【実施例】
【0022】
図を用いて、実施例などを説明する。
【0023】
まずは
図1を用いて、本発明の基本構成について説明する。
図1中の凹型で囲まれた領域(主に左側)は給電側装置1を示し、同じく凸型で囲まれた領域(主に右側)は受電側装置2を示している。
給電側装置1は、整流回路10、電力制御回路11、誘導コイル12、伝送開始あるいは伝送停止の制御部13、固定あるいは解放の検出部14などを内包して構成される。左端に記載されている電気記号(交流電圧源の記号)は外部の電源15を表現している。又、Xは給電側装置1の電力送出部で、防水ケーシング42内にコア420とこれに巻回した誘導コイル12を封入している。
受電側装置2も同様に、誘導コイル20、整流回路21、固定あるいは解放の検出補助部22などを内包して構成される。右端に記載されている電気記号(Rz)は外部の負荷23を表現している。又、Yは受電側装置2の電力受入れ部で、防水ケーシング41内にコア410とこれに巻回した誘導コイル20を封入し、更にケーシング41の外側にコア410と連続した外部コア411を有している。
なお、これらの構成は、電気系の記述で良く用いられるブロック図であり、具体的な構成は様々である。従って、この記載内容に限定されるものではない。
また、図を分かりやすく記載しているため、凹と凸との嵌合部分は密接させていないが、実際の使用においては、適切な嵌合処理と締結処理がなされるものである。
【0024】
この図において、電力の伝送について説明すれば、以下のとおりである。
給電側装置1では、受け取った(送るべき)電力を整流し、一旦、直流とする。その上で、電力制御回路11において所望の高周波電力に変換する。この高周波電力は、誘導コイル12へと供給される仕組みである。なお、実際に高周波電力に変換して誘導コイル12に供給するか否かは、伝送開始あるいは伝送停止の制御部13で制御する。
伝送開始あるいは伝送停止の制御部13では、給電側装置1に内包する固定あるいは解放の検出部14と、相対する受電側装置2に内包する固定あるいは解放の検出補助部22との位置関係から発せられる情報の信号を受取り、給電側装置1と受電側装置2とが適切に嵌合および締結されている場合、電力伝送の開始を指示する信号を発する。
給電側装置1で電力伝送の開始を指示する信号が発せられた時、給電側装置1に内包される誘導コイル12と、受電側装置2に内包される誘導コイル20との位置関係は、適切なものとなっている。このため、給電側装置1に内包される誘導コイル12に供給された高周波電力は、受電側装置2に内包される誘導コイル20に対して相互誘導作用を成す。
受電側装置2では、相互誘導作用によって、誘導コイル20に誘導起電力が発生する。そして、負荷23(Rz)の影響を受けた所定の電流が流れることとなる。受電側装置2の整流回路21は、負荷23の種類や構成によって不要な場合もあるが、ここでは直流にしてから負荷に電力を供給する場合の図を示している。
また、給電側装置1に内包する固定あるいは解放の検出部14と、相対する受電側装置2に内包する固定あるいは解放の検出補助部22との位置関係から発せられる情報の信号を受けた伝送開始あるいは伝送停止の制御部13が、給電側装置1と受電側装置2の締結状態あるいは固定状態が解放されるあるいは解放されたと判断した場合、伝送開始あるいは伝送停止の制御部13から伝送停止を指示する信号が発せられる。このとき、直ちに電力の伝送が停止される。
【0025】
図7は実施例1〜3で共通のコア連接構造である。給電側装置1の防水ケーシング42内の電力送出部Xと受電側装置2の防水ケーシング41内の電力受入れ部Yの相対的位置の嵌合前と嵌合後のコアの接続状態を示す図面であり、電力送出部X内にはC字状のコア420とこれに巻回した誘導コイル12とが封入され、又電力受入れ部Y内にもC字状のコア410とこれに巻回した誘導コイル20が封入されている。又、防水ケーシング41内のコア410はケーシング外に突出した外部コア411を有している。電力送出部Xと電力受入れ部Yが相対的位置で嵌合すると、外部コア411がコア410,420との間の水中の間隙に入ってループしたコア路を形成し、電力伝達効率を高めている。
【0026】
以下、本発明の様々なバリエーションについて、実施例として説明する。
【0027】
(実施例1/
図2参照)
図2は、本発明の特徴部分である給電側装置1と受電側装置2との嵌合状態と締結状態を検知して電力制御回路11の機能を制御する部分について、実施例の一つを示している。
図2中の主に左側の領域は給電側装置1を示し、同じく右側の領域は受電側装置2を示している。また、主に下側は側面からの模式図であり、上側は上面からの一部の模式図である。
なお、これらの構成は、電気的なブロック図や機構的な概略図で示してあり、実際の回路構成や機械構成は様々である。あくまでも一つの実施例である。
この図で示している状態は、嵌合前の状態である。
【0028】
側面図上方にある留め具3は、抜差し蝶番等で構成してもよいが、引掛蝶番で例示している。また、固定あるいは解放の検出部14に用いる近接センサとしては、磁気リードスイッチなどと称される近接スイッチ16を、固定あるいは解放の検出補助部22には磁気リードスイッチの近接スイッチ16を作動させる磁石25が実装されている。
給電側装置1と受電側装置2とを嵌合状態にするためには、まず、留め具3の引掛蝶番の位置を整合させ、装置同士を密着させる。この状態で近接スイッチ16とこれに相対する磁石25とが正しい位置関係になり、近接スイッチ16が作動する。
次に側面図下方にある受電側装置2に取り付けた留め具3を給電側装置1の正しい位置に差し込んで固定することで、給電側装置1と受電側装置2との締結が行われると同時に、近接スイッチ17とこれに相対する磁石26とが正しい位置関係になり、近接スイッチ17が作動する。
伝送開始あるいは伝送停止の制御部13は、近接スイッチ16の作動に続き近接スイッチ17が作動したときのみ、電力制御回路11の機能を発揮させる給電状態にする。
一方、近接スイッチ16または近接スイッチ17のどちらかの作動が停止した時点で、伝送開始あるいは伝送停止の制御部13は、締結状態あるいは嵌合状態が解放されたあるいは解放されると判断し、電力制御回路11の機能を停止する。即ち、近接スイッチ16,17と磁石25,26とが第1機能と第2機能を有する例である。
【0029】
(実施例2/
図3参照)
図3に示す実施例2は、固定あるいは解放の検出部14と固定あるいは解放の検出補助部22として実施例1の近接スイッチ16と磁石25及び近接スイッチ17と磁石26を使用した第1,2機能の第1の回路に代え、給電側装置1に光検出器18,発光器19を設け、受電側装置2に発光器19からの光を受光し、その終端で光検出器18に向けて受光した光を投光する光ファイバ27(鏡を使用した光路でも可能)を使用し、第2の機能は
図2の実施例1と同様に近接スイッチ17と留め具3に取付けた磁石26を使用した例である。
図3中の主に左側の領域は給電側装置1を示し、同じく右側の領域は受電側装置2を示している。また、主に下側は側面からの模式図であり、上側は上面からの一部の模式図である。
なお、これらの構成は、電気的なブロック図や機構的な概略図で示してあり、実際の回路構成や機械構成は様々である。あくまでも一つの実施例である。
【0030】
この実施例2では、給電側装置1と受電側装置2とを嵌合状態にするためには、まず、この引掛蝶番の位置を整合させ、装置同士を密着させる。この状態で発光器19から送出された光が光ファイバ27を通り、光検出器18に到達する。この時、光の有無だけで嵌合状態にあることを検出しても良いし、外乱光で誤作動しないために、発光器19から特定の明滅パターンの光を送出し、その明滅パターンと同一のパターンの光検出が有った時のみ嵌合状態にあることを検出しても良い。
次に側面図下方にある受電側装置2に取り付けた留め具3を給電側装置1の正しい相対的位置に差し込んで固定することで、給電側装置1と受電側装置2との締結が行われると同時に、近接スイッチ17とこれに相対する磁石26とが正しい位置関係になり、近接スイッチ17が作動する。
伝送開始あるいは伝送停止の制御部13は、発光器19の光を受光した光検出器18からの受光信号と前記の近接スイッチ17からの嵌合信号を入力したときのみ、電力制御回路11の機能を発揮させる状態にする。
一方、光検出器18による嵌合状態検出の喪失または近接スイッチ17の作動停止のどちらかが発生した時点で、伝送開始あるいは伝送停止の制御部13は、締結状態あるいは嵌合状態が解放されたあるいは解放されると判断し、電力制御回路11の機能を停止する。
【0031】
(実施例3/
図4〜6参照)
図4と
図5と
図6は、実施例3として、複数の近接スイッチ16と磁石26の組合せで第1,2機能を有する第2の回路で非接触給電の制御を行う事例を示している。
これらの図は、実施例1あるいは実施例2で説明した嵌合状態の検出部分に特化して示されており、その外の構成要素はこの実施例の説明の本質ではないので省略している。
図4から
図6までの左側に示されている給電側装置1の複数の近接スイッチ16は全て共通である。同じく
図4から
図6までの右側に示されている受電側装置2に内包する磁石25,26部分は、磁石aと磁石bの実装の有無と位置によって3パターンが存在する。
このとき、給電側装置1では、近接スイッチ1a(16)と近接スイッチ1b(16)の作動状況を検知することで、どの受電側装置2が嵌合されたかを識別することができる。
このことによって、給電側装置1の最大給電可能電力の大きさを制御するなど、の機能を盛り込むことが可能となる。
【0032】
(安定制御回路と異常対応回路)
図8,9を用いて、実施例1〜3における安定制御回路Aと異常対応回路Bの回路例を説明する。
【0033】
まずは
図8,9を用いて、本発明の基本構成について説明する。
図8,9中の縦に描画された破線の左側の領域は給電側装置1を示し、右側の領域は受電側装置2を示している。
給電側装置1は、整流回路10、PFC回路101、電力制御回路11(高周波電力変換部)、誘導コイル12、負帰還制御部102、パルス検出器103、光検出器18(フォトダイオードなど)などを内包して構成される。左端に記載している電気記号(交流電圧源の記号)は外部の電源を表現している。
受電側装置2も同様に、誘導コイル20、整流回路21、電圧周波数変換部201(V/f変換器)、発光器202(発光ダイオードなど)などを内包して構成される。右端に記載されている電気記号(Rz)は外部の負荷を表現している。
なお、これらの構成は、電気系の記述で良く用いられるブロック図であり、具体的な構成は様々である。従って、この記載内容に限定されるものではない。
【0034】
また、図を分かりやすく記載しているため、
図7の防水ケーシングや物理的な配置図などは記載していないが、給電側装置1に含まれる誘導コイル12,コア420と受電側装置2に含まれる誘導コイル20,コア410,外部コア411との位置関係は適切なものに保たれ、同時に、受電側装置2に内包される発光器202と給電側装置1に内包される受光器18との位置関係も適切なものに保たれているものとする。
【0035】
この図において、電力の伝送について説明すれば、以下のとおりである。
給電側装置1では、受け取った(送るべき)電力を整流し、一旦、直流とする。その上で、PFC回路101によって高周波電力変換部201に必要な電圧まで昇圧する。そして、高周波電力変換部201において所望の高周波電力に変換する。この高周波電力は、誘導コイル12へと供給される仕組みである。なお、PFC回路101による昇圧の程度は、負帰還制御部102からの制御量によって決定する。
受電側装置2では、相互誘導作用によって、誘導コイル20に誘導起電力が発生する。そして、負荷(Rz)の影響を受けた所定の電流が流れる、所定の電圧が発生することとなる。受電側装置2の整流回路21は、負荷の種類や構成によって不要な場合もあるが、ここでは直流にしてから負荷に電力を供給する場合の図を示している。
さらに、受電側装置2に内包される電圧周波数変換部201では、受電側装置2が負荷に送り出している電力の電圧に応じた周波数の信号を作り出す。そして、その周波数に一致したパルス信号によって、受電側装置2に含まれる発光器をパルス発光させる。
給電側装置1に内包される受光器18とパルス検出器103は、受けたパルス光を電気的なパルス信号に変換し、そのパルス周期やパルス周波数を基に、受電側装置2が負荷(Rz)に送り出している電力の電圧を推定する。そして、推定した受電側装置2が負荷(Rz)に送り出している電力の電圧を適正値(目標値)に持って行くよう、PFC回路101の昇圧機能を働かせるのに適量の制御量を負帰還制御部102が算定して、その制御量を指示する。
これらの一連の機能によって、受電側装置2が負荷(Rz)に送り出している電力の電圧が一定に保たれる。
【0036】
以下、実施例を説明する。なお、実施例を説明するにあたり、局所的に具体的な数値や代数式を用いるが、これらの数値や代数式によって発明の内容が限定されるものではない。
【0037】
図8,9は、本発明の実施例の第2回路の安定制御回路Aと異常対応回路Bを示している。
基本的な作動内容は、前述の本発明の基本構成のとおりである。ここでは、電気回路等を構成するにあたり、ある程度具体的な値(数値)を加味して説明を加える。
まず、受電側装置2が負荷Rzに供給する電力の電圧(Vout)の定格値を直流E[V]とする。そして、電圧周波数変換部201(V/f変換)では、出力周波数f[Hz]として、
f=fo+a(Vout−E) (ただし、Vmin≦Vout≦Vmax のとき)
ここで、 Vout=Vminのとき f=fo+a(Vmin−E) を fmin とする。
Vout=Vmaxのとき f=fo+a(Vmax−E) を fmax とする。
を出力する。なお、
Vout<Vmin または Vout>Vmax のとき、 f=0
とする。また、fo は、出力電圧が定格値E[V]の時の周波数値である。
受電側装置2に内包される発光器202では、周波数fのパルス光を発する。なお、f=0の時は、発光を停止する。
【0038】
パルス光を受光した給電側装置1に内包される受光器18とパルス検出器103は、電気的なパルス信号に変換する。そしてカウンタ104では、その電気的なパルス信号を計数する。
負帰還制御部102は、一定周期でカウンタ104から計数値を読み出し、同時に計数値を0リセットする。そして、この読み出した計数値を読み出しの周期で除すれば、一定周期間で平滑化処理されたパルス光の周波数f’ を知ることができる。この周波数f’ がfo よりも小さければ、PFC回路101に伝達する制御量を現在値よりも段階的に増やし、周波数f’ がfo よりも大きければ、PFC回路101に伝達する制御量を現在値よりも段階的に減少させる。
この制御量によってPFC回路101の昇圧機能を制御することで、結果として、受電側装置2が負荷に送り出している電力の電圧が一定に保たれる。
また、給電側装置1が正常に起動したにも関わらず、規定の時間内に適正な周波数範囲の光パルス(fmin≦f≦fmax)が検出されない場合、受電側装置2が正常機能していない、あるいは受電側装置2に接続された負荷(Rz)に問題があると判断し、給電側装置1の作動を停止する。