
【0090】
アノード支持用弾性体により各層を押し付けることで、各層が互いに密着した状態を作り出した。電解質膜とアノード触媒層との間隔は、0.05mmとした。以上の工程により、実施例1の有機ハイドライド製造装置を得た。電解セルの電極有効面積は、12.3cm
2であった。
【0091】
この有機ハイドライド製造装置のカソード室に、カソード液としてトルエンを流通させた。また、アノード室に、アノード液として100g/L硫酸水溶液を流通させた。カソード液の流量は、0.6mL/分とした。アノード液の流量は、5mL/分とした。そして、温度60℃、電流密度40A/dm
2で電解反応を実施した。アノード液は、ポンプを用いてアノード液貯蔵槽からアノード室に供給し、またアノード室からアノード液貯蔵槽に戻して循環させた(バッチ運転)。アノード液は、電解セルの下部からアノード室に供給した。また、アノード液は、電解により減少する水分を補充しながら循環させた。
【0092】
また、アノード液貯蔵槽には、ガラスフィルターを有するガス導入部を接続した。そして、ガラスフィルターを介して、アノード液貯蔵槽に空気を供給してバブリングした。空気の供給量は、2.8L/分とした。そして、電解反応を開始してから24,48,72時間後のアノード液を、紫外吸光度検出装置(島津製作所社製)を用いて分析した。結果を
図3(A)に示す。
【0093】
(比較例1)
アノード液貯蔵槽にガス導入部を接続しなかったことを除いて、実施例1と同様の有機ハイドライド製造装置を得た。そして、アノード液に空気を供給せず、バブリングしなかったことを除いて、実施例1と同条件で電解反応を実施した。電解反応を開始してから24,51,72時間後のアノード液を、紫外可視分光光度計(島津製作所社製)を用いて分析した。結果を
図3(B)に示す。
【0094】
図3(A)は、バブリングした場合のアノード液の吸収スペクトルを示す図である。
図3(B)は、バブリングしなかった場合のアノード液の吸収スペクトルを示す図である。
図3(A)及び
図3(B)に示すように、バブリングの有無にかかわらず、トルエンの吸収スペクトル(
図4(A)参照)に対応する吸収スペクトルは検出されなかった。一方、トルエンの酸化物であるベンジルアルコールの吸収スペクトル(
図4(B)参照)、及びベンズアルデヒドの吸収スペクトル(
図4(C)参照)に対応すると推定される吸収スペクトルが検出された。
【0095】
ベンジルアルコール及びベンズアルデヒドに由来すると推定される吸収スペクトルを、バブリングの有無で比較すると、アノード液をバブリングしなかった場合(
図3(B))の方が、アノード液をバブリングした場合(
図3(A))よりも、吸光度が高かった。この比較から、バブリングしなかった場合の方が、バブリングした場合よりもアノード液中に含まれるトルエンの酸化物の量が多いことが示される。これは、アノード液のバブリングによってアノード液中のトルエンが迅速に除去され、トルエンの酸化物の生成及び蓄積が抑制されたことを示している。
【0096】
また、実施例1及び比較例1について、電解反応を開始してから1時間後のアノード液を採取した。そして、このアノード液から排出されるガスに含まれるトルエンの濃度を、検知管(No.122、ガステック社製)を用いて測定した。その結果、実施例1では2.8ppmであり、比較例1では410ppmであった。これは、アノード液のバブリングによって、トルエンが迅速に除去されたことを示唆している。なお、バブリングの有無によるセル電圧の変化は観察されなかった(平均2.2V)。また、実施例1及び比較例1の電解セルを長時間稼働させ、アノード触媒中のイリジウムの消耗率を、蛍光X線装置(リガク社製)を用いて計測した。その結果、1,000時間から2,000時間の間における消耗率は、実施例1が3%、比較例1が6%であった。このことから、バブリングによる触媒の消耗挙動の改善が確認された。
【0097】
また、アノード触媒層に含まれる酸化イリジウムと酸化タンタルのモル比を2:1としたことを除いて、実施例1及び比較例1と同様の有機ハイドライド製造装置を得た。そして、実施例1及び比較例1と同様の電解反応を実施した。この場合も、実施例1及び比較例1と同様の結果が得られた。
【0098】
また、アノード液のバブリングによるトルエン及びトルエンの酸化物の除去効果について試験した。アノード液として純水又は100g/L硫酸水溶液を入れたビーカーを複数用意した。各ビーカーにおけるアノード液の量は1Lとした。各ビーカーに、トルエン、ベンジルアルコール、ベンズアルデヒド及び安息香酸のいずれかを添加した。各有機物の濃度は、500ppmとした。そして、5分間撹拌して、有機物を均一に分散させた。また、ガス導入部として、多孔質シリカガラスチューブ(チューブ内径10mm)を備えたエアポンプを用意し、チューブの先端をビーカーに挿入した。アノード液の温度は25℃とした。
【0099】
純水1L、トルエン濃度500ppmのアノード液に対して、複数の異なる空気供給量でバブリングを実施した。空気供給量は、0.1L/分、0.8L/分、1.7L/分、2.8L/分、3.8L/分とした。バブリング時間はそれぞれ5分間とした。バブリング後の各アノード液について、紫外可視分光光度計(島津製作所社製)を用いて、残留トルエンの濃度を測定した。そして、バブリング後のトルエンの残留率を算出した。残留率は、バブリング前のトルエンの量に対するバブリング後のトルエンの量の割合である。結果を
図5(A)に示す。
図5(A)は、空気の供給量(単位:L/分)と、トルエンの残留率(単位:%)との関係を示す図である。
【0100】
また、純水1L、トルエン濃度500ppmのアノード液に対して、空気供給量を2.8L/分としてバブリングを実施した。そして、バブリング開始から1,2,3,5,10分後のアノード液について、紫外可視分光光度計(島津製作所社製)を用いて残留トルエンの濃度を測定した。そして、バブリング後のトルエンの残留率を算出した。結果を
図5(B)に示す。
図5(B)は、空気の供給時間(単位:分)と、トルエンの残留率(単位:%)との関係を示す図である。
【0101】
図5(A)に示すように、空気の供給量を増加させるとトルエンの残留率が減少する傾向が見られた。また、
図5(B)に示すように、バブリング時間を増加させてもトルエンの残留率が減少する傾向が見られた。また、5分間、2.8L/分のバブリングで、95%以上のトルエンを除去できることが確認された。
【0102】
また、100g/L硫酸水溶液1L、トルエン濃度500ppmのアノード液に対して、5分間、2.8L/分のバブリングを実施し、トルエンの残留率を算出した。結果を
図6(A)に示す。
図6(A)には、純水1L、トルエン濃度500ppmのアノード液の結果も併せて示す。
図6(A)は、純水におけるトルエンの残留率と、硫酸水溶液におけるトルエンの残留率とを示す図である。
【0103】
100g/L硫酸水溶液が1Lで、ベンジルアルコール、ベンズアルデヒド及び安息香酸の各濃度が500ppmである各アノード液についても、5分間、2.8L/分のバブリングを実施し、各有機物の残留率を算出した。結果を
図6(B)に示す。
図6(B)には、トルエン濃度500ppmのアノード液の結果も併せて示す。
図6(B)は、硫酸水溶液における各種の有機物の残留率を示す図である。
【0104】
図6(A)に示すように、硫酸水溶液中に混入したトルエンは、バブリングにより純水の場合以上に除去することができた。しかしながら、
図6(B)に示すように、トルエンの酸化物であるベンジルアルコール、ベンズアルデヒド及び安息香酸は、バブリングでほとんど除去することができなかった。このことから、電解酸化されて酸化物になる前にトルエンを除去することの有効性が示される。