【解決手段】本発明は、本体において内部電極が露出する面に外部電極の導電性樹脂層が配置され、上記導電性樹脂層の導電性連結部及び上記内部電極と接触する金属間化合物を含み、上記導電性連結部は、上記複数の金属粒子と上記第2電極層に接触することで、積層セラミックキャパシタのESR(等価直列抵抗:Equivalent Series Resistance)を低減させ、曲げ強度及び信頼性を向上させることができる積層型キャパシタを提供する。
複数の誘電体層と前記複数の誘電体層を介して交互に配置される複数の第1及び第2内部電極を含み、互いに対向する第1及び第2面、前記第1及び第2面と連結され、互いに対向する第3及び第4面、前記第1及び第2面と連結され且つ前記第3及び第4面と連結され、互いに対向する第5及び第6面を含んでおり、前記第3及び第4面には、前記第1及び第2内部電極の一端部がそれぞれ露出するよう、上下に配置された誘電体層の間に複数の第1及び第2溝部が形成される本体と、
前記第1及び第2溝部内に配置され、前記第1及び第2内部電極の一端部とそれぞれ接続される金属間化合物と、
前記本体の第3及び第4面にそれぞれ配置される第1及び第2外部電極と、を含み、
前記第1及び第2外部電極は、
前記本体の第3及び第4面にそれぞれ配置され、複数の金属粒子、前記複数の金属粒子を取り囲んで前記金属間化合物と接触する導電性連結部及びベース樹脂を含む導電性樹脂層と、
前記導電性樹脂層上に配置され、前記導電性連結部と接触する第1電極層と、
を含む、積層型キャパシタ。
前記導電性樹脂層は、前記複数の金属粒子が銅、ニッケル、銀、銀がコーティングされた銅、及びスズがコーティングされた銅のうち少なくとも一つを含む、請求項1から4のいずれか一項に記載の積層型キャパシタ。
前記導電性樹脂層は、前記複数の金属粒子が球状、フレーク(flake)状、及び球状とフレーク(flake)状の混合型のうち一つである、請求項1から7のいずれか一項に記載の積層型キャパシタ。
前記外部電極は、前記本体の第3及び第4面にそれぞれ形成される接続部と、前記接続部から前記本体の第1及び第2面の一部と第5及び第6面の一部まで延長して形成されるバンド部をそれぞれ含む、請求項1から9のいずれか一項に記載の積層型キャパシタ。
複数の誘電体層と前記複数の誘電体層を介して交互に配置される複数の第1及び第2内部電極を含み、互いに対向する第1及び第2面、前記第1及び第2面と連結され、互いに対向する第3及び第4面、前記第1及び第2面と連結され且つ前記第3及び第4面と連結され、互いに対向する第5及び第6面を含んでおり、前記第1及び第2内部電極の一端部が前記第3及び第4面からそれぞれ露出する本体と、
前記第1及び第2内部電極の一端部とそれぞれ接続される金属間化合物と、
前記本体の第1及び第2面にそれぞれ形成される水分の浸透防止膜と、
前記本体の第3及び第4面にそれぞれ配置される第1及び第2外部電極と、を含み、
前記第1及び第2外部電極は、
前記本体の第3及び第4面にそれぞれ配置され、複数の金属粒子、前記複数の金属粒子を取り囲んで前記金属間化合物と接触する導電性連結部及びベース樹脂を含む導電性樹脂層と、
前記導電性樹脂層上に配置され、前記導電性連結部と接触する第1電極層と、
を含む、積層型キャパシタ。
前記導電性樹脂層は、前記複数の金属粒子が銅、ニッケル、銀、銀がコーティングされた銅、及びスズがコーティングされた銅のうち少なくとも一つを含む、請求項15から18のいずれか一項に記載の積層型キャパシタ。
前記導電性樹脂層は、前記複数の金属粒子が球状、フレーク(flake)状、及び球状とフレーク(flake)状の混合型のうち一つである、請求項15から21のいずれか一項に記載の積層型キャパシタ。
前記外部電極は、前記本体の第3及び第4面にそれぞれ形成される接続部と、前記接続部から前記本体の第1及び第2面の一部と第5及び第6面の一部まで延長して形成されるバンド部をそれぞれ含む、請求項15から22のいずれか一項に記載の積層型キャパシタ。
複数の誘電体層と前記複数の誘電体層を介して交互に配置される複数の第1及び第2内部電極を含み、互いに対向する第1及び第2面、前記第1及び第2面と連結され、互いに対向する第3及び第4面、前記第1及び第2面と連結され且つ前記第3及び第4面と連結され、互いに対向する第5及び第6面を含んでおり、前記第1及び第2内部電極の一端部が前記第3及び第4面からそれぞれ露出する本体と、
前記第1及び第2内部電極の一端部とそれぞれ接続される金属間化合物と、
前記本体の第3及び第4面にそれぞれ配置される第1及び第2外部電極と、を含み、
前記第1及び第2外部電極は、
前記本体の第3及び第4面にそれぞれ配置され、複数の金属粒子、前記複数の金属粒子を取り囲んで前記金属間化合物と接触する導電性連結部及びベース樹脂を含む導電性樹脂層と、
前記導電性樹脂層上に配置され、前記導電性連結部と接触する第1電極層と、
を含み、
前記第1電極層が銅めっき層である、積層型キャパシタ。
前記導電性樹脂層は、前記複数の金属粒子が銅、ニッケル、銀、銀がコーティングされた銅、及びスズがコーティングされた銅のうち少なくとも一つを含む、請求項28から31のいずれか一項に記載の積層型キャパシタ。
前記導電性樹脂層は、前記複数の金属粒子が球状、フレーク(flake)状、及び球状とフレーク(flake)状の混合型のいずれかである、請求項28から34のいずれか一項に記載の積層型キャパシタ。
前記外部電極は、前記本体の第3及び第4面にそれぞれ形成される接続部と、前記接続部から前記本体の第1及び第2面の一部と第5及び第6面の一部まで延長して形成されるバンド部をそれぞれ含む、請求項28から36のいずれか一項に記載の積層型キャパシタ。
【発明を実施するための形態】
【0014】
以下では、添付の図面を参照して本発明の好ましい実施形態について説明する。しかし、本発明の実施形態は様々な他の形態に変形されることができ、本発明の範囲は以下で説明する実施形態に限定されない。また、本発明の実施形態は、当該技術分野で平均的な知識を有する者に本発明をより完全に説明するために提供されるものである。したがって、図面における要素の形状及び大きさなどはより明確な説明のために拡大縮小表示(または強調表示や簡略化表示)がされることがある。
【0015】
なお、各実施形態の図面に示された同一思想の範囲内において機能が同一である構成要素に対しては同一の参照符号を用いて説明する。
【0016】
さらに、明細書全体において、ある構成要素を「含む」というのは、特に異なる趣旨の説明がされていない限り、他の構成要素を除外する趣旨ではなく、他の構成要素をさらに含むことができるということを意味する。
【0017】
また、明細書全体において、「上に」形成されるというのは、直接接触して形成されることのみならず、その間に他の構成要素をさらに含むことができるということを意味する。
【0018】
なお、本発明を明確に説明すべく、図面において説明と関係ない部分は省略し、様々な層及び領域を明確に表現するために厚さを拡大して示し、同一思想の範囲内において機能が同一である構成要素に対しては同一の参照符号を用いて説明する。
【0019】
積層型キャパシタ
図1は本発明の一実施形態による積層型キャパシタを示した斜視図であり、
図2は
図1のI−I'線の断面図である。
【0020】
図1及び
図2を参照すると、本発明の一実施形態による積層型キャパシタ100は、本体110と、第1及び第2外部電極130、140と、を含む。
【0021】
本体110は、キャパシタの容量形成に寄与する部分としての活性領域と、上下マージン部としての上記活性領域の上下部にそれぞれ形成される上部及び下部カバー112、113と、を含むことができる。
【0022】
本発明の一実施形態において、本体110の形状は特に制限されないが、実質的には、六面体形状であってもよい。
【0023】
即ち、本体110は、内部電極の配置による厚さの差、及び角部の研磨により、完全な六面体形状ではないが、実質的に六面体に近い形状を有することができる。
【0024】
本発明の実施形態を明確に説明するために六面体の方向を定義すると、図面上に示されたX、Y、及びZはそれぞれ、長さ方向、幅方向、及び厚さ方向を示す。
【0025】
ここで、厚さ方向は、誘電体層が積層された積層方向と同じ概念として使われることができる。
【0026】
また、本体110において、Z方向に互いに対向する両面を第1及び第2面1、2と定義し、第1及び第2面1、2と連結され、X方向に互いに対向する両面を第3及び第4面3、4と定義し、第1及び第2面1、2と連結され且つ第3及び第4面3、4と連結され、Y方向に互いに対向する両面を第5及び第6面5、6と定義する。この場合、第1面1は実装面であってもよい。
【0027】
上記活性領域は、複数の誘電体層111と、誘電体層111を介して複数の第1及び第2内部電極121、122とが交互に積層される構造からなることができる。
【0028】
また、上記活性領域において、本体100の第3及び第4面3、4には、第1及び第2内部電極121、122の一端部がそれぞれ露出するよう、上下に配置された誘電体層111の間に複数の第1及び第2溝部が形成される。
【0029】
さらに、上記第1及び第2溝部内には、第1及び第2内部電極121、122の一端部とそれぞれ接触する金属間化合物150が配置される。
【0030】
誘電体層111は、高誘電率を有するセラミック粉末、例えば、チタン酸バリウム(BaTiO
3)系又はチタン酸ストロンチウム(SrTiO
3)系粉末を含むことができるが、本発明はこれに限定されるものではない。
【0031】
このとき、誘電体層111の厚さは、積層型キャパシタ100の容量設計に応じて任意に変更することができ、本体110のサイズ及び容量を考慮して、焼成後の一層の厚さを0.1〜10μmとすることができるが、本発明はこれに限定されるものではない。
【0032】
第1及び第2内部電極121、122は、誘電体層111を介して互いに対向するように配置されることができる。
【0033】
第1及び第2内部電極121、122は、互いに異なる極性を有する一対の電極であって、誘電体層111上に所定の厚さで導電性金属を含む導電性ペーストを印刷し、誘電体層111を介して誘電体層111の積層方向に沿って本体110の第3及び第4面3、4から交互に露出するように形成されることができ、中間に配置された誘電体層111により互いに電気的に絶縁されることができる。
【0034】
このような第1及び第2内部電極121、122は、本体110の第3及び第4面3、4から交互に露出する部分が金属間化合物150によって第1及び第2外部電極130、140とそれぞれ電気的に連結されてもよい。
【0035】
したがって、第1及び第2外部電極130、140に電圧が印加されると、金属間化合物150によって互いに対向する第1及び第2内部電極121、122の間に電荷が蓄積され、この際、積層型キャパシタ100の静電容量は、第1及び第2内部電極121、122の互いに重なり合う領域の面積に比例するようになる。
【0036】
このような第1及び第2内部電極121、122の厚さは、用途に応じて決定されることができ、例えば、セラミック本体110のサイズ及び容量を考慮して、0.2〜1.0μmの範囲内となるように決定することができるが、本発明はこれに限定されるものではない。
【0037】
また、第1及び第2内部電極121、122に含まれる導電性金属は、ニッケル(Ni)、銅(Cu)、パラジウム(Pd)のいずれか又はこれらの合金であることができるが、本発明はこれに限定されるものではない。本実施形態において、第1及び第2内部電極121、122がニッケルである場合、金属間化合物150はニッケル−スズ(Ni−Sn)であってもよい。
【0038】
上部及び下部カバー112、113は、内部電極を含まないこと以外は、上記活性領域の誘電体層111と同じ材質及び構成を有することができる。
【0039】
即ち、上部及び下部カバー112、113は、単一の誘電体層又は二つ以上の誘電体層を上記活性領域の上下面にそれぞれZ方向に積層して形成されたものと見なすことができ、基本的には、物理的又は化学的ストレスによる第1及び第2内部電極121、122の損傷を防止することができる。
【0040】
第1及び第2外部電極130、140は、導電性樹脂層131、141と、導電性樹脂層131、141上に配置される第1電極層132、142と、をそれぞれ含むことができる。
【0041】
導電性樹脂層131、141は、本体110の第3及び第4面3、4において上記第1及び第2溝部に形成された金属間化合物150によって、露出する第1及び第2内部電極121、122とそれぞれ接触して連結されることで、第1外部電極130と第1内部電極121との電気的導通と、第2外部電極140と第2内部電極122との電気的導通とを確保する。
【0042】
このとき、導電性樹脂層131、141は、本体110の第3及び第4面3、4にそれぞれ形成される接続部と、上記接続部から本体110の第1及び第2面1、2の一部、並びに第5及び第6面5、6の一部まで延長して形成されるバンド部をそれぞれ含むことができる。
【0043】
このように、本体110の第3及び第4面3、4上に導電性樹脂層131、141を形成すると、めっき液及び水分の浸透防止特性を向上させることができるようになる。
【0044】
第1電極層132、142は、導電性樹脂層131、141上に配置され、導電性樹脂層131、141の後述する導電性連結部とそれぞれ接触する。よって、第1電極層132、142は、めっき液及び水分の浸透防止特性をさらに向上させることができる。
【0045】
また、第1電極層132、142は、金属成分を含むことができ、上記金属成分は銅(Cu)、スズ(Sn)、ニッケル(Ni)、パラジウム(Pd)、金(Au)のいずれか又はこれらの合金であってもよいが、本発明はこれに限定されるものではない。
【0046】
このような第1電極層132、142は、銅をめっきして形成するか、又は、CVD/PVDといった薄膜蒸着工程などによって形成することができる。
【0047】
図3は
図2のA領域を拡大して示した断面図である。
【0048】
上記A領域は、第1外部電極130の一部を拡大して示したものであるが、第1外部電極130は第1内部電極121と電気的に接続し、第2外部電極140は第2内部電極122と接続するという相違点があるだけで、第1外部電極130と第2外部電極140の構成は類似するため、以下では第1外部電極130を基準として説明し、第2外部電極140についての説明は含むものとする。
【0049】
図3に示されたように、第1外部電極130の導電性樹脂層131は、複数の金属粒子131aと、金属間化合物150と接触する導電性連結部131bと、ベース樹脂131cと、を含む。
【0050】
このような導電性樹脂層131は、金属間化合物150と第1電極層132とを電気的及び機械的に接合させるとともに、積層型キャパシタ100を基板に実装する際に、機械的又は熱的環境で発生する引張ストレス(stress)を吸収することで、クラック(crack)の発生を防止するとともに、基板の反りインパクトから積層型キャパシタ100を保護する役割も果たすことができる。
【0051】
このとき、導電性樹脂層131は、本体100の第3面3に、ベース樹脂131cに複数の金属粒子131aが分散したペーストを塗布し、乾燥及び硬化工程を経て形成することができる。
【0052】
したがって、従来の焼成により外部電極を形成する方法とは異なり、金属粒子が完全に溶融しないため、ベース樹脂131c内にランダムな分布で分散した形態で存在し、導電性樹脂層131内に含まれることができる。
【0053】
一方、金属粒子131aは、導電性連結部131b、及び金属間化合物150を成す低融点金属と全て反応する場合、導電性樹脂層131内に存在しなくなることもある。
【0054】
但し、後述する本実施形態では、説明の便宜のために、導電性樹脂層131内に金属粒子131aが含まれるものとして説明する。
【0055】
このとき、金属粒子131aは、銅(Cu)であるか、又は、ニッケル(Ni)、銀(Ag)、銀がコーティングされた銅(Cu)、スズ(Sn)がコーティングされた銅のうち少なくとも一つ以上を含むことができる。
【0056】
また、金属粒子131aのサイズは0.2〜20μmであることができる。
【0057】
なお、導電性樹脂層131に含まれる金属粒子は、球状だけでなく、
図4に示されたように、必要に応じて、フレーク(flake)状の金属粒子131a'のみからなってもよく、又は、
図5に示されたように、球状金属粒子131aとフレーク状の金属粒子131a'の混合型からなってもよい。
【0058】
導電性連結部131bは、金属が溶融された状態で複数の金属粒子131aを取り囲んで互いに連結するため、本体110の内部の応力を最小限に抑え、高温負荷と耐湿負荷特性を向上させることができる。
【0059】
このような導電性連結部131bは、導電性樹脂層131の電気伝導度を増加させ、導電性樹脂層131の抵抗を低くすることができる。
【0060】
このとき、導電性樹脂層131に金属粒子131aが含まれる場合、導電性連結部131bは金属粒子131a間の連結性を高め、導電性樹脂層131の抵抗をより減少させることができる。
【0061】
また、導電性連結部131bに含まれる低融点金属は、ベース樹脂131cの硬化温度よりも低い融点を有することができる。
【0062】
このとき、導電性連結部131bに含まれる低融点金属は、好ましくは300℃以下の融点を有することができる。
【0063】
具体的には、導電性連結部131bに含まれる金属は、スズ(Sn)、鉛(Pb)、インジウム(In)、銅(Cu)、銀(Ag)、及びビスマス(Bi)のうち選択された二つ以上の合金からなることができる。
【0064】
このとき、導電性樹脂層131に金属粒子131aが含まれる場合、導電性連結部131bは、溶融状態で複数の金属粒子131aを取り囲んで互いに連結することができる。
【0065】
即ち、導電性連結部131bに含まれた低融点金属がベース樹脂131cの硬化温度よりも低い融点を有するため、乾燥及び硬化工程を経る過程で溶融し、
図3に示されたように、導電性連結部131bが溶融状態で金属粒子131aをカバーできるようになる。
【0066】
導電性樹脂層131は、低融点はんだ樹脂ペーストを製作した後、ディッピングして形成するが、低融点はんだ樹脂ペーストの製作時に金属粒子131aとして銀又は銀がコーティングされた金属を適用する場合、導電性連結部131bはAg
3Snを含むことができる。
【0067】
ここで、第1及び第2内部電極121、122はニッケル(Ni)を含むことができ、この場合、金属間化合物150はニッケル−スズ(Ni−Sn)を含むことができる。
【0068】
金属粒子が分散したペーストを電極物質として使用する際に、電子の流れが金属−金属の接触であると、円滑な流れを示すが、ベース樹脂が金属粒子を取り囲んでいると、電子の流れが急激に減少することがある。
【0069】
このような問題を解決するために、ベース樹脂の量を極端に減らし、金属の量を増やすことで、金属粒子間の接触率を高めて導電性を改善させることができるが、逆に、樹脂の量が減少して外部電極の固着強度が低下するという問題が発生する恐れがある。
【0070】
本実施形態では、熱硬化性樹脂の量を極端に減らさなくても、導電性連結部により金属粒子間の接触率を高めることができ、外部電極の固着強度が低下することなく、導電性樹脂層内の電気伝導度を改善させることができる。これにより、積層型キャパシタのESRを低減させることもできる。
【0071】
金属間化合物150は、第1及び第2溝部内に配置され、導電性連結部131bと接触して、第1又は第2内部電極121、122と導電性連結部131bとを連結するを行う。このとき、金属間化合物150の露出する表面は、本体の第3又は第4面3、4と概ね一つの平らな面を成すことができ、実施形態によって導電性樹脂層131内に金属間化合物150がさらに形成されてもよい。
【0072】
これにより、導電性樹脂層131と第1又は第2内部電極121、122との電気的及び機械的接合を向上させ、導電性樹脂層131と第1又は第2内部電極121、122との接触抵抗を減少させる。
【0073】
ベース樹脂131cは、電気絶縁性を有する熱硬化性樹脂を含むことができる。
【0074】
このとき、上記熱硬化性樹脂は、例えばエポキシ樹脂であることができるが、本発明はこれに限定されるものではない。
【0075】
ベース樹脂131cは、本体110と第1電極層132との間を機械的に接合させる。
【0076】
そして、第1電極層132、142上には第2電極層がさらに配置されてもよい。
【0077】
この場合、上記第2電極層はめっき層であってもよいが、上記第2電極層は、例えばニッケル(Ni)めっき層133、143と、スズ(Sn)めっき層134、144とが第1電極層132、142順に積層された構造であってもよい。一方、上記第2電極層は、CVD/PVDなどの薄膜蒸着工法にニッケル又はスズを使用して形成してもよい。
【0078】
導電性樹脂層の形成メカニズム
図6はエポキシに銅粒子及びスズ−ビスマス粒子が分散したことを示した状態図であり、
図7は酸化膜除去剤又は熱によって銅粒子の酸化膜が除去されることを示した状態図であり、
図8は酸化膜除去剤又は熱によりスズ/ビスマス粒子の酸化膜が除去されることを示した状態図であり、
図9はスズ/ビスマス粒子が溶けて流動性を有することを示した状態図であり、
図10は銅粒子とスズ/ビスマス粒子が反応して銅−スズ層を形成することを示した状態図である。
【0079】
以下、
図6から
図10を参照して、導電性樹脂層131を形成するメカニズムについて説明する。
【0080】
本実施形態における導電性樹脂層は、複数の金属粒子、低融点金属、及びベース樹脂を含み、ここで、金属粒子は、ニッケル、銀、銀がコーティングされた銅、スズ、スズがコーティングされた銅のうち少なくとも一つを使用することができる。本実施形態では銅粒子を例に挙げて説明する。
【0081】
また、低融点金属としてはSn系はんだを使用することができる。本実施形態では、Sn/Bi(スズ/ビスマス粒子)を使用しているものの、その他に、Sn−Pb、Sn−Cu、Sn−Ag、及びSn−Ag−Cuなどを適用してもよい。また、ベース樹脂はエポキシ樹脂を用いるものとして説明する。
【0082】
図6から
図8を参照すると、ベース樹脂131cとして、エポキシ樹脂内に含まれる高い融点を有する金属粒子としての銅粒子310と、低融点金属であるスズ/ビスマス(Sn/Bi)粒子410の表面には、酸化膜311、411がそれぞれ存在する。また、第1内部電極121の表面にも酸化膜121aが存在する。
【0083】
酸化膜311、411は、銅粒子310とスズ/ビスマス粒子410とが互いに反応して、銅−スズ層の形成を妨害するが、硬化の際に、エポキシに含まれた酸化膜除去剤又は熱(△T)によって除去されるか、必要に応じて酸溶液処理によって除去されることができる。このとき、第1内部電極121の酸化膜121aもともに除去されることがある。
【0084】
上記酸化膜除去剤としては、酸、塩基、ハロゲン化水素などを用いることができるが、本発明はこれに限定されるものではない。
【0085】
図9及び
図10を参照すると、酸化膜が除去されたスズ/ビスマス粒子は、約140℃で溶け始め、溶けたスズ/ビスマス粒子410が流動性を有しながら、酸化膜が除去された銅粒子310に向かって移動し、一定の温度で銅粒子310と互いに反応して導電性連結部131bを成し、第1内部電極121が露出する本体110の第1溝部側に移動して、
図10に示されたように、第1溝部に銅−スズ層である金属間化合物150を形成する。
【0086】
このように形成された金属間化合物150は、導電性樹脂層の銅−スズからなる導電性連結部131bと連結され、第1内部電極121と導電性樹脂層との接触抵抗を減少させることができる。
【0087】
図10に示された銅粒子131aは、上記のような反応後、導電性連結部131b内に存在する銅粒子を示す。
【0088】
このとき、スズ/ビスマス粒子410には表面酸化が起こりやすく、この場合、金属間化合物150の形成を妨害することがある。そのため、このような表面酸化を防止するために、カーボン含量が60.5〜1.0%になるように、必要に応じてスズ/ビスマス粒子を表面処理することができる。
【0089】
一方、金属間化合物を形成するための金属粒子のサイズは0.2〜20μmであることができる。このとき、金属粒子は、ニッケル、銀、銀がコーティングされた銅、スズがコーティングされた銅、及び銅のうち少なくとも一つであってもよい。
【0090】
金属間化合物を形成するためには、一定の温度で溶けて溶液状態で存在するスズ/ビスマス粒子が本体の溝部及び金属粒子の周りに流れ込まなければならないが、金属粒子のサイズが20μmを超えると、本体と金属粒子との間隔が広すぎて、スズ/ビスマス溶液が本体の溝部と金属粒子との間へ容易に移動できなくなり、金属間化合物の形成を妨害することがある。
【0091】
逆に、金属粒子のサイズが20μm以下であると、金属粒子間の距離が縮まり、このように縮まった領域で発生する毛細管力によってスズ/ビスマス溶液が本体の溝部へより容易に移動できるようになるため、金属間化合物の形成が容易になる。
【0092】
但し、金属粒子のサイズが0.2μm未満であると、金属粒子の表面で酸化が発生し、却って金属間化合物の形成を妨害することがある。
【0093】
また、本メカニズムにおいて、スズ−ビスマス粒子の溶融温度及び金属間化合物の形成温度は、ベース樹脂であるエポキシ樹脂の硬化温度より低くなければならない。
【0094】
若し、スズ−ビスマス粒子の溶融温度及び金属間化合物の形成温度がエポキシ樹脂の硬化温度より高いと、ベース樹脂が先に硬化して溶けたスズ−ビスマス粒子が銅粒子の表面に移動できなくなるため、金属間化合物である銅−スズ層を形成できなくなる。
【0095】
また、金属間化合物を形成するための全体の金属粒子に対するスズ/ビスマス粒子の含量は、10〜90wt%であってもよい。
【0096】
スズ/ビスマス粒子の含量が10wt%未満であると、金属粒子と反応して形成される金属間化合物のサイズが過度に大きくなるため、本体の溝部に金属間化合物を形成することが難しくなり、且つ導電性連結部を本体の第3又は第4面に配置することも難しくなる。
【0097】
また、スズ/ビスマス粒子の含量が90wt%を超えると、スズ/ビスマス同士が互いに反応して金属間化合物を形成されず、スズ/ビスマスの粒子サイズのみが大きくなるという問題が発生する恐れがある。
【0098】
また、スズ/ビスマス粒子において、スズの含量を調節する必要がある。
【0099】
本実施形態において、金属粒子と反応して金属間化合物を形成する成分はスズであるため、このような反応性を一定の水準以上に確保するには、Snx−BiyにおけるSnの含量(x)が、全体の金属粒子の10wt%以上であることが好ましい。
【0100】
スズの含量(x)が全体の金属粒子の10wt%未満であると、製造された積層型キャパシタのESRが増加することがある。
【0101】
外部電極に導電性樹脂層が適用される積層型キャパシタにおいて、ESRは、外部電極に適用される様々な抵抗の影響を全て受ける。
【0102】
このような抵抗成分としては、内部電極の抵抗、導電性樹脂層と内部電極との接触抵抗、導電性樹脂層の抵抗、第1電極層と導電性樹脂層との接触抵抗、及び第1電極層の抵抗が挙げられる。
【0103】
ここで、内部電極の抵抗と、第1電極層の抵抗とは、固定値であり変動しない。
【0104】
本実施形態によると、外部電極と本体との間に焼成電極層がないため、従来のチップが曲がる際に発生する焼成電極層の曲げストレスを解消することができ、工程温度を低くすることで、本体で発生するクラックを防止できるようになる。
【0105】
また、金属間化合物によって外部電極の接合力が増加することから、外部電極の最外郭に焼成電極層が含まれる実施形態に比べて積層型キャパシタの曲げ強度をさらに向上させることができる。
【0106】
さらには、金属間化合物によって内部電極と導電性樹脂層との電気的連結性が向上し、これにより、接触抵抗が減少し、積層型キャパシタのESRをさらに低くすることができる。
【0107】
従来の積層型キャパシタの外部電極は、内部電極が露出する本体の両端に銅(Cu)ペーストを塗布し、焼成して電極層を形成し、電極層上におけるはんだ(solder)の溶解を防止するためにニッケル(Ni)めっき層を形成し、ニッケルめっき層上にチップ基板を実装する際に、はんだ(solder)の濡れ性を良好にするためにスズ(Sn)めっき層をさらに形成した構造である。
【0108】
このとき、ニッケルめっき層は、スズめっき層とともに、外部からの水分浸透を防止するが、ニッケルめっき層が有する微細な欠陥によってめっき液や水分の浸透防止の役割を十分に発揮することができない。
【0109】
本実施形態の積層型キャパシタは、めっき液と外部湿気の浸透に強い低融点金属樹脂を1次外部電極として形成した。
【0110】
低融点金属樹脂電極は、低融点金属の適用により、低い温度の硬化工程において内部電極(Ni電極)とIntermetallic Compound(IMC)を形成するため、電気的連結性に優れている。
【0111】
また、低融点金属樹脂電極にIMCを形成することにより、めっき液の浸透及び外部湿気の浸透を抑えることができる。
【0112】
さらに、めっき液及び水分の浸透防止特性をより向上させるために、2次外部電極として、Cu電極層をめっき工程により形成した。
【0113】
めっきにより形成されたCu電極層は、電極の緻密度が高いため、焼結Cu電極層と比較して、めっき液及び水分の浸透防止特性をさらに向上させることができる。
【0114】
次いで、solderの溶解を防止するためのNiめっき層と、solderの濡れ性を良好にするためのSnめっき層とを形成する。
【0115】
このような外部電極形成工程は、250℃以下で行うことができ、水分の浸透を防止するための防水コーティング工程を適用することができる。
【0116】
また、めっき液及び外部湿気の浸透防止特性が向上することにより、既存の焼成Cu電極に対する低融点金属樹脂である1次外部電極の厚さを減少することができ、チップの有効面積及び容量を向上させることができる。
【0117】
即ち、本実施形態によると、外部電極の1次電極層を低融点金属樹脂層、2次電極層をCu電極層、3次電極層をNi電極層、4次電極層をSn電極層とするものである。
【0118】
変更例
図11を参照すると、本発明のさらに他の実施形態による積層型キャパシタ100'は、本体110の第1及び第2面1、2に水分の浸透防止膜161、162がそれぞれ形成される。
【0119】
ここで、上述の一実施形態と類似した構造については、重複を避けるために、これに対する具体的な説明を省略し、上述の実施形態と異なる構造を有する水分の浸透防止膜161、162を図示しながら具体的に説明する。
【0120】
このような水分の浸透防止膜161、162には、パリレン(parylene)、Al
2O
3、SiO
2といった有機層又は無機層を適用することができ、ディッピング(dipping)、コーティング(coating)、及びPVD/CVD、ALD薄膜蒸着工程などによって形成することができる。
【0121】
本実施形態では、本体110の第3及び第4面3、4に接触する内部層を導電性樹脂層として形成し、該導電性樹脂層に低い温度で工程が可能な低融点金属を適用することで、高い工程温度では使用できない有機層を水分の浸透防止膜として適用することも可能となる。
【0122】
このような水分の浸透防止膜161、162には、信頼性を大きく向上させることができるという効果がある。
【0123】
積層型キャパシタの製造方法
以下、本発明の一実施形態による積層型キャパシタを製造する方法について具体的に説明するが、本発明はこれに制限されるものではなく、本実施形態の積層型キャパシタの製造方法に関する説明のうち、上述の積層型キャパシタにおける説明と重複する説明は省略するものとする。
【0124】
本実施形態による積層型キャパシタを製造する方法は、先ず、チタン酸バリウム(BaTiO
3)などの粉末を含んで形成したスラリーを、キャリアフィルム(carrier film)上に塗布及び乾燥して複数のセラミックグリーンシートを設けることで、誘電体層及びカバーを製作して形成することができる。
【0125】
上記セラミックグリーンシートは、セラミック粉末、バインダー、及び溶剤の混合によりスラリーを製造し、上記スラリーをドクターブレード法などで数μmの厚さを有するシート(sheet)状に作製したものである。
【0126】
次に、上記グリーンシート上に銅などの導電性金属を含む内部電極用の導電性ペーストをスクリーン印刷工法などによって塗布し、内部電極を形成する。
【0127】
その後、内部電極が印刷されたグリーンシートを複数層積層し、積層体の上下面に内部電極が印刷されていないグリーンシートを複数層積層してから焼成することで本体を設けることができる。このとき、上記内部電極は、互いに異なる極性を有する第1及び第2内部電極からなってもよい。
【0128】
即ち、上記本体は、誘電体層、第1及び第2内部電極、及びカバーを含む。上記誘電体層は、内部電極が印刷されたグリーンシートを焼成して形成されるものであり、上記カバーは、内部電極が印刷されていないグリーンシートを焼成して形成されるものである。
【0129】
また、上記本体は、互いに対向する第1及び第2面、上記第1及び第2面と連結され、互いに対向する第3及び第4面、上記第1及び第2面と連結され且つ第3及び第4面と連結され、互いに対向する第5及び第6面を含んでおり、上記第3及び第4面には、上記第1及び第2内部電極の一端部がそれぞれ露出するよう、上下に配置された誘電体層の間に複数の第1及び第2溝部が形成される。
【0130】
次に、金属粒子、熱硬化性樹脂、及び上記熱硬化性樹脂よりも低い融点を有する低融点金属を含む導電性樹脂組成物を設ける。
【0131】
上記導電性樹脂組成物は、例えば、金属粒子である銅粒子、低融点金属であるスズ/ビスマス粒子、酸化膜除去剤、及び4〜15wt%のエポキシ樹脂を混合した後、3本ロールミル(3−roll mill)を用いて分散させることで製造することができる。
【0132】
そして、上記本体の第3及び第4面に上記導電性樹脂組成物を塗布し、乾燥及び硬化して溶融された低融点金属を取り囲む導電性連結部を有する導電性樹脂層を形成することができる。
【0133】
このとき、上記導電性樹脂層を形成する段階は、熱硬化性樹脂内に含まれる金属粒子と低融点金属の表面の酸化膜を除去し、その後、酸化膜が除去された金属粒子と酸化膜が除去された低融点金属が反応して導電性連結部を形成し、且つ上記低融点金属は流動性を有しながら上記本体の第1及び第2溝部に流れ込んで、上記第1及び第2溝部内で上記第1及び第2内部電極の一端部と接触する銅−スズなどからなる金属間化合物を形成することができる。
【0134】
この場合、上記金属粒子のうち一部が上記低融点金属と完全に反応せずに残存すると、残った金属粒子は溶融された低融点金属によりカバーされる状態で上記導電性樹脂層内に存在することができる。
【0135】
また、上記金属粒子は、銅であるか、又は、ニッケル、銀、銀がコーティングされた銅、スズがコーティングされた銅のうち少なくとも一つ以上を含むことができるが、本発明はこれらに制限されるものではない。
【0136】
さらに、上記低融点金属は、Sn/Bi、Sn−Pb、Sn−Cu、Sn−Ag、及びSn−Ag−Cuのうち少なくとも一つであることができるが、本発明はこれらに制限されるものではない。
【0137】
上記熱硬化性樹脂は、一例としてエポキシ樹脂を含むことができるが、本発明はこれに限定されるものではなく、例えば、ビスフェノールA樹脂、グリコールエポキシ樹脂、ノボラックエポキシ樹脂、又はこれらの誘導体のうち分子量が小さく常温で液状の樹脂であってもよい。
【0138】
次いで、上記導電性樹脂層上に電気的に連結されるように第1電極層を形成する。
【0139】
上記第1電極層は、導電性金属及びガラスを含むペーストを塗布した後、焼成して形成することができる。
【0140】
このとき、上記導電性金属は特に制限されないが、例えば、銅、ニッケル、パラジウム、金、銀、及びこれらの合金からなる群より選択された一つ以上であってもよい。
【0141】
また、上記ガラスは特に制限されないが、一般的な積層型キャパシタの外部電極の作製に用いられるガラスと同じ組成の物質を使用してもよい。
【0142】
さらに、上記第1電極層上に第2電極層を形成する段階をさらに含んでもよい。上記第2電極層は、めっきにより形成されることができ、例えば、ニッケルめっき層、及びその上部にさらに形成されるスズめっき層を含むことができる。
【0143】
一方、上記導電性樹脂組成物を本体に塗布する前に、上記本体の第1及び第2面に水分の浸透防止膜をそれぞれ形成する段階を行ってもよい。
【0144】
以上、本発明の実施形態について詳細に説明したが、本発明の範囲はこれに限定されず、特許請求の範囲に記載された本発明の技術的思想から外れない範囲内で多様な修正及び変形が可能であるということは、当技術分野の通常の知識を有する者には明らかである。