【解決手段】ガラス基板の製造方法において、熔解炉の端部と成形装置との間の熔融ガラスの流路を形成するよう、熔融ガラス処理装置は、複数の管が、管の間、及び熔解炉の端部との間で接続されることで構成されている。第1の管は、管本体と、管本体の外に突出し、管本体を通電加熱するフランジ状の電極と、を備える。フランジ状の電極は、管本体と、第1の管と接続される第2の管とに挟まれるよう、管本体の端に設けられている。フランジ状の電極は、流路の延在方向に沿って膨らんだ凸部及び凹んだ凹部が隣り合った凹凸形状を、管本体と第2の管とに挟まれる部分に少なくとも有している。本方法では、熔解工程の前に、第1の管及び第2の管を加熱して熱膨張させ、管本体と第2の管とで凹凸形状を挟んで変形させ、第1の管と第2の管を接続する。
【発明の概要】
【発明が解決しようとする課題】
【0006】
そこで、本発明は、熔融ガラスの流路を形成する管、より具体的には、熔融ガラスの流路を形成する、互いに接続された複数の管を有する熔融ガラス処理装置において当該管の歪み、湾曲、破損等の歪み、湾曲、破損等を抑制することができるガラス基板の製造方法及びガラス基板製造装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明は、下記(1)〜(7)の形態のガラス基板の製造方法、及びガラス基板製造装置を含む。
【0008】
(1)ガラス基板の製造方法であって、
熔解炉でガラス原料を熔解して熔融ガラスをつくる熔解工程と、
前記熔融ガラスを熔融ガラス処理装置を用いて処理する処理工程と、
処理された前記熔融ガラスを成形装置を用いてシートガラスに成形する成形工程と、を備え、
前記熔解炉の端部と前記成形装置との間の熔融ガラスの流路を形成するよう、前記熔融ガラス処理装置は、複数の管が、前記管の間、及び前記熔解炉の端部との間で接続されることで構成され、
前記管のうち第1の管は、
管本体と、
前記管本体の外に突出し、前記管本体を通電加熱するフランジ状の電極と、を備え、
前記フランジ状の電極は、前記管本体と、前記第1の管と接続される第2の管、及び前記熔解炉の前記端部のいずれか一方とに挟まれるよう、前記管本体の端に設けられ、
前記フランジ状の電極は、前記流路の延在方向に沿って膨らんだ凸部及び凹んだ凹部が隣り合った凹凸形状を、前記管本体と、前記第2の管及び前記熔解炉の前記端部のうちの前記一方とに挟まれる部分に少なくとも有し、
前記熔解工程の前に、前記第1の管を加熱して熱膨張させ、前記管本体と、前記第2の管及び前記熔解炉の前記端部のうちの前記一方とで前記凹凸形状を挟んで変形させ、前記第1の管と、前記第2の管及び前記熔解炉の前記端部のうちの前記一方とを接続する、ことを特徴とするガラス基板の製造方法。
上記(1)の方法において、前記第1の管の加熱の前に、前記管本体と、前記第2の管及び前記熔解炉の前記端部のうちの前記一方との間に隙間が設けられている。
【0009】
上記(1)の方法において、前記第1の管、及び、前記第2の管及び前記熔解炉の前記端部のうちの前記一方、のそれぞれの当接する端部は、外部から冷却されており、当該端部を通過し当該端部の間にある空隙に進入する熔融ガラスを当該端部が冷却固化することにより、前記流路を形成することが好ましい。
【0010】
上記(1)の方法において、前記第1の管を加熱するとき、前記第2の管及び前記熔解炉の前記端部のうちの少なくとも前記一方も加熱することが好ましい。
【0011】
(2)前記熔融ガラス処理装置は、さらに、前記管のそれぞれの周りに配置された断熱部材を有し、
前記フランジ状の電極は、前記第1の管の周りの第1の断熱部材と、前記第2の管の周りの第2の断熱部材とに挟まれるよう設けられ、
前記フランジ状の電極は、前記凹凸形状を、前記第1の断熱部材と前記第2の断熱部材とに挟まれる前記フランジ状の電極の外周部にも有し、
前記第1の管を加熱するとき、前記第1の断熱部材を加熱して熱膨張させ、前記第1の断熱部材と前記第2の断熱部材とで、前記フランジ状の電極の外周部に位置する前記凹凸形状の部分を挟んで変形させる、上記(1)に記載のガラス基板の製造方法。
【0012】
(3)前記フランジ状の電極は、前記凹凸形状が前記フランジ状の電極の延在方向に繰り返し表れる形状を有し、
前記凸部及び前記凹部が並ぶ方向の前記凹凸形状の繰り返し単位の長さは、前記管本体の直径よりも小さい、上記(1)又は上記(2)に記載のガラス基板の製造方法。
【0013】
(4)前記フランジ状の電極は、前記管本体と、前記第2の管とに挟まれるよう配置され、
前記管本体、前記フランジ状の電極、前記凸部、前記凹部、前記凹凸形状を、それぞれ、第1の管本体、第1のフランジ状の電極、第1の凸部、第1の凹部、第1の凹凸形状というとき、
前記第2の管は、
第2の管本体と、
前記第2の管本体の外に突出する第2のフランジ状の電極と、を備え、
前記第2のフランジ状の電極は、前記第2の管本体と、前記第1の管の前記第1のフランジ状の電極とに挟まれるよう、前記第2の管本体の端に設けられ、
前記第2のフランジ状の電極は、前記流路の延在方向に膨らんだ第2の凸部、及び、前記第2の凸部に対して前記第2の管本体の側に凹んだ第2の凹部が隣り合った第2の凹凸形状を、前記第2の管本体と前記第1のフランジ状の電極とに挟まれる部分に少なくとも有し、
前記第1の管を加熱するとき、前記第2の管本体と前記第1のフランジ状の電極とで、前記第2の凹凸形状を挟んで変形させ、前記第1の管と前記第2の管を接続する、上記(1)から上記(3)のいずれか1つに記載のガラス基板の製造方法。
【0014】
(5)ガラス基板の製造方法であって、
熔解炉でガラス原料を熔解して熔融ガラスをつくる熔解工程と、
前記熔融ガラスを熔融ガラス処理装置を用いて処理する処理工程と、
処理された前記熔融ガラスを成形装置を用いてシートガラスに成形する成形工程と、を備え、
前記熔解炉に接続された処理槽の端部と前記成形装置との間の熔融ガラスの流路を形成するよう、前記熔融ガラス処理装置は、複数の管が、前記管の間、及び前記処理槽の端部との間で接続されることで構成され、
前記管のうち第1の管は、
管本体と、
前記管本体の外に突出し、前記管本体を通電加熱するフランジ状の電極と、を備え、
前記フランジ状の電極は、前記管本体と、前記第1の管と接続される第2の管、及び前記処理槽の前記端部のいずれか一方とに挟まれるよう、前記管本体の端に設けられ、
前記フランジ状の電極は、前記流路の延在方向に沿って膨らんだ凸部及び凹んだ凹部が隣り合った凹凸形状を、前記管本体と、前記第2の管及び前記処理槽の前記端部のうちの前記一方とに挟まれる部分に少なくとも有し、
前記熔解工程の前に、前記第1の管を加熱して熱膨張させ、前記管本体と、前記第2の管及び前記処理槽の前記端部のうちの前記一方とで前記凹凸形状を挟んで変形させ、前記第1の管と、前記第2の管及び前記処理槽の前記端部のうちの前記一方とを接続する、ことを特徴とするガラス基板の製造方法。
上記(5)の方法において、前記第1の管の加熱の前に、前記管本体と、前記第2の管及び前記処理槽の前記端部のうちの前記一方との間に隙間が設けられている。
【0015】
上記(5)の方法において、前記第1の管、及び、前記第2の管及び前記処理槽の前記端部のうちの前記一方、のそれぞれの当接する端部は、外部から冷却されており、当該端部を通過し当該端部の間にある空隙に進入する熔融ガラスを当該端部が冷却固化することにより、前記流路を形成することが好ましい。
【0016】
上記(5)の方法において、前記第1の管を加熱するとき、前記第2の管及び前記処理槽の前記端部のうちの少なくとも前記一方も加熱することが好ましい。
【0017】
(6)ガラス原料を熔解して熔融ガラスをつくる熔解炉と、
前記熔融ガラスを処理する熔融ガラス処理装置と、
処理された前記熔融ガラスをシートガラスに成形する成形装置と、を備え、
前記熔解炉の端部と前記成形装置との間の前記熔融ガラスの流路を形成するよう、前記熔融ガラス処理装置は、複数の管が、前記管の間、及び前記熔解炉の端部との間で接続されることで構成され、
前記管のうち第1の管は、
管本体と、
前記管本体の外に突出するフランジ状の電極と、を備え、
前記フランジ状の電極は、前記管本体と、前記第1の管と接続される第2の管、及び前記熔解炉の前記端部のいずれか一方とに挟まれるよう、前記管本体の端に設けられ、
前記フランジ状の電極は、前記流路の延在方向に沿って膨らんだ凸部及び凹んだ凹部が隣り合った凹凸形状を、前記管本体と、前記第2の管及び前記熔解炉の前記端部のうちの前記一方とに挟まれる部分に少なくとも有し、
前記第1の管が熱膨張した状態で、前記管本体と、前記第2の管及び前記熔解炉の前記端部のうちの前記一方とに前記凹凸形状が挟まれて変形することにより、前記第1の管と、前記第2の管及び前記熔解炉の前記端部のうちの前記一方とが接続されている、ことを特徴とするガラス基板製造装置。
上記(6)の装置では、前記第1の管を熱膨張させる前に、前記管本体と、前記第2の管及び前記熔解炉の前記端部のうちの前記一方との間に隙間が設けられている。前記第1の管は、予め加熱して熱膨張される。
【0018】
上記(6)の装置では、前記第1の管、及び、前記第2の管及び前記熔解炉の前記端部のうちの前記一方、のそれぞれの当接する端部は、外部から冷却されており、当該端部を通過し当該端部の間にある空隙に進入する熔融ガラスを当該端部が冷却固化することにより、前記流路が形成されていることが好ましい。
【0019】
上記(6)の装置では、前記第1の管を熱膨張させるとき、前記第2の管及び前記熔解炉の前記端部のうちの少なくとも前記一方も熱膨張させることが好ましい。
【0020】
(7)ガラス原料を熔解して熔融ガラスをつくる熔解炉と、
前記熔融ガラスを処理する熔融ガラス処理装置と、
処理された前記熔融ガラスをシートガラスに成形する成形装置と、を備え、
前記熔解炉に接続された処理槽の端部と前記成形装置との間の前記熔融ガラスの流路を形成するよう、前記熔融ガラス処理装置は、複数の管が、前記管の間、及び前記処理槽の端部との間で接続されることで構成され、
前記管のうち第1の管は、
管本体と、
前記管本体の外に突出するフランジ状の電極と、を備え、
前記フランジ状の電極は、前記管本体と、前記第1の管と接続される第2の管、及び前記処理槽の前記端部のいずれか一方とに挟まれるよう、前記管本体の端に設けられ、
前記フランジ状の電極は、前記流路の延在方向に沿って膨らんだ凸部及び凹んだ凹部が隣り合った凹凸形状を、前記管本体と、前記第2の管及び前記処理槽の前記端部のうちの前記一方とに挟まれる部分に少なくとも有し、
前記第1の管が熱膨張した状態で、前記管本体と、前記第2の管及び前記処理槽の前記端部のうちの前記一方とに前記凹凸形状が挟まれて変形することにより、前記第1の管と、前記第2の管及び前記処理槽の前記端部のうちの前記一方とが接続されている、ことを特徴とするガラス基板製造装置。
上記(7)の装置では、前記第1の管を熱膨張させる前に、前記管本体と、前記第2の管及び前記処理槽の前記端部のうちの前記一方との間に隙間が設けられている。前記第1の管は、予め加熱して熱膨張される。
【0021】
上記(7)の装置では、前記第1の管、及び、前記第2の管及び前記処理槽の前記端部のうちの前記一方、のそれぞれの当接する端部は、外部から冷却されており、当該端部を通過し当該端部の間にある空隙に進入する熔融ガラスを当該端部が冷却固化することにより、前記流路が形成されていることが好ましい。
【0022】
上記(7)の装置では、前記第1の管を熱膨張させるとき、前記第2の管及び前記処理槽の前記端部のうちの少なくとも前記一方も熱膨張させることが好ましい。
【発明の効果】
【0023】
本発明によれば、熔融ガラスの流路を形成する管の歪み、湾曲、破損等、より具体的には、熔融ガラスの流路を形成する、互いに接続された複数の管を有する熔融ガラス処理装置において当該管の歪み、湾曲、破損等を抑制することができる。
【発明を実施するための形態】
【0025】
以下、本実施形態のガラス基板の製造方法およびガラス基板製造装置について説明する。
【0026】
以下、本発明のガラス基板の製造方法について詳細に説明する。
図1は、本実施形態のガラス基板の製造方法の工程の一例を示す図である。
【0027】
(ガラス基板の製造方法の全体概要)
ガラス基板の製造方法は、熔解工程(ST1)と、清澄工程(ST2)と、均質化工程(ST3)と、供給工程(ST4)と、成形工程(ST5)と、徐冷工程(ST6)と、切断工程(ST7)と、を主に有する。ガラス基板の製造方法は、熔融ガラスに対して所定の処理(清澄、均質化、供給等)を施す熔融ガラス処理工程を有しており、上記した工程のうち、清澄工程(ST2)、均質化工程(ST3)、供給工程(ST4)はそれぞれ、熔融ガラス処理工程に含まれる。この他に、研削工程、研磨工程、洗浄工程、検査工程、梱包工程等を有し、梱包工程で積層された複数のガラス基板は、納入先の業者に搬送される。
【0028】
熔解工程(ST1)は熔解炉で行われる。熔解炉では、ガラス原料を、熔解炉に蓄えられた熔融ガラスの液面に投入し、加熱することにより熔融ガラスを作る。さらに、熔解炉の内側側壁の1つの底部に設けられた流出口101aから下流工程に向けて熔融ガラスを流す。
熔解炉の熔融ガラスの加熱は、熔融ガラス自身に電気が流れて自ら発熱して加熱する方法に加えて、バーナーによる火焔を補助的に与えてガラス原料を熔解することもできる。なお、ガラス原料には清澄剤が添加される。清澄剤として、SnO
2,As
2O
3,Sb
2O
3等が知られているが、特に制限されない。しかし、環境負荷低減の点から、清澄剤としてSnO
2(酸化錫)を用いることが好ましい。
【0029】
清澄工程(ST2)は、少なくとも清澄管において行われる。清澄工程では、清澄管内の熔融ガラスが昇温されることにより、熔融ガラス中に含まれるO
2、CO
2あるいはSO
2を含んだ泡が、清澄剤の還元反応により生じたO
2を吸収して成長し、熔融ガラスの液面に泡は浮上して放出される。さらに、清澄工程では、熔融ガラスの温度を低下させることにより、清澄剤の還元反応により得られた還元物質が酸化反応をする。これにより、熔融ガラスに残存する泡中のO
2等のガス成分が熔融ガラス中に再吸収されて、泡が消滅する。清澄剤による酸化反応及び還元反応は、熔融ガラスの温度を制御することにより行われる。なお、清澄工程は、減圧雰囲気の空間を清澄管につくり、熔融ガラスに存在する泡を減圧雰囲気で成長させて脱泡させる減圧脱泡方式を用いることもできる。この場合、清澄剤を用いない点で有効である。なお、清澄工程では、酸化錫を清澄剤として用いた清澄方法を用いる。
【0030】
均質化工程(ST3)では、清澄管から延びる配管を通って供給された撹拌槽内の熔融ガラスを、スターラを用いて撹拌することにより、ガラス成分の均質化を行う。これにより、脈理等の原因であるガラスの組成ムラを低減することができる。
供給工程(ST4)では、撹拌槽から延びる配管を通して熔融ガラスが成形装置に供給される。
【0031】
成形装置では、成形工程(ST5)及び徐冷工程(ST6)が行われる。
成形工程(ST5)では、熔融ガラスをシートガラスに成形し、シートガラスの流れを作る。成形は、オーバーフローダウンドロー法が用いられる。
徐冷工程(ST6)では、成形されて流れるシートガラスが所望の厚さになり、内部歪が生じないように、さらに、反りが生じないように冷却される。
切断工程(ST7)では、切断装置において、成形装置から供給されたシートガラスを所定の長さに切断することで、板状のガラス基板を得る。切断されたガラス基板はさらに、所定のサイズに切断され、目標サイズのガラス基板が作られる。この後、ガラス基板の端面の研削、研磨が行われ、ガラス基板の洗浄が行われ、さらに、気泡等の異常欠陥の有無が検査された後、検査合格品のガラス基板が最終製品として梱包される。
【0032】
図2は、本実施形態における熔解工程(ST1)〜切断工程(ST7)を行うガラス基板製造装置の一例を模式的に示す図である。当該装置は、
図2に示すように、主に熔解装置100と、成形装置200と、切断装置300と、を有する。熔解装置100は、熔解炉101と、清澄管102と、撹拌槽103と、ガラス供給管104,105,106とを有する。ガラス基板製造装置は、熔融ガラスに対して所定の処理を施す熔融ガラス処理装置を有しており、上記した、清澄管102、撹拌槽103、ガラス供給管104、105、106はそれぞれ、熔融ガラス処理装置に含まれる。
図2に示す熔解装置100では、ガラス原料の投入がバケット101dを用いて行われる。清澄管102では、熔融ガラスMGの温度を調整して、清澄剤の酸化還元反応を利用して熔融ガラスMGの清澄が行われる。清澄管102は、1本の管、又は、複数本の管が互いに接続されることで構成される。さらに、撹拌槽103では、スターラ103aによって熔融ガラスMGが撹拌されて均質化される。成形装置200では、成形体210を用いたオーバーフローダウンドロー法により、熔融ガラスMGからシートガラスSGが成形される。
なお、
図2では、ガラス供給管104は熔解炉101と清澄管102とを接続する移送管であるが、ガラス供給管104は、熔解炉101に接続された処理槽と清澄管102を接続する移送管であってもよい。処理槽として、例えば、酸素ガスを熔融ガラスに供給するとともに、熔融ガラスMGの温度を低下させて清澄剤に上記酸素ガスの一部を吸収させる処理槽が挙げられる。
【0033】
(熔融ガラス処理装置の管)
熔解炉101の端部と成形装置200との間の熔融ガラスの流路を形成するよう、熔融ガラス処理装置は、複数の管が、管の間、及び熔解炉101の端部との間で接続されることで構成されている。そのような管として、上記した、清澄管102、撹拌槽103、ガラス供給管104,105,106が挙げられる。これらの管は、白金あるいは白金合金で構成されているが、強化白金あるいは強化白金合金で構成されてもよい。強化白金あるいは強化白金合金は、白金あるいは白金合金に、Al
2O
3,ZrO
2あるいはY
2O
3等の金属酸化物粒子が分散した材料である。
また、清澄管が複数の管からなる場合の、清澄管を構成する各管も、熔融ガラスの流路を形成する上記管として挙げられる。
【0034】
熔融ガラス処理装置の管のうち少なくとも一部の管は、管本体と、管本体の外に突出し、管本体を通電加熱するフランジ状の電極と、を備えている。そのような管として、例えば、清澄管102、ガラス供給管104、105が挙げられるが、撹拌槽103、ガラス供給管106が、管本体及びフランジ状の電極を備える管で構成されていてもよい。
【0035】
以下、管本体及びフランジ状の電極を備えた管として、清澄管102を例に説明する。
図3(a)は、清澄管本体及びフランジ状の電極を備えた、組み立て前の清澄管102を示す側面図であり、
図3(b)は、組み立て後の
図3(a)の清澄管120を示す側面図である。
【0036】
清澄管102は、清澄管本体102cと、電極102a、102bと、を備えている。電極102a、102bは、清澄管本体102cの延在方向の両端に、溶接等により取り付けられている。このうち、電極102aは、清澄管本体102cと、ガラス供給管104とに挟まれるよう、清澄管本体102cの一端に設けられる。また、電極102bは、清澄管本体102cと、ガラス供給管105とに挟まれるよう、清澄管本体102cの他端に設けられる。清澄管本体102cは、円筒形状あるいは角筒形状を有する部材である。清澄管本体102cの上記一端及び上記他端は、具体的に、清澄管本体102cの延在方向を向く端面である。
電極102a、102bは、図示されない電源装置と接続され、清澄管本体102cを通電加熱する。電極102a、102bは、清澄管本体102cの外(外周側)に突出するフランジ形状を有し、管外部から冷却される。
なお、清澄管102は、図示されないが、清澄管102内部空間中の気相と管外部を連通する開口が設けられている。
【0037】
電極102a、102bは、凹凸形状124を有している。凹凸形状124は、凸部124a及び凹部124bが隣り合った形状である。凸部124aは、清澄管本体102cの端から、熔融ガラスの流路の延在方向(
図3において清澄管本体102cの延在方向)に沿って膨らんだ部分である。凹部124bは、凸部124aに対して清澄管本体102cの側に(延在方向に沿って)凹んだ部分である。
図3に示す例において、凹凸形状124は、電極102a、102bのすべての部分に形成されているが、少なくとも、清澄管本体102cと、ガラス供給管104、105とに挟まれる部分に形成されていればよい。
図3以降の図面において、後述する、凹凸の繰り返し単位の長さ、凹凸の高低差、及び板状部材の厚さは、わかりやすく説明するため、誇張して示される。
【0038】
図4(a)は、
図3に示す電極102aを示す正面図であり、
図4(b)は、電極102aの変形例を示す正面図である。
図3に示す例において、電極102a、102bの凹凸形状124は、
図4(a)に示すように、細い直線で示す凸部124aの最大突出位置と、太い直線で示す凹部124bの最大凹み位置が互いに平行に延びて、
図4の上下方向に交互に並ぶ形状であるが、
図4(b)に示すように、最大突出位置及び最大凹み位置が放射状に延びて、電極102a、102bの周方向に交互に並ぶ形状であってもよい。
【0039】
また、
図3(a)に示す例において、凹凸形状124は、凸部124a及び凹部124bが湾曲した波型形状であるが、このような形態に制限されず、例えば、
図5(a)に示すように、凸部124a及び凹部124bが屈曲したジグザグ形状であってもよく、
図5(b)に示すように、矩形波形状であってもよい。
図5(a)は、電極102aの別の変形例を示す側面図であり、
図5(b)は、電極102aのさらに別の変形例を示す側面図である。
【0040】
凹凸形状124を有する電極102a、102bは、板状部材に、上記説明した凹凸形状124が表れるように、例えば曲げ加工を施すことで作製される。板状部材は、例えば白金又は白金合金からなり、例えば厚さ数mm程度である。凹凸形状124は、電極102a、102bの厚み方向の両側から圧接されると、凸部124aの膨らみ、凹部124bの凹みが小さくなるよう塑性変形することができる。例えば、
図3(b)に示す例では、凹凸形状124は、清澄管本体102cと、ガラス供給管104、105との間に挟まれて、上下方向に延びるように塑性変形する。
【0041】
以上、清澄管102の両方の電極102a、102bが凹凸形状124を有している例について説明したが、凹凸形状124は、いずれか一方の電極にだけ設けられていてもよい。
また、管本体及びフランジ状の電極を備えた管として、清澄管102を例に説明したが、そのような管は、清澄管102に制限されず、例えば、ガラス供給管104、105であってもよい。例えば、ガラス供給管104において、熔解炉101の端部と接続される側の端に、凹凸形状を有する電極が設けられている場合、この凹凸形状は、後述するように、ガラス供給管本体と、熔解炉101の端部とに挟まれて変形する。
【0042】
(ガラス基板製造装置の組み立て)
次に、ガラス基板製造装置の組み立て、特に、熔解炉101と、ガラス供給管104と、清澄管102との組み立てについて説明する。
図6は、本実施形態の熔解炉101に対する、ガラス供給管104及び清澄管102の組み立てを説明する図である。なお、処理槽110に対してガラス供給管104及び清澄管102を組み立てる場合も、同様な処理が行われるので、説明を省略する。
【0043】
熔解炉101は、耐火物レンガ等の耐火物材で熔融ガラスMGを貯留でき、熔融ガラスを通電加熱する電極が設けられた下槽と、バーナー等で気相を加熱し高温の雰囲気を作る上槽とを有するように、製造現場において築炉される。
【0044】
これに対して、ガラス供給管104は、工場等で作製されて製造現場に搬入される。同様に、清澄管102は、工場等で作製されて製造現場に搬入される。このとき、ガラス供給管104及び清澄管102の配置は、所定の温度(例えば1000℃以上)にガラス供給管104、清澄管102を加熱したときの熱膨張を考慮して、
図6に示すように、熔解炉101の端部、ガラス供給管104の両端部、清澄管102の端部は、予め互いに当接しないよう、隙間をあけて配置される。熱膨張とは、管の延在方向(長さ方向)の熱膨張をいう。なお、
図6において、ガラス供給管104の両端部には、電極104a、104bが配置され、ガラス供給管104と向き合う清澄管102の端部には、電極102aが配置されている。
【0045】
図6には、熔解炉101の底部と側壁の一部が示されている。この熔解炉101の流出口の端部、具体的には、側壁の熔融ガラスMGの流出口101aの端部101bに対して、ガラス供給管104の電極104aが当接しないように離間している。
ガラス供給管104は、アルミナセメント114aで被覆され、その外側に、耐火物レンガ等の断熱部材114bが積み重ねられている。これにより、移送管ユニット114が形成されている。同様に、清澄管102は、アルミナセメント112aで被覆され、その外側に、耐火物レンガ等の断熱部材112bが積み重ねられている。これにより、清澄管ユニット112が形成されている。
移送管ユニット114及び清澄管ユニット112は、上述したように、所定の温度の加熱による熱膨張によってはじめて熔解炉101、ガラス供給管104、及び清澄管102の端部同士が接続されるように、製造現場に配置されている。すなわち、熔解炉101の熔融ガラスMGの流出口101aの端部101bと、ガラス供給管104の電極104aとの間、及びガラス供給管104の電極104bと清澄管102の電極102aとの間に、上述の熱膨張量を考慮した隙間をあけて配置されている。
【0046】
この状態で、熔解炉101、移送管ユニット114及び清澄管ユニット112は、外部から図示されない加熱装置やガラス供給管104及び清澄管102の周りに設けられた図示されないヒータ電極を通電することにより、熔解炉101、ガラス供給管104、清澄管102が所定の温度に加熱される。このとき、ガラス供給管104、清澄管102に生じる熱膨張(
図6中の横方向の矢印)により、ガラス供給管104及び清澄管102の互いに向き合う電極104b,102a同士が接触し、電極104bと電極102aとの間の隙間がなくなり、さらに、電極104b及び電極102aがガラス供給管本体104cと清澄管本体102cとに挟まれて、凹凸形状の凹部及び凸部が潰れるように変形し、清澄管102及びガラス供給管104は接続される。また、熔解炉101及びガラス供給管104の互いに向き合う電極101b,104a同士が接触し、端部101bと電極104aとの間の隙間がなくなり、さらに、電極104aが、端部101bとガラス供給管本体104cとに挟まれて、凹凸形状の凹部及び凸部が潰れるように変形し、端部101b及びガラス供給管104は接続される。
また、断熱部材114b、112bは、上記したように加熱されたガラス供給管104、清澄管102からの熱伝導によって加熱される。断熱部材114b、112bは、断熱部材114b、112aの周囲に設けられた図示されないヒータによって加熱することもできる。
【0047】
本実施形態では、熔解炉101、ガラス供給管104、清澄管102を加熱して組み立てるが、ガラス供給管104を単独で加熱して、あるいは、ガラス供給管104及び清澄管102を加熱して、熱膨張したガラス供給管104(第1の管)の両端部を、熔解炉101の端部及び清澄管102(第2の管)の端部と当接させて組み立てることもできる。上記加熱は、上述したようにガラス供給管104を含む移送管ユニット114を単独で加熱するものであってもよく、あるいは、ガラス供給管104を含む移送管ユニット114及び清澄管102を含む清澄管ユニット112を加熱するものであってもよい。
【0048】
こうして、
図7に示すように、熔解炉101の端部とガラス供給管104は接続され、ガラス供給管104と清澄管102は接続されている。このとき、熔解炉101の端部101b及びガラス供給管本体と、変形した電極104aとの間には、小さな空隙が存在する。同様に、ガラス供給管本体と清澄管本体と、変形した電極104b、102aとの間には、小さな空隙が存在する。
熔解炉101の端部、ガラス供給管104及び清澄管102が接続された後、熔解炉101、移送管ユニット114及び清澄管ユニット112の高温状態が保持された状態で、熔解炉101にガラス原料が投入され、図示されないバーナー及び電極によってガラス原料が熔解されて熔融ガラスMGがつくられる。
この状態で、流出口101aが開放されて、熔解炉101に貯留された熔融ガラスMGは流出口101aからガラス供給管104、さらには、清澄管102に流れ始める。熔融ガラスMGは、ガラス供給管104及び清澄管102に設けられた図示されない加熱ヒータによって例えば1500〜1700℃に昇温されている。そして、熔融ガラスMGが当接した端部を通過するとき、熔融ガラスMGは上記空隙に進入する。電極104a,104b,102aはフランジ形状になっているので管外部から冷却され易いため、上記空隙に進入する熔融ガラスMGは容易に冷却固化されて上記空隙を穴埋めする。こうして、熔解炉101からガラス供給管104、さらには清澄管102に到る流路、すなわち熔融ガラスMGの漏出がない流路が形成される。
【0049】
従来、熔解炉、移送管、清澄管を組み立てる方法において、例えば、これらが加熱され熱膨張したときに互いに隙間なく当接するよう、移送管、清澄管の熱膨張を考慮し、組み立て前に、互いに隙間をあけて配置する場合がある。しかし、熔解炉、移送管、清澄管の熱膨張量は、熔融ガラスの温度等の操業条件によって変化し、正確に予測することは困難である。また、熱膨張を考慮して定めた隙間のとおりに、熔解炉、移送管、清澄管を正確に配置することも困難である。このため、実際に組み立てを行ったときに、移送管、清澄管の熱膨張量と、組み立て前に熔解炉、移送管、清澄管の間に設けた隙間との間でずれが生じることが多い。特に、移送管、清澄管の熱膨張量が足りずに、組み立て前に設けた隙間が塞がらない場合には熔融ガラスが漏出する可能性があるため、このような事態を回避するために、熔解炉、移送管、清澄管の間の隙間を、短めに設定することが多い。このため、移送管、清澄管の熱膨張が拘束されて、移送管、清澄管に圧縮応力がかかり、移送管、清澄管が歪み、湾曲し、ひいては破損する場合があった。
本実施形態では、上述したように、電極104a、104b、102bの凹凸形状124が流路に沿った方向に変形することができるため、これら凹凸形状124の変形量(変形代)を考慮して、熔解炉101、ガラス供給管本体104c、清澄管本体102cの間に設ける隙間を、ガラス供給管本体104cの熱膨張量、清澄管本体102cの熱膨張量、及び、凹凸形状を有しない電極(板状部材)の厚み、の合計よりも大きい、余裕のある長さに設定することができる。このため、ガラス供給管104、清澄管102の熱膨張が拘束されて、ガラス供給管104、清澄管102に圧縮応力がかかることを回避でき、ガラス供給管104及び清澄管102の歪み、湾曲、破損等を抑制することができる。
特に、電極104b、102aのように、互いに向き合うガラス供給管本体104cの端、及び清澄管本体102cの端の両方に、凹凸形状124を有する電極を配置した場合は、凹凸形状124の変形量の合計が大きいため、組み立て前に設ける上記隙間をさらに余裕のある長さに設定することができ、装置の組み立てをより簡単に行える。
【0050】
本実施形態において、ガラス供給管104の周りの断熱部材114b(第1の断熱部材)及び清澄管102の周りの断熱部材112b(第2の断熱部材)は、電極102a、104bを間に挟むよう配置される。このとき、電極102a、104bの凹凸形状124が、断熱部材114bと断熱部材112bとに挟まれる電極102a、104bの外周部にも形成されているため、断熱部材114b、112bの熱膨張量がガラス供給管104、清澄管102の熱膨張量と比べ小さくても、電極104b、102aの凹凸形状124を断熱部材114b,112bで挟んで僅かに変形させ、電極104b、102aを両側から支持することができる。
電極104b、102aの外周部に位置する断熱部材114bと、断熱部材112bとの間に隙間があると、例えば、清澄管102、ガラス供給管104が高温に維持されることで損傷した場合に、清澄管102、ガラス供給管104の損傷した部分からこの隙間を通って熔融ガラスMGが外部へ漏出するおそれがある。本実施形態では、電極104b、102aの外周部にも凹凸形状124を設け、断熱部材114b、112bで挟んで両側から支持することで、断熱部材114bと、断熱部材112bとの隙間をなくして熔融ガラスMGの漏出を防止できる。
また、断熱部材114b,112bにより電極104b,102aを両側から支持する効果を大きくするために、断熱部材114b,112bに挟まれる電極104b,102aの部分の凹凸形状は、ガラス供給管本体104cと清澄管本体102cとに挟まれる部分の凹凸形状と比べ、後述する、凹凸の繰り返し単位の長さL(凹凸の周期)、及び凹凸の高低差(凹凸の振幅)、の少なくともいずれか一方が大きいことも好ましい。
【0051】
電極104a、104b、102aは、
図3〜
図5に示した例のように、凹凸形状124が電極の延在方向に繰り返し表れる形状を有していることが好ましい。このような形態によって、熔解炉101とガラス供給管104の間、及び、ガラス供給管104と清澄管102の間で均等に挟まれ、変形することができる。これに対し、熔解炉101とガラス供給管104の間に挟まれる部分、及び、ガラス供給管104と清澄管102との間に挟まれる部分、を除いた電極104a、104b、102aの部分が平坦な形状であると、上記挟まれる部分の凹凸形状の変形に追従するように、平坦な形状の部分が歪んで、割れ、破損等するおそれがある。
電極104a、104b、102aが、凹凸形状124が繰り返し表れる形状を有している場合において、凸部124a及び凹部124bが並ぶ方向の凹凸形状124の繰り返し単位(凹凸の周期)の長さL(
図4(a)及び
図4(b)参照)は、電極が設けられた管本体の直径よりも小さいことが好ましい。繰り返し単位の長さLが直径より小さいことで、管同士を接続した後に管本体と電極の間に残る空隙を小さくすることができる。繰り返し単位の長さLは、好ましくは、管本体の直径の0.5倍の長さ以下である。
なお、凹凸形状124が、非直線状に繰り返される場合の繰り返し単位の長さLは、その最小長さと最大長さの平均値である。例えば、
図4(b)に示す例のように、凹凸形状124が周方向に繰り返される場合の繰り返し単位の長さLは、電極102aの内周側の端での周方向長さと、電極102aの外周側の端での周方向長さの平均値である。
【0052】
凹凸形状124の凹凸の高さ(熔融ガラスの流路の延在方向に沿った凹凸の高低差)は、適宜設定することができる。凹凸の高低差(最大突出位置と最大凹み位置との距離)が小さすぎると、電極104a、104b、102aの変形量が少なくなり、熔解炉101、ガラス供給管本体104c、清澄管本体102cの間に設ける上記隙間を大きくすることができない。このため、ガラス供給管104、清澄管102の熱膨張が拘束されて、ガラス供給管104、清澄管102に圧縮応力がかかり、ガラス供給管104、清澄管102が歪み、湾曲し、ひいては破損する場合がある。一方、凹凸の高低差が大きすぎると、電極104a、104b、102aの周囲に冷却管を設けることが難しくなるため、電極104a、104b、102aの冷却を十分に行うことができず、電極104a、104b、102aが破損するおそれがある。なお、冷却管は、管状の部材が電極104a、104b、102aの外周の縁に当接して環状に囲むように構成され、冷媒供給装置に接続されており、冷媒供給装置から供給された水などの冷媒が冷却管内を通過することで、冷却管に接触する電極が冷却される。
また、電極104a、104b、102aの両側から圧接力が作用したときの電極104a、104b、102aの変形のしやすさ(電極の硬度)は、適宜設定することができる。電極の硬度は、電極104a、104b、102aの変形量や、隣り合う管が互いに押し付け合う力を緩和する緩衝作用、電極104a、104b、102aが高温に維持されて損傷することに対する耐久性、に影響を与える。これらの点を考慮して、電極104a、104b、102aにおける、長さL、高低差、硬度を、適宜設定することができる。特に、緩衝作用を確保する観点から、上記長さL及び上記凹凸の高低差は、それぞれ、当該凹凸形状を有する電極が取り付けられる管本体の長さの0.05〜5%の長さ、好ましくは0.1〜2%の長さに設定される。電極の硬度は、例えば、電極となる板状部材の材質、厚み、形状等を、適宜選定することで設定できる。このうち、板状部材の厚みは、当該板状部材から形成された電極が取り付けられる管本体の長さの0.001〜0.5%、好ましくは0.005〜0.3%の長さであることが好ましい。
【0053】
(変形例)
図8は、ガラス基板製造装置の組み立て変形例を説明する図である。
図8に示す熔解炉101、移送管ユニット114、及び清澄管ユニット112の構成は、上記実施形態の構成と同じである。ここでは、上記実施形態との相違に注目して説明する。
【0054】
変形例では、熔解炉101、ガラス供給管104、清澄管102の加熱の前に、上記実施形態で説明した組み立て前の隙間と比べて、ガラス供給管104の一方の電極104aと熔解炉101の端部101bとの間、及びガラス供給管104の他方の電極104bと清澄管102の電極102aとの間に、広い隙間が設けられる。
そして、移送管ユニット114及び清澄管ユニット112は、熔解炉101に対して移動可能な構成を備えている。具体的には、移送管ユニット114及び清澄管ユニット112のそれぞれの底部には、製造現場の床を移動できるローラ114c及びローラ112cが設けられている。
【0055】
図8に示す状態において、熔解炉101、移送管ユニット114及び清澄管ユニット112は、ガラス供給管104及び清澄管102は所定の温度(例えば1000℃以上)に加熱される。しかし、加熱前の上記隙間は、ガラス供給管104及び清澄管102の加熱の後に残存する程度に広い。
図9は、変形例のガラス供給管104及び清澄管102の加熱後の状態を説明する図である。
図9では、隙間Z
1,Z
2が残存している。
加熱によって熱膨張したガラス供給管104を含む移送管ユニット114は、図示されない駆動機構を用いてローラ114cを転がらせて熔解炉101に向けて移動することにより、電極102a及び電極104bが接触し、電極102a及び電極104bが清澄管本体102cとガラス供給管本体104cとに挟まれて、凹凸形状の凹部及び凸部が潰れるように変形し、清澄管102及びガラス供給管104は接続される。さらに、清澄管102を含む清澄管ユニット112は、図示されない駆動機構を介してローラ112cを転がらせてガラス供給管104に向けて移動することにより、端部101bと電極104aが接触し、電極104aが熔解炉101とガラス供給管本体104cとに挟まれて、凹凸形状の凹部及び凸部が潰れるように変形し、端部101b及び電極104aは接続される。
【0056】
熔解炉101の端部、ガラス供給管104、清澄管102が接続された後、上記実施形態と同様に、熔解炉101において熔融ガラスMGがつくられ、ガラス供給管104及び清澄管102を流れ始める。そして、熔融ガラスMGが熔解炉101、移送管ユニット114、清澄管ユニット112の互いに当接した端部を通過するとき、熔融ガラスMGは、当接した端部間に存在する空隙に進入し、冷却固化されて上記空隙を穴埋めする。こうして、熔解炉101からガラス供給管104、さらには清澄管102に到る、熔融ガラスMGが漏出しない流路が形成される。
【0057】
変形例では、ガラス供給管104及び清澄管102の熱膨張を考慮して、熔解炉101、ガラス供給管104及び清澄管102の端部間に隙間を設ける必要がないので、装置の組み立てがより簡単にできる。また、変形例では、少なくともガラス供給管104は加熱により十分に熱膨張した状態で端部同士が当接されるので、ガラス基板の製造中、ガラス供給管104及び清澄管102の歪み、湾曲、破損等を上記実施形態に比べてより効果的に抑制することができる。
【0058】
以上、熔解炉101に対してガラス供給管104及び清澄管102を組み立てる例を説明したが、例えば、清澄管102、ガラス供給管105、撹拌槽103、ガラス供給管106、成形体210を組み立てる場合や、複数の管からなる清澄管102を組み立てる場合も、同様の接続を行うことができる。一方で、清澄管102、ガラス供給管105、撹拌槽103、ガラス供給管106、成形体210の組み立てや、複数の管からなる清澄管102の組み立てには、溶接あるいは特殊な溶接を用いて接続が行われてもよい。
【0059】
(ガラス基板)
本実施形態において製造されるガラス基板の大きさは、特に制限されないが、例えば縦寸法及び横寸法のそれぞれが、500mm〜3500mm、1500mm〜3500mm、1800〜3500mm、2000mm〜3500mmであり、2000mm〜3500mmであることが好ましい。
ガラス基板の厚さは、例えば、0.1〜1.1mmであり、より好ましくは0.75mm以下の極めて薄い矩形形状の板であり、例えば、0.55mm以下、さらには0.45mm以下の厚さがより好ましい。ガラス基板の厚さの下限値は、0.15mmが好ましく、0.25mmがより好ましい。
【0060】
<ガラス組成>
このようなガラス基板として、以下のガラス組成のガラス基板が例示される。つまり、以下のガラス組成のガラス基板が製造されるように、熔融ガラスの原料が調合される。
SiO
2 55〜80モル%、
Al
2O
3 8〜20モル%、
B
2O
3 0〜12モル%、
RO 0〜17モル%(ROはMgO、CaO、SrO及びBaOの合量)。
【0061】
SiO
2は60〜75モル%、さらには、63〜72モル%であることが、熱収縮率を小さくするという観点から好ましい。
ROのうち、MgOが0〜10モル%、CaOが0〜15モル%、SrOが0〜10%、BaOが0〜10%であることが好ましい。
【0062】
また、SiO
2、Al
2O
3、B
2O
3、及びROを少なくとも含み、モル比((2×SiO
2)+Al
2O
3)/((2×B
2O
3)+RO)は4.5以上であるガラスであってもよい。また、MgO、CaO、SrO、及びBaOの少なくともいずれか含み、モル比(BaO+SrO)/ROは0.1以上であることが好ましい。
【0063】
また、モル%表示のB
2O
3の含有率の2倍とモル%表示のROの含有率の合計は、30モル%以下、好ましくは10〜30モル%であることが好ましい。
また、上記ガラス組成のガラス基板におけるアルカリ金属酸化物の含有率は、0モル%以上0.4モル%以下であってもよい。
また、ガラス中で価数変動する金属の酸化物(酸化スズ、酸化鉄)を合計で0.05〜1.5モル%含み、As
2O
3、Sb
2O
3及びPbOを実質的に含まないということは必須ではなく任意である。
【0064】
また、本実施形態によって製造されるガラス基板には、無アルカリのボロアルミノシリケートガラスあるいはアルカリ微量含有ガラスが用いられることが好ましい。
本実施形態によって製造されるガラス基板は、例えば以下の組成を含む無アルカリガラスからなることが好ましい。
本実施形態によって製造されるガラス基板のガラス組成として、例えば、次が挙げられる(質量%表示)。
SiO
2:50〜70%(好ましくは、57〜64%)、Al
2O
3:5〜25%(好ましくは、12〜18%)、B
2O
3:0〜15%(好ましくは、6〜13%)を含み、さらに、次に示す組成を任意に含んでもよい。任意で含む成分として、MgO:0〜10%(好ましくは、0.5〜4%)、CaO:0〜20%(好ましくは、3〜7%)、SrO:0〜20%(好ましくは、0.5〜8%、より好ましくは3〜7%)、BaO:0〜10%(好ましくは、0〜3%、より好ましくは0〜1%)、ZrO
2:0〜10%(好ましくは、0〜4%,より好ましくは0〜1%)が挙げられる。さらに、R’
2O:0.10%を超え2.0%以下(ただし、R’はLi、NaおよびKから選ばれる少なくとも1種である)を含むことがより好ましい。
【0065】
或いは、SiO
2:50〜70%(好ましくは、55〜65%)、B
2O
3:0〜10%(好ましくは、0〜5%、1.3〜5%)、Al
2O
3:10〜25%(好ましくは、16〜22%)、MgO:0〜10%(好ましくは、0.5〜4%)、CaO:0〜20%(好ましくは、2〜10%、2〜6%)、SrO:0〜20%(好ましくは、0〜4%、0.4〜3%)、BaO:0〜15%(好ましくは、4〜11%)、RO:5〜20%(好ましくは、8〜20%、14〜19%),を含有することが好ましい(ただし、RはMg、Ca、SrおよびBaから選ばれる少なくとも1種である)。さらに、R’
2Oが0.10%を超え2.0%以下(ただし、R’はLi、NaおよびKから選ばれる少なくとも1種である)を含むことがより好ましい。
【0066】
<ヤング率>
本実施形態によって製造されるガラス基板のヤング率として、例えば、72GPa以上が好ましく、75GPa以上がより好ましく、77GPa以上がより更に好ましい。
【0067】
<歪点>
本実施形態によって製造されるガラス基板の歪率として、例えば、650℃以上が好ましく、680℃以上がより好ましく、700℃以上、720℃以上が更により好ましい。
【0068】
<熱収縮率>
本実施形態によって製造されるガラス基板の熱収縮率は、例えば、50ppm以下であり、好ましくは40ppm以下、より好ましくは30ppm以下、更により好ましくは20ppm以下である。
【0069】
本実施形態で製造されるガラス基板は、フラットパネルディスプレイ用ガラス基板、カーブドパネルディスプレイ用ガラス基板を含むディスプレイ用ガラス基板として好適であり、例えば、液晶ディスプレイ用ガラス基板あるいは、有機ELディスプレイ用のガラス基板として好適である。さらに、本実施形態で製造されるガラス基板は、高精細ディスプレイに用いられる、IGZO(インジウム、ガリウム、亜鉛、酸素)等の酸化物半導体を使用した酸化物半導体ディスプレイ用ガラス基板、及びLTPS(低温度ポリシリコン)半導体を使用したLTPSディスプレイ用ガラス基板に好適である。
また、本実施形態で製造されるガラス基板は、カバーガラス、磁気ディスク用ガラス、太陽電池用ガラス基板などにも適用することが可能である。
【0070】
以上、本発明のガラス基板製造装置およびガラス基板の製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。