【解決手段】たとえば、アンテナ・パッケージは、多層パッケージ基板、平面アンテナ・アレー、アンテナ給電線、および抵抗のある伝送線を含む。平面アンテナ・アレーは、アクティブ・アンテナ要素のアレー、およびアクティブ・アンテナ要素のアレーを囲むダミー・アンテナ要素を含む。各アクティブ・アンテナ要素は、アンテナ給電線のうちの対応する1つに結合され、各ダミー・アンテナ要素は、抵抗のある伝送線のうちの対応する1つに結合されている。それぞれの抵抗のある伝送線は、多層パッケージ基板を貫通して延び、多層パッケージ基板の同じメタライゼーション層内で終端されている。
各アンテナ給電線が、第1のアンテナ給電線および第2のアンテナ給電線を含み、前記第1のアンテナ給電線および前記第2のアンテナ給電線が、前記アクティブ・アンテナ要素の動作の2偏波モードを可能にする請求項1に記載のアンテナ・パッケージ。
抵抗のある伝送線のそれぞれが、第1の抵抗のある伝送線および第2の抵抗のある伝送線を含み、前記第1の抵抗のある伝送線および前記第2の抵抗のある伝送線が、前記ダミー・アンテナ要素に入射する2偏波放射の終端を可能にする請求項1に記載のアンテナ・パッケージ。
前記多層パッケージ基板内の前記アンテナ給電線の横方向の引き回しが、前記多層パッケージ基板の同じメタライゼーション層内に形成された伝送線によって実施されている請求項5に記載のアンテナ・パッケージ。
前記多層パッケージ基板が複数の隔離構造を含み、各隔離構造が、前記多層パッケージ基板の複数の層内に形成された一連のメタライゼーション・トレースおよび導電ビアを含み、各隔離構造がさらに、平面アンテナ要素のうちの1つに関連付けられている前記アンテナ接地平面のうちの1つと前記アンテナ給電線のうちの1つの末端部分とを囲むように構成されている請求項1に記載のアンテナ・パッケージ。
前記多層パッケージ基板の第2の表面上に形成され、前記多層パッケージ基板と前記多層パッケージ基板の前記第2の表面にフリップ・チップ・ボンディングされるRFIC(無線周波数集積回路)チップとの間の電磁遮蔽を行うように構成されている接地平面をさらに含む、請求項1に記載のアンテナ・パッケージ。
前記多層パッケージ基板の前記第2の表面にフリップ・チップ・ボンディングされた複数のRFICチップをさらに含み、前記多層パッケージ基板の前記第2の表面上に形成された前記接地平面が、前記RFICチップと、前記多層パッケージ基板内に形成されたパッケージ給電線、信号線、および電力線との間の接続のための接触ポートを提供するための複数のビア開口を含む請求項9に記載のアンテナ・パッケージ。
複数の積層された層を含む多層パッケージ基板であって、積層された層のそれぞれが、絶縁層上に形成されたパターン形成されたメタライゼーション層を含む、前記多層パッケージ基板を含み、
前記多層パッケージ基板が、
アクティブ・アンテナ要素のアレー、およびアクティブ・アンテナ要素の前記アレーを囲む複数のダミー・アンテナ要素を含む平面アンテナ・アレーと、
複数のアンテナ給電線であって、各アクティブ・アンテナ要素が、前記アンテナ給電線のうちの対応する1つに結合されている、前記複数のアンテナ給電線と、
複数の抵抗のある伝送線であって、各ダミー・アンテナ要素が、前記抵抗のある伝送線のうちの対応する1つに結合されている、前記複数の抵抗のある伝送線とをさらに含み、
抵抗のある伝送線のそれぞれが、前記多層パッケージ基板を貫通して延び、前記多層パッケージ基板の同じメタライゼーション層内で終端されている、アンテナ・パッケージ。
各アンテナ給電線が、第1のアンテナ給電線および第2のアンテナ給電線を含み、前記第1のアンテナ給電線および前記第2のアンテナ給電線が、前記アクティブ・アンテナ要素の動作の2偏波モードを可能にし、抵抗のある伝送線のそれぞれが、第1の抵抗のある伝送線および第2の抵抗のある伝送線を含み、前記第1の抵抗のある伝送線および前記第2の抵抗のある伝送線が、前記ダミー・アンテナ要素に入射する2偏波放射の終端を可能にする請求項12に記載のアンテナ・パッケージ。
前記アクティブ・アンテナ要素および前記ダミー・アンテナ要素のそれぞれが、給電パッチ要素および前記給電パッチ要素に電磁的に結合されるパッチ・アンテナを含む積層されたパッチ構造を含み、前記アンテナ給電線が、前記アクティブ・アンテナ要素の前記給電パッチ要素のうちの対応する給電パッチ要素に接続され、前記抵抗のある伝送線が、前記ダミー・アンテナ要素の前記給電パッチ要素のうちの対応する給電パッチ要素に接続されている請求項12に記載のアンテナ・パッケージ。
前記多層パッケージ基板が、複数の隔離構造を含み、各隔離構造が、前記多層パッケージ基板の複数の積層された層内に形成された一連のメタライゼーション・トレースおよび導電ビアを含み、各隔離構造が、前記アクティブ・アンテナ要素および前記ダミー・アンテナ要素の前記給電パッチ要素のうちの対応する1つを囲むように構成されている請求項14に記載のアンテナ・パッケージ。
前記多層パッケージ基板内の前記アンテナ給電線の横方向の引き回しが、前記多層パッケージ基板の同じメタライゼーション層内に形成された伝送線によって実施されている請求項16に記載のアンテナ・パッケージ。
前記多層パッケージ基板の第2の表面上に形成され、前記多層パッケージ基板と前記多層パッケージ基板の前記第2の表面にフリップ・チップ・ボンディングされるRFIC(無線周波数集積回路)チップとの間の電磁遮蔽を行うように構成されている接地平面をさらに含む、請求項12に記載のアンテナ・パッケージ。
前記多層パッケージ基板の前記第2の表面にフリップ・チップ・ボンディングされた複数のRFICチップをさらに含み、前記多層パッケージ基板の前記第2の表面上に形成された前記接地平面が、前記RFICチップと、前記多層パッケージ基板内に形成されたパッケージ給電線、信号線、および電力線との間の接続のための接触ポートを提供するための複数のビア開口を含む請求項18に記載のアンテナ・パッケージ。
【発明を実施するための形態】
【0009】
本発明の実施形態が、ワイヤレス通信パッケージ構造と、特に、高性能な集積アンテナ・システム(たとえば、フェーズド・アレー・アンテナ・システム)を有するコンパクトな集積化された無線/ワイヤレス通信システムを形成するために半導体RFICチップを有するアンテナ構造をパッケージングするための技術とに関連して以降でさらに詳細に検討される。添付の図面に示されるさまざまな層または構成要素あるいはその両方は正確な縮尺で描かれていないこと、集積アンテナおよびRFICチップを有するワイヤレス通信パッケージを構築する際によく使用される種類の1つまたは複数の層または構成要素あるいはその両方は所与の図面において明示されない可能性があることを理解されたい。これは、明示されない層または構成要素あるいはその両方が実際のパッケージ構造から省略されることを示唆しない。さらに、図面全体を通じて使用される同じまたは同様の参照番号は、同じまたは同様の特徴、要素、または構造を表すために使用され、したがって、同じまたは同様の特徴、要素、または構造の詳細な説明は、図面の各々に関して繰り返されない。
【0010】
図1は、本発明の実施形態によるワイヤレス通信パッケージ100の概略側面断面図である。ワイヤレス通信パッケージ100は、RFICチップ102と、RFICチップ102に結合されたアンテナ・パッケージ105(または「アンテナ・イン・パッケージ(antenna-in-package)」)とを含む。アンテナ・パッケージ105は、中心コア層120と、インターフェース層130と、アンテナ層140を含む多層パッケージ基板110を含む。アンテナ・パッケージ105は、片側に少なくとも1つのパッチ・アンテナ要素152(たとえば、パッチ・アンテナ要素)がパターン形成された平らな蓋151を含むパッケージ・カバー150をさらに含む。パッケージ・カバー150は、平らな蓋151上のパッチ・アンテナ要素152がパッケージ基板110の上側に向き合うようにしてパッケージ基板110の第1の側(たとえば、上側)に取り付けられる。平らな蓋151は、埋め込まれた空隙(air cavity)160を形成するためにパッケージ基板110の上側から距離Hに配置され、埋め込まれた空隙160は、下でさらに詳細に説明されるように、ミリ波動作周波数以上のための最適なアンテナ放射特性を有する高性能な集積アンテナ・システムの実現を可能にする。
【0011】
RFICチップ102は、RFICチップ102のアクティブな表面(表側)上に形成されたメタライゼーション・パターン(明示せず)を含み、そのメタライゼーション・パターンは、たとえば、RFICチップ102のBEOL(バック・エンド・オブ・ライン(back end of line))配線構造の一部として形成される接触パッド、DC電源パッド、入力/出力パッド、制御信号パッド、関連する配線などの複数のボンディング/コンタクト・パッドを含む。RFICチップ102は、たとえば、はんだボール崩壊制御チップ接続(controlled collapse chip connection)(C4)170のアレーまたはその他の知られている技術を使用してパッケージ基板110の第2の側(たとえば、下側)にRFICチップ102のアクティブな(表側の)表面をフリップ・チップ取り付けすることによってアンテナ・パッケージ105に電気的および機械的に接続されている。用途に応じて、RFICチップ102は、たとえば、受信機、送信機、またはトランシーバ回路、およびワイヤレスRFICチップを実現するためによく使用されるその他の能動または受動回路要素を含むアクティブな側に形成されたRFIC回路および電子構成要素を含む。
【0012】
図1に示されるように、本発明の一実施形態において、パッケージ基板110は、SLC(表面積層回路(surface laminar circuit))、HDI(高密度相互接続(highdensity interconnect))、または高集積密度の有機ベースの多層回路基板の形成を可能にするその他の製造技術などの知られている製造テクノロジーを使用して構築され得る多層構造を含む。これらの回路基板製造技術を使用して、パッケージ基板110は、メタライゼーションおよび誘電体/絶縁体材料の交互の層を含む積層された層のスタックから形成される可能性があり、メタライゼーション層は、誘電/絶縁材料のそれぞれの層によって上にあるまたは下にあるあるいはその両方のメタライゼーション層と分離されている。メタライゼーション層は銅で形成することができ、誘電/絶縁層はガラス繊維エポキシ材料からなる業界標準のFR4絶縁層で形成することができる。その他の種類の金属をメタライゼーションおよび絶縁層のために使用することもできる。さらに、これらのテクノロジーによって、パッケージ基板110内に高密度配線および相互接続構造を形成をするために、たとえば、レーザー・アブレーション、フォト・イメージング、またはエッチングを使用して小さな導電ビア(たとえば、隣接するメタライゼーション層の間の部分的または埋め込み(buried)ビア)を形成することができる。
【0013】
図1の実施形態において、中心コア層120は、コア層120の両側にインターフェース層130およびアンテナ層140を構築すべき構造的に丈夫な層を提供する。一実施形態において、コア層120は、第1の側に第1の接地平面124を形成し、第2の側に第2の接地平面126を形成した基板層122を含む。基板層122は、標準のFR4材料、または標準的なプリント回路基板を構築するために通常使用されるその他の標準的な材料で形成することができる基板層122は、FR4と同様の機械的および電気的特性を有するその他の材料によって形成することによって、パッケージ基板110を構造的に支持する比較的硬い基板構造を提供することができる。
【0014】
インターフェース層130は、複数の積層された層L1、L2、L3、L4、L5、L6を含み、それぞれの積層された層L1、L2、L3、L4、L5、L6は、それぞれの誘電/絶縁層D1、D2、D3、D4、D5、D6の上に形成されたそれぞれのパターン形成されたメタライゼーション層M1、M2、M3、M4、M5、M6を含む。同様に、アンテナ層140は、複数の積層された層L1、L2、L3、L4、L5、L6を含み、それぞれの積層された層L1、L2、L3、L4、L5、L6は、それぞれの誘電/絶縁層D1、D2、D3、D4、D5、D6の上に形成されたそれぞれのパターン形成されたメタライゼーション層M1、M2、M3、M4、M5、M6を含み、これらの層が、アンテナ層140内のさまざまな構成要素を形成する。
【0015】
上述のように、一実施形態において、インターフェース層130およびアンテナ層140の積層された層L1、L2、L3、L4、L5、L6は、ミリ波用途などの高周波数用途のために必要とされる必須の許容誤差および設計規則を満たすことができるSLCまたは同様のテクノロジーなどの最新の製造技術を使用して形成することができる。SLCプロセスによって、積層された層の各々は、パターン形成されたメタライゼーション層によって別々に形成され、インターフェース層130およびアンテナ層140の第1の層L1は、コア層120にボンディングされ、(それぞれのインターフェース層130およびアンテナ層140の)残りの積層された層L2、L3、L4、L5、およびL6は、任意の好適なボンディング技術、たとえば、接着剤またはエポキシ材料を使用して順番に1つにボンディングされている。
図1にさらに示されるように、導電ビアが、コア層120を貫通し、インターフェース層130およびアンテナ層140の誘電/絶縁層D1、D2、D3、D4、D5、D6を貫通して形成されている。所与の誘電/絶縁層を貫通して形成される導電ビアは、所与の誘電/絶縁層のそれぞれの側に配置されたメタライゼーション層からパターン形成されるビア・パッドに接続されている。
【0016】
さまざまなメタライゼーション層M1、M2、M3、M4、M5、M6、第1の接地平面124、および第2の接地平面126、ならびに垂直な導電ビアは、目標のワイヤレス通信の用途のために必要とされるさまざまな特徴を実装するために、パッケージ基板110のさまざまな層(コア層120、インターフェース層130、およびアンテナ層140)内におよびさまざまな層(コア層120、インターフェース層130、およびアンテナ層140)を通してパターン形成され、相互接続されている。そのような特徴は、たとえば、アンテナ給電線、接地平面、RF遮蔽および隔離構造、RFICチップ102(およびワイヤレス通信パッケージ100に含まれる可能性があるその他のRFICまたはチップ)への供給電力を引き回す電力平面、IF(中間周波数)信号、LO(局部発振器)信号、その他の低周波数I/O(入力/出力)ベースバンド信号を引き回すための信号線などを含む。
【0017】
特に、
図1の例示的な実施形態に示されるように、パッケージ基板110は、インターフェース層130、コア層120、およびアンテナ層140を通して引き回されている(破線によって表される)第1のアンテナ給電線112および(破線によって表される)第2のアンテナ給電線114を含む。第1のおよび第2のアンテナ給電線112および114は、パッケージ基板110のインターフェース層130、コア層120、およびアンテナ層140のメタライゼーション層および誘電層の一部である一連の相互接続された金属トレースおよび導電ビアを含む。
【0018】
図1にさらに示されるように、アンテナ層140のメタライゼーション層M5は、アンテナ接地平面142と、平らな蓋151上に形成されたパッチ・アンテナ要素152に位置合わせされる結合開口142A(たとえば、結合スロット)とを形成するようにパターン形成される。第1のアンテナ給電線112は、メタライゼーション層M4上にパターン形成され、アンテナ接地平面142の結合開口142Aに位置合わせされる水平ストリップ線路構造112−1を含む。この実施形態において、アンテナ層140のメタライゼーション層M2およびM5は、たとえば、水平ストリップ線路構造112−1のための接地平面として働く。水平ストリップ線路構造112−1は、結合開口142Aを通じてパッチ・アンテナ要素152におよびパッチ・アンテナ要素152から電磁エネルギーを結合するように構成され、それによって、開口によって結合されたアンテナ構成を提供する。
【0019】
同様に、第2のアンテナ給電線114は、メタライゼーション層M6からパターン形成され、パッチ・アンテナ要素152に位置合わせされる水平マイクロストリップ構造114−1を含む。この実施形態において、アンテナ層140のメタライゼーション層M5は、たとえば、水平マイクロストリップ構造114−1のための接地平面として働く。水平マイクロストリップ構造114−1は、パッチ・アンテナ要素152におよびパッチ・アンテナ要素152から電磁エネルギーを結合するように構成され、それによって、電磁的に結合されたパッチ・アンテナ構成を提供する。
【0020】
図1の例示的な実施形態において、第1のおよび第2のアンテナ給電線112および114は、当業者によって理解されるであろうように、電磁信号を送信するかまたは受信するかあるいはその両方を行うとき、偏波ダイバーシティ(たとえば、水平および垂直偏波)を可能にするように構成される。特に、第1のアンテナ給電線112は、パッチ・アンテナ要素152の動作の水平偏波モードを可能にし、第2のアンテナ給電線114は、パッチ・アンテナ要素152の動作の垂直偏波モードを可能にする。さらに、図示をし易くするために1つのパッチ・アンテナ要素152ならびに関連するアンテナ給電線112および114のみが
図1に示されているが、フェーズド・アレー・アンテナの用途に関しては、平らな蓋151は、パッチ・アンテナ要素のアレーを有し、パッケージ基板110は、アレーの各パッチ・アンテナ要素に関して、
図1に示されたのと同様の給電線構成(水平および垂直偏波のための給電線112および114の対、ならびに結合開口142Aを伴う接地平面142)を有する。
【0021】
本発明の一実施形態において、第1のおよび第2のアンテナ給電線112および114(ならびにパッケージ基板110内に形成されたすべてのその他のアンテナ給電線)は、アンテナの動作を最適化するために均等化された長さを有するように設計される。たとえば、フェーズド・アレーの実装に関して、同じまたは実質的に同じ長さを有するようにパッケージ基板110内のすべてのアンテナ給電線を形成することは、アンテナ・アレーのパッチ・アンテナ要素に供給されるRF信号の位相の調整を容易にし、フェーズド・アレーのビーム・スクイント(beam squint)を防止し、角度走査誤差(angle scan error)を減らし、アンテナ要素の動作の帯域幅を効果的に増やす。
【0022】
図1の例示的な実施形態において、インターフェース層130、コア層120、およびアンテナ層140を貫通して垂直に延びるアンテナ給電線112および114の垂直な部分の長さは、パッケージ基板110のさまざまな層の厚さに基づいて長さが決められている。しかし、RFICチップ102の対応するアンテナ給電線ポートに対するアンテナ・アレーのパッチ・アンテナ要素の水平方向/横方向の位置に依存して、パッチ・アンテナ要素とRFICチップ102との間の横方向の距離が変わる。これに関連して、各アンテナ給電線が全体に同じ長さ(または実質的に同じ長さ)を有することを保証するために、本発明の一実施形態において、多層パッケージ基板110内のアンテナ給電線の横方向の引き回しは、多層パッケージ基板の同じメタライゼーション層内に形成された伝送線によって実施されている。たとえば、
図1に示される実施形態において、アンテナ給電線112および114の長さは、インターフェース層130のメタライゼーション層M1からパターン形成されるアンテナ給電線112および114の横方向の部分の引き回しを延ばすかまたは短くすることによってインターフェース層130の第1の層L1内で調節されている。
【0023】
より詳細には、
図1の実施形態において、第1のおよび第2のアンテナ給電線112および114の水平給電線部分112−2および114−2は、第1のおよび第2のアンテナ給電線112および114がRFICチップ102の給電ポートからアンテナ層140内の水平ストリップ線路構造112−1および水平マイクロストリップ構造114−1まで等しい長さを有することを保証するために、インターフェース層130の第1のメタライゼーション層M1からパターン形成される。第1のおよび第2のアンテナ給電線112および114の水平給電線部分112−2および114−2の長さは、インターフェース層130、コア層120、およびアンテナ層140を貫通して引き回されるアンテナ給電線112および114のその他の部分の横方向または垂直方向あるいはその両方の位置の差を補償するために延ばされるかまたは短くされるかのどちらかである。そのような引き回しを示す例示的な実施形態が、
図2および
図3を参照して下でさらに詳細に説明される。
【0024】
インターフェース層130は、RFICチップ102に電力を分配し、パッケージ基板110にフリップ・チップ取り付けされる2つ以上のRFICチップの間で信号を経路に沿って送るための配線を含む。たとえば、本発明の一実施形態において、インターフェース層130のメタライゼーション層M3およびM4は、メタライゼーション層M3およびM4上にパターン形成される水平なトレースと、電力平面のメタライゼーションをRFICチップ102上の接触パッドに接続するために層L4、L5、およびL6を貫通して形成される垂直なビア構造とを使用してアプリケーション・ボード(application board)(たとえば
図4参照)からRFICチップ102に電源電圧を分配するための電力平面として働く。別の実施形態においては、アンテナ層140のメタライゼーション層M1を、パッケージ基板110に取り付けられた構成要素の間に電源電圧を分配するための電力平面として利用することもできる。さらに、インターフェース層130のメタライゼーション層M5は、アプリケーション・ボードとRFICチップ102との間で(またはパッケージ基板110に取り付けられた複数のRFICチップの間で)制御信号、ベースバンド信号、およびその他の低周波数信号を送信するための信号線(たとえば、マイクロストリップ伝送線)を形成するためにパターン形成される。この実施形態において、インターフェース層130のメタライゼーション層M6は、メタライゼーション層M5のマイクロストリップ伝送線のための接地平面として働くことができる。
【0025】
図1の例示的な実施形態において、層120、130、および140の各々は、遮蔽を行う目的で、および、たとえば、水平なトレースによって形成されるマイクロストリップまたはストリップ線路伝送線のための接地要素を提供するために使用される接地平面を含むことにさらに留意されたい。たとえば、アンテナ層140のメタライゼーション層M2ならびにコア層120の接地平面124および126は、パッチ・アンテナによって捕捉される入射電磁放射(EM)への暴露からRFICチップ102を遮蔽するためのRF遮蔽物として働く接地平面を含む。
【0026】
さらに、アンテナ層140のメタライゼーション層M2およびM3、コア層120の接地平面124および126、ならびにインターフェース層130のメタライゼーション層M2およびM6は、たとえば、(i)隣接するメタライゼーション層内に形成された水平な信号線トレースの間の遮蔽を行い、(ii)たとえば、水平な信号線トレースによって形成されるマイクロストリップまたはストリップ線路伝送線のための接地平面として働き、(iii)メタライゼーション層M2とメタライゼーション層M6との間で層L3からL6を貫通して形成され、たとえば、インターフェース層130を貫通して延びるアンテナ給電線の一部分(たとえば、垂直な部分112−3および114−3)を囲む、一連の垂直に接続された接地されたビアによって形成される垂直な遮蔽構造132の接地を行うように構成されている。超短波の用途に関して、ストリップ線路伝送線および接地遮蔽(ground shielding)の実施は、(1つまたは複数の)電力平面、低周波数制御信号線、およびその他の伝送線などのその他のパッケージ構成要素の干渉の影響を削減するのに役立つ。
【0027】
図1の例示的な実施形態において、アンテナ給電線112および114の垂直な部分112−3および114−3ならびに垂直な部分112−3および114−3を囲む垂直な遮蔽構造132は、本質的に、同軸伝送線と同様である伝送線構造を形成し、取り囲む垂直な遮蔽構造132は、外側の(遮蔽)導体として働き、垂直な部分112−3および114−3は、中心の(信号)導体として働く。同軸伝送線構成は、
図1に概略的に示されるように、コア層120およびアンテナ層140を貫通して延びるアンテナ給電線112および114のその他の垂直な部分について実施することができる。
【0028】
さらに、インターフェース層130のメタライゼーション層M6は、強化されたEM遮蔽のためにパッケージ基板110をRFICチップ102から隔離するための接地平面として働く。インターフェース層130のメタライゼーション層M6は、RFICチップ102と、パッケージ基板110のパッケージ給電線、信号線、および電力線との間の接続のための接触ポートを提供するためのビア開口を含む。
【0029】
加えて、アンテナ層140は、(第1のおよび第2のアンテナ給電線112および114の水平ストリップ線路構造112−1および水平マイクロストリップ構造114−1を囲む)接地された垂直な空洞壁(cavity wall)146と、アンテナ層140のメタライゼーション層M2上に形成された下接地平面とによって形成される隔離領域144を含む。一実施形態においては、
図1に示されるように、接地された垂直な空洞壁146が、アンテナ層140のメタライゼーション層M2からM6上にパターン形成され、アンテナ層140の層L3からL6内に形成される導電ビアによって相互に接続される一連の長方形の金属環(およびその他のメタライゼーションの特徴)を含む。隔離領域144は、パッチ・アンテナ要素152の放射効率を高めるように働き、アンテナ・アレーを実現するために平らな蓋151の底に形成され得る隣接するパッチ・アンテナ構造の間のEM結合を少なくする。
【0030】
図2および
図3は、本発明の実施形態による、均等化された長さのアンテナ給電線を提供するための、パッケージ構造内のアンテナ給電線の長さを調整するための方法を概略的に示す図である。特に、
図2は、パッチ・アンテナ要素152におよびパッチ・アンテナ要素152からRFエネルギーを電磁的に結合するアンテナ給電線112および114の水平ストリップ線路構造112−1および水平マイクロストリップ構造114−1と、アンテナ給電線112および114の長さを調整するためにインターフェース層130のメタライゼーション層M1上に形成される水平給電線部分112−2および114−2との重ね合わされたレイアウト・パターン200の例示的な実施形態を示す。
【0031】
図2に示されるように、水平ストリップ線路構造112−1および水平マイクロストリップ構造114−1は、平面パッチ・アンテナ要素におよび平面パッチ・アンテナ要素からRFエネルギーを電磁的に結合するための知られている技術を使用して構成されるU字形(またはフォーク型)構造を含む。
図2にさらに示されるように、インターフェース層130のメタライゼーション層M1上に形成される水平給電線部分112−2および114−2は、アンテナ給電線112および114の全長を均等化することを可能にするために異なる長さの曲がりくねったレイアウト・パターンを含む。本発明の一実施形態において、水平給電線部分112−2および114−2は、水平給電線部分112−2および114−2とメタライゼーション層M1上に形成されるその他のアンテナ給電線構造の一部分との間の結合を最小化するかまたは防止するために、
図3に示される接地されたコプレーナ導波路(CPW:coplanar waveguide)構造を使用して形成される。
【0032】
特に、
図3は、接地平面214と接地平面216との間に配置された信号線212を含む接地されたCPW構造210を示す。
図1および
図2の例示的な実施形態において、水平給電線部分112−2および114−2を形成する信号線212ならびに接地平面214および216は、インターフェース層130のメタライゼーション層M1からパターン形成される。
図3にさらに示されるように、一連の接地ビア218が、接地平面214および216を下にある接地層に接続する。たとえば、
図1の実施形態において、接地ビア218は、(メタライゼーション層M1内の)接地平面214および216をインターフェース層130の第2の層L2のメタライゼーション層M2の基礎をなす接地平面に接続するためにインターフェース層130の層L2の誘電/絶縁層D2内に形成される導電ビアを含む。
【0033】
図2にさらに示されるように、水平給電線部分112−2は、引き回し点(routingpoint)201と引き回し点202との間で引き回され、水平給電線部分114−2は、引き回し点203と引き回し点204との間で引き回されている。引き回し点201は、アンテナ層140の層L4からインターフェース層130の層L1まで延びるアンテナ給電線112の垂直な部分を表す。引き回し点202は、インターフェース層130の層L1からインターフェース層130の層L6まで延びるアンテナ給電線112の垂直な部分(たとえば、部分112−3、
図1)を表す。引き回し点203は、アンテナ層140の層L6からインターフェース層130の層L1まで延びるアンテナ給電線114の垂直な部分を表す。引き回し点204は、インターフェース層130の層L1からインターフェース層130の層L6まで延びるアンテナ給電線114の垂直な部分(たとえば、部分114−3、
図1)を表す。この構成では、アンテナ給電線112および114の水平なおよび垂直な給電部分のアンテナ・インピーダンスは、引き回し点201、202、203、および204の前で目標特性インピーダンスZ
O(たとえば、50オーム)にチューニングされている。したがって、インターフェース層130の第1の層L1のメタライゼーション層M1からパターン形成される水平給電線部分112−2および114−2の長さを延ばすかまたは短くすることは、パッチ・アンテナ152のインピーダンス整合に影響を与えない。
【0034】
図示を容易にするために、
図1の例示的なワイヤレス通信パッケージ100は、パッチ・アンテナ要素152の動作の2偏波(dual polarization)モードを可能にする1つのパッチ・アンテナ要素152ならびに対応するアンテナ給電線112および114を示す。しかし、上述のように、本発明のその他の実施形態においては、フェーズド・アレー・アンテナ・システムを実現するために、パッチ・アンテナ要素のアレーおよび関連するアンテナ給電線を有するワイヤレス通信パッケージが、製造される。たとえば、
図4および
図5は、本発明の実施形態によるワイヤレス通信パッケージに実装され得るフェーズド・アレー・アンテナ構成を概略的に示す図である。特に、
図4は、アクティブ・パッチ・アンテナ要素の4つのサブ・アレー(または四半分)310、320、330、および340に分けられるアクティブ・パッチ・アンテナ要素のアレーを含むフェーズド・アレー・アンテナ構成300の平面図を概略的に示し、各サブ・アレーは、アクティブ・パッチ・アンテナ要素の4×4アレーを含む。
【0035】
フェーズド・アレー・アンテナ構成300は、アクティブ・パッチ・アンテナ要素のアレーの外周の周りに配置された複数のダミー・パッチ要素350をさらに含む。ダミー・パッチ要素350は、当業者によって理解されるように、フェーズド・アレー・アンテナ構成300のアクティブ・パッチ要素の放射特性を高めるように働く。たとえば、アレーの周囲の周りにダミー・パッチ要素350を置くことは、パッケージの端および適用環境がアンテナ・アレーの放射特性に対して有するすべての悪影響を減らす。結果として、ダミー・パッチ要素350は、アクティブ・パッチ要素が同様の放射パターンを有することを可能にする。
【0036】
図4にさらに示されるように、本発明の一実施形態においては、(破線の想像線で示される)複数のRFICチップ102−1、102−2、102−3、および102−4をワイヤレス通信パッケージに実装することができ、各RFICチップ102−1、102−2、102−3、および102−4は、パッチ・アンテナ要素のサブ・アレー310、320、330、および340のそれぞれのサブ・アレーの動作を制御する。この実施形態において、RFICチップ102−1、102−2、102−3、および102−4は、パッケージ基板(たとえば、パッケージ基板110、
図1)にフリップ・チップ・ボンディングされ、フェーズド・アレー・アンテナ構成300の動作を協調させるためにインターフェース層(たとえば、インターフェース層130、
図1)内に形成された制御線を介して互いに通信する。
【0037】
特に、
図1の例示的な実施形態において、
図4に示されたアクティブ・パッチ・アンテナ要素のアレー310、320、330、340は、平らな蓋151の下側に形成されている。各アクティブ・パッチ・アンテナ要素は、水平偏波モードおよび垂直偏波モードをサポートするために、
図1に示されたように結合構造および方法(たとえば、接地平面142および結合開口142A)を使用して、(
図1に示されたアンテナ給電線112および114と同様の)アンテナ給電線の関連する対によって給電される。これに関連して、アンテナ給電線の16個の対が、RFICチップ102−1からサブ・アレー310の対応するパッチ・アンテナ要素までパッケージ基板110を貫通して引き回され、アンテナ給電線の16個の対が、RFICチップ102−2からサブ・アレー320の対応するパッチ・アンテナ要素までパッケージ基板110を貫通して引き回され、アンテナ給電線の16個の対が、RFICチップ102−3からサブ・アレー330の対応するパッチ・アンテナ要素までパッケージ基板110を貫通して引き回され、アンテナ給電線の16個の対が、RFICチップ102−4からサブ・アレー340の対応するパッチ・アンテナ要素までパッケージ基板110を貫通して引き回されている。加えて、各RFICチップ102−1、102−2、102−3、および102−4は、パッチ・アンテナ要素のそれぞれのサブ・アレー310、320、330、および340の動作を制御するための16要素2偏波フェーズド・アレー送信/受信(Tx/Rx)システムを含む。
【0038】
図4は、本発明の実施形態によるワイヤレス通信パッケージ構造を使用して実現され得るフェーズド・アレー・アンテナ構成の例示的な実施形態であるに過ぎない。当業者は、本明細書において検討されるように、パッケージング構造および方法を使用して実現され得るさまざまなその他の種類のフェーズド・アレー・アンテナ構成に容易に想到し得る。
【0039】
フェーズド・アレー・アンテナ・システムの放射特性をさらに最適化するために、ダミー・パッチ要素350は、
図5に概略的に示されるように、抵抗のある伝送線を用いて終端させることができる。特に、
図5は、
図4のフェーズド・アレー・アンテナ構成300の一部分(たとえば、サブ・アレー310のアクティブ・パッチ・アンテナ要素310−1、310−2、310−3、310−4および隣接するダミー・パッチ要素350)を示し、各ダミー・パッチ要素350は、水平偏波モードのための第1の抵抗のある伝送線352および垂直偏波モードのための第2の抵抗のある伝送線354によって終端されるものとして概略的に示される。第1のおよび第2の抵抗のある伝送線352および354は、ダミー・アンテナ要素350に入射する2偏波放射の終端を可能にする。
【0040】
一実施形態において、抵抗のある伝送線352および354は、水平偏波モードおよび垂直偏波モードのための
図1に示されたアンテナ給電線112および114と同様のアンテナ給電線構造と、抵抗のある伝送線352および354の末端部分を平らな蓋151上に形成された関連するダミー・パッチ要素350に結合するための結合方法(たとえば、接地平面142および結合開口142A)とを用いて実現されている。しかし、抵抗のある伝送線352および354の末端をRFICチップの水平および垂直偏波アンテナ給電ポートに接続する代わりに、抵抗のある伝送線352および354の末端部分は、たとえば、インターフェース層130の層L5のメタライゼーション層M5内で横方向に引き回され、終端されている(接地されている)。これに関連して、抵抗のある伝送線352および354の末端部分は、メタライゼーション層M5内でパターン形成され、インターフェース層130内の接地平面に接続される(終端される)長く折り返されたマイクロストリップ伝送線として製造することができる。
【0041】
抵抗のある伝送線352および354は、所与の用途のためにダミー・パッチ要素を終端するのに十分な目標特性インピーダンス(たとえば、Z
O=50オーム)を有するように製造することができる。抵抗のある伝送線352および354の特性インピーダンスZ
Oは、アンテナ・アレーの放射パターンに対する特定の影響を実現すること、または特定の周波数応答を取得することなどのために上手く設計され得る。インターフェース層130のメタライゼーション層M5内にパターン形成される抵抗のある伝送線352および354の横方向の部分は、Z
Oオームの抵抗器をダミー・パッチ要素の給電ポートに接続するのと電気的に等価である伝送線の損失をもたらすのに十分である長さで形成されている。
【0042】
図6および
図7は、本発明の別の実施形態によるワイヤレス通信パッケージを概略的に示す。より詳細には、
図6は、アンテナ・パッケージ405と、たとえば、BGA接続404のアレーまたはその他の同様の技術を使用してアプリケーション・ボード402に電気的および機械的に接続されるRFICチップ102とを含むワイヤレス通信パッケージ400の概略側面断面図である。BGA接続404は、アンテナ・パッケージ405の下側410−2上のメタライゼーション層(たとえば、インターフェース層130の層L6のメタライゼーション層M6、
図1)のボンディング/接触パッドおよび配線パターンと、アプリケーション・ボード402の第1の(上)側402−1のメタライゼーション層の対応するボンディング/接触パッドおよび配線パターンとの間に形成される。
【0043】
加えて、熱伝導材料(thermal interface material)の層406が、RFICチップ102の非アクティブな(裏側の)表面を、アプリケーション・ボード402の第1の側402−1から第2の(下)側402−2までアプリケーション・ボード402を貫通して延びる複数の金属熱伝導ビア(metallic thermal via)408に位置合わせされるアプリケーション・ボード402の領域に熱的に結合するために利用される。熱伝導材料の層406は、RFICチップ102から熱伝導ビア408まで熱を伝えるように働き、熱伝導ビア408は、RFICチップ102によって生成される熱を放散する、アプリケーション・ボード402の下側402−2に取り付けられたヒート・シンク409に熱を伝える。その他の放熱技術が、実施される可能性がある。
図1に示されたパッケージ構造100が、
図6に示される技術を使用してアプリケーション・ボードに取り付けられ得ることを理解されたい。
【0044】
アンテナ・パッケージ405は、パッケージ基板410およびパッケージ・カバー450を含む。パッケージ基板410は、複数のアンテナ給電線414−1、414−2、414−3、および414−4を含み、各アンテナ給電線は、パッケージ基板410のさまざまな交互のメタライゼーション層および絶縁/誘電層の一部として形成される一連の相互に接続された金属トレースおよび導電ビアを含む。パッケージ基板410が
図6に包括的に示されているが、本発明の一実施形態において、パッケージ基板410は、
図1の実施形態に示されたパッケージ基板110と同様のインターフェース層、コア層、およびアンテナ層を含む多層積層構造を含む。たとえば、
図6の例示的な実施形態においては、パッケージ・カバー450上に形成されたパッチ・アンテナ要素の動作の垂直偏波モードを可能にするために、(
図1に示された)アンテナ給電線114と同様の複数のアンテナ給電線414−1、414−2、414−3、および414−4を実装することができる。
【0045】
特に、
図6に示されるパッケージ・カバー450は、平面パッチ・アンテナ要素452−1、452−2、452−3、および452−4のアレーが平らな蓋451の第1の(下)側451−1上に形成されるようにして平らな蓋151を含む。パッチ・アンテナ要素452−1、452−2、452−3、および452−4は、パッケージ基板410の上側410−1上にパターン形成されるアンテナ給電線414−1、414−2、414−3、および414−4の末端部分にそれぞれ位置が合うようにして平らな蓋451の下側451−1上に配置されている。
図6に示される実施形態においては、図示を容易にするために4つのパッチ・アンテナ要素だけが示されるが、平面アンテナ要素のアレーは、任意の数のパッチ・アンテナ要素、たとえば、ダミー・パッチ要素を伴う16個のアクティブ・パッチ・アンテナ要素の4×4アレーまたは64個のアクティブ・パッチ・アンテナ要素の8×8アレー(たとえば、
図4)を含むすることができる。さらに、1つのRFICチップ102のみが
図6に示されるが、
図4の例示的な実施形態を参照して上で検討されたように、平らな蓋451上に形成されたアンテナ・アレーのパッチ・アンテナ要素の異なるサブ・アレーを制御するために、パッケージ基板410の下側410−2に複数のRFICチップをフリップ・チップ取り付けすることができる。
【0046】
図6にさらに示されるように、平らな蓋451は、平らな蓋451の下側451−1の周辺領域の周りに形成された一連のボンディング・パッド453を含む。加えて、パッケージ・カバー450は、両側に一連のボンディング・パッド455が形成された別の長方形フレーム構造454を含む。さらに、一連のボンディング・パッド456が、パッケージ基板410の上側410−1の周辺領域の周りに形成されている。複数のマイクロはんだボール457(たとえば、50μmのはんだボール)が、はんだリフロー・プロセス中に平らな蓋451およびパッケージ基板410にフレーム構造454をボンディングするために使用され、それによって、平らな蓋451とパッケージ基板410との間に高さHの埋め込まれた空隙460を提供する固定されたパッケージ・カバー450を形成している。
【0047】
本発明の一実施形態において、平らな蓋451は、平らな基板、たとえば、有機積層基板、プリント回路基板積層体、セラミック基板、または所与の用途に適した何らかのその他の種類の基板から形成される。平らな蓋は、アンテナ要素(たとえば、452−1、452−2、452−3、452−4)のアレーおよびボンディング・パッド453を形成するようにパターン形成されるメタライゼーション層を片側(たとえば、下側451−1)に含む。一実施形態において、平らな蓋451は、約0.4mmから約2.0mmまでの範囲の厚さで形成される。
【0048】
フレーム構造454は、両側に銅のメタライゼーションを有する別の基板から製造される可能性がある。1つの例示的な実施形態において、(フレーム構造454を形成する)基板は、たとえば、約240ミクロンの厚さを有する可能性があるが、基板の厚さは、所与の用途に望ましい埋め込まれた空隙460の目標の高さHに依存して変わり得る。基板の両側の銅のメタライゼーションは、ボンディング・パッド455を形成するようにパターン形成され得る。そして、基板の中央の領域が、平らな蓋451の周囲の面のフットプリント(footprint)に対応するフットプリントを有する長方形フレーム構造454を形成するために取り去られる(milled away)。
【0049】
本発明の一実施形態において、
図6に示されるパッケージ・カバー450は、はんだリフロー・プロセスを使用してパッケージ基板410にボンディングすることができる。このプロセスによって、はんだボール457を、ボンディング・プロセスの前に平らな蓋451のボンディング・パッド453およびパッケージ基板410のボンディング・パッド456上に形成することができる。フレーム構造454は、平らな蓋451およびパッケージ基板410のはんだボール457がフレーム構造454の上側および下側のボンディング・パッド455のうちの対応するボンディング・パッド455に位置合わせされ、接触するようにして平らな蓋451とパッケージ基板410との間に置かれる。それから、はんだリフロー・プロセスが、はんだボール457を溶かし、したがって、パッケージ・カバー450をパッケージ基板410にボンディングするために実行される。このボンディング・プロセスにおいて、はんだリフロー・プロセスは、パッケージ基板410の上側410−1のアンテナ給電線414−1、414−2、414−3、および414−4のそれぞれの末端部分とのパッチ・アンテナ要素452−1、452−2、452−3、および452−4のセルフ・アライメントを保証する。
【0050】
埋め込まれた空隙460は、パッチ・アンテナ要素とパッケージ基板410のアンテナ接地平面(たとえば、接地平面142、
図1)との間に低誘電率の媒体、すなわち、誘電率≒1である空気を提供する。本発明の一実施形態において、空隙460(および
図1の160)の高さHは、約400ミクロンであり、より広く言えば、動作周波数およびその他の要因に依存して約50ミクロンから約2000ミクロンまでの範囲内である。埋め込まれた空隙460は、主要な表面波を抑制するかまたは消し去るように働く低誘電率の媒体を提供し、それらの主要な表面波は、そうではなくパッチ・アンテナ要素および接地平面が誘電または絶縁材料で作られた物理的な基板の両側に形成される従来のパッチ・アンテナ・アレーの設計を用いたならば存在することになる。
【0051】
さらに言えば、従来のパッチ・アンテナ・アレーの設計においては、基板は、3を超える誘電率を有する誘電/絶縁材料によって形成され得るものであり、それは、アンテナ・アレーの隣接したパッチ要素の間を基板の表面に沿って流れる主要な表面波を生じさせ得る。これらの表面波は、端で電流を生じる可能性があり、ひいては、それらの電流が、パッチ要素の所望の放射パターンに悪影響を与え、乱す可能性がある望ましくない放射をもたらす。さらに、表面波は、アンテナ・アレーのパッチ・アンテナ要素の間の強い相互の結合を引き起こす可能性があり、不都合なことに、その強い相互の結合は、入力インピーダンスおよび放射パターンの著しいシフトにつながる。
【0052】
図6(および
図1)の実施形態において、アンテナ接地平面とパッチ・アンテナ・アレーとの間の埋め込まれた空隙460は、主要な表面波を消し去り、それによって、パッチ・アンテナ・アレーの放射効率および放射ビーム形状を改善するように働く効果的な波の抑制技術である。平面アンテナ要素が形成される平らな蓋451は、平らな蓋451の下側451−1を流れる表面波が原因でアンテナ要素の間の何らかの相互の結合をもたらす可能性があるが、そのような表面波は、微弱であり、フェーズド・アレー・アンテナ・システムの放射効率および所望の放射パターンに対しての悪影響があったとしても最小限である。
【0053】
したがって、埋め込まれた空隙460は、追加的な表面波抑制構造を実装する必要をなくし、そうでなければ、それらの追加的な表面波抑制構造が、余りにも大きな面積を占め、パッチ・アンテナ・アレーのフットプリントを増やすことになる。平らな蓋451がフェーズド・アレー・アンテナ・システムの放射効率および放射パターンに与える可能性があるすべての悪影響を最小化するために、平らな蓋451は、低い誘電率を有する材料でできるだけ薄く形成される。さらに、フォーム(foam)およびテフロン(R)などの低誘電率材料が(埋め込まれた空隙460の代替として)考慮される可能性があるが、これらの材料は、パッケージ製造プロセスのさまざまな段階(たとえば、BGAボンディングなど)の間に晒される高温および高圧に耐えることができない。
【0054】
集積フェーズド・アレー・アンテナ・システムのサイズによっては、パッケージ・カバー450の面積が、比較的大きい可能性があり、それは、平面アンテナ要素452−1、452−2、452−3、および452−4が形成される平らな蓋451のたるみまたはたわみをもたらす可能性がある。本発明の1つの実施形態においては、
図6および
図7に示されるように、金属支持構造458−1、458−2、458−3、および458−4が、平らな蓋451の反りまたはたるみを防止するために平らな蓋451の第2の側(上側)451−2に形成される。本発明の一実施形態において、金属支持構造458−1、458−2、458−3、および458−4は、平面パッチ・アンテナ要素452−1、452−2、452−3、および452−4のアレーと同様のフットプリントおよびレイアウトを有する。たとえば、
図6に示されるように、金属支持構造458−1、458−2、458−3、および458−4は、平らな蓋451の下側451−1および上側451−2でそれぞれのパッチ・アンテナ要素452−1、452−2、452−3、および452−4に位置合わせされている。
【0055】
平らな蓋451の上側451−2および下側451−1の金属支持構造458−1、458−2、458−3、および458−4ならびにそれぞれのパッチ・アンテナ要素452−1、452−2、452−3、および452−4の形成は、製造をしやすくし、パッケージ・カバーの製造中の反りを防止または最小化し、平らな蓋451に構造的な完全性を加えてワイヤレス通信パッケージの構築中および構築後のたるみを防止するように働く。特に、平らな蓋451の製造中、平らな蓋451の両側の銅負荷は、銅の熱膨張および収縮が原因である反りを防止するように働く。
【0056】
特に、銅のメタライゼーションが比較的大きく薄い平らな蓋451の片側に形成される場合、銅のメタライゼーションの熱膨張および収縮が原因で平らな蓋451の片側にかけられる力が、平らな蓋451の反りをもたらす可能性がある。一方、平らな蓋451の両側に同様のメタライゼーション・パターンを有することにより、平らな蓋451の両側の銅のメタライゼーションの熱膨張および収縮によって同様の力が及ぼされ、それが、平らな蓋451が平らなままであることを保証する。平らな蓋451の両側の銅負荷の割合は、平らな蓋451の平坦さを保証するのに十分であるべきである。
【0057】
平らな蓋451の上側451−2の金属支持構造458−1、458−2、458−3、および458−4は反りおよびたるみを防止するのに役立つが、金属支持構造458−1、458−2、458−3、および458−4は、パッチ・アンテナ要素452−1、452−2、452−3、および452−4の放射特性に対するすべての悪影響を最小化するかまたは別の方法で与えないようにして設計されるべきである。
図7は、本発明の実施形態による、アンテナ・アレーの放射特性に対するすべての悪影響を最小化しながらアンテナ・パッケージ・カバーの反りまたはたるみを防止するための金属支持構造458−1、458−2、458−3、および458−4に関して実施され得る例示的なパターンを示す平らな蓋451の上側451−2の一部分の概略的な平面図である。
【0058】
図7に示されるように、金属支持構造458−1、458−2、458−3、および458−4の各々は、見た目が正方形の「四つ葉のクローバー」に似ている「葉っぱ形」パターンを有する。より詳細には、金属支持構造458−1、458−2、458−3、および458−4は、本質的に、複数のエッチングされたすき間459がある、(
図7においては破線の輪郭線によって示される)下にあるパッチ・アンテナ要素452−1、452−2、452−3、および452−4と同じであり、それらのパッチ・アンテナ要素452−1、452−2、452−3、および452−4に位置合わせされる外周のフットプリントを有する長方形パッチである。エッチングされたすき間459は、平らな蓋451の反りおよびたるみを防止するための必要な構造的支持を与えながら、下にあるパッチ・アンテナ要素452−1、452−2、452−3、および452−4の放射特性に対して金属支持構造458−1、458−2、458−3、および458−4が及ぼす可能性があるすべての影響を最小化するために設けられる。すき間459のサイズおよび間隔はパッチ・アンテナ要素452−1、452−2、452−3、および452−4のチューニング特性に対して何らかの影響を確かに与えるが、アンテナ構造のその他の構造パラメータは、金属支持構造(たとえば、金属支持構造458−1、458−2、458−3、および458−4)が実装されるときに、所望の放射特性を得るように調整され得る。
【0059】
(たとえば、別々のインターフェース層、コア層、およびアンテナ層を有する)アンテナ・パッケージ構造を製造するための本明細書において検討される多層積層構造および方法は、(標準的な構造的枠組みを有する)モジュール式パッケージ構造が、たとえば、コネクタ層または異なる種類のアンテナ層などと容易にインターフェースを取られることを可能にするモジュール式設計を支援する。モジュール方式のこの概念が、
図8に概略的に示される。
【0060】
特に、
図8は、本発明の実施形態による、コネクタ・パッケージ542およびモジュール式パッケージ構造505のインターフェースを取ることによってコネクタ化されたワイヤレス通信パッケージ構造500を構築するためのプロセスを概略的に示す。
図8に示されるように、モジュール式パッケージ構造505は、基礎(標準化された)パッケージ基板510と、基礎パッケージ基板510にフリップ・チップ取り付けされたRFICチップ102とを含む。
図8の例示的な実施形態において、基礎パッケージ基板510は、
図1に示されたインターフェース層およびコア層と構造的に同じであるインターフェース層130およびコア層120を含む。加えて、インターフェース層540(または多層構造540)が、コア層120上に形成される。インターフェース層540は、
図1に示されたアンテナ層140の層L1およびL2と構造的に同様である第1の層L1および第2の層L2を含む。
【0061】
コネクタ・パッケージ542は、それぞれのメタライゼーション層M3、M4、M5、およびM6ならびに誘電層D3、D4、D5、およびD6を含む複数の積層された層L3、L4、L5、およびL6を含む。コネクタ・パッケージ542は、コネクタ・パッケージ542の第1の表面542−1上に形成された第1のコネクタ544−1および第2のコネクタ544−2を含む。第1のコネクタ544−1および第2のコネクタ544−2は、たとえば、同軸コネクタまたは導波路インターフェースを使用して実現され得る。加えて、コネクタ・パッケージ542は、コネクタ・パッケージ542の第2の表面542−2からコネクタ・パッケージ542の第1の表面542−1上のそれぞれの第1のコネクタ544−1および第2のコネクタ544−2までコネクタ・パッケージ542を貫通して引き回される第1の給電線546−1および第2の給電線546−2を含む。
【0062】
第1の給電線546−1および第2の給電線546−2は、コネクタ・パッケージ542の第1のコネクタ544−1および第2のコネクタ544−2を、インターフェース層540のメタライゼーション層M2上に露出される第1のアンテナ給電線112および第2のアンテナ給電線114の末端部分にそれぞれ接続するように構成されている。第1の給電線546−1および第2の給電線546−2の横方向の部分を形成するメタライゼーション(たとえば、コネクタ・パッケージ542の層L4のメタライゼーション層M4)は、第1のコネクタ544−1および第2のコネクタ544−2のための適切な横方向の引き回しおよびインピーダンス整合を提供するようにパターン形成されている。
【0063】
コネクタ化されたワイヤレス通信パッケージ構造500は、
図8に示される両方向矢印によって示されるように、コネクタ・パッケージ542を基礎パッケージ基板510に適切に位置合わせしてボンディングすることによって形成されている。コネクタ・パッケージ542およびインターフェース層540は、一緒にボンディングされるときに完全なパッケージの特徴を有するインターフェース層を集合的に形成する。たとえば、コネクタ・パッケージ542およびインターフェース層540は、コネクタ・パッケージ542およびインターフェース層540が一緒にボンディングされるときに(
図1に示されるように接地された垂直な空洞壁146によって形成される隔離領域144と同様の)隔離領域を形成する金属の特徴を含む。
【0064】
コネクタ化されたワイヤレス通信パッケージ構造500は、たとえば、RFICチップ102の性能、または基礎パッケージ基板510内のアンテナ給電線およびインターフェース構造の性能を評価するために使用され得る。これに関連して、外部試験機器、パッケージ構造、または外部アンテナ・システムなどが、第1のコネクタ544−1および第2のコネクタ544−2を使用してコネクタ化されたワイヤレス通信パッケージ構造500に結合され得る。特に、外部のアンテナ・アレー・システムが、コネクタ化されたワイヤレス通信パッケージ構造500に接続され、RFICチップ102上のトランシーバ回路によって制御される可能性がある。
【0065】
図示を容易にするために、
図8の例示的なコネクタ化されたワイヤレス通信パッケージ構造500は、コネクタ544−1/544−2と対応する給電線546−1/546−2の1つの対を示す。しかし、本発明のその他の実施形態においては、本明細書において検討されるアンテナ・アレー・システムに関して、アンテナ給電線の多数の対および複数のRFICチップを有するモジュール式パッケージ構造とインターフェースを取るように構成されるコネクタおよび関連する給電線の多数の対を有するコネクタ・パッケージ542を製造することができる。これに関連して、複数のRFICチップを有するコネクタ化されたパッケージ構造を、たとえば、RFICチップによって制御される外部フェーズド・アレー・アンテナ・システムとインターフェースを取るために製造することができる。
【0066】
図9および
図10は、本発明のさらに別の実施形態によるワイヤレス通信パッケージを概略的に示す。特に、
図9は、RFICチップ102に結合されたアンテナ・パッケージ610を含むワイヤレス通信パッケージ600の概略側面断面図である。アンテナ・パッケージ610は、中心コア層620と、インターフェース層630と、アンテナ層640を含む多層基板構造を含む。中心コア層620、インターフェース層630、およびアンテナ層640は、
図1の例示的な実施形態を参照して上で検討された中心コア層120、インターフェース層130、およびアンテナ層140と同様のさまざまな特徴を実装する。しかし、
図9の実施形態は、
図1のワイヤレス通信パッケージ100のようにパッケージ・カバーおよび埋め込まれた空隙を利用しない。その代わりに、アンテナ要素が、アンテナ層640のメタライゼーション層の一部として製造される。
【0067】
特に、
図9に示されるように、アンテナ・パッケージ610は、アンテナの動作の水平偏波モードを実施するための(破線によって表される)第1のアンテナ給電線612と、アンテナの動作の垂直偏波モードを実施するための(破線によって表される)第2のアンテナ給電線614とを含む。第1のおよび第2のアンテナ給電線612および614は、インターフェース層630、コア層620、およびアンテナ層640を貫通して引き回され、第1のおよび第2のアンテナ給電線612および614は、それぞれの垂直な部分612−1および614−1、水平な部分612−2および614−2、ならびに垂直な部分612−3および614−3を含む。
【0068】
特に、
図9に示されるように、第1のおよび第2のアンテナ給電線612および614の垂直な部分612−3および614−3は、インターフェース層630を貫通して延び、垂直な遮蔽構造632によって遮蔽され、
図1を参照して上で検討されたように同軸伝送線を効果的に形成している。加えて、
図9の例示的な実施形態において、第1のおよび第2のアンテナ給電線612および614の水平な部分612−2および614−2は、インターフェース層630の第1の層L1のメタライゼーション層M1内にパターン形成されている。水平な部分612−2および614−2は、たとえば、
図2および
図3を参照して上で検討された方法を使用して、アンテナ給電線612および614の長さを調整し、それによって、均等化された給電線の長さを提供するように設計されている。
【0069】
さらに、第1のおよび第2のアンテナ給電線612および614の垂直な部分612−1および614−1は、積層されたパッチ・アンテナ構造641/642に給電するために、インターフェース層630からコア層620を貫通してアンテナ層640内に延びる。積層されたパッチ・アンテナ構造641/642は、アンテナ層640のメタライゼーション層M4上にパターン形成された給電パッチ要素642と、アンテナ層640のメタライゼーション層M6上にパターン形成されたパッチ・アンテナ放射器要素(patch antenna radiator element)641とを含む。第1のおよび第2の給電線612および614の垂直な部分612−1および614−1は、2偏波動作を可能にするために給電パッチ要素642上の異なる点に接続されている。給電パッチ要素642は、知られているアンテナ設計技術を使用してパッチ・アンテナ放射器要素641におよびパッチ・アンテナ放射器要素641からRFエネルギーを結合するように構成されている。
【0070】
図9にさらに示されるように、隔離領域644が、(積層されたパッチ・アンテナ構造641/642を囲む)垂直な空洞壁646およびメタライゼーション層M2上に形成された下接地平面によって形成されている。隔離領域644は、積層されたパッチ・アンテナ構造641/642の放射効率を高めるように働き、アンテナ層640の上面上に形成された積層されたパッチ・アンテナ構造のアレーの隣接する積層されたパッチ・アンテナ構造の間のEM結合を少なくする。
【0071】
図10は、積層されたパッチ・アンテナ構造641/642および取り囲む垂直な空洞壁646の上平面図を概略的に示す。
図10に示されるように、アンテナ層640のメタライゼーション層M4上にパターン形成される給電パッチ要素642は、十字形のパターン(たとえば、角を切り落とされた長方形)を含む。アンテナ層640のメタライゼーション層M6上に形成されるパッチ・アンテナ放射器要素641は、下にある給電パッチ要素642に位置合わせされるフットプリント面積を含む。
図10にさらに示されるように、第1のおよび第2のアンテナ給電線612および614の垂直な部分612−1および614−1は、積層されたパッチ・アンテナ構造641/642の動作の2偏波モードを可能にするために給電パッチ要素642の異なる側に接続されている。
【0072】
図10にさらに示されるように、垂直な空洞壁646は、積層されたパッチ・アンテナ構造641/642を囲む。垂直な空洞壁646は、長方形金属環647のスタックおよび垂直なビア648を含む。長方形金属環647のスタックは、たとえば、アンテナ層640のメタライゼーション層M3、M4、およびM5(
図9)からパターン形成される金属の特徴を含む。垂直なビア648は、垂直な空洞壁646をアンテナ層640のメタライゼーション層M2上の基礎をなす接地平面に接地するために、アンテナ層640の層L3、L4、およびL5にまたがって長方形金属環647のスタックを一緒に接続するためにアンテナ層640の誘電層D3、D4、およびD5(
図9)内に形成される一連の金属ビアを含む。
【0073】
図示を容易にするために、
図9および
図10の例示的なワイヤレス通信パッケージ600は、1つの積層されたパッチ・アンテナ構造641/642と、積層されたパッチ・アンテナ構造641/642の動作の2偏波モードを可能にする対応するアンテナ給電線612および614とを用いて示されている。しかし、ワイヤレス通信パッケージ600は、(i)積層されたパッチ・アンテナ構造641/642のアレー、および1つまたは複数のRFICチップに接続された関連する給電線の対、ならびに(ii)たとえば、
図4および
図5を参照して上で検討されたのと同じまたは同様の技術を使用する、インターフェース層630のメタライゼーション層M5内で終端される関連する抵抗のある伝送線を有するダミーの積層されたパッチ構造を持つように製造することができる。
【0074】
当業者は、本発明の実施形態による集積化されたチップ/アンテナ・パッケージ構造に関連するさまざまな利点を容易に理解するであろう。たとえば、パッケージ構造は、半導体RFICチップを有するアンテナ構造を製造し、パッケージングするための知られている製造およびパッケージング技術を使用して、ミリ波周波数以上で動作するように構成されるコンパクトな集積化された無線/ワイヤレス通信システムを形成することで容易に製造され得る。さらに、本発明の実施形態による集積化されたチップ・パッケージは、アンテナがトランシーバ・チップなどのICチップと一体的にパッケージングされることを可能にし、それが、トランシーバとアンテナとの間の損失が極めて少ないコンパクトな設計をもたらす。たとえば、パッチ・アンテナ、スロット・アンテナ、スロット・リング・アンテナ(slot ring antenna)、ダイポール・アンテナ、およびキャビティ・アンテナ(cavityantenna)を含むさまざまな種類のアンテナの設計が、実現され得る。さらに、本明細書において検討された本発明の実施形態による集積アンテナ/ICチップ・パッケージの使用は、空間、サイズ、コスト、および重さを著しく節約し、それは、実質的にすべての民生用または軍事用の用途にとって非常に価値あることである。
【0075】
実施形態が例示を目的として添付の図面を参照して本明細書において説明されたが、本発明の実施形態はそれらの厳密な実施形態に限定されず、さまざまなその他の変更および修正が本発明の範囲を逸脱することなく当業者によって本明細書になされ得ることを理解されたい。