【解決手段】封止可能且つ再配置可能な移植片デバイスが提供される。移植片デバイスは、血管内のグラフト及び弁を正確に展開又は再展開する能力を高め、標的とされるレシピエントの解剖学的部位の局所的な解剖学的組織に対するより良好な原位置での適応性を有し、且つ移植片の有効性を損なうおそれのある解剖学的な変化に適応するための展開後の調整能力を有する。外科用移植片は、所与の形状に設定される形状記憶材料の自己拡張型ステントを備える。ステントは、第1の厚さを伴う部分及び第1の厚さよりも大きい厚さを有する第2の部分を持つ壁を有する。第2の部分はキー穴形状の縦方向駆動オリフィスを画定する。
【図面の簡単な説明】
【0026】
【
図1】外側カテーテルの前半分を除去した展開されていない状態の、本発明の能動的に制御可能なステント/ステントグラフト展開システムの例示的な実施形態の断片的な部分縦断面側面図である。
【
図2】
図1のステント展開システムの拡大した遠位部分の断片的な側面図である。
【
図3】遠位端部の上側からの、
図1のステント展開システムの断片的な斜視図である。
【
図4】システムが部分的に展開された状態の、遠位端部の上側からの、
図1のステント展開システムの断片的な斜視図である。
【
図5】部分的に展開された状態の、
図2のステント展開システムの断片的な側面図である。
【
図6】
図2のステント展開システムの駆動部分の平面図である。
【
図7】
図6のステント展開システムの後ろ半分の断片的な縦断面図である。
【
図8】
図6のステント展開システムの断片的な斜視図である。
【
図9】システムが拡張した状態であり、アセンブリ固定ニードルが延長状態である、遠位端部の上側からの、
図1のステント展開システムの断片的な斜視図である。
【
図10】ステント格子の部分的に拡張した状態の後ろ半分を示す、
図9のステント展開システムの断片的な縦断面図である。
【
図11】さらに拡張した状態の前半分を示す、
図10のステント展開システムの断片的な縦断面図である。
【
図12】展開制御アセンブリが部分的に係合解除した状態である、
図11のステント展開システムの断片的な縦断面図である。
【
図13】展開制御アセンブリが係合解除した状態である、
図12のステント展開システムの断片的な縦断面図である。
【
図14】部分的に係合解除した状態の、
図12のステント展開システムの拡大した一部分の断片的な縦断面図である。
【
図15】係合解除した状態の、
図13のステント展開システムの拡大した一部分の断片的な縦断面図である。
【
図16】展開制御アセンブリが係合解除した状態であり、展開制御アセンブリの一部分の断面を示す、縦軸の周りを回転する
図9のステント展開システムの断片的な部分断面側面図である。
【
図17】固定ニードルを有するステントアセンブリの駆動部分の断面を示す、
図16のステント展開システムの断片的な縦断面図である。
【
図18】
図16のステント展開システムの断片的な斜視図である。
【
図19】
図18のステント展開システムの拡大した一部分の断片的な斜視図である。
【
図20】ステントがその拡張状態と収縮状態との間を移動するときの、ストラットの交差点の進行経路の概略図を伴う、
図18のステント展開システムの断片的な斜視図である。
【
図21】駆動サブアセンブリが接続状態であり、ニードルサブアセンブリが後退状態である、ステント収縮状態の、本発明によるジャッキアセンブリの代替の例示的な実施形態の外側からの断片的な側面図である。
【
図22】
図21のジャッキアセンブリの断片的な断面図である。
【
図23】部分的なステント拡張状態の、
図21のジャッキアセンブリの断片的な断面図である。
【
図24】ニードルプッシャがニードルの延長前の部分的な作動状態である、
図23のジャッキアセンブリの断片的な断面図である。
【
図25】ニードルの延長を伴って、ニードルプッシャが別の部分的な作動状態である、ニードルプッシャが別の部分的な作動状態である、
図24のジャッキアセンブリの断片的な断面図である。
【
図26】駆動サブアセンブリが、ニードルプッシャの後退を伴わない、部分的な接続解除状態である、
図25のジャッキアセンブリの断片的な断面図である。
【
図27】駆動サブアセンブリが、ニードルプッシャの部分的な後退を伴う、さらなる部分的な接続解除状態である、
図26のジャッキアセンブリの断片的な断面図である。
【
図28】駆動サブアセンブリが、ニードルプッシャのさらなる後退を伴う、さらなる部分的な接続解除状態である、
図27のジャッキアセンブリの断片的な断面図である。
【
図29】駆動サブアセンブリ及びニードルプッシャが接続解除状態である、
図23のジャッキアセンブリの断片的な断面図である。
【
図30】駆動サブアセンブリが接続状態であり、ニードルサブアセンブリが後退状態である、本発明によるジャッキアセンブリの別の代替の例示的な実施形態の断片的な断面図である。
【
図31】部分的なステント拡張状態である、
図30のジャッキアセンブリの断片的な断面図である。
【
図32】ニードルサブアセンブリが、ニードルの延長を伴う、作動状態である、
図31のジャッキアセンブリの断片的な断面図である。
【
図33】駆動サブアセンブリが接続解除状態であり、ニードルサブアセンブリが接続解除状態である、
図32のジャッキアセンブリの断片的な断面図である。
【
図34】延長したニードルを図の右側に僅かに回転させた、
図33のジャッキアセンブリの断片的な斜視図である。
【
図35】右に約45度回転させた、
図34のジャッキアセンブリの断片的な斜視図である。
【
図36】遠位駆動ブロックの内部を示す、
図30のジャッキアセンブリの上側からの断片的な部分断面斜視図である。
【
図37】
図33のジャッキアセンブリの断片的な拡大断面図である。
【
図38】ほぼ収縮状態の、本発明による能動的に制御可能なステントグラフトの別の例示的な実施形態の上流端の上側からの斜視図の写真である。
【
図39】部分的な拡張状態の、
図38のステントグラフトの斜視図の写真である。
【
図40】拡張状態の、
図38のステントグラフトの斜視図の写真である。
【
図41】拡張状態の、
図38のステントグラフトの側斜視図の写真である。
【
図42】一体的な上流側アンカーを伴う、ほぼ拡張状態の、本発明によるステントグラフトのための能動的に制御可能なステントの別の例示的な実施形態の斜視図の写真である。
【
図43】部分的な拡大状態の
図42のステントの斜視図の写真である。
【
図44】別の部分的な拡大状態の
図42のステントの斜視図の写真である。
【
図45】ほぼ収縮状態の
図42のステントの斜視図の写真である。
【
図46】テーパー付きの外観を伴う、ほぼ拡張状態の、本発明によるステントグラフトのための能動的に制御可能なステントの別の例示的な実施形態の側斜視図の写真である。
【
図48】側部の上側からの
図46のステントの斜視図の写真である。
【
図49】ステントが部分的な拡張状態である、側部の上側からの
図46のステントの斜視図の写真である。
【
図50】ステントがほぼ収縮状態である、側部の上側からの
図46のステントの斜視図の写真である。
【
図51】本発明による能動的に制御可能なステント/ステントグラフトのための薄型の接合アセンブリの例示的な実施形態の写真である。
【
図52】互いに分離させた、
図51の接合アセンブリのストラットの写真である。
【
図54】テーパー付きの外観を伴う、ほぼ拡張状態の、本発明によるステントグラフトのための能動的に制御可能なステントシステムの別の例示的な実施形態の断片的な側斜視図である。
【
図57】ほぼ収縮状態の、
図54のステントシステムの側面図である。
【
図58】ほぼ収縮状態の、本発明によるステントグラフトのための能動的に制御可能なステントシステムの一部分の別の例示的な実施形態の側面図である。
【
図61】部分的な拡張状態の、
図58のステントシステム部分の側斜視図である。
【
図64】拡張状態の、本発明による置換用弁アセンブリの例示的な実施形態の下流側の斜視図である。
【
図66】大動脈弁アセンブリが移植プロセスの途中で右の腸骨動脈にある、
図64の大動脈弁アセンブリのための本発明による送達システムの断片的な斜視図である。
【
図67】大動脈弁アセンブリが移植プロセス中で腹部大動脈にある、
図66の送達システム及び大動脈弁アセンブリの断片的な斜視図である。
【
図68】大動脈弁アセンブリが移植プロセス中で大動脈弁移植部位に隣接する、
図66の送達システム及び大動脈弁アセンブリの断片的な斜視図である。
【
図69】大動脈弁アセンブリが心臓に移植された、
図66の送達システム及び大動脈弁アセンブリの断片的な斜視図である。
【
図70】大動脈弁の移植部位に移植された、
図69の送達システム及び大動脈弁アセンブリの断片的な拡大斜視図である。
【
図71】拡張状態の、本発明による置換用大動脈弁アセンブリの別の例示的な実施形態の側斜視図である。
【
図72】その下流側の上側からの
図71の置換用大動脈弁アセンブリの斜視図である。
【
図73】その下流側端部の上側からの
図71の置換用大動脈弁アセンブリの斜視図である。
【
図74】その上流側端部の下側からの
図71の置換用大動脈弁アセンブリの斜視図である。
【
図75】
図74の置換用大動脈弁アセンブリの拡大した一部分の斜視図である。
【
図76】グラフト材料を除去した、その側部からの
図71の置換用大動脈弁アセンブリの斜視図である。
【
図77】その下流側の上側からの
図76の置換用大動脈弁アセンブリの斜視図である。
【
図78】
図76の置換用大動脈弁アセンブリの側面縦断面図である。
【
図79】ステント格子が拡張状態である、弁材料を除去した、その側部からの
図76の置換用大動脈弁アセンブリの斜視図である。
【
図80】ステント格子が中間の拡張状態である、
図79の置換用大動脈弁アセンブリの斜視図である。
【
図81】ステント格子がほぼ収縮状態である、
図79の置換用大動脈弁アセンブリの斜視図である。
【
図82】中間の拡張状態である、
図79の置換用大動脈弁アセンブリの下流側の平面図である。
【
図83】拡張状態である、
図79の置換用大動脈弁アセンブリの一部分の拡大した下流側の平面図である。
【
図84】拡張状態であり、グラフト材料を除去し、弁送達システムの例示的な実施形態の遠位部分を伴う、
図79の置換用大動脈弁アセンブリの側面図である。
【
図85】弁送達システムを分解した、その側部からの
図84の置換用大動脈弁アセンブリのジャッキアセンブリの例示的な実施形態の斜視図である。
【
図86】拡張状態であり、グラフト材料を除去し、弁送達システムの別の例示的な実施形態の遠位部分を伴う、
図79の置換用大動脈弁アセンブリの斜視図である。
【
図87】グラフト材料が示される、
図86の置換用大動脈弁アセンブリの断片的な拡大斜視図である。
【
図88】大動脈弁移植部位に移植された、
図71の送達システム及び大動脈弁アセンブリの断片的な拡大斜視図である。
【
図89】部分的な拡張状態で、非傾斜状態の、本発明による能動的に制御可能な及び傾斜角可変のステントグラフトシステムの別の例示的な実施形態の断片的な側面図である。
【
図90】その正面からの部分的な傾斜状態の、
図89のシステムの断片的な側面図である。
【
図91】別の部分的な傾斜状態の、
図90のシステムの断片的な側面図である。
【
図92】さらに別の部分的な傾斜状態の、
図90のシステムの断片的な側面図である。
【
図93】さらに別の部分的な傾斜状態の、
図90のシステムの断片的な斜視図である。
【
図94】拡張状態であり、部分的な前側傾斜状態の、本発明による能動的に制御可能な及び傾斜角可変のステントグラフトシステムの別の例示的な実施形態の断片的な部分断面側面図である。
【
図95】非傾斜状態の、
図94のシステムの断片的な斜視図である。
【
図96】非傾斜状態の、
図94のシステムの断片的な側面図である。
【
図97】
図96の図に対してほぼ90度回転させた、
図96のシステムの断片的な側面図である。
【
図98】非傾斜状態で、部分的な拡張状態の、システム及び管状のグラフト材料の後ろ半分を示す、
図94のシステムの断片的な縦断面側面図である。
【
図99】非傾斜状態で、部分的な拡張状態の、管状のグラフト材料の後ろ半分を示す、
図94のシステムの断片的な部分断面斜視図である。
【
図100】分岐血管のためのグラフト材料の後ろ半分を示し、非傾斜状態の、
図94のシステムの断片的な部分断面側面図である。
【
図101】拡張状態で、部分的な傾斜状態の、
図100のシステムの断片的な部分断面側面図である。
【
図103】拡張状態の、本発明による能動的に制御可能なステントグラフトシステムの別の例示的な実施形態の断片的な側斜視図である。
【
図105】人工器官が拡張状態で、グラフト材料が断面であり、その後ろ半分を示す、本発明による自己内蔵型で電源内蔵型の能動的に制御可能なステントグラフト送達及び一体型制御システムの断片的な正面部分断面図である。
【
図106】無線サブシステムとしての
図105のシステムの制御部分の斜視図である。
【
図107】異なる制御部を有し、人工器官が拡張状態である、本発明による自己内蔵型で電源内蔵型の能動的に制御可能なステントグラフト送達及び別個の繋がれた制御システムの別の例示的な実施形態の断片的な正面図である。
【
図108】上部ハンドルの半部及び電源パックを除去した、その左上側からの本発明による自己内蔵型で電源内蔵型の能動的に制御可能な人工器官送達デバイスの例示的な実施形態の制御ハンドルの断片的な斜視図である。
【
図110】その左上側のからの
図108のハンドルのシース運動部分の断片的な拡大縦断面斜視図である。
【
図111】その左下側からの
図110のシース運動部分の断片的なさらに拡大した縦断面図である。
【
図112】その近位側から見た
図108のハンドルの電源部分の断片的な拡大縦断面図である。
【
図113】上部ハンドルの半部及び電源パックを除去し、ニードル制御部が格子収縮位置及びニードル収容位置である、遠位上側からの
図108のハンドルのニードル制御部分の断片的な斜視図である。
【
図114】ニードル制御部が格子拡張位置及びニードル収容位置である、
図113のハンドルのニードル制御部分の断片的な斜視図である。
【
図115】ニードル制御部がニードル延長位置である、
図114のハンドルのニードル制御部分の断片的な斜視図である。
【
図116】上部ハンドルの半部を除去した、その左上からの
図108のハンドルのエンジン部分の断片的な斜視図である。
【
図117】その近位側から見た、
図116のエンジン部分の断片的な拡大縦断面図である。
【
図118】その遠位側から見た、
図117のハンドル部分のエンジン部分の断片的な拡大縦断面図である。
【
図119】本発明による腹部大動脈人工器官を移植するための手順の例示的な実施形態のフロー図である。
【
図120】ジャッキねじアセンブリが格子の繰り返し部分の隣接する対の間に配置され、ジャッキねじが格子の壁を通り、また、各ジャッキねじが、ステント送達システムの中へ装填するための格子の折り畳みを可能にするために、ねじ山非係合状態に後退した、本来の自己拡張位置の、9つの格子セグメントを有する、移植可能なステントアセンブリの自己拡張型/強制拡張型格子の例示的な実施形態の斜視図である。
【
図121】各ジャッキねじがねじ山非係合状態である、ステント送達システムへの装填のための収縮/折り畳み状態の
図120の格子の斜視図である。
【
図122】各ジャッキねじが、格子のさらなる外向きの拡張又は内向きの収縮のためのねじ山係合状態である、展開部位において格子の本来の位置に戻ることを可能にした後の、
図121の格子の斜視図である。
【
図123】各ジャッキねじが、格子のさらなる外向きの拡張又は内向きの収縮のためのねじ山係合状態である、
図122で示される状態から部分的に拡張した、
図122の格子の斜視図である。
【
図124】各ジャッキねじが、格子のさらなる外向きの拡張又は内向きの収縮のためのねじ山係合状態である、
図123で示される状態から部分的に拡張した、
図123の格子の傾斜斜視図である。
【
図125】各ジャッキねじがねじ山係合状態である、格子のほぼ最大拡張までさらに拡張させた、
図124の格子の斜視図である。
【
図126】別個のジャッキねじアセンブリが2つの隣接する半部を接続し、ステント送達システムの格子接続解除管が、その中で1対の駆動ねじカプラ部を覆う係合状態であり、また、ジャッキねじが、格子のさらなる外向きの拡張又は内向きの収縮のためのねじ山係合状態である、移植可能なステントアセンブリの自己拡張型/強制拡張型格子の代替の例示的な実施形態の繰り返し部分の2つの隣接する半部の一部分の断片的な拡大斜視縦断面図である。
【
図127】接続解除管が1対の駆動ねじカプラ部に対して係合解除した状態である、
図125の繰り返し部分の2つの隣接する半部及び中間ジャッキねじアセンブリの断片的なさらなる拡大部分の図である。
【
図128】接続解除管が係合解除した状態であり、1対の駆動ねじカプラ部が互いから接続解除された、
図125の繰り返し部分の2つの隣接する半部及び中間ジャッキねじアセンブリの断片的な拡大部分の図である。
【
図129】近位接続解除ブロックが、その中で1対の駆動ねじカプラ部を覆う、係合状態であり、各ジャッキねじが、格子のさらなる外向きの拡張又は内向きの収縮のためのねじ山係合状態である、
図126〜
図128の接続解除管の代替物として、ステント送達システムの近位接続解除ブロックの例示的な実施形態を伴う9つの別個の格子セグメントを有する、移植可能なステントアセンブリの自己拡張型/強制拡張型格子の別の例示的な実施形態の斜視図である。
【
図130】送達システムの近位接続解除ブロックが、格子から接続解除され、近位接続解除ブロックが、1対の駆動ねじカプラ部に対して係合解除した状態であり、また、同時に解放するために、複数対の駆動ねじカプラ部の全てをどのように連結することができるのかを示す、
図129の格子の斜視図である。
【
図131】各ジャッキねじが、格子のさらなる外向きの拡張又は内向きの収縮のためのねじ山係合状態である、ジャッキねじのための中間管に接続された9つの別個の格子セグメントを有する、移植可能なステントアセンブリの自己拡張型/強制拡張型格子の別の例示的な実施形態の斜視図である。
【
図133】図示されていないジャッキねじアセンブリに適応し、接続するために局所的により厚い区間を有する9つの格子セグメントを有する、移植可能なステントアセンブリの自己拡張型/強制拡張型格子の別の例示的な実施形態の斜視図である。
【
図134】図示されていないジャッキねじアセンブリに接続するための屈曲タブを有する9つの格子セグメントを有する、移植可能なステントアセンブリの自己拡張型/強制拡張型格子の別の例示的な実施形態の斜視図である。
【
図135】ジャッキねじアセンブリが、格子の繰り返し部分の隣接する対の間に配置され、また、ジャッキねじのねじ山非係合状態で、格子の壁を通る3つの弁小葉及びジャッキねじを有する拡張状態の6つの格子セグメントを有する、移植可能な弁アセンブリの自己拡張型/強制拡張型格子の別の例示的な実施形態の斜視図である。
【
図137】弁小葉を伴わず、各ジャッキねじがねじ山非係合状態である、格子の部分的な圧縮状態の、
図135の弁アセンブリの斜視図である。
【
図138】ジャッキねじアセンブリが、格子のセグメントの隣接する対の間の内面に取り付けられ、弁小葉を伴わず、また、ジャッキねじのそれぞれが、格子のさらなる外向きの拡張又は内向きの収縮のためのねじ山係合状態である、本来の自己拡張位置の6つの格子セグメントを有する、移植可能な弁アセンブリの自己拡張型/強制拡張型格子の別の例示的な実施形態の斜視図である。
【
図139】各ジャッキねじがねじ山非係合状態である、ステント送達システムの中へ装填するための収縮/折り畳み状態の、
図138の格子の斜視図である。
【
図141】各ジャッキねじが、格子のさらなる外向きの拡張又は内向きの収縮のための係合状態である、
図138で示される状態から部分的に拡張した、
図138の格子の斜視図である。
【
図142】各ジャッキねじが、格子のさらなる外向きの拡張又は内向きの収縮のための係合状態である、格子のほぼ最大拡張までさらに拡張した、
図138の格子の斜視図である。
【
図143】ジャッキねじアセンブリがステントアセンブリと一体であり、各ジャッキねじが、格子の外向きの拡張及び内向きの収縮のためのねじ山係合状態であり、ステントアセンブリ送達システムの一部分がコネクタ制御管を有し、1つのコネクタ制御管が透過して示される、本来の自己拡張位置の9つの格子セグメントを有する、移植可能なステントアセンブリの自己拡張型/強制拡張型格子の別の例示的な実施形態の側面図である。
【
図146】送達システムのコネクタ制御管が非係合状態であり、ジャッキねじアセンブリ及び送達システムの各コネクタ部が移植後の接続解除状態で示される、
図143の格子の側面図である。
【
図147】
図143の格子の一部分の、側部の外側からの断片的な拡大斜視図である。
【
図149】格子がジャッキねじアセンブリによりほぼ最大拡張範囲まで拡張された、
図143の格子の側部の上からの斜視図である。
【
図150】格子がジャッキねじアセンブリによりほぼ最大収縮範囲まで収縮された、
図143の格子の側部からの斜視図である。
【
図154】ステントアセンブリの製造前の
図143の格子の斜視図であり、ステントアセンブリの格子を製造するための例示的な一実施形態を示す図である。
【
図155】各ジャッキねじが格子のさらなる外向きの拡張のためのねじ山係合状態及び内向きの収縮のための緩み状態であり、ジャッキねじアセンブリが格子のキー穴スロットを通るステントアセンブリと一体であり、外側格子固定パドルの代替の例示的な実施形態が外向きに屈曲して格子を縦の砂時計形状に形成する、部分的に拡張された状態にある6つの格子セグメントを有する移植可能なステントアセンブリの自己拡張型/強制拡張型格子の別の例示的な実施形態の側面図である。
【
図156】ジャッキねじアセンブリのための格子のキー穴スロットを示す、
図155の移植可能な弁アセンブリの上面図である。
【
図161】各ジャッキねじが格子の外向きの拡張のためのねじ山係合状態及び内向きの収縮のための緩み状態である、自然な自己拡張状態にある
図156の格子の側面図である。
【
図162】各ジャッキねじが格子の内向きの収縮のためのねじ山係合状態及び外向きの拡張のための緩み状態である、自然な自己拡張状態にある
図161の格子の側面図である。
【
図163】各ジャッキねじが格子のさらなる内向きの収縮又は外向きの拡張のためのねじ山係合状態である、強制収縮状態にある
図162の格子の側面図である。
【
図165】各ジャッキねじが格子のさらなる外向きの拡張又は内向きの収縮のためのねじ山係合状態である、強制拡張状態にある
図161の格子の側面図である。
【
図166】各ジャッキねじが格子のさらなる外向きの拡張又は内向きの収縮のためのねじ山係合状態である、さらなる強制拡張状態にある
図165の格子の側面図である。
【
図167】ジャッキねじアセンブリが格子の円周の周りに縦方向に千鳥状の中間ジャッキねじナットを持つ、強制拡張位置の6つの格子セグメントを有する移植可能なステントアセンブリの自己拡張型/強制拡張型格子の別の例示的な実施形態の側面図である。
【
図168】ジャッキねじナットの千鳥状位置を示す、強制収縮位置の
図167の格子の断片的な斜視図である。
【
図169】強制拡張及び移植準備完了状態にある
図156〜
図166の格子を含む、例示的な実施形態の送達システムの遠位端部の断片的な斜視図である。
【
図170】コネクタ制御サブアセンブリが格子接続状態にある、
図169の送達システム及び格子の断片的な側面図である。
【
図171】コネクタ制御サブアセンブリが、各接続解除管がそれぞれ各ジャッキねじコネクタ対から近位に後退される、ジャッキねじコネクタ対が互いから接続解除される前の格子接続解除状態にある、
図169の送達システム及び格子の断片的な側面図である。
【
図172】コネクタ制御サブアセンブリが、各ジャッキねじコネクタ対が互いから接続解除され、送達システムのジャッキねじのコネクタ部分が格子から分離される格子接続解除状態にある、
図169の送達システム及び格子の断片的な側面図である。
【
図173】遠位スリーブ及び近位スリーブが管制御パックのそれぞれのカウンタボアにあることを示すために、2つのコネクタ管のための2つの制御コイルが取り外され、それぞれの2つのジャッキねじ制御ワイヤの遠位部分が取り外された、
図169〜
図172の送達システム及び格子のコネクタ制御部分の断片的な拡大斜視図である。
【
図174】格子の強制拡張状態にある、
図167及び
図168の送達システム及び格子の例示的な実施形態の側部からの断片的な斜視図の写真である。
【
図176】
図174の送達システム及び格子の側部からの断片的な斜視図の写真である。
【
図178】
図174の送達システムの格子制御部分の側部からの断片的な斜視図の写真である。
【
図179】
図178の送達システムの格子制御部分の遠位部分の側部からの断片的な拡大斜視図の写真である。
【
図180】
図178の送達システムの格子制御部分の近位部分の側部からの断片的な斜視図の写真である。
【
図181】拡張状態にある9つの格子セグメントを有し、弁小葉が開放状態にある、自己拡張型/強制拡張型の移植可能な心臓弁アセンブリの例示的な実施形態の側部からの斜視図の写真である。
【
図187】拡張状態にある6つの格子セグメントを有し、弁小葉が開放状態にある、自己拡張型/強制拡張型の移植可能な心臓弁アセンブリの例示的な実施形態の下流平面図の写真である。
【
図191】送達システムの例示的な実施形態において強制拡張された、
図187の心臓弁アセンブリの下流斜視図の写真である。
【
図193】自己拡張型/強制拡張型の移植可能な心臓弁アセンブリの例示的な実施形態の側部からの拡大斜視図の写真である。
【
図195】非伸張状態にある心臓弁アセンブリのグラフト部分の例示的な実施形態の拡大部分の写真である。
【
図198】100%延長で伸張された、
図195の心臓弁アセンブリのグラフト部分の写真である。
【
図199】伸張が解除された後の、
図198の心臓弁アセンブリのグラフト部分の写真である。
【
図200】心臓弁アセンブリの調整可能な弁小葉サブアセンブリの例示的な実施形態の断面図である。
【
図201】心臓弁アセンブリの調整可能な弁小葉サブアセンブリの別の例示的な実施形態の断面図である。
【
図202】心臓弁アセンブリの調整可能な弁小葉サブアセンブリの別の例示的な実施形態の断面図である。
【
図203】縦方向に移動したときに、弁小葉縁部の大部分を取り込み、又は大部分を緩めて、弁小葉の重なり部分を短く又は長くする調整シムの例示的な実施形態の側面図である。
【
図204】拡張状態にある6つの格子セグメントを有し、ジャッキねじアセンブリの代替実施形態が外向きのジャッキねじキー穴を有する、自己拡張型/強制拡張型の移植可能なステントアセンブリの例示的な実施形態の断片的な斜視図である。
【
図205】弁サブアセンブリを有する、
図204の移植可能なステントアセンブリの側面図である。
【
図206】
図204のステントアセンブリの外向きのジャッキねじキー穴の断片的な拡大部分の図である。
【
図207】内向きのジャッキねじキー穴の、部分的に隠れた断片的な拡大上面図である。
【
図208】弁小葉交連コネクタの例示的な実施形態を含む、
図204のステントアセンブリの断片的な拡大斜視図である。
【
図209】拡張状態にある6つの格子セグメントを有し、弁サブアセンブリを格子及びグラフトに固定する代替実施形態を含む、自己拡張型/強制拡張型の移植可能な弁アセンブリの例示的な実施形態の側面斜視図である。
【
図210】
図209の自己拡張型/強制拡張型の移植可能な弁アセンブリの下流側の斜視図である。
【
図211】
図209の自己拡張型/強制拡張型の移植可能な弁アセンブリの上流側の斜視図である。
【
図212】弁アセンブリ及び送達がほぼ移植状態にある、送達システムの例示的な実施形態の遠位端部に接続された自己拡張型/強制拡張型の移植可能な弁アセンブリの例示的な実施形態の写真である。
【
図213】弁アセンブリが、格子接続解除器管が部分的に再外装された中間再外装状態にある、
図212の弁アセンブリ及び送達システムの写真である。
【
図214】弁アセンブリが、格子接続解除器管が再外装され、弁アセンブリの近位部分が再外装された中間再外装状態にある、
図212の弁アセンブリ及び送達システムの写真である。
【
図215】弁アセンブリが、弁アセンブリが半分再外装された中間再外装状態にある、
図212の弁アセンブリ及び送達システムの写真である。
【
図216】弁アセンブリが、弁アセンブリがほぼ4分の3再外装された中間再外装状態にある、
図212の弁アセンブリ及び送達システムの写真である。
【
図217】弁アセンブリが送達カテーテルに再外装された、
図212の弁アセンブリ及び送達システムの写真である。
【
図218】18フレンチ穴内に適合するようにサイズ決定された送達カテーテルの例示的な実施形態の遠位端部を形成するための製造プロセスの写真である。
【
図219】送達システムの残部のない、
図218の送達カテーテルの遠位端部の端面図の写真である。
【
図220】弁アセンブリが延長及び/又は再外装された後の、
図218の送達カテーテルの遠位端部の側面斜視図の写真である。
【
図221】弁サブアセンブリのない、不規則形状の移植部位内の、中間拡張状態にある6つの格子セグメントを有する自己拡張型/強制拡張型の移植可能なステントアセンブリの例示的な実施形態の写真である。
【
図222】さらなる中間拡張状態にある、
図221のステントアセンブリの写真である。
【
図223】さらなる中間拡張状態にある、
図221のステントアセンブリの写真である。
【
図224】不規則形状の移植部位内の移植状態にある、
図221のステントアセンブリの写真である。
【
図225】説明される実施形態による自己拡張型及び強制拡張型デバイスの移植を制御するための方法の例示的な実施形態のプロセスフロー図である。
【
図226】自己拡張型及び強制拡張型デバイスを移植するための遠位制御ハンドルの例示的な実施形態の断片的な分解斜視図である。
【
図227】
図226の遠位制御ハンドルの遠位部分の側部からの断片的な分解斜視図である。
【
図228】
図226の遠位制御ハンドルの近位部分の側部からの断片的な分解斜視図である。
【
図229】
図226の遠位制御ハンドルの代替実施形態の側部の上からの斜視図である。
【
図230】
図229の遠位制御ハンドルの近位部分の側部の上からの断片的な斜視図である。
【
図231】自己拡張型及び強制拡張型移植片の例示的な実施形態の側面図である。
【
図232】弁オリフィス内の、
図231の自己拡張型及び強制拡張型移植片の断片的な側面図である。
【
図233】円筒形の血管内の、
図231の自己拡張型及び強制拡張型移植片の断片的な側面図である。
【
図234】遠位端部にバーベル状延長部を有する、自己拡張型及び強制拡張型移植片の例示的な実施形態の側面図である。
【
図235】遠位端部に球状延長部を有する、自己拡張型及び強制拡張型移植片の例示的な実施形態の側面図である。
【
図236】心房中隔欠損のある心臓の断片的な概略断面図である。
【
図237】心房中隔欠損内に移植された自己拡張型及び強制拡張型移植片の例示的な実施形態を有する、
図236の心臓の断片的な概略断面図である。
【
図238】WATCHMAN(登録商標)デバイスが左心耳内に移植された心臓の断片的な概略断面図である。
【
図240】自己拡張型及び強制拡張型移植片が左心耳内で部分的に拡張された、心臓の左心房及び左心耳の断片的な概略断面図である。
【
図241】左心室瘤のある心臓の断片的な概略断面図である。
【
図242】人の脚の動静脈循環の断片的な図である。
【発明を実施するための形態】
【0027】
必要に応じて、本発明の詳細な実施形態が本明細書で開示される。しかしながら、開示される実施形態は、単に本発明の例示に過ぎず、種々の形態で具現化することができることを理解されたい。したがって、本明細書で開示される特定の構造的及び機能的な詳細は、限定するものとして解釈されるべきではなく、単に特許請求の範囲の根拠として、及び実質的に任意の適切に詳述される構造で本発明を様々に利用するために、当業者に教示するための代表的な根拠として解釈されるべきである。さらに、本明細書で使用される用語及び表現は、限定することを意図するものではなく、むしろ、理解できる本発明の説明を提供することを意図する。本仕様書は、新規であるとみなされる本発明の特徴を定義する特許請求の範囲で結論されるが、本発明は、同じ参照番号が持ち越される添付図面と併せて以下の説明を考慮することによってより良好に理解されるものと考えられる。
【0028】
本発明の趣旨又は範囲を逸脱することなく、代替の実施形態が案出され得る。加えて、本発明の例示的な実施形態のよく知られている要素は、本発明の関連する詳細を不明瞭にしないように、詳細に説明されないか、又は省略される。
【0029】
本発明が開示され、説明される前に、本明細書で使用される用語は、特定の実施形態を説明するためだけのものであり、限定することを意図しないことを理解されたい。本明細書で使用される「1つ(a又はan)」という用語は、1つ又はそれ以上として定義される。本明細書で使用される「複数(plurality)」という用語は、2つ又はそれ以上として定義される。本明細書で使用される「別の(another)」という用語は、少なくとも第2の又はそれ以上として定義される。本明細書で使用される「含む(including)」及び/又は「有する(having)」という用語は、備える(すなわち、オープンランゲージ)として定義される。本明細書で使用される「連結される(coupled)」という用語は、接続されるとして定義されるが、必ずしも直接的に接続されず、また、必ずしも機械的に接続されない。
【0030】
第1及び第2、頂部及び底部等の関係用語は、単に、一方の実体又はアクションを、もう一方の実体又はアクションと区別するためだけに使用され得、そのような実体又はアクションの間の任意の実際のそのような関係又は順序を、必ずしも必要とするもの、又は暗示するものではない。「備える(comprises)」、「備えている(comprising)」、又はそれらの任意の他の変形は、非排他的な包含を対象とすることを意図し、よって、一連の要素を含むプロセス、方法、物品、又は装置は、それらの要素だけを含むのではなく、明示的に列記されていない他の要素、又はそのようなプロセス、方法、物品、若しくは装置に固有の要素を含み得る。「〜を備える(comprises...a)」が先行する要素は、より多くの制約を受けることなく、その要素を備えるプロセス、方法、物品、又は装置に追加的な同じ要素が存在することを除外しない。
【0031】
本明細書で使用される「約(about)」又は「およそ(approximately)」という用語は、明確に示されているか否かに関わらず、全ての数値に当てはまる。これらの用語は、一般に、当業者が列挙される値に等しい(すなわち同じ機能又は結果を有する)とみなす数の範囲を指す。多くの場合、これらの用語は、最も近い有意の数字に四捨五入される数を含み得る。
【0032】
本明細書で使用される「プログラム」、「プログラムされた」、「プログラムする」、「ソフトウェア」、「ソフトウェアアプリケーション」等の用語は、コンピュータシステム上で実行するように設計された一連の命令として定義される。「プログラム」、「ソフトウェア」、「コンピュータプログラム」、又は「ソフトウェアアプリケーション」としては、サブルーチン、関数、手順、オブジェクト方法、オブジェクト実装、実行可能アプリケーション、アプレット、サーブレット、ソースコード、オブジェクトコード、共有ライブラリ/ダイナミックロードライブラリ、及び/又はコンピュータシステム上で実行するように設計された他の一連の命令が挙げられ得る。
【0033】
本発明の様々な実施形態は、本明細書で説明される。異なる実施形態の多くにおいて、特徴が類似する。したがって、冗長さを回避するために、いくつかの状況では、これらの類似する特徴の繰り返しの説明が行われない場合がある。しかしながら、最初に現れる特徴の説明は、後に説明される類似する特徴にも当てはまり、したがって、各説明は、そのような繰り返しを伴わずに、それらの中に組み込まれることを理解されたい。
【0034】
以下、本発明の例示的な実施形態が説明される。以下、図面の図を詳細に参照し、最初に、特に
図1〜
図19を参照すると、本発明による能動的に制御可能なステント展開システム100の第1の例示的な実施形態が示されている。この例示的な実施形態が、ステントグラフトが存在しないステント展開システムとして図示される場合であっても、この実施形態は、それに限定されるものとみなされるべきではない。本明細書で開示される本発明による任意のステントグラフトの実施形態を、この実施形態で使用することができる。ステントグラフトは、明確にするために、これらの図には示されない。さらに、本明細書で使用される「ステント」及び「ステントグラフト」という用語は、本明細書で同じ意味で使用される。したがって、グラフトを参照することなくステントが説明される任意の実施形態は、グラフトに加えて、又はその代わりにグラフトを参照しているとみなされるべきであり、ステント及びグラフトの双方が説明され、示される任意の実施形態も同様に、グラフトが含まれない実施形態を参照しているとみなされるべきである。
【0035】
従来技術の自己拡張型ステントとは対照的に、能動的に制御可能なステント展開システム100は、相互接続した格子ストラット112、114によって形成される、ステント格子110を含む。この例示的な実施形態において、複数対の内側ストラット114及び外側ストラット112は、それぞれ、隣接する複数対の内側ストラット114及び外側ストラット112に接続される。より具体的には、内側ストラット114及び外側ストラット112の各対は、各ストラット114、112の中心点で枢動可能に接続される。ある対の各内側ストラット114の端部は、隣接する外側ストラット112の端部に枢動可能に接続され、ある対の各外側ストラット112は、隣接する内側ストラット114の端部に枢動可能に接続される。
図1〜
図19のそれぞれで示される、複数のストラット対114、112が接続されて円を形成するような構成において、格子110を半径方向外向きに拡張させる傾向がある力は、各枢動点でストラット114、112を枢動させ、格子110全体を、閉じた状態(例えば、
図3を参照されたい)から、任意の数の開いた状態(
図4〜
図13を参照されたい)まで均等且つ滑らかに拡張させる。同様に、ステント格子110が開いた状態であるとき、ステント格子110を半径方向内向きに収縮させる傾向がある力は、各枢動点でストラット114、112を枢動させ、ステント格子110全体を、閉じた状態に向かって均等且つ滑らかに収縮させる。したがって、この例示的な構成は、ステント格子110の円周の周りに、繰り返し組の1つの中間枢動点及び2つの外側枢動点を画定する。単一の中間枢動点210は、
図1〜
図19で示される例示的な実施形態において、各ストラット112、114の中心点に位置する。単一の中間枢動点210の両側は、上下に対向する1対の外側枢動点220である。
【0036】
そのような拡張力及び収縮力を提供するために、能動的に制御可能なステント展開システム100は、
図1〜
図19のそれぞれで示されるが、最初に
図7に関して説明される、少なくとも1つのジャッキアセンブリ700を含む。各ジャッキアセンブリ700は、遠位駆動ブロック710と、近位駆動ブロック720と、接続解除器駆動ブロック730とを有する。駆動ねじ740は、遠位駆動ブロック710を近位駆動ブロック720に接続する。駆動ねじ740は、遠位駆動ブロック710のねじ付き駆動孔712に対応するねじ山を有する、遠位ねじ付き駆動部分742を有する。駆動ねじ740は、近位駆動ブロック720の滑らかな駆動孔722内で自由に回転する、中間ねじなし部分744を有する。図示した実施形態において、滑らかな駆動孔722の内径は、ねじなし部分744の外径よりも僅かに大きく、よって、ねじなし部分744は、実質的に摩擦を伴わずに、滑らかな駆動孔722内で自由に回転することができる。ここで使用されるように、他の例示的な実施形態のいずれにおいても、実質的に摩擦を伴わずにとは、駆動ねじモータ(以下で説明する)により意図されたときには駆動ねじ740を回転させることができるが、格子が駆動モータから接続解除されたときには駆動ねじ740が回転しないことを意味する。この特徴は、駆動ねじ740のねじ山のリード角度が非常に小さく、例えば、約1〜約10度、特に約3〜約7度、さらに約4度〜約5度であることによる。この小さい角度により、本明細書で説明したような動きを与えるための駆動ねじ740の回転が非常に容易になるが、駆動ねじ740を損傷させることなくねじを逆駆動することはほぼ不可能である。この特性に基づき、ステント格子(及び本明細書に記載の他のステント格子)は自動ロック式となる。駆動ねじ740はまた、近位駆動ブロック720の直近位の中間カラー746も有する。中間カラー746の外径は、滑らかな駆動孔722の内径よりも大きい。最後に、駆動ねじ740は、中間カラー746から近位方向に延在する、近位キー部分748を有する。ジャッキアセンブリ700は、
図3で示される閉じた状態から、遠位駆動ブロック710と近位駆動ブロック720とが互いに接触する
図11で示される完全に開いた状態までの、ステント格子110のあらゆる配向において、遠位駆動ブロック710及び近位駆動ブロック720内で駆動ねじ740を保持するように構成される。
【0037】
各ジャッキアセンブリ700は、上下に対向する1対の外側枢動点220に対応する、ステント格子110上の円周方向の場所に固定して取り付けられる。
図1〜
図19で示されるジャッキアセンブリ700の1つの例示的な実施形態において、遠位駆動ブロック710の外面714及び近位駆動ブロック720の外面724はそれぞれ、ある外形を有する突出したボス716、726を有し、該外形は、ステント格子110の外側枢動点220のそれぞれ1つに固定して接続するだけでなく、そこに自由に回転可能に接続することもでき、よって、ボス716、726に接続される内側ストラット114及び外側ストラット112のそれぞれが、それぞれ、ボス716、726の周りを枢動する。この例示的な実施形態において、各ボス716、726は、滑らかな円筒であり、各外側枢動点220は、円筒の滑らかな外面に対応するが、実質的に摩擦を伴わずにその上で枢動するのに十分大きい直径を有する円筒孔である。ボス716、726、並びに内側ストラット114及び外側ストラット112の外側枢動点220の材料は、実質的に摩擦のない枢動を有するように選択することができる。
【0038】
故に、駆動ねじ740が開いた状態と閉じた状態との間で回転するとき、駆動ねじ740のねじなし部分744は、近位駆動ブロック720内で縦方向に安定した状態を維持する。対照的に、遠位ねじ付き駆動部分742は、ステント格子110が外向きに拡張するにつれて、近位端部からその遠位端部まで、ねじ付き駆動孔712に漸進的に進入する。
図2から
図4への、及び
図5から
図7、
図8、
図9への経過で示されるように、駆動ねじ740が近位駆動ブロック720内で回転するにつれて、遠位駆動ブロック710が近位駆動ブロック720のさらに近くに移動し、それによって、ステント格子110の半径方向の拡張を生じさせる。
【0039】
ステント格子110を管状の解剖学的構造(血管又は弁座等)に移植するために、ステント格子110は、送達システムから接続解除される必要がある。解剖学的構造へのステント格子110の送達は、下でさらに詳細に説明される。ステント格子110は、移植部位に進入するときに、
図3で示される閉じた状態である可能性が最も高くなるが、種々の理由から、ステント格子110は、移植部位に到達する前に、所望であれば、部分的に拡張させることができる。接続解除を説明する目的上、拡張の範囲は関連しない。移植部位にあるときに、ステント格子110は、駆動ねじ740を対応する拡張方向に回転させることによって拡張される(駆動ねじ740及び駆動孔712のねじ山の方向は、駆動ねじ740を、時計回りに回転させるのか、又は反時計回りに回転させるのかを決定する)。ステント格子110は、例えば
図4から
図9への、又は
図10から
図11への経過で示されるように、所望の拡張直径まで拡張され、よって、幾何学形状が非円形又は不規則であっても、移植部位の自然な幾何学形状に適応する。例えば
図9及び
図11の移植直径に到達すると、ジャッキアセンブリ700を、ステント展開システム100の残部から接続解除する必要がある。
【0040】
ジャッキアセンブリ700の接続解除を達成するために、接続解除器駆動ブロック730には、2つの管腔が提供される。第1の管腔、駆動管腔732は、近位キー部分748に回転可能に係合することができる、駆動ワイヤ750に適応する。駆動ワイヤ750についてのワイヤという用語の使用は、この構造が中実コードであることを意味するものではない。駆動ワイヤ750は、中空管、コイル、又は本明細書に記載の機能を果たすことのできる他の構造であってもよい。
図19で最も明らかに図示される、示される例示的な実施形態において、近位キー部分748は、正方形の断面形状を有する。駆動ワイヤブッシング734は、自由に回転可能であるが、縦方向に固定して駆動管腔732の中に存在する。駆動ワイヤブッシング734は、その一体部分として、又は接続スリーブ752を通して駆動ワイヤ750に接続される。接続の設計に関わらず、駆動ワイヤ750のいずれかの方向における任意の回転は、駆動ワイヤブッシング734の対応する回転を生じさせる。接続解除器駆動ブロック730の遠位端部にあり、近位キー部分748の断面に対応する内部形状を有するキー穴738は、回転可能に固定されるが縦方向に自由な、近位キー部分748との接続を生じさせることを可能にする。
図19で示される例示的な実施形態において、キー穴738も、正方形の断面形状を有する。
【0041】
接続解除器駆動ブロック730はまた、第2の管腔、接続解除管腔731も有し、
図14及び
図16で最も良く示される。接続解除管腔731の中には、自由に回転可能であるが縦方向に固定される様式で、固定具ねじ760が存在する。固定具ねじ760は、遠位ねじ付き部分762と、中間軸764と、近位接続具766とを有する。遠位ねじ付き部分762は、接続管腔1631の雌ねじに対応する雄ねじを有し、それは、近位駆動ブロック720の中に位置し、接続解除管腔731と同軸である。中間軸764は、滑らかな外面、及び接続解除管腔731の断面形状よりも僅かに小さい断面形状を有し、よって、該中間軸は、実質的に摩擦を伴わずに、接続解除管腔731内で自由に回転することができる(上記のように、これは制御モータとともに回転するが、接続解除時には固定されたままとなる、すなわち、自動ロック式である)。近位接続具766は、接続解除管腔731の内径よりも大きい外径を有する、フランジを有する。近位接続具766は、その近位端部で、接続解除ワイヤ770に接続され、その接続は、その一体部分とするか、又は溶接又は接続スリーブ等の、第2の接続を通したものとすることができる。接続解除ワイヤ770についてのワイヤという用語の使用は、この構造が中実コードであることを意味するものではない。接続解除ワイヤ770は、中空管、コイル、又は本明細書に記載の機能を果たすことのできる他の構造であってもよい。
【0042】
ジャッキアセンブリ700の近位駆動ブロック720及び接続解除器駆動ブロック730のそのような構成によって、固着方向の回転は、近位駆動ブロック720を接続解除器駆動ブロック730に縦方向に固着させ、よって、ステント格子110は、駆動ワイヤ750及び接続解除ワイヤ770に接続された状態を維持する。接続された状態において、ステント格子110は、外科医の所望に従う移植位置合わせが行われるまで、必要に応じて何度も外向きに延長され、内向きに後退され得る。同様に、接続解除方向の回転は、接続解除器駆動ブロック730から近位駆動ブロック720を縦方向に解放し、よって、ステント格子110を、駆動ワイヤ750及び接続解除ワイヤ770から完全に接続解除する。
【0043】
このプロセスは、
図10〜
図19に関して例示される。
図10の例示的な具体例において、ステント格子110は、完全に拡張されていない。固定具ねじ760の遠位ねじ付き部分762は、近位駆動ブロック720の接続管腔1631内にねじが付けられるので、接続解除器駆動ブロック730は、近位駆動ブロック720に縦方向に固定された状態−−理想的には、ステント展開システム100が、最初に患者に進入したときから、少なくとも上に向かうときから、ステント格子110の移植が起こるまで存在する構成−−を維持する。ステント格子110の拡張は、
図11の構成で完了し、この実施例の目的上、ステント格子110は、移植部位に正しく移植されるとみなされる。したがって、送達システムの接続解除を起こすことができる。この移植位置は、遠位駆動ブロック710及び近位駆動ブロック720が接触しているので、ちょうどステント格子110の円周端で生じることに留意されたい。しかしながら、実際の使用では、移植のために拡張させたときにそのような接触は起こらず、そのような状態では、必要に応じて、ステント格子110が移植部位の中へさらに拡張する空間を与えるために、遠位駆動ブロック710と近位駆動ブロック720との間に分離距離があることが想定される。ステント格子110の接続解除は、接続管腔1631から固定具ねじ760のねじ付き部分762を緩める方向に、接続解除ワイヤ770を回転させることから始める。ステント格子110が拡張力によって移植部位に移植されたときに、接続解除器駆動ブロック730は、ねじを緩めるにつれて近位に移動する。完全に固定具ねじ760のねじを緩めることは、
図12及び
図14で示される。1つを超えるジャッキアセンブリ700を有する構成において(例えば、
図1〜
図19の構成は、4つ有する)、各接続解除ワイヤ770、770’は、
図12で示されるように、同期的に回転して、ほぼ同時にその近位駆動ブロック720のそれぞれから各接続解除器駆動ブロック730を接続解除させる。そのような同期運動は、下でさらに詳細に説明される。ステント格子110が移植されると、
図13、
図15、
図18、及び
図19で示されるように、ステント格子110のための送達システムは、移植部位から離れて近位に引き出し、患者から外へ後退させることができる。
【0044】
図1〜
図19の例示的な実施形態は、格子110の円周の周囲に等間隔に置かれた4つのジャッキアセンブリ700を有するように、能動的に制御可能なステント展開システム100を示していることに留意されたい。この構成は、単に例示的なものに過ぎず、合計で1つのジャッキアセンブリ700という最小数、及び内側ストラット112及び外側ストラット114の各対の間の各交差点について1つのジャッキアセンブリ700という最大数を含む、任意の数のジャッキアセンブリ700を使用して、格子110を拡張及び収縮させることができる。本明細書では、3つ及び4つのジャッキアセンブリ700が、描写され、特に良好に機能する構成を示すために使用される。偶数個使用することによって、トルクを打ち消すために逆回転ねじを使用することができる。
【0045】
図20は、ステント格子110が拡張及び収縮するときに、どのように移動するのかをさらに説明するために提供される。上で説明されるように、能動的に制御可能なステント展開システム100は、ステント格子110の構造、並びに少なくとも1つのジャッキアセンブリ700の近位駆動ブロック720及び遠位駆動ブロック710の、ステント格子110の少なくとも1組の上下に対向する上部及び下部枢動点220への取付けに基づく。
図1〜
図19で示される例示的な接続部716、726及び枢動点210、220によって、一方の近位駆動ブロック720及び遠位駆動ブロック710のもう一方に対する縦方向の上下運動は、本明細書で説明されるようにステント格子110を拡張又は収縮させる。
図20は、ステント格子110がその拡張状態(例えば、
図9)及び収縮状態(例えば、
図2)の間で移動するにつれて、各中間枢動点210が横移動する半径方向の進行経路を、中実円筒2000で示す。進行経路が直線状であるので、ステント格子110は、その円周の全体にわたってスムース且つ均等に拡張及び収縮する。
【0046】
図1〜
図19で示されるストラット112、114は、ある図面では直線状に見えないことに留意されたい。そのような非直線性の例は、
図10及び
図11のストラットである。該図において、各ストラット112、114は、中央の枢動点の周りにトルクが与えられるように見え、よって、一方の端部が反時計回りに回転し、もう一方が時計回りに回転する。この非直線性は、砂時計形状を生じさせ得、グラフトを移植輪の中で固定し、移植片の頂縁部で十分な封止を生じさせるのを補助する。非直線の具体例は、単に、種々の形状の図面の図を作成するために使用されるコンピュータ設計ソフトウェアの制限に過ぎない。そのような非直線の描写は、種々の例示的な実施形態が、本発明の1つ又は複数のストラット構成の一部を回転させることを必要とすると解釈されるべきではない。種々のストラット112、114が屈曲するかどうか、及びそれらがどのように屈曲するかは、ストラット112、114を形成するために使用される材料の特性、及び格子110の枢動接合部がどのように作成又は形成されるかに依存する。ストラット112、114及び枢軸を形成する例示的な材料、並びに枢軸を作成するための方法は、下でさらに詳細に説明される。例えば、それらは、ステンレス鋼及びコバルトクロムの系統から、型打ち、機械加工、鋳造、又は類似することを行うことができる。
【0047】
本発明に関して、力は、ステント格子110の制御された拡張のために、能動的に印加される。ステント格子110が移植される壁に与えられる、半径方向外向きの移植力を補うことが必要であり得る。従来技術のステントグラフトは、移植部位で外向きの力を補うための鉤及び他の類似するデバイスを含んでいた。そのようなデバイスは、移植部位の壁に当たり、及び/又は壁の中に突出する機械的な構造(複数可)を提供し、それによって、移植されたデバイスの移動を防止する。本発明のシステム及び方法は、能動的に印加される外向きの拡張力を補うための新規な方法を含む。1つの例示的な実施形態は、能動的に制御可能なニードルを含み、最初に、
図17を参照して説明される。この例示的な実施形態において、遠位駆動ブロック710及び近位駆動ブロック720は、第3の管腔、すなわち遠位ニードル管腔1711と、近位ニードル管腔1721とを含む。遠位ニードル管腔1711及び近位ニードル管腔1721の双方の中に、ニードル1700が含まれる。例示的な実施形態において、ニードル1700は、例えば、ニチノール等の形状記憶材料で作製される。ニードル1700は、例えば
図12の左上に示される形状に予め設定される(又は、ニードル1700が、閉鎖円の大部分又は全体を形成することができる)。ステント格子110の移植後に遠位ニードル管腔1711及び近位ニードル管腔1721の中に残る部分は、
図17で示される直線形状に予め設定することができる。しかしながら、ニードル1700の組織係合遠位部分は、少なくとも曲線を伴って形成され、遠位駆動ブロック710から延長するときに、ステント格子110の中心縦軸から半径方向外向きに突出する。そのような構成において、ニードル1700は、外向きに延長するにつれて、遠位駆動ブロック710の外周面714(
図5を参照されたい)から離れて(すなわち、
図5で示される平面から見る人に向かって)駆動する。ニードル1700はまた、ステント格子110が、例えば
図2で示される、閉じた状態であるときに、遠位先端部1210を遠位ニードル管腔1711内に配置する、縦方向の範囲も有する。
【0048】
各ジャッキアセンブリ700におけるニードル1700の展開(又は、ニードルの数は、ジャッキアセンブリ700の数よりも少ない、任意の数とすることができる)が図示され、例えば
図5から始まる。この実施例において、ステント格子110が部分的に拡張した場合であっても、ニードル1700は、各遠位駆動ブロック710の遠位上面612からまだ突出していないので、4つのジャッキアセンブリ700のそれぞれの中のニードル1700は、近位駆動ブロック720及び遠位駆動ブロック710の縦方向の端から端までの距離よりも短い長さを有する。しかしながら、
図7で示されるように、ステント格子110がさらに僅かに拡張すると、ニードル1700が遠位上面612から突出し始める。ニードル1700は、上で説明されるように予め屈曲しているので、ニードル1700は、直ちに自然の予め設定された湾曲形状に屈曲し始める。
図7及び
図8も参照されたい。
図10は、遠位ニードル管腔1711から外にさらに延長した2つのニードル1700を図示する(これは、ステント格子110の後ろ半分だけを示す断面であるので、2つだけしか示されない)。
図11は、完全な延長位置の、2つのニードル1700を図示する(遠位駆動ブロック710及び近位駆動ブロック720は、ステント格子110の最大拡張状態で、互いに接触する)。
図9、
図13、
図16、
図17、
図18、及び
図21も、延長した、又は完全に延長した状態のニードル1700を示す。
【0049】
ニードル1700がそれぞれどのように遠位駆動ブロック710から延長するかは、
図17を参照して第1の例示的な実施形態で説明することができる。ニードル1700の近位部分は、近位ニードル管腔1721の内側に固定して接続される。これは、任意の手段、例えばレーザ溶接によって行うことができる。対照的に、ニードル1700の中間部分及び遠位部分は、遠位ニードル管腔1711内で完全に自由に摺動することが可能である。上で説明されるように長さを設定することによって、
図3で示されるように、遠位駆動ブロック710及び近位駆動ブロック720が完全に分離されると、ニードル1700は、遠位ニードル管腔1711及び近位ニードル管腔1721の双方の中に存在する。遠位駆動ブロック710及び近位駆動ブロック720のうちの一方がもう一方に向かって移動し始めると(上で説明されるように、これらの図に関して説明される例示的な実施形態は、遠位駆動ブロック710が、近位駆動ブロック720に向かって移動する)、ニードル1700の近位部分は、近位ニードル管腔1721の中に残ったままであるが、ニードル1700の遠位部分は、遠位上面612から出始め、それは、ニードル1700の中間部分及び遠位部分が、遠位ニードル管腔1711の中に、摺動可能に配置されるために起こる。ニードル1700の近位部分が近位ニードル管腔1721の中に固定されるこの実施形態は、本明細書において、ニードル1700の従属制御と称される。換言すれば、遠位ニードル管腔1711から外へのニードル1700の延長は、遠位駆動ブロック710及び近位駆動ブロック720の相対運動に依存して起こる。
【0050】
或いは、移植部位のステント格子110の補足的な保持は、ニードルの独立制御によって起こすことができる。
図21〜
図29は、本発明によるシステム及び方法のそのような例示的な実施形態を図示する。この実施形態に存在する、従属制御されるニードル1700と同じ部品には、同じ参照番号が使用される。ジャッキアセンブリ2100は、遠位駆動ブロック710と、近位駆動ブロック720と、接続解除器駆動ブロック730と、駆動ねじ740と、駆動ワイヤ750(概略的に破線で示される)と、固定具ねじ760と、接続解除ワイヤ770とで構成される。
図1〜
図19のジャッキアセンブリ700とは異なり、ジャッキアセンブリ2100はまた、ニードル2200及びニードルプッシャ2210も含み、近位駆動ブロック720及び接続解除器駆動ブロック730はどちらも、ニードルプッシャ2210に適応するために、それぞれその中に同軸の第3の管腔を画定する。より具体的には、遠位駆動ブロック710は、第1のプッシャ管腔2211を含み、近位駆動ブロック720は、第2のプッシャ管腔2221を含み、接続解除器駆動ブロック730は、第3のプッシャ管腔2231を含む。上で説明されるように、固定具ねじ760は、ステント格子110の移植及び送達システムの分離が起こるまで、及びそれらが起こった後に、近位駆動ブロック720及び接続解除器駆動ブロック730を互いに縦方向に接地させた状態に保つ。駆動ねじ740の回転は、遠位駆動ブロック710を近位駆動ブロック720に向かって移動させ、それによって、所望の移植直径までステント格子110を拡張させる。この運動は、
図22と
図23との間の移行で示される。この時点で、ステント格子110が移植部位内に適切に移植され、現在、ニードル2200を展開するときである。展開は、
図24で示されるように、ニードルプッシャ2180を前進させることから始まる。ニードルプッシャ2810は、それ自体を、ニードル2200を前進及び後退させるための制御ワイヤとすることができる。或いは、及び/又は加えて、ニードル制御ワイヤ2182は、ニードルプッシャ2180が機能するための十分な支持を提供するために、ニードルプッシャ2180に取り付けるか、又はそれを囲うことができる。ニードルプッシャ2180の継続的な遠位運動は、ニードル2200を遠位上面612から外へ延長させ、形状記憶したニードル2200の予め設定された湾曲により、ニードル先端部は、外向きに移植部位の組織の中へ湾曲する。この湾曲は、
図25の面から外に突出するので、該湾曲は、
図25では示されない。
【0051】
この時点で、ステント格子110が移植され、ニードル2200が延長され、ステント格子110の接続解除が起こる。最初に、
図26で示されるように、固定具ねじ760が、接続解除器駆動ブロック730から近位駆動ブロック720を接続解除するために回転され、近位に誘導される力が、駆動ワイヤ750及び接続解除ワイヤ770の一方又は双方に与えられる。この力は、
図26から
図27への経過で示されるように、接続解除器駆動ブロック730を遠位に移動させて、キー穴738から外に駆動ねじ740の近位キー部分748を取り外す。同時に、接続解除器駆動ブロック730の遠位運動は、(以前に後退させなかった場合に)第1のプッシャ管腔2211からのニードルプッシャ2180の引き出しを開始する。接続解除器駆動ブロック730の継続的な遠位運動は、
図28で示されるように、第1のプッシャ管腔2211からニードルプッシャ2180を完全に取り外す。最後に、移植部位からのステント格子送達システムの完全な引き出しは、第2のプッシャ管腔2221からニードルプッシャ2180を取り外し、移植されたステント格子110、ジャッキアセンブリ(複数可)2100、及びニードル(複数可)2200だけを移植部位に残す。
【0052】
図30〜
図37は、本発明による独立ニードル展開システム及び方法の、別の例示的な実施形態を図示する。この実施形態に存在する、上で説明される実施形態と同じ部品には、同じ参照番号が使用される。ジャッキアセンブリ3000は、遠位駆動ブロック3010と、近位駆動ブロック3020と、接続解除器駆動ブロック3030と、駆動ねじ3040と、駆動ワイヤ750と、固定具ねじ760と、接続解除ワイヤ770とで構成される。ジャッキアセンブリ3000はまた、ニードル3070及びニードル運動サブアセンブリ3090も含む。ニードル運動ブアセンブリ3090は、ニードル支持体3092と、ニードル3094と、ニードル接続解除ナット3096と、ニードル接続解除ワイヤ3098とで構成される。
【0053】
遠位駆動ブロック3010は、3つの縦方向の管腔を画定する。第1の縦方向の管腔は、支持ロッド管腔3012であり、その中で支持ロッド3080を摺動可能に保持するように画定される。ジャッキアセンブリ3000と関連付けられる任意のねじが回転するときに、回転トルクが与えられるので、そのようなトルクが、遠位駆動ブロック3010及び近位駆動ブロック3020、並びに接続解除器駆動ブロック3030を互いに対して回転させ、それによって、不要な力をステント格子110に与えることを最小にする及び/又は防止するために、支持ロッド3080が用いられる。支持ロッド3080の縦方向の長さは、ステント格子110の任意の拡張状態又は後退状態で、遠位駆動ブロック3010の遠位上面3011から外に突出しないように選択される。第2の上下に縦方向の管腔は、駆動ねじ管腔3014である。以前の実施形態のように、駆動ねじ管腔3014には、駆動ねじ740の雄ねじに対応する雌ねじが構成され、駆動ねじ管腔3014の縦方向の上下長さは、ステント格子110の任意の拡張状態又は収縮状態で、駆動ねじ740を、遠位駆動ブロック3010の遠位上面3011から外に突出させないように選択される。最後に、遠位駆動ブロック3010は、ニードルアセンブリ管腔を画定し、該ニードルアセンブリ管腔は、比較的より幅の広い近位ニードル管腔3016と、比較的より幅の狭い遠位ニードル管腔3018とで構成され、これらはどちらも下でさらに詳細に説明される。
【0054】
上で説明される他の近位駆動ブロックと比較して、ジャッキアセンブリ3000の近位駆動ブロック3020は、2つの上下に縦方向の管腔を画定する。第1の管腔は、駆動ねじ管腔3024である。この例示的な実施形態において、駆動ねじ740は、近位駆動ブロック3020に、縦方向に固定して接続されるが、自由に回転可能に接続される。この接続を達成するために、遠位駆動ねじカプラ部3052は、近位駆動ブロック3020の駆動ねじ管腔3024の一部である中央孔内で、駆動ねじ740の近位端部に固定して固着される。遠位駆動ねじカプラ部3052は、駆動ねじ管腔3024の中央孔内で、(駆動ねじ740の上下の縦軸と同軸である)その上下の縦軸に沿って自由に回転することができるように成形される。駆動ねじ管腔3024の遠位部分は、駆動ねじ740の一部分(例えば、ねじなし部分)が、実質的に摩擦を伴わずに、その中で回転することを可能にするのにちょうど大きい直径を有するようにネッキングされる。近位駆動ブロック3020の側部の円形ポート3100を通して、遠位駆動ねじカプラ部3052を、例えば、駆動ねじ740の近位ねじなし端部にスポット溶接することができる。そのような接続によって、駆動ねじ740は、駆動ねじ管腔3024の中央孔内で、近位駆動ブロック3020に、縦方向に固定して接地される。これは、駆動ねじ740の回転が、遠位駆動ブロック3010を近位駆動ブロック3020に向かって移動させ、それによって、例えば
図36で示されるボス3600において、ジャッキアセンブリ3000に接続されるステント格子110を拡張させることを意味する。ワッシャ、リベット頭、又は溶接の形態の締結具3610は、例えば、ステント格子110をボス3600に保持することができる。駆動ねじカプラ3052、3054のさらなる説明は、接続解除器駆動ブロック3030に関して下で行われる。
【0055】
ジャッキアセンブリ3000の近位駆動ブロック3020内の第2の管腔は、固定具ねじ管腔3022である。固定具ねじ管腔3022の遠位部分は、支持ロッド3080の近位端部をその中で固定して保持するように成形される。換言すれば、支持ロッド3080は、固定具ねじ管腔3022の遠位部分で締結され、近位駆動ブロック3020の運動だけによって移動する。締結は、任意の手段、例えば、対応するねじ山、溶接、プレス嵌めによって、又は接着剤で起こすことができる。固定具ねじ管腔3022の近位部分は、固定具ねじ760の雄ねじに対応する、雌ねじを有する。故に、近位駆動ブロック3020からの接続解除器駆動ブロック3030の接続解除は、接続解除器ワイヤ770に固定して接続される、固定具ねじ760の回転によって行われる。固定具ねじ760と接続解除器ワイヤ770との間の接続は、例えば、
図30で示されるように、接続解除器カプラワイヤ770の遠位端部及び固定具ねじ760の近位端部の双方に固定して接続される中空のカプラシースを含む、任意の手段によって達成することができる。上で説明されるように、固定具ねじ760は、ステント格子110の移植及び送達システムの分離が起こる後まで、近位駆動ブロック3020及び接続解除器駆動ブロック3030を互いに縦方向に接地した状態に保つ。
【0056】
この例示的な実施形態はまた、ジャッキアセンブリ3000の残部、特に2つの部品の駆動ねじカプラ3052、3054から、駆動ねじ740を連結解除するためのデバイス及び方法の代替物も有する。遠位駆動ねじカプラ部3052は、その近位端部において、機械式カプラであり、この例示的な実施形態では、駆動ねじ740から離れて近位方向に延在する半円形のボスである。近位駆動ねじカプラ部3054は、駆動ねじ740に向かって遠位方向に延在する、対応する半円形のボスを有する。これらは、具体的には、
図37の拡大図でわかる。したがって、2つの半円形のボスが相互接続することを可能にするときに、近位駆動ねじカプラ部3054の任意の回転は、遠位駆動ねじカプラ部3052の対応する回転を生じさせる。接続解除器駆動ブロック3030は、その中で遠位駆動ねじカプラ部3052を保持するように成形される、ねじカプラ孔3031を有する。近位駆動ブロック3020でのように、ねじカプラ孔3031は、近位駆動ねじカプラ部3054を取り囲み、近位駆動ねじカプラ部3054が、実質的に摩擦を伴わずに、その中で自由に回転することを可能にするように成形される。ねじカプラ孔3031の近位部分は、
図30〜
図37で示されるように、近位駆動ねじカプラ部3054が駆動ワイヤ750に直接、又は例えば中空のカプラを通して固定して接続された後に、その離脱を防止するために、より小さい直径にネッキングされる。
【0057】
ジャッキアセンブリ3000によるステント格子110の移植は、
図30〜
図35に関して説明される。最初に、駆動ねじ740の回転が、遠位駆動ブロック3010を近位駆動ブロック3020に向かって移動させ、それによって、ステント格子110を所望の移植直径まで拡張させる。この運動は、
図30と
図31との間の移行で示される。この時点で、ステント格子110は、適切に移植部位内にあり、ニードル3070の展開を起こすことができる。展開は、
図31と
図32との間の移行で示されるように、ニードルサブアセンブリ3090を前進させることから始まる。ニードルサブアセンブリ3090の継続的な遠位運動は、ニードル3070を遠位上面3011から外へ延長させ、形状記憶したニードル3070の予め設定された湾曲により、ニードル3070の先端部は、外向きに移植部位の組織の中へ湾曲する。この湾曲は、これらの図面の面から外に突出するので、該湾曲は、
図32及び
図33では示されない。
【0058】
上の以前の近位駆動ブロックと比較して、接続解除器駆動ブロック3030は、ニードル3070と関連付けられる管腔を有しない。遠位駆動ブロック3010だけが、ニードル3070に適応するために、その中に管腔を有する。より具体的には、遠位駆動ブロック3010は、遠位ニードル管腔3018と、近位ニードル管腔3016とを含む。遠位ニードル管腔3018は、ニードル3070だけに適応するように成形される。しかしながら、他のニードル管腔とは対照的に、近位ニードル管腔3016は、断面が非円形であり、例示的な実施形態では、断面が長円形である。この形状は、形状記憶ニードル3070が、例えば溶接によって側部同士が締結されるニードル支持体3092によって、その近位範囲に沿ってその側部で支持されるために起こる。ニードル支持体3092は、ニードル3070よりも比較的に高い柱状強度を有し、したがって、ニードル3070の側部に固定して接続されたときに、ニードル支持体3092は、ニードル3070がその非常に近位の端部だけから制御された場合よりも、その側部において、ニードル3070に対する接続強度を大幅に高める。高強度の雄ねじ付きニードル基部3094は、ニードル支持体3092の近位端部に固定して取り付けられる。この構成はまた、ニードルを適切にクロッキングされるように保ち、よって、その屈曲方向は、格子の中心から離れて、最も直接的に血管壁に取り付ける。
【0059】
ニードル3070の制御は、上述のように、ニードル接続解除ワイヤ3098(破線で表される)によって行われる。接続解除ワイヤ3098の遠位端部には、ニードル基部3094の雄ねじに対応する雌ねじを有する遠位孔を画定する、ニードル接続解除ナット3096が取り付けられる。したがって、この構成において、ニードル接続解除ワイヤ3098の回転は、ニードル接続解除ナット3096を、ニードル基部3094に固着させるか、又はニードル基部3094から取り外させ、よって、ステント格子110からの送達システムの接続解除を起こすことができる。遠位駆動ブロック3010の頂部側は、その中の種々の管腔の形状を示すために、
図36において、ボス3600において断面にされている。上で説明されるように、支持ロッド管腔3012は、支持ロッド3080が、その中で上下に縦方向に摺動することを可能にするために、滑らかな円形断面の孔である。同様に、駆動ねじ管腔3014の遠位部分も、駆動ねじ740が回転され、そのねじ山が駆動ねじ管腔3014の近位ねじ付き部分に係合したときに、該駆動ねじが、その中で上下に縦方向に移動することを可能にするために、滑らかな円形断面の孔である。近位ニードル管腔3016は、対照的に、円筒形状のニードル3070、及び側部同士が接続された円筒形状のニードル支持体3092に適応するために、非円形(例えば、長円形)である。
図36の図で示されるように、少なくとも、ニードル支持体3092に対するニードル3070の接触部分は、コネクタスリーブ3071で覆われ、該コネクタスリーブは、ニードル3070に、また同時に、ニードル支持体3092に固定して接続されることを可能にする材料特性を有する。
【0060】
接続解除ワイヤ3098の遠位運動による遠位上面3011から外へのニードル3070の延長は、
図31から
図32への移行によって図示される。
図30〜
図33の図は、
図36の破線X−Xで概略的に示される湾曲した中間面に沿った縦断面であるので、ニードル3070のごく一部分だけが、遠位上面3011から延長する。ニードル3070は、この断面の前方に延長するので、これらの図では示されない。しかしながら、
図34及び
図35は、湾曲して外側面3415から外に離れる延長したニードル3070を明らかに示すが、単に明確にする目的で、ニードル3070は、その縦軸の周りを僅かに右に回転され、よって、
図34でわかり、
図35でより良くわかる。ニードル3070の別の例示的な実施形態は、フック状の、又は屈曲したニードル先端部3072を含むことに留意されたい。それに対応して、遠位駆動ブロック3010は、屈曲したニードル先端部3072を捕らえるためにニードル先端溝3013を含み、ニードル3070及びニードル接続解除ワイヤ3098への張力を保つような方法で、該ニードル先端部を利用する。ニードル先端部3072の屈曲はまた、ニードル3070が、そのような屈曲を伴わないものよりも早く且つ深く貫通することを可能にする。この屈曲を有することの別の利点は、先端部の屈曲を真っ直ぐにするために、ニードルの全体的な形状記憶よりも大きい負荷を必要とし、それによって、ジャッキアセンブリ3000の中でニードルが遠位に位置するように保つことである。遠位駆動ブロックの中に十分な空間がある場合、複数のニードル(例えば、分岐舌)を使用することができる。
【0061】
ステント格子110が移植され、各ジャッキアセンブリ3000のニードル3070が延長された後の送達システムの取外しは、
図32、
図33、及び
図37に関して説明される。固定具ねじ760は、ステント格子110の移植及び(ニードル3070が含まれる場合は)ニードル3070の延長まで、近位駆動ブロック3020及び接続解除器駆動ブロック3030を互いに縦方向に接地させた状態に保つ。送達システムの分離は、接続解除器ワイヤ770を回転させて、固定具ねじ管腔3022から固定具ねじ760を緩めることから始まり、それは、
図32からの
図33への移行で示されるように起こる。駆動ねじカプラ3052、3054の2つの部品は、互いに縦方向に固定されないので、駆動ねじカプラ3052、3054は、いかなる形であれ接続解除器駆動ブロック3030の接続解除を妨げない。固定具ねじ管腔3022から固定具ねじ760を取り外す前に、それと同時に、又はその後に、ニードル接続解除ワイヤ3098を回転させ、それによって、ニードル接続解除ナット3096を対応して回転させる。1回転以上させた後に、ニードル接続解除ナット3096は、ニードル基部3094のねじ山から完全に緩められ、それは、例えば
図33で示される。この時点で、接続解除器駆動ブロック3030、その制御ワイヤ(駆動ワイヤ750及び接続解除ワイヤ770)、並びにニードル接続解除ワイヤ3098及び接続解除ナット3096を含む送達システムを、移植部位から取り外すことができる。
【0062】
本発明によるステント格子の他の例示的な実施形態は、
図38〜
図50に関して示される。第1の例示的な実施形態において、ステント格子は、ステントグラフト3800の近位ステント3810である。近位ステント3810は、グラフト3820に接続され、該グラフトによってその外周面が覆われる。
図39の部分的な拡張状態の、及び
図40及び
図41の他の拡張状態の近位ステント3810によって、外側ストラット3812が、少なくとも1つの貫通孔3814、具体的には、外側ストラット3812を通って半径方向に延在する、一方の端部からもう一方の端部まで、一連の貫通孔を有することがわかる。これらの貫通孔は、グラフト3820を、外側ストラット3812に縫い付けることを可能にする。
【0063】
上で説明されるように、移植部位で、又は移植部位の近くで組織に接触したときに、組織を捕らえてそれを解放しない鉤、フック、又は他の手段を、ステントが有することが有益であり得る。
図42〜
図45は、本発明の1つの例示的な実施形態を図示する。例えば、
図44の右下隅部でわかるように、ステント格子4200を構築するときに、3つの枢動点の取付けは、各外側ストラット4230をその中央の枢動点の周りで湾曲させる。しかしながら、各外側ストラット4230の外側の2つの枢動点を過ぎると、いかなる湾曲も与えられない。外側ストラット4230の端部に湾曲がないことは、外側部分がステント格子4200の外周面から外向きに延長することを意味するので、本発明は、これを利用し、外側ストラット4230の1つ以上の端部上に延長部4210及び鉤4220を提供する。
図42で示されるステント格子4200の拡張構成では、延長部4210及び鉤4220が、浅い角度であっても、それぞれステント格子4200の外周面から半径方向外向きに突出し、鉤4220の先端部も半径方向外向きを指すことがわかる。
【0064】
上で例示されるステント格子の例示的な実施形態のそれぞれは、各ストラットの中心点で、中間枢動点を有することに留意されたい。中間枢動点を中心に有することは、例示的なものに過ぎず、各ストラットの中心から離れていることもあり得る。例えば、
図46〜
図50で示されるように、ステント格子4600は、もう一方の端部4616よりも一方の端部4614に近い、ストラット4610の中間の中心枢動軸4612を有することができる。中心枢動軸4612が偏心しているとき、一方の端部4614により近い側が内向きに傾斜し、よって、ステント格子4600の外周面は、円錐の形状をとる。
図48、
図49、及び
図50は、それぞれ、拡張した、部分的に拡張した、及びほぼ完全に後退した、円錐ステント格子4600を図示する。
【0065】
図38〜
図50の例示的なステント格子実施形態は、ねじによって接続される枢動点を示す。任意の数の可能な枢動接続部は、1つ以上の、又は全ての枢動点で使用することができる。ストラット接続アセンブリ5100の1つの例示的な実施形態は、
図51〜
図53で示すことができる。本発明のステント格子は、小さいこと、及び非常に小さい解剖学的部位(例えば、心臓弁、大動脈、及び他の血管)に適合することを意図しているので、格子ストラットが、できるだけ細い(すなわち、薄型である)ことが望ましい。
図38〜
図50で示されるねじの外形は、
図51〜
図53で示される本発明のストラット接続システム5100によってさらに低減させることができる。
図51は、1つのそのような薄型の接続部を図示し、該接続部は、リベット5110を使用して形成され、また、突出部5120及び対向する窪み(
図52には図示せず)のうちの1つを有するストラット端部のそれぞれに、リベット孔を形成する。リベット5110は、薄型のリベット頭5112、中間円筒ボス5114、及び僅かに外向きに拡張した遠位端部5116によって形成される(
図53参照)。
図52で示されるように、ストラットの端部の2つを互いに隣り合わせに配置することによって、突出部5120の1つが対向するストラットの窪みの内側に配置され、2つのストラット端部が、中心枢動軸の周りで摺動することができる枢動軸を形成する。リベット5110は、単に、拡張した遠位端部5116を、ストラットの図示されない窪みの1つを通って進入させ、対向するストラットの突出部側を通って出させることによって、互いに対してストラット端部を係止するために使用されるに過ぎない。それは、枢動軸を形成するストラットの特徴であり、リベット5110の特徴ではない。
【0066】
図54〜
図63は、本発明の例示的な実施形態による、ステント格子におけるストラットの種々の代替の構成を図示する。異なる格子の構成のそれぞれは、異なる特徴を提供する。交互のストラットを有する格子によって起こる1つの問題は、隣接するストラットの拡張及び収縮が、グラフト固着手段(例えば、ステッチング)に対して不都合に摩擦する可能性があることである。その考慮すべき問題に関して、本発明は、
図54〜
図57の実施形態で、2つの別個の円筒副格子を提供する。内側及び外側副格子の交差点のそれぞれは、締結具(例えば、リベット、ねじ等)を介して接続される。しかしながら、ストラットの外側端部は、直接的に接続されるのではなく、その代わりに、締結具がそれを通って、それぞれ、隣接するストラット端部のそれぞれに接続する2つの貫通孔を有する、中間ヒンジ板によって接続される。中間ヒンジ板は、ステント格子の拡張時に、互いに向かって縦方向に並進し、ステント格子のいかなる部分も該中間ヒンジ板の前方又は後方を通させない。したがって、これらのヒンジ板は、グラフトに対する接続点として機能することができ、又はバンド若しくはロッドに接続することができ、該バンドは、2つのヒンジ板をともに接合する役割を果たし、それによって、グラフト上に拡張力をさらに伝搬させる。グラフト材料が、拡張可能な材料が非拡張可能な材料に遷移する(そして、所望であれば、元に戻る)遷移域を有する、例示的な実施形態において、そのようなバンド又はロッドは、格子の縦方向の端部を過ぎてさらに延長し、グラフト材料の非拡張可能部分の取付け点又は固着点を提供することができる。この構成では、
図57で示されるように、例えば、グラフト材料が外側副格子に取り付けられる場合には、いかなる障害物もなく、グラフトは、はさみとして作用するストラットによって損傷を受けない。
図58〜
図63は、縦方向に上下の方向で内側副格子が外側副格子よりも短い、本発明によるストラット格子の別の例示的な実施形態を図示する。
【0067】
本発明の例示的な能動的に制御可能なステント格子は、従来技術の自己拡張型ステントが使用されていたデバイス及び方法で使用することができる。
図38〜
図41の例示的なステントグラフトで示される近位ステントの実施例に加えて、本明細書で説明され、瞬間的ステント送達システム及びそのようなデバイスを送達するための方法で示される技術は、腹部又は胸部の動脈瘤修復で使用されるもの等の、任意のステントグラフト又は移植片で使用することができる。加えて、本発明の例示的なステント格子は、例えば、置換用心臓弁で使用することができる。
【0068】
以下、図面の図を詳細に参照し、最初に、特に
図64〜
図70を参照すると、能動的に制御可能な大動脈弁アセンブリ、並びにそのようなデバイスを制御し、移植するための方法及びシステムの第1の例示的な実施形態が示されている。例示的な実施形態は、大動脈弁について示されているが、本発明は、それに限定されない。本発明は、肺動脈弁、僧帽弁、及び三尖弁にも同様に適用することができる。
【0069】
例えば、大動脈弁修復に関して使用される本発明の技術は、本発明による置換用大動脈弁アセンブリ6400を含む。1つの例示的な大動脈弁アセンブリ6400は、
図64及び
図65で表される。
図64は、
図103に示されるものに類似する、調整可能な格子アセンブリ6410を図示する。具体的には、格子アセンブリ6410は、2つ1組で互いに交差し、ストラット6412の交差点6420及び端点6422において交互様式で互いに枢動可能に接続される複数のストラット6412を含む。
図103の実施形態と同様に、格子アセンブリ6410は、この例示的な実施形態において、3つ1組のジャッキアセンブリ6430によって制御され、それぞれが近位駆動ブロック6432と、遠位駆動ブロック6434と、近位駆動ブロック6432及び遠位駆動ブロック6434を接続する駆動ねじ740とを有する。この例示的な実施形態において、駆動ねじ740は、上述のように機能する。すなわち、該駆動ねじは、縦方向に固定されるが、遠位駆動ブロック6432及び近位駆動ブロック6434に自由に回転可能に接続され、よって、一方の方向に回転させると、遠位駆動ブロック6432及び近位駆動ブロック6434が互いから離れて移動し、もう一方の方向に回転させると、遠位駆動ブロック6432及び近位駆動ブロック6434が互いに向かって移動する。そのような構成において、前者の運動は、格子アセンブリ6410を半径方向に収縮させ、後者の運動は、格子アセンブリ6410を拡張させる。
図64及び
図65で示される格子アセンブリ6410は、その拡張状態、すなわち移植する準備ができた状態であり、よって、移植部位の自然な幾何学形状に適応する。少なくとも3つのジャッキアセンブリ6430には、遠位駆動ブロック6432及び近位駆動ブロック6434の1つ又は双方の内側で、3葉弁アセンブリ6440(例えば、大動脈弁アセンブリ)の例示的な実施形態が接続される。弁アセンブリ6440は、任意の所望の材料で作製することができ、例示的な構成では、ウシの心膜組織又はラテックスで作製される。
【0070】
図66〜
図70で示されて、本明細書で開示される送達システム及び方法の例示的な実施形態は、TAVIという頭字語の、当技術分野で知られている、経カテーテル大動脈弁移植と現在称されているものにおいて、本発明の大動脈弁アセンブリ6440を経皮的に展開するために使用することができる。上で説明されるように、このシステム及び方法は同様に、置換用肺動脈弁、僧帽弁、及び三尖弁を展開するためにも使用することができる。送達システム及び大動脈弁アセンブリとしての弁アセンブリ6440の構成は、従来技術に勝る顕著な利点を提供する。既に知られているように、現在のTAVI手技には、弁傍漏出と称される、移植されたデバイスと大動脈弁輪との間での漏出の危険性がある。従来技術のTAVI手技の他の不利な点としては、移動(部分運動)及び塞栓(完全な解放)が挙げられる。そのような運動の理由は、従来技術の置換用大動脈弁を、使用及び患者の中への進入前に、移植の準備ができたときにその弁を拡張させるために使用される内側バルーン上へ、外科医の手によって押し潰すことが必要とされることである。移植部位の本来の輪が円形ではないので、また、バルーンが、移植される予め押し潰した弁に円形バルーンの最終形状をとるように強制するという事実に起因して、従来技術の移植片は、本来の輪に合致しない。そのような従来技術のシステムは、使用し難いだけでなく、バルーンが拡張されてしまうと、移植された弁を再位置付けするいかなる可能性も提供しない。
【0071】
図66から
図70への経過は、本発明の大動脈弁アセンブリ6440の例示的な移植を図示する。送達システムの種々の特徴は、明確化のために、これらの図面では図示されない。具体的には、これらの図面は、送達システムのガイドワイヤ6610及びノーズコーン6620だけを示す。
図66は、既に位置付けられたガイドワイヤ6610、及びノーズコーン6620のすぐ遠位で送達システムの中に静置される、折り畳まれた状態の大動脈弁アセンブリ6440を示す。この図において、大動脈弁アセンブリ6440及びノーズコーン6620は、右腸骨動脈の中に配置されている。
図67は、腎動脈に隣接する腹部大動脈内でガイドワイヤ6610上を前進した位置にある、大動脈弁アセンブリ6440及びノーズコーン6620を表す。
図68は、大動脈弁移植部位に直に隣接する大動脈弁アセンブリ6440を示す。最後に、
図69及び
図70は、ノーズコーン6620及び/又はガイドワイヤ6610を後退させる前の、心臓に移植された大動脈弁アセンブリ6440を示す。
【0072】
本発明の送達システム及び大動脈弁アセンブリ6440は、従来技術の不利な特徴のそれぞれを取り除く。第1に、外科医は、移植される人工器官を手で押し潰すいかなる必要性もない。大動脈弁アセンブリ6440が患者に挿入される前に、送達システムは、簡単に、格子6410の円周を、外科医によって所望され、送達システムが必要とするあらゆる直径まで、自動的且つ均一に低減させ、又は製造者により直径が低減されて、後の移植のために送達システムに装填される。本明細書で説明されるステント及び弁アセンブリは、16〜20フレンチのシース、具体的には18フレンチ以下の送達シースの内側に適合するように、4mm〜8mmの間、具体的には6mmの装填直径まで低減させることができる。大動脈弁アセンブリ6440が移植部位に到達すると、外科医は、送達システムの大動脈弁アセンブリ6440を均一且つ自動的に拡張させる。この移植位置の中への拡張は、ゆっくりで均一であるので、移植片部位での石灰化に優しい。同様に、送達システムが格子アセンブリ6410を拡張させる方法に起因するだけでなく、ストラット6412のそれぞれのヒンジ付き接続部が、各枢動ストラット6412に隣接する対応する不均一な組織壁に依存した移植の後に、格子アセンブリ6410が自然に屈曲し、撓曲することを可能にするので、均一な拡張は、移植部位の本来の非円形の周辺部を想定することを可能にする(本明細書で開示される代替のヒンジなしの実施形態によって、移植壁の自然な形状を想定することも起こる)。これらの事実のため、移植片のより良好な着座が起こり、明らかに、より良好な弁傍の封止につながる。本発明の送達システムは、従来技術に存在する全体的な調整及び取付けの代わりに、人工器官を正確にサイズ決定する。従来技術の別の極めて不利な点は、弁を拡張させるためにバルーンが弁の中央開口内で使用され、したがって、大動脈を完全に閉塞し、心臓への相当な背圧を生じさせ、患者に危険であり得ることである。対照的に、本明細書で説明される弁は、展開中に開いた状態を維持し、それによって、初期展開中の連続的な血液の流れ、及びその後の手技中の再位置付けを可能にし、また、移植片が移植部位に完全に着座していないときであっても、弁として作用するプロセスを開始することを可能にする。
【0073】
重要なことに、従来技術のTAVIシステムは、置換用弁を特定の患者の輪に直接サイズ決定することを必要とする、面倒なサイズ決定プロセスを必要とするが、このサイズ決定は、絶対的に正しいとは限らない。しかしながら、本明細書で説明される送達システム及び大動脈弁アセンブリによって、事前に弁アセンブリをサイズ決定することに対する必要性はもはや存在しない。必要なのは、移植部位の環のおおよその直径の移植拡張範囲の中間位置内のいずれかの場所を有する移植片を選択することだけである。加えて、本明細書で説明されるステントグラフト及び弁システムの両方に関し、ステントアセンブリが調整可能であるため、長期間血管内に移植された後でも調整可能である。例えば、先天性欠陥を有する小児にTAVIプロセスを行うときには、患者が成長するため数年後に取り外して新しい弁を移植する必要がある。本明細書で説明されるアセンブリは、従来技術とは対照的に、移植及びさらなる拡張後に、一定の間隔を置いて、又は定期的に、患者の成長に合わせて十分に再ドッキングされ得る。
【0074】
大動脈弁アセンブリ6440は、弁葉の重なり6542(
図65を参照されたい)を有するように構成され、該弁の重なりは、大動脈弁アセンブリ6440がその最大直径であるときには、十分すぎるほどであり、また、大動脈弁アセンブリ6440が最大直径よりも小さいときには、弁葉の重なり6542が単にそれに従って増大するだけである。この重なりの例示的な範囲は、約1mm〜約3mmの間とすることができる。
【0075】
従来技術のTAVIシステムによって提供されない、さらなる顕著な利点は、本発明の送達システム及び弁アセンブリを、所望に応じて何度も操作可能に拡張させること、収縮させること、及び再位置付けすることができるだけでなく、本発明の送達システム及び弁アセンブリを、所望に応じて手術後に再ドッキングし、再位置付けすることができることである。同様に、自動制御ハンドル(下でさらに説明される)が、単にボタンにタッチするだけで(
図105〜
図107を参照されたい)、延長、後退、調整、傾斜、拡張、及び/又は収縮といった各操作を行うので、外科医に対する本発明の送達システム及び弁アセンブリを使用するための習熟曲線は、大幅に低減される。
【0076】
本発明の格子アセンブリ及び送達システムの別の例示的な使用は、本明細書で開示されるデバイス、システム、及び方法に加えることができるか、又は独立型とすることができる、格子作動のバスケットフィルタに関する。そのような栓状傘は、例えばEdward
Lifesciencesによって製造されるEMBOL−X(登録商標)Glide
Protection Systemよりも良好に機能する。そのようなフィルタは、ドッキングジャッキに取り付けられ、よって、デバイスが拡張するにつれて適所で自動的に拡張するが、外科医の側でいかなる追加的な労力も伴わずに、送達システムとともに取り外される。
【0077】
本発明による置換用心臓弁アセンブリ7100の別の例示的な実施形態は、
図71〜
図83で示される。例示的な実施形態は、大動脈弁について示されるが、本発明は、それに限定されない。この実施形態は、例えば、弁小葉に対する適切な変化によって、肺動脈弁、僧帽弁、及び三尖弁にも同様に適用することができる。
図71〜
図75の種々の図で示される置換用心臓弁アセンブリ7100は、ステント格子7110と、グラフトエンクロージャ7120と、ジャッキアセンブリ3000と、グラフト材料7130と、弁小葉7140と、交連板7150とで構成される。置換用心臓弁アセンブリ7100の操作及び構造は、その中のグラフト材料7130及び/又は弁小葉7140を取り外した種々の図によって、
図76〜
図83を参照して説明される。
図75及び
図76において、置換用心臓弁アセンブリ7100は、拡張状態であり(本明細書で使用されるとき、「拡張状態」は、示される状態が、人工器官の最大拡張状態であることを意味せず、人工器官が、何らかの解剖学的部位に対してサイズ決定するのに十分に拡張されることを意味する)、よって、移植部位の自然な幾何学形状に適応する。グラフト材料を取り外すことによって(
図76を参照されたい)、3つの弁小葉7140の周囲の構造が容易に観察される。近位駆動ブロック3020及び遠位駆動ブロック3010は、内部構成、並びにその中に配置される支持ロッド3080、駆動ねじ740、及び遠位駆動ねじカプラ部3052を有する。
【0078】
ステント格子7110は、ステント格子7110の各ストラット7112の中央の枢動点及びグラフトエンクロージャ7120を除いて、本明細書で説明される以前の実施形態に類似する。示される例示的な実施形態において、中央の枢動点は、単にステント格子7110の2つのストラット7112の接続部を枢動させるだけではない。加えて、枢動接続部の最外周面は、例えば、この例示的な実施形態では、尖った円錐の形態の、組織アンカー7114を備える。いくつか例を挙げれば、スパイク、フック、ポスト、及びカラムを含む、他の外側組織アンカー形状も同様に可能である。組織アンカー7114の外側端は、隣接する組織の中へ挿入する構造を提供することによって、能動的に拡張されるステント格子7110によって与えられる外向きの外力を補い、それによって、移動及び塞栓をさらに阻止する。
【0079】
グラフトエンクロージャ7120も、下で説明されるように、能動的に拡張されるステント格子7110によって与えられる外向きの外力を補う。しかしながら、グラフトエンクロージャ7120の第1の特徴は、グラフト材料7130を置換用心臓弁アセンブリ7100に固着させることである。グラフト材料7130は、ステント格子7110に対して非常に堅固である必要がある。グラフト材料7130が、例えば、ステント格子7110の外側ストラット7112に直接取り付けられた場合、ステント格子7110を拡張及び収縮させるときに隣接するストラット7112が行うハサミ作用は、グラフト材料7130のそこへの固定に悪影響を与える。−これは特に、グラフト材料730が外側ストラット7112に縫い付けられ、ねじ山が外側ストラット7112の内面までそれを貫通し、それに対して、使用中に、内側ストラット7112の外面がハサミ作用を行う場合に当てはまる。故に、グラフトエンクロージャ7120は、
図71〜
図87で示されるように、ステント格子7110の複数の外側ストラット7112に提供される。各グラフトエンクロージャ7120は、その両端部のうちの一方の端部で、外側ストラット7112の対応する端部に固定して取り付けられる。次いで、グラフトエンクロージャ7120の対向する自由端部は、例えば、
図71〜
図75で示されるように、グラフト材料7130の内側を通して編み込まれ、次いで、グラフト材料7130の外側からその内側に戻る。グラフトエンクロージャ7120の対向する自由端部は、外側ストラット7112のもう一方の端部に固定して取り付けられる。この編み込みは、グラフト材料7130の外周側をステント格子7110に確実に固着する。
【0080】
上で述べられるように、グラフトエンクロージャ7120は同時に、置換用心臓弁アセンブリ7100を移植部位に固着する縁部及び突出部を有する、能動的に拡張されるステント格子7110によって与えられる外向きの外力を補う。より具体的には、グラフトエンクロージャ7120は、ステント格子7110の外側ストラット7112の例示的な実施形態のように直線状ではない。その代わりに、グラフトエンクロージャには中央オフセット7622が形成され、該中心オフセットは、任意の形態をとることができ、これらの例示的な実施形態では、波形である。この中央オフセット7622は、最初に、グラフトエンクロージャ7120が、組織アンカー7114を妨害しないことを可能にする。中央オフセット7622はまた、例えば、
図76及び
図77の右部並びに、特に、
図82及び
図83の図に見られるように、グラフトエンクロージャ7120の中央部をステント格子7110から離して持ち上げる。中央オフセット7622の半径方向外向きの突出部は、隣接する移植部位の組織の中へ挿入し、及び/又は突き刺し、それによって、置換用心臓弁アセンブリ7100の任意の移動又は塞栓を阻止する。中央オフセット7622を適切に成形することによって、棚7624が形成され、該棚は、置換用心臓弁アセンブリ7100内の血液の流れに対して垂直な線と交差する、直線縁部を提供する。
図76、
図77、及び
図79〜
図81に示される中央オフセット7622の例示的な実施形態において、棚7624は下流側に対面しており、したがって、収縮期圧を受けたときに、置換用心臓弁アセンブリ7100が下流方向に移動するのを実質的に阻止する。或いは、中央オフセット7622は、上流側に対面している棚7624によって成形することができ、したがって、拡張期圧を受けたときに、置換用心臓弁アセンブリ7100が上流方向に移動するのを実質的に阻止する。グラフト材料は、末端の移植可能な直径の所望の範囲の全体にわたって、密接に格子に取り付けることができる必要がある。これを達成するために、グラフト材料は、格子と同じような様式で移動する材料の構造で作製される。すなわち、その直径が増加するにつれて、その長さは減少する。この種の運動は、糸の編組によって、又は最小スケールの繊維が編組と同様に配向されるグラフト材料の製作を通して達成することができ、該繊維が、格子に類似するハサミ作用を受けることを可能にする。材料の1つの例示的な実施形態は、ポリエステル糸によって作製される高エンド数の編組である(例えば、40〜120デニールの糸を使用した288エンド)。この編組は、次いで、全ての糸をともに接合することによって、安定性を生じさせ、浸透性を低減させるために、ポリウレタン、シリコーン、又は類似する材料で被覆することができる。このような被覆を放射線不透過性材料によりドープ又は充填して、X線透視検査による視認性を向上させることができる。被覆(例えば、ポリウレタン)の量を、大きな摩耗又はトリミングが行われる場合に増加するように変化させてもよい。編組がレーザ切断によりトリミングされる場合、例えば、切断プロセスにより切断縁部を封止してほつれを防止し、ポリウレタン等の被覆の必要性を低減させるか、又はなくすことができる。同様に、直径が約2〜10ミクロンの撚糸を形成する類似するポリマーで、紡糸繊維の管を作製することができる。これらの発明的なグラフト製作方法は、厚さが約0.005インチ〜0.0015インチ(0.127mm〜0.381mm)であり、また、必要な全ての物理的特性を有する材料を提供する。例えば、
図195〜
図199を参照されたい。患者へのより簡単な導入のための圧縮直径を低減させるために、薄い材料が望ましい。この材料はまた、格子が広範囲の可能な末端直径にわたって封止することを必要とされる、ステントグラフト人工器官においても重要である。調整可能な材料は、上流側カフの最終的な末端直径からグラフトの本体への遷移を行うことができる。
【0081】
図73で最も良く示されるように、弁小葉7140は、交連板7150によってジャッキアセンブリ3000に接続される。ジャッキアセンブリ3000に対する交連板7150の固定接続は、
図82及び
図83で最も良く示される。各弁小葉7140は、2つの隣接する交連板7150の間で接続される。各交連板7150は、例えば平板に対して垂直に突出するピンによって接続される丸みのある縁部を有する、2つの垂直に配置される平板で構成される。2つの隣接する弁小葉7140に対して平板を挟持することは、その中で弁小葉7140を確実に保持する一方で、同時に、長期間の使用中に、捕らえられた弁小葉7140を破る傾向がある鋭い縁部を形成しない。しかしながら、この構成は、単に例示的なものに過ぎない。これは、その周囲に小葉が巻き付けられ、適所に縫い付けられる、簡単なロッド設計と置き換えることができる。
【0082】
各弁小葉7140は、他の弁小葉7140と別の構造とすることができるが、
図71〜
図78は、3組の交連板7150のそれぞれの間で、葉形成材料の一部がそれぞれ挟持されている3つの小葉7140を図示する(材料は、代替として、1つ又は複数の交連板の周囲で挟持することができる)。弁小葉7140の上流側端部は、置換用心臓弁アセンブリ7100が機能するように固着されなければならない。したがって、例示的な実施形態において、グラフト材料7130の上流側端部は、
図78で示されるように、弁小葉7140の上流側側部で、置換用心臓弁アセンブリ7100の周囲に巻き付けられ、それに固定して接続される。そのような構成において、弁小葉7140の上流側縁部は、ステント格子7110の円周の周囲で、グラフト材料7130に完全に固着される。縫い目は、グラフトの2つの層及び小葉材料の上流側縁部を貫通して、縁縫いした縁部を形成することができる。
【0083】
図79〜
図81は、グラフト材料7130及び弁小葉7140を取り外した、種々の拡張状態及び収縮状態のステント格子7110を示す。
図79は、拡張状態の、ステント格子7110及びジャッキアセンブリ3000を図示し、該拡張状態では、組織アンカー7114及び中央オフセット7622がステント格子7110の外周面から外に半径方向に突出し、よって、ステント格子7110が移植部位の自然な幾何学形状に適応する。
図80は、中間拡張状態の、ステント格子7110及びジャッキアセンブリ3000を図示し、
図81は、ほぼ収縮状態の、ステント格子7110及びジャッキアセンブリ3000を図示する。
【0084】
図84及び
図85は、ジャッキアセンブリ3000を支持し、且つジャッキアセンブリ3000の種々の制御ワイヤ750、770、2182、3098を保護するための、本発明による送達システム及び方法の支持システム8400の例示的な実施形態を示す。これらの図面において、支持バンド8410は、直線状に示される。この配向は、単に、図面を作成するために使用される、コンピュータ描画ソフトウェアの制限だけに起因する。これらの支持バンド8410は、置換用心臓弁アセンブリ7100のための送達システムの残部に接続されていないときには、示されるように直線状になる。送達システムの遠位端部に接続されると、例えばワイヤガイドブロック116を有する
図1、
図3、
図4、及び
図9で概略的に示されるように、全ての制御ワイヤ750、770、2182、3098は、内向きに導かれ、それによって保持される。同様に、支持バンド8410の近位端部8412は、ワイヤガイドブロック116に固着され、したがって、半径方向内向きに屈曲する。
図84及び
図85で示される支持バンド8410の例示的な実施形態において、その遠位端部8414は、例示的なヒンジアセンブリ8416によって、接続解除器駆動ブロック3030に固定して固着される。したがって、この例示的な実施形態において、支持バンド8410は、送達システムが機能することを可能にする、材料及び厚さである。例えば、移植部位に向かって進行しながら、置換用心臓弁アセンブリ7100は、湾曲した構造を通り抜ける。故に、支持バンド8410は、湾曲した構造に対応して屈曲しなければならなくなる一方で、同時に、制御ワイヤ750、770、2182、3098が送達システムの任意の配向又は湾曲で機能するのに十分な支持を提供する。
【0085】
本発明による支持バンド8610の代替の例示的な接続アセンブリは、
図86及び
図87で示される。各支持バンド8610の遠位端部8614は、ヒンジアセンブリ8416によって、接続解除器駆動ブロック3030に接続される。ヒンジアセンブリ8416は、例えば、支持バンド8610の遠位端部8614の円筒フォーク、心棒(図示せず)、及び円筒フォークをボスに接続するための心棒の心棒孔を画定する接続解除器駆動ブロック3030の半径方向に延在するボスによって形成することができる。そのような構成では、屈曲運動が、支持バンド8410自体を屈曲させる代わりに、ヒンジアセンブリ8416によって調整されるので、支持バンド8610は、支持バンド8410とは異なる材料又は物理的特性を有することができる。支持バンド8610の近位端部は、
図86又は
図87で示されない。それでも、近位端部は、支持バンド8610の遠位端部と同じであり得るか、又は支持バンド8410の遠位端部8614と同じであり得る。支持バンドを外側に予め付勢することによって、該支持バンドは、制御ワイヤを偏向させるのに必要とされる力を低減させる、又は取り除くことを補助することができる。
【0086】
大動脈弁としての置換用心臓弁アセンブリ7100の実施形態は、
図88で、患者の心臓の罹患した弁小葉内に移植されて示される。この図面からわかるように、自然の弁は、置換用心臓弁アセンブリ7100の中央線で、ある空間を占める。したがって、置換用心臓弁アセンブリ7100のステント格子は、ウエストライン、すなわちより狭い中央線を有するように、樽形状の代わりに砂時計形状にすることができる。そのような構成において、置換用心臓弁アセンブリ7100は、適所で自然に位置付けられ、保持される。
【0087】
本発明の能動的に制御可能なステント格子のさらなる例示的な実施形態、並びにステント格子を送達するための送達システム及び方法は、
図89〜
図93で示される。この実施形態において、人工器官8900は、ステント格子110、3810、4200、4600、6410、7110と、3つのジャッキアセンブリ700、2100、3000、6430とを含む。これらの図面はまた、本発明の人工器官8900のための送達システム8910の例示的な実施形態の遠位部分も図示する。ジャッキアセンブリ700、2100、3000、6430は、駆動ワイヤ750及び接続解除ワイヤ700とともに示され、これらは、ジャッキアセンブリ700、2100、3000、6430のそれぞれからワイヤガイドブロック116の中へ近位に延在するように図示される。図面を生成するプログラムの制限のため、これらのワイヤ750、770は、ジャッキアセンブリ700、2100、3000、6430のそれぞれからワイヤガイドブロック116に向かって通り抜けるときに、角度のある屈曲を有する。しかしながら、これらのワイヤは、本発明のそのような角度付きの屈曲を有しない。その代わりに、これらのワイヤ750、770は、破線8920によって
図89で概略的に図示される、段階的及び平坦なS字形を形成する。人工器官8900の操作は、ワイヤ750、770に関する傾斜特徴を除いて、全ての状況において上で説明される通りである。すなわち、それぞれの方向における駆動ワイヤ750の回転は、ステント格子110、3810、4200、4600、6410、7110を収縮及び拡張させる。次いで、ステント格子110、3810、4200、4600、6410、7110が所望の解剖学的組織に正しく移植されると、接続解除ワイヤ770を回転させて、近位接続解除器駆動ブロックを連結解除し、それによって、送達システム8910の取外しを可能にする。この実施形態は、人工器官傾斜機能を有する送達システム8910を提供する。より具体的には、送達システム8910の図示されないハンドル部分において、駆動ワイヤ750及び接続解除ワイヤ770の各対は、互いに対して縦方向に固定することができ、該対の全てがそれぞれ固定されると、各対を遠位及び/又は近位に移動させることができる。
【0088】
したがって、そのような構成において、文字「X」が付されたワイヤ750、770は、ともに近位に移動し、他の2対のワイヤY及びZは、遠位に移動し、よって、人工器官8900全体は、
図90で示される構成に傾斜する。或いは、ワイヤXが適所で保たれる場合は、ワイヤYが近位に移動し、ワイヤZが遠位に移動し、よって、人工器官8900全体は、
図91で示される構成に傾斜する。同様に、ワイヤXが遠位に移動され、ワイヤY及びZが近位に移動された場合、人工器官8900全体は、
図92で示される構成に傾斜する。最後に、ワイヤXが遠位に延長された場合、ワイヤYがさらに遠位に延長され、ワイヤZが近位に移動し、人工器官8900全体は、
図93で示される構成に傾斜する。
【0089】
なおさらなる本発明の能動的に制御可能なステント格子の例示的な実施形態、並びにステント格子を送達するための送達システム及び方法は、
図94〜
図102で示される。この実施形態において、人工器官9400は、近位の能動的に制御されるステント格子110、3810、4200、4600、6410、7110、及び2つだけの対向するジャッキアセンブリ700、2100、3000、6430を有する、ステントグラフトである。2つの追加的なジャッキアセンブリ700、2100、3000、6430の代わりに、この実施形態は、2つの対向する枢動接続解除器駆動ブロック9430を含む。これらの接続解除器駆動ブロック9430は、例えば
図96の図で円周方向に90度回転させて示されるように、半径方向外向きに延在し、2つの交差するストラット9410のための中央枢動接合部を形成する、ボス9432を有する。2つの接続解除器駆動ブロック9430は、枢軸として作用して、人工器官9400が、2つの対向する組の制御ワイヤ750、770が対向する遠位方向及び近位方向に移動するときに、斜板の様式で傾斜することを可能にする。
図94は、近位に移動した近方の1組の制御ワイヤ750、770、及び遠位に移動した遠方の組を示す。
図95において、
図96及び
図97の人工器官9400のように、人工器官9400の斜板は、傾斜しておらず、その後者は、単に、前者との比較として90度回転させたものに過ぎない。
図98及び
図99は、管状グラフト9820の近位端部の内側にステント格子9810を有するステントグラフトの一部として、人工器官9400を表す。
【0090】
図100〜
図102の人工器官9400もステントグラフトであるが、この例示的な実施形態において、グラフト10010は、例えば腹部大動脈に移植されるように分岐される。
図101及び
図102は、例えば、腹部大動脈瘤の近位頸等の人工器官9400が移植される蛇行した血管を通り抜けるために、人工器官9400の近位端部を、本発明の斜板アセンブリによってどのように傾斜させることができるのかを示す。
【0091】
図103及び
図104で示される人工器官10300の例示的な実施形態は、斜板アセンブリを含まない。その代わりに、送達システムは、支持バンド10312の全てを、送達カテーテル10316の遠位端部で接続される円筒支持基部10314に結合する、遠位支持構造10310を含む。
【0092】
人工器官10300のための送達システム10500全体の例示的な実施形態は、
図105〜
図107で表される。
図105において、送達システムは、完全に自己内蔵型及び電源内蔵型であり、また、一体型制御システム10510を有する能動的に制御可能なステント格子を含む。人工器官10300は、拡張状態であり、グラフト材料は、後ろ半分を示すために断面である。一体型制御システム10510の変形例は、制御コマンドをシステムに無線で通信10610する、無線制御デバイス10600である。
図107で示される一体型制御システム10510の別の変形例は、制御命令をシステムに通信するためのコード10710によって、制御デバイス10700を分離する。この例示的な実施形態において、制御器は、四角形で構成される4つのロッカースイッチ10712、10714、10716、10718を備え、スイッチのそれぞれは、前進位置、中立位置、及び後退位置を有する。
【0093】
本発明による能動的に制御可能なステント格子を有する人工器官を操作するための制御ハンドル10800のさらに別の例示的な実施形態は、
図108〜
図118で表される。
図108及び
図109の図は、制御ハンドル10800内に含まれる種々のサブアセンブリを示す。ユーザインターフェースサブアセンブリ10810は、本発明によるシステム及び方法の操作を実行するようにプログラムされる回路を有する、回路基板10812を含む。ユーザインターフェースサブアセンブリ10810の電子機器は、ディスプレイ10814と、ボタン、スイッチ、レバー、トグル等の種々のユーザ入力デバイス10816とを備える。シース運動サブアセンブリ11000は、シース運動モータ11010と、シース運動伝達装置11020と、シース運動駆動軸11030と、並進可能な送達シース11040とを含む。張力緩和部11042は、ハンドルシェル10802で送達シース11040を支持するために提供される。電力サブアセンブリ11200は、ハンドル10800内で、電力接点11220をその中に含む電池区画11210の中に適合するようにサイズ決定され、該電力接点は、モータの全てを含む制御ハンドル10800上の全ての電子機器に電力を供給するために、少なくとも回路基板10812に電気的に接続される。ニードル運動サブアセンブリ11300は、送達シース11040が蛇行した解剖学的組織を通って屈曲させられ、異なる屈曲がニードルのそれぞれに与えられているときであっても、ニードルの展開を制御し、ニードル上の張力を継続的に均一に保つ。ニードルは、この例示的な実施形態において、合計3つである。最後に、ジャッキエンジン11600は、ジャッキアセンブリに関する全ての運動を制御する。
【0094】
ユーザインターフェースサブアセンブリ10810は、外科医が、送達システム10800の全ての状況に関するリアルタイムデータを得ることを可能にする。例えば、ディスプレイ10814は、実際の湾曲した着設部位により良く近似させるために、数ある情報の中でも、ステント格子の展開状態、ステント格子の現在の直径、ステント格子の任意の斜板関節角、システムの中の種々のセンサからの全てのデータをユーザに示し、また、情報のいずれかと関連付けられる音声フィードバックを提供するようにプログラムされる。ユーザへの1つの情報のフィードバックは、送達シース11040が十分遠くに後退されて、人工器官が完全にシースから出た旨の、ディスプレイ10814上の指示子とすることができる。他の情報は、例えばトルク計、ステッパモータに対する抵抗のグラフィカル変化、機械式スリップクラッチ、格子上の直接的な負荷/圧力センサを通して、どのくらいの力が血管壁から格子に与えられているのかを示す、力フィードバックの指示子とすることができる。そのような情報によって、人工器官は、最適な格子の拡張(OLE)を有し、その最も良い封止を達成することができ、移動及び塞栓が減少し、組織の損傷が起こる前に拡張を止めるために外向きの力の量を制限(すなわち、力の上限)することができる。適切なサイズの視覚的インジケータは、1:1の比率でステント格子の実際の直径位置を示すこともできる。人工器官の内側及び/又は外側(例えば、格子の着設点の上側及び下側)で測定を行うための他の可能なセンサを、本発明の電動送達システム又はハンドルに加えることができる。これらのデバイスは、例えば、ビデオカメラ、人工器官/二重管腔カテーテルの周囲を通る血液を示し、且つ圧力勾配を示す流れを検出するためのフローワイヤ、ドップラーデバイス、固有圧力センサ/トランスデューサ、及び着設区間のインピーダンス、血流予備量比、並びに心臓内/血管内超音波を含む。超音波センサの例について、超音波デバイスを送達システムのノーズコーンに組み入れて、延長又は後退させて移植片の位置付けを助けることができる。加えて及び/又は代わりに、移植片の上下の圧力を測定することにより、ハンドル内に位置する圧力センサ又は圧力センサへの管腔が、心拍出量に伴ってオリフィス面積を計算するために使用可能な圧力勾配をもたらすことができる。
【0095】
ユーザの1本の指が届く範囲にユーザインターフェースアクチュエータ10816の全てがあることは、外科医が、移植手技の全体を通してシステム全体を片手で操作することを可能にすることによって、一意的で有意な利点を提供する。全ての機械式の従来技術のシステムでは、トルクが印加されるときに、もう一方の手が必要である。単一のボタンを押すこと、又はマルチパートスイッチをトグルすることは、ユーザのもう一方の手に対するあらゆる必要性を取り除く。異なる種類のボタン/スイッチを使用することで、任意の副手技について粗調整及び微調整を行う能力等の、改良された制御をユーザに提供することを可能にする。例えば、格子の拡張は、最初に、所与の予め定義された直径まで自動的に直接拡張させることによって大まかに行うことができる。次いで、1度に1ミリメートル等の微調整によって、さらなる拡張を行うことができる。直径の変動は、開く方向及び閉じる方向の双方で行うことができる。拡張直径を変動させる前、変動中、及び/又は変動させた後に、人工器官に角度を付ける必要がある場合、ユーザは、各ジャッキねじ又は制御ワイヤを個々に操作して、移植片の上流端部をジンバル支持することができ、よって移植片は血管の配向に適合し、直径/関節双方の変化を通じて、医師は、耐漏性を確認するために、造影剤を注入することができる。示されるニードル展開の例示的な実施形態は、手動式であるが、この展開は、自動的に行うことができ、よって、人工器官が移植され、ユーザが、移植が最終的であることを示した後にだけ、係合アンカーの自動的な展開を行うことができる。送達システムをドッキング解除することに関して、この解放は、例えば押しボタンの、1回のタッチを伴い得る。また、一体型造影剤注入アセンブリによって、1回のタッチで、移植部位で造影剤の注入を行わせることができる。
【0096】
シース運動サブアセンブリ11000も、回路基板10812上の単一のボタン又はスイッチによって制御することができる。ユーザインターフェースが2位置トグルである場合、遠位の押下をシースの延長と対応させることができ、また、近位の押下をシースの後退と対応させることができる。そのようなスイッチは、2つの回転方向でシース運動モータ11010を作動させるように操作可能である。したがって、モータ心棒11022の回転は、伝達装置11024、11026を、それに対応して回転させ、それによって、ねじ付きシース運動駆動軸11030を、遠位に延長させるか、又は近位に後退させる。伝達装置の例示的な実施形態は、モータ心棒11022に直接接続される、第1の歯車11024を含む。第1の歯車11024は、より大きい中空の駆動軸歯車の外歯と噛合される。駆動軸歯車11026の内孔は、シース運動駆動軸11030の雄ねじに対応する、ねじ山を有する。このように、駆動軸歯車11026が回転すると、シース運動駆動軸11030が並進する。駆動軸歯車11026は、筐体シェル10802内での回転を可能にするために、ブッシング11028によって取り囲まれる。シース運動駆動軸11030の回転を防止するために、
図111で示されるように、シース運動駆動軸11030は、ハンドルシェル10802に接地されるキーに対応する断面形状を有する、縦方向のキー溝11032を有する。シース運動駆動軸11030も、多管腔ロッド10804(
図112で最も良く示される)に適応するように中空であり、各管腔内に、制御ワイヤ750、770、2182、3098のいずれか、及びガイドワイヤ6610を収容し、これらの管腔は、送達シース10040の遠位端部でワイヤガイドブロック116内のものに対応する。
【0097】
電力サブアセンブリ11200のサイズ及び形状は、電池区画11210並びに種々のワイヤ及びロッドによってだけ形状が限定され、該ワイヤ及びロッドは、それらが多管腔ロッド10804の管腔に進入するまで、ニードル運動サブアセンブリ11300及びジャッキエンジン11600を通り抜ける。これらのワイヤ及びロッドのいくつかは、
図112において破線で図示される。回路基板10812及び/又はモータへの電力分配は、電力接点11220を通して実施される。そのような電力分配線は、明確化のために図示されない。シースの延長及び後退を駆動するために、この方法、又はラックアンドピニオン又はドラッグホイール等の類似物を使用することができる。
【0098】
ニードル運動サブアセンブリ11300は、
図113〜
図115を参照して説明され、
図113で最も良く示される。人工器官の中のニードルをニードル運動サブアセンブリ11300に接続する、ニードルロッド11302のそれぞれは、張力ばね11310、オーバーストロークばね11320、及び制御管11332と関連付けられる。3つの制御管11332は、オーバーストロークばね11320によって制御スライダ11330に対して縦方向に保持される。ニードル上の力がオーバーストロークばね11320の力よりも大きくない限り、ニードルロッド11302の運動は、制御スライダ11330に従う。ニードル展開ヨーク11340は、制御ハンドル10800のシェル10802に対して摺動する。ニードル展開ヨーク11340が遠位に移動して、制御スライダ11330と接触すると、ニードル展開ヨーク11340は、制御スライダ11330及びニードルロッド11302を遠位に携持し、それによって、ニードルを展開する。
図113から
図114への移行は、制御スライダ11330を近位に付勢することによって、張力ばね11310がどのようにニードル上の張力を保つのかを示す。ニードルの展開は、
図114から
図115への移行によって示される。上で述べられるように、ニードル3070は、それぞれが屈曲したニードル先端部3072を有する。ニードル3070がニードル運動サブアセンブリ11300まで直接接続される構成では、送達カテーテル11040の屈曲が種々の異なる力をニードルロッド11302に与える可能性が高い。これらの力は、ニードルロッド11302を引く又は押す傾向があり、それによって、所望されないときにニードル3070が延長される可能性がある。故に、各張力ばね11310は、これらの運動を補償するためにニードルロッド11302に縦方向に接続され、屈曲したニードル先端部3072を、遠位駆動ブロック3010のニードル先端溝3013内に保つ。
【0099】
ニードルの展開は、1回限りの発生であることが(理想的に)意図されるので、ヨーク捕捉部11350がヨークストロークの端部に提供される。ヨーク11340の捕捉は、
図116でわかる。当然、この捕捉は、そのような解放が所望される場合、ユーザによって解放することができる。最後に、展開されるときにあまりに多くの力がニードルに与えられた場合、オーバーストロークばね11320の力が勝り、制御管11332が、制御スライダ11330に対して移動することを可能にする。オーバーストロークばね11320の圧縮は、
図115を作成したソフトウェアの制限のため、
図115に示すことができない。
【0100】
ジャッキエンジン11600は、種々のジャッキアセンブリ700、2100、3000、6430内の全ての部品の回転を制御するように構成される。
図108〜
図118で示される制御ハンドル10800の例示的な実施形態は、ジャッキアセンブリ3000及び6430に類似する3つのジャッキアセンブリを利用する。換言すれば、ニードルは、双方のアセンブリの近位駆動ブロックとは別体であり、2つの回転制御ワイヤ750、770だけしか必要としない。したがって、3つのジャッキアセンブリの場合、合計で6つの制御ワイヤ−−3つが駆動ワイヤ750用で、3つが接続解除ワイヤ770用である−−が必要とされる。これらの制御ワイヤ750、770は、それぞれ、6つの貫通孔10806(
図115の中央ガイドワイヤ貫通孔10807を取り囲む)及び近位端部を通して誘導され、また、
図115及び
図116で示される、6つの入れ子式のワイヤ制御カラム11510のそれぞれの遠位部11512に縦方向に固定される。全ての制御ワイヤ、さらにニードルロッド11302は、入れ子式のワイヤ制御カラム11510のそれぞれの遠位部11512で終端し、縦方向に固定される。これらの入れ子式のワイヤ制御カラム11510、11512の各部は、剛体であり、よって、その近位部の回転は、遠位部11512の対応する回転を生じさせ、それによって、対応する制御ワイヤ750又は770の回転を生じさせる。全ての制御ワイヤ、さらにニードルロッド11302が、入れ子式のワイヤ制御カラム11510のそれぞれの遠位部11512で終端し、縦方向に固定される理由は、それらの近位端部から、移植されるステントアセンブリに縦方向に固定される遠位端部までのワイヤ/ロッドの不法行為の湾曲が、ワイヤを縦方向に移動させることである。いかなる遊びもない場合、ワイヤ/ロッドは、それらが接地される任意の部分に、例えば、遠位端部のステントアセンブリのねじ付き接続部に縦方向の力を与える。この縦方向の力は、望ましくなく、また、例えば駆動ねじがそれらのねじ山から緩むのを防止するために、回避されるべきである。この潜在的な問題を回避するために、各ワイヤ/ロッドの近位端部は、入れ子式のワイヤ制御カラム11510のそれぞれの遠位部11512に縦方向に固定される。遠位部11512は、例えば、ワイヤ制御カラム11510の近位部の対応する、内側の角ロッド形状の管腔の内部を摺動可能で移動可能な、外側の角ロッド形状を有することによって、ワイヤ制御カラム11510にキー止めされる。したがって、この構成において、任意のワイヤ/ロッドへの任意の縦方向の力は、ワイヤ/ロッドのそれぞれに及ぼされる力に応じて縦方向に近位又は遠位に移動する、遠位部11512のそれぞれによって取り込まれる。
【0101】
格子の破壊、又は駆動ねじのねじ山の潰れを防止するために、トルクを制限することが必要とされる。これは、電流の制限によって、又は駆動モータと太陽歯車との間に配置されるクラッチ機構を通して、ソフトウェアで達成することができる。一体型造影剤注入システムは、別の管腔を通して送達システムのハンドルの中へ組み込むことができる。したがって、電動ハンドルによって、ハンドルの一部としての電動注入が可能になる。
【0102】
駆動ワイヤ750の全てが同時に回転することが必要とされるので、また、接続解除ワイヤの全ても同時に回転するという事実のため、ジャッキエンジン11600は、ワイヤ750、770の各組について、別個の制御モータ11650、11670(
図115を参照されたい)及び別個の伝達装置を含む。
図117の図は、駆動ねじ制御モータ11650の伝達装置を図示する。駆動ねじ制御モータ11650の出力軸11651は、より大きい第2の駆動歯車11653と相互接続される、第1の駆動歯車11652である。第2の駆動歯車11653は、同軸遊星歯車アセンブリの一部であり、ガイドワイヤ6610がそこを貫通するための中央孔をその中に有する。
図118で示されるように、中空ロッド11654は、中央孔に固定して接続され、伝達装置ハウジング11610を通ってその遠位側まで延在し、そこに第3の駆動歯車11655がある。第3の駆動歯車11655は、3つの最終駆動歯車11656と相互接続され、最終駆動歯車11656のそれぞれは、各駆動ワイヤ750と関連付けられる3つの入れ子式のワイヤ制御カラム11510のうちの1つの近位部のそれぞれに固定して接続される。故に、駆動ねじ制御モータ11650が回転すると、3つの最終駆動歯車11656が制御カラム11510を回転させ、該制御カラムがジャッキアセンブリ3000、6430の駆動ねじを回転させる。
【0103】
接続解除制御モータ11670は、同じような様式で操作する。より具体的には、また、
図116に関して、接続解除制御モータ11670の出力軸11671は、より大きい第2の接続解除歯車11673と相互接続される、第1の接続解除歯車11672である。第2の接続解除歯車11673は、同軸遊星歯車組立体の一部であり、ガイドワイヤ6610がそこを貫通するための中央孔をその中に有する。
図118で示されるように、中空ロッド11674は、中空ロッド11654の周りで中央孔に固定して接続され、伝達装置ハウジング11610を通ってその遠位側まで延在し、そこに第3の接続解除歯車11675(中空ロッド11654の周りにも配置される)がある。第3の接続解除歯車11675は、3つの最終接続解除歯車(図示せず)と相互接続され、最終接続解除歯車のそれぞれは、各接続解除ワイヤ770と関連付けられる3つの入れ子式のワイヤ制御カラム11510のうちの1つの近位部のそれぞれに固定して接続される。故に、接続解除制御モータ11670が回転すると、3つの最終接続解除歯車が制御カラム11710を回転させ、該制御カラムがジャッキアセンブリ3000、6430の固定具ねじを回転させる。接続解除駆動の起動はまた、含まれる場合は、ニードル接続部も緩める。移植片全体がドッキングジャッキから解放される前にニードルを接続解除させるための1つの例示的な実施形態は、より少ない数のねじ山をニードル接続部に提供する。
【0104】
本明細書では、送達システムの全ての作動に関する手動解放の存在は示されない。そのような手動解放は、手術中の任意のときに、電子装置の作動のいずれか又は全ての無効化、又は移植手技の中止のいずれかを可能にする。手動解放サブアセンブリは、送達シースの後退及び延長、全てのステント格子の拡張及び収縮、並びに全ての接続解除駆動ブロックのドッキング解除に関して存在する。各手動解放の例示的な一実施形態は、1方向のみの回転を可能にするレバー及びラチェットアセンブリである。手動解放は、例えば、電子機器又はソフトウェアの故障がある場合、又はバッテリーが切れている場合に何かを不具合があるとして検出するとき、及びユーザがステント格子又はステントアセンブリの他の実施形態を移植することなく、送達システムを患者から取り外すことを希望するときに使用される。送達シースに関して、例えば、手動解放は、送達シースを後退又は延長することが望ましいことを意味する。延長方向においては、送達シースができるだけ延長されるため、場合によって再外装を達成することができ、このときに遠位ノーズコーンが送達シース内へ後退される。このような状況で、機構は、送達シースをさらに延長するのに必要な力が大きすぎること、又は送達シースが設計された範囲で延長されていることをユーザが判定するまで、送達シースを徐々に遠位に延長する。説明した種々の手動解放機構のそれぞれの場合において、機構は、システムを壊すほどの大きな力をユーザが入力することを防止するトルク及び/又は力制限デバイスを有する。後退方向においては、送達シースができるだけ後退されるため、移植片の移植を達成することができる。このような状況で、機構は、送達シースをさらに延長するのに必要な力が大きすぎること、又は送達シースが移植を行うのに必要な範囲で後退されたことをユーザが判定するまで、送達シースを徐々に遠位に後退させる。ステント格子の実施形態に関して、手動解放は、ステント格子をできるだけ収縮させることが望ましいことを意味する。したがって、ラチェットは、全ての駆動ねじを、ステント格子を収縮させる方向に徐々に回転させる。この手動解放を双方向にして、ステント格子の強制拡張を行わせ得ることも等しく可能である。同様に、別個の手動解放を一方向にし、一方向にのみ回転してステント格子を拡張させることができる。接続解除駆動ブロックのドッキング解除に関して、手動解放は、移植が受け入れ可能であり望まれているが、ある理由で、接続解除を妨げる制御管の1つ又は複数によって接続解除を行うことができない状況でのみ使用される。このような状況では、ラチェットは、制御管に接続されたコイル/ワイヤを徐々に後退させることができる。この運動が縦方向のみであり、数ミリメートルのものであるため、ラチェットをレバー又はプルノブに置き換えることができる。最後に、ノーズコーン(及びその制御管腔)の後退に関して、手動解放は、ノーズコーンをできるだけ近位に移動させて、再外装を場合によって達成可能にすることが望ましいことを意味する。このような状況では、ラチェットは、ノーズコーンをさらに後退させるのに必要な力が大きすぎること、又はノーズコーンが所望の範囲で後退されていることをユーザが判定するまで、ノーズコーン制御管腔を徐々に近位に後退させる。
【0105】
したがって、上記に基づけば、送達システム制御ハンドル10800は、完全に自己内蔵型及び電源内蔵型であり、本発明のステント格子及びジャッキアセンブリを有する任意の人工器官を能動的に制御することができる。前述したように複数の制御ワイヤを単一のモータと組み合わせた駆動部の代替実施形態は、各制御ワイヤのための単一駆動モータを提供する構成である。このような構成により、例えばジャッキねじ駆動部に対して、各モータが回転量についてモニタリングされ、ジャッキねじが実質的に同時に回転するように他のモータと同期される。同一のモニタリングが、移植片を接続解除するための複数の制御ワイヤについて可能である。制御ワイヤの独立した駆動の有利な結果として、トルク要件及び各駆動ワイヤの位置のモニタリングが可能になる。特定の駆動ワイヤが変化する場合、ソフトウェアは公差(1つの駆動ねじが移植部位に詰まる、又は擦れる等の試験中に起こり得る故障に基づく)を組み込んで、移植を継続させるか、又はある側面が故障していることをユーザに知らせることができる。このような場合、ユーザは故障を除去するために収縮/再拡張を試みるか、又は必要若しくは所望であれば、人工器官の再位置付け又は回収を試みることができる。
【0106】
近位ステントとしてステント格子を有する、
図107で示されるような、本発明の腹部大動脈ステントグラフトを送達するためのプロセスの例示的な実施形態は、
図119のフローチャートに関して説明される。手順は、ステップ11900から始まり、ここで、格子は、大腿動脈を通って腎動脈の直下流側の移植部位に並進している。ステップ11902における左上ボタンの後方への作動により、AAA移植片10730の作動可能な端部(例えば、ステント格子)を露出させるのに十分に、送達シース10720を移植片10730から外す(例えば、
図212〜
図217の経過に示される再外装の経過と反対方向の、
図217〜
図212の経過により示され得る)。ステップ11904で、蛍光透視法等の視覚化は、人工器官10730の遠位端部10732がどこに位置するのかを示すフィードバックをユーザに提供する。この位置において、ステント格子は、収縮状態である(
図107の図では、拡張状態が示される)。人工器官10730上の放射線不透過性マーカーは、人工器官10730の最近位点を視覚的に確認することができる。ステップ11906で、別の手術スタッフは、一般的に、ペン又はマーカーで、画面上の腎動脈の場所をマークしている(外科医がマーカーを見る)。ステップ11908で、外科医は、放射線不透過性マーカーを有する人工器官10730の格子を、腎動脈の下側の標的とされる場所に並進させる。ステップ11910で、医師は、右上のボタンを前方に押す(すなわち、前方=開く、及び後方=閉じる)ことによって格子を拡張させ始める。外科医の要求に従って、又は制御デバイス10700のプログラミングの設定として、格子は、漸増的に開くことができ(血液の流れの発生のため、所望される)、又は流体的に外向きに拡張させることができる。ステップ11912で、移植が行われ、移植は、3つの段階を有する。移植の第1の段階で、医師は、腹部大動脈に着設するまで、人工器官10730の近位端部の全体的な配向を行う。第2の段階で、医師は、3つ全ての次元で接合する前に、断続的な拡張を使用して、移植を微調整し、第3の段階で、移植片10730の近位端部は、十分に接合されるか、又は医師がその接合に満足しない場合、医師は、ステント格子の直径を低減させて、再度第2の段階から始める。制御デバイス10700は、右上のボタンの最初のタッチで、特定の直径開口まで進むようにプログラムすることができることに留意されたい。例えば、移植部位が約20mmと予め定められた場合は、制御デバイス10700が15mmまで直接拡張し、その後に、右上ボタンがどれだけ長い間前方に押されても、右上のボタンにタッチする度に、拡張の増加が1mmずつしか起こらないようにプログラムすることができる。ステップ11912中に、医師は、人工器官のリアルタイムの直径、その角度形成、着設点の予め定められた大動脈直径との比較、壁への近接度を評価する血管内超音波診断、及びいつ壁への接触が起こったのか等の、種々のフィードバックデバイスの全てを制御ハンドル上で見ることができる。本発明のデジタルディスプレイ10711で、医師は、上記の特徴の全てを示す、拡張格子の実際の描写を視認することもできる。種々の移植段階中に、医師は、移植片の位置を変えるために、任意のときに一時中断することができる。ステント格子の角度形成は、能動的に、又は一時中断の間に行うことができる。外側グラフト材料が壁に接近するにつれて、全ての送達デバイスの調整を、人工器官10730の完全な接合まで継続し、ここで、適切な角度形成とともに、腎動脈に対する場所が良好であることを確実にする。ステントグラフトが大動脈壁に接触するときに、医師は、フィードバックデバイス及び情報の全てを分析して、移植を変更することができる。医師が移植を疑う場合はいつでも、第2の段階に戻るとともに、ステント格子の再調整を再開する。さらに、接合が生じると、任意の他の固定デバイス、例えば受動的なタイン/鉤、(例えば、グラフトを通して)保持デバイスを大動脈壁の中へ押す、外向きに移動する屈曲性バンド、組織アンカー7114、及びグラフトエンクロージャ7120を利用することができる。そのようなデバイスの場合、係合されたタインを係合解除/後退させるために、いかなる副アクションも必要とされない。ステップ11914で、医師は、血管造影を行って移植の位置付けを決定し(血管造影は、送達システム10700と別体、又はそれと一体とすることができる)、位置決めが所望された通りではなかった場合(例えば、エンドリーク)、医師は、ステント格子を後退させ、シース10720を使用して、格子の上に送達シース1020が戻るのを容易にするグラフト材料を使用したステント格子を再度折り畳むことができる。しかしながら、医師が、良好な位置決めであると判断した場合、医師は、少なくとも対側のゲートが露出するまで左上のボタンを後方に押すことによって、送達シース10720を後退させる。しかしながら、医師が、良好な位置決めであると判断した場合、医師は、少なくとも対側のゲートが露出するまで左上のボタンを後方に押すことによって、送達シース10720を後退させる。送達システム10700による同側のグラフト材料の安定化は、副人工器官のための対側のゲートのより良好なカニューレ挿入を可能にすることに留意されたい。
【0107】
ステップ11916で、対側のリムが、当技術分野で知られているように展開される。しかしながら、所望であれば、対側のリムはまた、本発明による能動的に拡張されるステント格子を含むこともできる。また、対側のリムが自己膨張型遠位ステントを利用する場合、グラフト同士の接合部でバルーン拡張を行うことも望ましくなる。能動的に制御可能なステント格子が使用される場合は、対側のリムを除いて、ステップ11900〜11914を繰り返す。ステップ11918で、同側のリムが展開されるまで左上のボタンを後方に押すことによって、送達シース10720が後退される。この時点で、人工器官10730は、最後に展開される準備ができている。
【0108】
ステップ11920で、医師は、左下ボタンを後方に作動させて、固定具ねじを緩め、それによって、人工器官10730から接続解除駆動ブロックをドッキング解除する。送達システム10700の1つの顕著な利点は、ドッキング解除運動全体が単にねじ付き孔からロッドを緩めるだけなので、ドッキング解除を行い、最後に人工器官を解放するときに、近位又は遠位にいかなるうねりもないことである。また、ステント格子に与えられるトルクは、偶数個のときにゼロトルクを加える逆回転ねじを使用して最小化される。本明細書で説明されるジャッキねじを使用するステント格子の例示的な実施形態の全てについて、送達システムはステント格子上又はステント格子に作動力を与えないことに留意されたい。換言すれば、ステント格子の構成を変化させる力が、完全にステント格子自体内で発生する。より詳細には、ステント格子の構成変化を作動させるために用いられる力が、遠位ジャッキストラット及び近位ジャッキストラットにより加えられる。これは、ステント格子の拡張を生じさせる作動力が、送達ツールから独立して送達され移植片内で打ち消されることを意味する。
【0109】
左上ボタンは、送達シース10720を延長するために前方に押され、よって、該送達シースをノーズコーン10740の遠位端部と接続する一方で、送達シース10720の開いた遠位端部が同側の遠位ステント又は能動的に制御される近位ステントのいかなる一部も捕らえないことを確認する。この時点で、外科医が、送達シース10720をノーズコーン10740に再ドッキングすることを望む場合、手動の無効化が用いられる。所望の場合、右下ボタンを後方に押すことで、医師は、右下ボタンで、ノーズコーン10740を送達シース10720の遠位端部の中に後退させることができる。ステップ11922で、同側の遠位ステントが自己膨張型である場合、医師は、最終的なバルーン拡張を行う。しかしながら、同側の遠位ステントが本発明の能動的に制御可能なステント格子を利用する場合、同側のリムを除いて、ステップ11900〜11914を繰り返す。ステップ11924で、人工器官がずれていないこと、及びあらゆる漏出の可能性が排除されたことを確認するために、術後の血管造影が行われる。制御システム10700が一体型染色システムを含む例示的な実施形態において、医師は、近位の能動的な格子の近位にあるシステムを延長して、この血管造影を行う。最後に、ステップ11926で、右下ボタンが後方に押されて、送達システムをハンドルの中へ可能な限り後退させ、ステップ11928で、送達システム10700が患者から取り外される。
【0110】
図120は、下で説明される自己拡張した本来の位置で9つの格子セグメント12010を有する、移植可能なステントアセンブリ12000の自己膨張型/強制拡張型格子の例示的な実施形態を示す。1つの例示的な実施形態において、9つの格子セグメントのそれぞれは、ジャッキねじ12020のねじ付き部分又は滑らかな部分とそれぞれ協調するための、ねじ付き孔又は滑らかな孔12012の片方で形成されている。別の例示的な実施形態において、9つの格子セグメントは、形状記憶金属(例えば、ニチノール又は他の超弾性材料)の1つの一体的な部分片から形成され、ジャッキねじ12020が、格子の繰り返し部分の隣接する対の間に、ステント格子の壁を通して配置される。
図120及び
図121で示される図において、各ジャッキねじ12020は、ステント送達システムの中への装填のためのステント格子の折り畳みを可能にするために、非係合状態で配置されている。これに関し、
図121は、
図217〜
図212の経過に例が示される、ステント送達システムの中への装填のための収縮/折り畳み状態のステントアセンブリ12000を図示する。この非係合状態において、ステントアセンブリ12000が送達のために折り畳まれたとき、各ジャッキねじ12020のねじなし部分を取り囲む近位ジャッキストラット12014は、送達システムの送達シースを収縮させるときに格子が縦方向に拡張する間、遠位駆動ねじカプラ部12052を妨害することなく、又はそれを底部に到達させることなく、
図120及び
図121で示される2つの位置の間で遊びを伴って、該ねじなし部分の周りを摺動することができる。ステントアセンブリ12000が、
図120で示される位置に戻るように自己拡張することが可能であるときに、ジャッキねじ12020は、遠位駆動ねじカプラ部12052が近位ジャッキストラット12014の近位端部に当たるまで、遠位ジャッキストラット12014の孔の中へ移動する。故に、ジャッキねじ12020がステント拡張方向に回転することによって、遠位駆動ねじカプラ部12052が近位ジャッキストラット12012の近位端部に当たった後に、さらなる駆動ねじ12020の格子拡張運動が、近位ジャッキストラット12014を遠位ジャッキストラット12013に向かって移動させ始め、ステントアセンブリ12000を拡張させる。
【0111】
縦方向に、ステントアセンブリ12000には、ジャッキねじ12020及び中間の非移動ストラット12030のそれぞれによって接続される、複数対のジャッキストラット12013、12014が提供される。示されるステントアセンブリ12000の例示的な実施形態には、9対のジャッキストラット12013、12014、及び9つの非移動ストラット12030がある。この数は、単に例示的なものに過ぎず、例えば、それぞれ6つだけ、又は所望の任意の他の数とすることができる。複数対のジャッキストラット12013、12014及び非移動ストラット12030を接続することは、アーム12040を横方向に延長させる。ステントアセンブリ12000が収縮するか、又は拡張するにつれて、アーム12040は、それぞれ、それらの2つの端点で撓曲し、該端点の一方は、非移動ストラット12030のそれぞれにあり、もう一方は、1対のジャッキストラット12013、12014のそれぞれ1つにある。
図121で示される構成からわかるように、(例えば、送達シースの中への導入のために)ステントアセンブリ12000が収縮したとき、アーム12040は、縦方向の配向に向かって移動する。逆に、(例えば、移植のために)ステントアセンブリ12000が拡張したとき、アーム12040は、半径方向の配向に向かって移動する。
【0112】
図122は、例えば展開部位で、その本来の位置に戻ることを可能にした後の格子を示す。各ジャッキねじ12020は、格子の制御されたさらなる外向きの拡張のための係合状態である。格子が移植のためにサイズ決定されると、
図123、
図124、及び
図125の経過で示されるように、送達システムは、格子を強制的に拡張させる。
図125の図において、格子は、最大拡張状態に入ろうとしているところであり、その状態は、遠位ジャッキストラット12013の近位面が近位ジャッキストラット12014の遠位面に接触するときに起こる。この例示的な実施形態は、弁サブアセンブリの特徴を示さないことに留意されたい。
図135〜
図136で示されるような弁サブアセンブリは、このステントアセンブリ12000とともに使用されることが想定されるが、明確化のために示されない。
【0113】
本明細書で説明される自己拡張型、強制拡張型ステント格子のこの例示的な実施形態及び他の例示的な実施形態は、平行四辺形(その1つの外形が
図123に破線で示される)をともに画定する、遠位ジャッキ部又は近位ジャッキ部、非移動ストラットの一部分、及び2本のアームからなるセル12310に外接する。この形状が有利なのは、移動ストラット(例えば、12013、12014)を拡張及び収縮時に平行に保つことによって、遠位ジャッキ部及び近位ジャッキ部をジャッキねじ12020に位置合わせして維持し、格子の安定性を確保するからである。より詳細には、ジャッキ部分(例えば、12013、12014)又は非移動ストラット(例えば、12030)のいずれかの縦揺れ、横揺れ、偏揺れが、この構成により実質的に防止される。隣接するセルの構成により、重要な利点と、前述したはさみ格子構造又は編組格子構造のそれぞれとの差がもたらされる。該構造では、2つの部材の交差部に機械的枢動があり、ステント格子又は編組の2本のワイヤが交差して互いに対する角度を変えて、幾何学形状の変化時にはさみを形成する。本明細書で説明されるステント格子の実施形態では、ワイヤ又は部材が交差しない。したがって、はさみ部材なしで、ステント格子への縫い付けが可能になる。さらに、ステント格子は、強度のために壁厚さの全てを使用することができる(2つのより薄い部材が互いに交差する点はない)。加えて、格子が材料の1つの連続した部片であるため(溶接又は半田付け等の固定により連続状態が形成される、
図126と同様の構成を除いて)、ステント格子全体が不安定である点がなく、より安定性が高くなる。
【0114】
図126は、移植可能なステントアセンブリ12600の自己膨張型/強制拡張型格子の一部分の代替の例示的な実施形態である。示される構成の部分において、別個のジャッキねじアセンブリ12610は、2つの隣接する格子セグメントに接続する(ここでは、非移動ストラット12616は、その中央線を通過する縦断面で示される)。別個のジャッキ管半部12612、12613は、それぞれ、2つの隣接する格子セグメントの上部及び下部ジャッキ接触ストラット12614に接続される。これらの管をニチノール格子に固定するために、例えば、管をニオブから作製することができる。示される例示的な実施形態において、ジャッキねじ12620の雄ねじは、遠位ジャッキ管半部12612の雌ねじと係合する。ステント送達システムの格子接続解除管12630は、その中で1対の駆動ねじカプラ部を覆うように係合する。
図127は、1対の駆動ねじカプラ部12752、12754の例示的な実施形態から係合解除された格子接続解除管12630を示す。1対の駆動ねじカプラ部12752、12754のこの接続状態は、理想的であるが、その理由は、接続解除ジョイントに存在する自然の横方向/半径方向の力のため、格子接続解除管12630が、駆動ねじカプラ部12752、12754の連結部を過ぎて近位に後退すると、
図128の図で示されるように、2つの駆動ねじカプラ部12752、12754が、自然に分離することである。
図128の接続解除の図において、送達システムの一部である1対の駆動ねじカプラ部12752、12754の近位部材は、格子接続解除管12630の中央孔の中へ部分的に後退される。
【0115】
図129は、移植可能なステントアセンブリの自己膨張型/強制拡張格子の別の例示的な実施形態を図示する。このアセンブリも、9つの別個の格子セグメントを有するが、同様に、例えば6つのセグメントといった、より多い、又はより少ない数が可能である。この実施形態において、ステント送達システムの近位接続解除ブロック12930及び接続解除サブアセンブリ12931、12932は、
図126〜
図128の実施形態の格子接続解除管12630の変形例である。ここで、近位接続解除ブロック12930は、その中で1対の駆動ねじカプラ部13052、13054を覆う、係合状態である。接続解除ブロック12930を近位方向に後退させた後に、格子接続解除アーム12932の全てが、覆っている1対の駆動ねじカプラ部13052、13054から取り外され、それによって、
図130で示されるように、格子12900を送達システムから接続解除することを可能にする。近位接続解除ブロック12930は、複数対の駆動ねじカプラ部13052、13054の全てを、実質的に同時に解放するために、ともに連結することを可能にする。
【0116】
図131及び
図132は、
図126〜
図130の自己膨張型/強制拡張格子の例示的な実施形態の変形例を示す。ここで、その中で1つのジャッキねじ13120を受容するための中間ジャッキ管半部13112、13113は、ジャッキ管13112、13113の両側部上に直接ではなく、隣接する格子セグメント13114によって隣接する格子セグメントに接続される。2つの隣接する格子セグメントがなす角度は、90度を超え180度未満である。具体的には、角度は、
図132で示されるように130度〜150度であり、より具体的には、約140度である。
【0117】
図133は、移植可能なステントアセンブリ13300の自己膨張型/強制拡張格子の別の例示的な実施形態である。この実施形態では、9つの格子セグメントがあるが、同様に、例えば6つのセグメントといった、より多い、又はより少ない数が可能である。ここで、格子の遠位ジャッキストラット13313及び近位ジャッキストラット13314は、図示されないジャッキねじアセンブリを収容し、それらに接続するために、局所的により厚い。ステント格子を局所的に厚い部分で作製する1つの考えられる方法は、少なくとも最も厚い領域と同一の厚さの材料の管から始め、内面及び外面の一方又は両方をワイヤ放電加工することにより、狭い部分を切り出して局所的に厚い部分を形成するか、又は残す。これは、局所的に厚い部分が生じる本明細書のステント格子の例示的な実施形態の全てに当てはまる。
【0118】
図134は、移植可能なステントアセンブリ13400の自己膨張型/強制拡張格子の別の例示的な実施形態である。この実施形態において、9つの格子セグメントがあるが、例えば6つのセグメントといった、より多い、又はより少ない数が可能である。以前の実施形態で示されるように、図示されないジャッキねじ全体に格子の材料を通過させる代わりに、ここでは、格子のジャッキストラットを長くし、長くした部分を屈曲させて、図示されないジャッキねじアセンブリに接続するためのタブ13413、13414を形成する。タブ13413、13414は、ここでは内向きに屈曲させて示されているが、該タブは、外向きに面するように屈曲させることもできる。ジャッキを操作するために、1組の縦方向のタブのそれぞれ1つは、ねじが付けられるか、又は滑らかである。
【0119】
図135〜
図137は、移植可能な弁アセンブリ13500の自己膨張型/強制拡張格子の別の例示的な実施形態を示す。ジャッキアセンブリは、
図120〜
図125の実施形態に類似する。しかしながら、ここでは、6つの格子セグメントがある。ジャッキ13520の間の中間非移動ストラット13530は、交連接続を形成し、中間弁13540の弁端点を格子に接続するための貫通孔13532を含む。本実施形態では、弁13540の上面が、ジャッキ13520の上端部と同一平面にある非移動ストラット13530の上端部と一致する。ここで、弁13540は、3つの小葉13542とともに示され、したがって、3つの交連接続部が、非移動ストラット13530の3つに存在する。
図135及び
図136において、弁アセンブリは、弁アセンブリの移植位置と同程度であり得る、拡張位置に示される。
図137は、対照的に、自然な、又は予め設定された非強制拡張状態の弁アセンブリ13500の格子を示す。弁アセンブリ13500の格子を、
図121又は
図139に示す圧縮された移植前サイズよりも大きい自然な直径に設定することには理由がある。例えば、このような構成では、駆動を始めるときに、格子のアームの角度を浅くならないようにすることが望ましい。ステントアセンブリの直径変化を生じさせるために、ねじの力の全てを有することが望ましいからである。また、ステントアセンブリを自然な位置から最終強制開放位置へ駆動するときに、材料に歪みが生じる。生じる歪みが大きくなるほど、設置歪みが大きくなるため、故障の可能性が高まる。したがって、最終位置が自然な位置に近いほど、設置歪みが小さくなる。さらに、歪みが大きすぎると、送達のために格子を折り畳むことができなくなるため、自然な位置をそれほど大きくすることはできない。これに関し、開示された例示的な実施形態のステント格子のヒートセット直径を最適化して、ステント格子をそのヒートセット直径から折り畳み直径まで移動させるときに与えられる歪みが、材料の許容できる超弾性範囲内で最大化されるようにするため、ステント格子がヒートセット直径から強制拡張移植直径へ移動されるときに、設置歪みを最小化する。
【0120】
図138〜
図142は、ステントアセンブリ13800の自己膨張型/強制拡張型格子の別の例示的な実施形態を示す。上述の実施形態のように、この例示的な実施形態は、明確化のために、弁サブアセンブリの特徴を示さないが、
図135〜
図136で示されるような弁サブアセンブリは、このステントアセンブリ13800とともに使用されることが想定される。ここで、ステントアセンブリ13800の格子は、6つの格子セグメントを有する。ジャッキねじを格子の壁の縦孔に接触させる代わりに、複数対のジャッキ管13812、13813が、縦方向の複数対のジャッキ接続ストラット13822、13823のそれぞれに接続(例えば、レーザ溶接)される。この実施形態は、格子の内側に接続されるジャッキ管13812、13813を示すが、該ジャッキ管は、外側に接続することもでき、又はその対を、任意の方法及び任意の数で、内側及び外側に千鳥状にすることもできる。ジャッキ管13812、13813が、雌ねじ又は内側の滑らかな孔で形成される。
【0121】
強制的に収縮させた後に、
図138の格子はさらに、送達システムの送達シース内で、
図139で示される配向に圧縮することができる。移植部位への送達後、格子は、実施のために最初は自然拡張、次いで強制拡張される。
図140〜
図142は、種々の斜視図で格子の種々の拡張段階を示し、
図142は、ほぼ最大拡張範囲に拡張された格子を示す。
【0122】
雌ねじ付きの縦方向貫通孔を格子に形成する代替手段が、
図143〜
図154の例示的な実施形態に示される。ここでは、移植可能なステントアセンブリ14300の自己拡張型/強制拡張型格子が9つの格子セグメントを有する。
図143は、本来の自己拡張位置にある格子を示す。9つのセグメントのそれぞれにおける遠位ジャッキストラット14313及び近位ジャッキストラット14314は、滑らかな孔を有する。各格子セグメントの遠位ジャッキストラット14313は、第2の接続部14330をそこで受けるように形成された第1の接続部14315として形成された近位端部を有する。この第2の接続部14330が、ジャッキねじ14320の雄ねじにねじ嵌合する雌ねじを含む。例示的な実施形態では、本明細書で説明される第2の接続部を、折り畳み時にステントアセンブリの壁の中に適合するように、管素材から湾曲させて作製することができる。加えて、駆動ねじ及び/又は第2の接続部は、チタン等の、電解腐食のない材料から作製されていてもよい。2つの接続部14315、14330を少なくとも格子の縦方向にロックすることにより(例えば、
図143に示す、対向するT字形の舌及び溝により)、ジャッキねじ14320(遠位駆動ねじカプラ部12052により近位ジャッキストラット14314の近位側で縦方向に固定される)が第2の接続部14330にねじ込まれると、各対の縦方向に位置合わせされたジャッキストラット14313、14314を互いに向けて、又は互いから離して移動させることにより、各ジャッキアセンブリを機能させることのできる両面接続が形成される。例示的な実施形態では、第1の接続部14315がT字形を有し、第2の接続部14330が、第1の接続部14315のT字形の外側に対応する内側形状を持つ孔を有するナットである。したがって、この構成は、形状ロック接続を形成する。形状ロック又は形状適合接続は、要素に対する外部の力によって要素をともにロックする力ロック接続とは対照的に、要素自体の形状によって2つの要素をともに接続するものである。遠位ジャッキストラット14313及び近位ジャッキストラット14314の滑らかな孔と同軸の第2の接続部14330にねじ付きの内孔を形成することにより、ジャッキねじ14320が第2の接続部14330に完全にねじ込まれて遠位ジャッキストラット14313の孔に進入すると、ジャッキねじ14320は、第2の接続部14330が外れることを防止する。
図153は、ナットの雌ねじを示し、ジャッキねじ14320がナット14330を完全に通過した後に、ジャッキねじ14320がナット14330の外れを防止する様子を示す。
【0123】
これらの図では、弁小葉の3つの交連点のそれぞれについての交連コネクタパッド14350の例示的な実施形態が示される。交連コネクタパッド14350の例示的な形状は、交連点を交連コネクタパッド14350に縫合するための4つの貫通孔を有する矩形である。外側格子固定パドル14360が非移動ストラット14316の端部に設けられて、移植部位におけるステントアセンブリ14300の固定を向上させる。
【0124】
図145〜
図146の経過からわかるように、格子接続解除管14340は、対の駆動ねじカプラ部14652、14654を接続解除するために近位に移動する。
図146は、送達システムによるステントアセンブリ14300の接続解除が行われた後の非係合状態にある送達システムのコネクタ制御管14340とともに、
図143の格子を示す。
図149は、格子がジャッキねじアセンブリにより、ほぼ可能な最大拡張範囲まで拡張される状態を示し、格子の2つのジャッキストラット14313、14314がほぼ接触している。ステントアセンブリ14300の種々の他の図が、
図144(上面図)、
図147、
図148、
図152(拡張及び収縮された接続部の拡大図)、及び
図150、
図151(収縮されたステントアセンブリ)に示される。
図144により、ジャッキストラット14652、14654の例示的な実施形態において、半径方向厚さ14410がステント格子の残部の厚さ14420よりも大きく、この場合、この厚さは格子の内側よりも厚いことが明らかになる。所望であれば、半径方向厚さ14410を、格子の外側から、より厚くしてもよい。
【0125】
図154は、円筒形ステントアセンブリ14300が形成される前の、中間製造ステップにおける
図143の格子14300’の例示的な一実施形態を示す。例えば、ステントアセンブリの格子は、ニチノールのシートからレーザ切断され、マンドレルに巻き付けられ、2つの端部で溶接されて、
図143に示す格子14300の形状を形成することができる。
【0126】
図155〜
図166は、6つの格子セグメントを有する移植可能な弁アセンブリ15500の自己拡張型/強制拡張型格子の別の例示的な実施形態を示す。
図156及び
図159に最もよく見られるように、ジャッキストラット15513、15514は、ジャッキねじを内部に収容するキー穴スロットを有する。したがって、この例示的な実施形態は、ワイヤEDM(放電加工)プロセスを使用して、キー穴スロットを形成することができる。この例示的な実施形態は、内側に開いたキー穴スロットを示すが、以下で説明されるように、キー穴スロットは外側に開いていてもよい。
【0127】
ステントアセンブリ15500の構成は、ステントアセンブリ14300の同様の特徴を有する。簡潔にするために、これらの特徴の全てを繰り返すことはしない。ステントアセンブリの1つの特徴は、例えば、弁小葉の3つの交連点のそれぞれについて、交連コネクタパドル15550を同様に有する。交連コネクタパドル15550のこの例示的な形状は、交連点を交連コネクタパドル15550に縫合するための5つの貫通孔及び凹み側を有するワッフルパターンである。また、ステントアセンブリ15500には、ステントアセンブリ14300とは異なる点がある。第1の異なる点は、非移動ストラット15516の外側格子固定パッド15560が外向きに屈曲されて、格子を縦の砂時計形状に形成することである。
図159及び
図160に特に示されるように、外側格子固定パッド15560はそれぞれ、放射線不透過性マーカー15562を配置するために、遠位端部に有利な位置を設ける。
【0128】
図155は、各ジャッキねじ15520がさらなる外向きの拡張のためにねじ山係合状態にある、部分的に拡張された状態のステントアセンブリ15500を示す。
図155からわかるように、第2の接続部15530に進入するようにジャッキねじ15520を回転させることにより、遠位ジャッキストラット15513を近位ジャッキストラット15514側へさらに引っ張る(遠位駆動ねじカプラ部14652は、近位ジャッキストラット15514の近位側に当たった後に、さらなる遠位縦方向運動が防止されるため)。しかしながら、ジャッキねじ15520が遠位ジャッキストラット15513に進入して、遠位駆動ねじカプラ部14652と近位ジャッキストラット15514の最近位面との間に存在する緩みをなくすまで、この引っ張りが行われないことに留意されたい。遠位駆動ねじカプラ部14652が近位ジャッキストラット15514の近位端部に最終的に接触すると、ジャッキねじ15520のさらなる回転により、遠位ジャッキストラット15513及び近位ジャッキストラット15514が互いに向かって移動する。ジャッキねじ15520のねじ山が、第2の接続部11530の雌ねじに接続されるからである。明らかであるように、ステントアセンブリ15500がこの状態で強制拡張されるため、ジャッキねじ15520を逆転させると、ステントアセンブリ15500を、例えば、
図161に示す自然な状態に向かって半径方向内向きに後退させることができる。
図157、
図158、
図160、
図165、及び
図166も、種々の強制拡張構成状態にあるステントアセンブリ15500を示す。
【0129】
しかしながら、ステントアセンブリ15500を強制収縮させることが望ましいときには、ジャッキねじ15520をさらに逆転させると、それぞれの第2の接続部11530からねじが外れるだけである。このような外れが生じるのを防止するために、(ジャッキねじ15522が第2の接続部15530から外れると、第2の接続部15530がステント格子から落下するため)、各ジャッキねじ15520に逆駆動スリーブ15570が設けられ、該逆駆動スリーブ15570は、各ジャッキねじ15520の外側に、第2の接続部15530と近位ジャッキストラット15514の遠位面との間の位置で固定配置される。逆駆動スリーブ15570を定位置に固定するために、逆駆動スリーブ15570を、例えば、ねじにより直接機械加工するか、又は二次プロセスとしてレーザ溶接することができる。逆駆動スリーブ15570を用いてステントアセンブリ15500を強制収縮させることは、
図161から
図162、
図163への移行に見られる。
図161では、ジャッキねじ15520は、格子が自然な自己拡張状態にある位置にあるが、遠位駆動ねじカプラ部14652が近位ジャッキストラット15514の最近位面に接触する位置にある。この位置では、ジャッキねじ15520のねじ外し運動は、逆駆動スリーブ15570が、
図162に示す位置である近位ジャッキストラット15514の最遠位面に接触するまで、格子の運動を生じさせない。ジャッキねじ15520のさらなる逆転により、ジャッキねじ15520の遠位部分が遠位ジャッキストラット15513から離れて移動し始めるが、逆駆動スリーブ15570は、近位ジャッキストラット15514に対するジャッキねじ15520の縦方向運動を防止する。その結果、遠位ジャッキストラット15513及び近位ジャッキストラット15514は離されて、ステントアセンブリ15550の内向きの収縮を生じさせる。ステントアセンブリ15550が送達シース(
図164に破線16400で概略的に示される)内へ装填されるのに十分に収縮されると、移植のために格子を送達システムの送達シース内へ強制装填することによって、さらなる内向きの収縮が生じ得る。格子の送達シース内への装填は、
図217〜
図212の経過から見られる。
【0130】
図167及び
図168は、
図155〜
図166の移植可能なステントアセンブリの自己拡張型/強制拡張型格子の別の例示的な実施形態を示す。ここでは、格子が6つの格子セグメントを有するが、第2の接続部16730のそれぞれに対する各中間ジャッキねじナットの縦方向位置が、格子の円周の周りで縦方向に千鳥状になっている。この例示的な実施形態は、2つの縦方向位置(すなわち、2つの断面)のみで第2の接続部16730の千鳥形状を示す。しかしながら、3つ以上の異なる縦方向位置も想定される。
図168は、第2の接続部16730の全てが同一の半径方向面(すなわち、断面)にある構成よりもさらに遠くで格子を折り畳むことができる様子を示す。見てとれるように、第2の接続部16730は、収縮中に互いに当たらない。千鳥状配向が、使用可能な空間のために断面への第2の接続部16730の衝撃を減らすだけでなく、この構成は円周方向長さへの衝撃も減らし、
図168に関して、第2の接続部16730が、第2の接続部16730に直接隣接する格子で、例えば格子アームで金属に接触することがわかる。
【0131】
図169〜
図173は、ステント格子としてのみ示される
図155〜
図166のステントアセンブリ15500を含む送達システムの例示的な実施形態の遠位端部を示す。勿論、本明細書で説明されるステントアセンブリのいずれかを、弁アセンブリを備えたこのステント格子に置き換えることができる。この例示的な実施形態におけるステントアセンブリ15500の使用は、例示のために過ぎない。
図169の図は、送達システムの送達シース11040が移植位置まで引き抜かれた後、且つ格子が、例えば格子の移植サイズまで強制拡張された後の格子の状態を示す。
【0132】
ステントアセンブリ15500に加えて、ステント送達システムの遠位部分が示される。まず、格子接続解除管16940が、本実施形態では中空可撓性コイルの形を取る接続解除ワイヤ770に接続される。したがって、接続解除コイル770の近位運動により、
図170から
図171、172への経過に示すように、格子接続解除管16940の運動が生じる。各接続解除コイル770は、ステントアセンブリ15500の拡張及び収縮のための各近位駆動ねじカプラ部14654の回転を生じさせる駆動ワイヤ750のそれぞれを内部に配置する。少なくとも縦方向ガイドワイヤ管腔(図示せず)を内部に画定する遠位ノーズコーン16920も示される。ノーズコーン16920を送達システムの残部に接続するのは、送達システムを移植部位(例えば、
図66〜
図69参照)へ案内するために使用されるガイドワイヤのためのノーズコーン16920のガイドワイヤ管腔と同軸のガイドワイヤ管腔を有する中空ガイドワイヤ管16922である。送達中のステントアセンブリ15500は、ステントアセンブリ15500の移植のための
図169の後退状態で示される送達シース11040に収容される。
【0133】
図170は、図中の送達シースを送達システムのコネクタ制御サブアセンブリ17000の近位の点まで取り外すことによって送達システムにより移植されるステントアセンブリの近位の、
図169の送達システムの内部を示す。明確にするために、
図170にコネクタ制御サブアセンブリ17000を断片的に示す。
図170から
図171、
図172へのコネクタ制御サブアセンブリ17000の経過は、ステントアセンブリ15500が送達システムから能動的に接続解除(矢印A)される様子を示す。
【0134】
コネクタ制御サブアセンブリ17000では、各接続解除コイル770が接続解除パック17020に接地される。したがって、送達システムによるステント接続解除の制御は、駆動ねじカプラ部14652、14654を覆う状態から格子接続解除管16940を取り外すのに十分な近位距離だけ接続解除パック17020を後退させることによって行われ、その運動が
図171及び
図172の経過に示される。
図170では、コネクタ制御サブアセンブリ17000は、格子接続解除管16940が駆動ねじカプラ部14652、14654上にある、格子接続状態にある。接続解除コイル770の近位への後退により、全ての格子接続解除管16940が、
図171に示す格子接続解除状態まで近位に移動する。
図171では、各格子接続解除管16940は、全ての駆動ねじカプラ部14652、14654が互いから接続解除される直前に、各駆動ねじカプラ部14652、14654から近位にそれぞれ後退される。
図171に示す駆動ねじカプラ部14652、14654を、1対の駆動ねじカプラ部14652、14654から係合解除された格子接続解除管16940に接続することが理想的であるが、その理由は、接続解除ジョイントに存在する自然な横方向/半径方向力のため、格子接続解除管16940がこれらの駆動ねじカプラ部14652、14654の連結部を過ぎて近位に後退すると、
図172の図に示されるように、2つの駆動ねじカプラ部14652、14654が自然に分離するからであることに留意されたい。実際には、製造公差及び可変抵抗により、ジャッキねじコネクタ対は、互いからマイクロ秒であっても異なる時間に接続解除される。
図172は、各駆動ねじカプラ部14652、14654が互いから接続解除される格子接続解除状態にあるコネクタ制御サブアセンブリ17000を示す。
【0135】
図170及び
図173は、駆動ねじカプラ部14652、14654の実質的に同時の接続解除のために、接続解除コイル770を同時に後退させる様子を示す種々の詳細の拡大図である。より詳細には、各格子接続解除管16940は、接続解除コイル770の遠位端部でそれぞれの接続解除コイル770に縦方向に固定される。2つのスリーブ17022、17024が、各接続解除コイル770の近位端部に固定される。接続解除パック17020は、接続解除コイル770の数に等しい(ジャッキねじアセンブリの数にも等しい)数の通路17021を有する。
図170〜
図173に見られるように、接続解除コイル770の近位端部の接続解除パック17020への取付けは、まず接続解除パック17020の1つの通路17021のそれぞれの遠位カウンタボアに遠位スリーブ17022を配置することによって行われる。各通路は、遠位カウンタボア、中間溝、及び近位カウンタボアを備える。この点で、接続解除コイル770の近位端部及び近位スリーブ17024が、接続解除パック17020の側部から突出する。次に、コイル770が僅かに伸張されて、近位スリーブ17024が接続解除パック17020の近位隅部上に移動し、
図171〜
図173に示すように、下方へ移動して近位カウンタボア内に載置される。このような接続後に縦方向に固定されていても、遠位スリーブ17022及び近位スリーブ17024を含むコイル770の近位端部のサブアセンブリ全体が、それぞれの通路17021内で自由に回転可能である。トルクが駆動ねじカプラ部14652、14654を通って伝達されるときに、駆動ねじカプラ部14652、14654を分離させる強い外向きの半径方向力が存在する。この分離させる力は、スリーブ16940により打ち消される。駆動ねじカプラ部14652、14654を内部に収容する回転駆動機構上での引きずりを防止するために、スリーブ16940は、パック通路17021内で自由に回転することができる。
【0136】
接続解除パック17020は、ガイドワイヤ管16922の中央中空軸周りで縦方向に摺動可能である。制御スプール17030が接続解除パック17020の近位にあり、中央ガイドワイヤ管16922に縦方向に固定される。制御スプール17030はパック制御ねじ17032を有し、該パック制御ねじ17032は、制御スプール17030に自由に回転可能に接続されるが、接続解除パック17020のそれぞれの雌ねじ付き孔にねじ込まれる。これらのパック制御ねじ17032は、送達シース11040を通して、送達システムハンドル内の接続解除駆動サブシステムに近位に接続される。このように、パック制御ねじ17032の回転により、格子接続解除管16940の遠位運動及び近位運動に対応する接続解除パック17020の遠位運動及び近位運動が可能になる。
図170〜
図173には示さないが、
図178には、制御スプール17030を通過するワイヤの全てが貫通し、ポリマーから作製されて、送達シース及び/又は送達システムハンドルへの血液の流れを防止する液密シールをもたらすOリング17800が示される。
【0137】
図169の図における送達シース11040の位置は、接続解除パック17020を覆い、接続解除コイル770が接続解除パック17020から出ることを防止することに留意されたい。したがって、使用時に、送達シース11040が
図169に示す範囲内で近位に後退される。
【0138】
本明細書で説明される前の実施形態のように、ステントアセンブリの各ジャッキアセンブリは、1組の制御ワイヤ、1つの駆動ワイヤ750(ここでは、回転する)、及び1つの接続解除ワイヤ770(ここでは、縦方向に作動される)を使用する。この例示的な実施形態では、パック制御ねじ17032も説明される。駆動ワイヤ750及びパック制御ねじ17032のそれぞれは、コネクタ制御サブアセンブリ17000から、送達システムの制御ハンドルの遠位まで延長する。送達シース11040が可撓性であり、蛇行した解剖学的構造を通って移動するようになっているため、これらのワイヤ/ロッドの全てが縦方向の力を受け、送達シース11040が屈曲すると縦方向に移動することを理解されたい。特に格子接続解除管16940が近位に移動するときに格子接続解除管16940の取外し及びステントアセンブリの完全な接続解除を生じさせる接続解除ワイヤ770によって、これらのワイヤ/ロッドに及ぼされる縦方向の力は望ましくないため、このような力がワイヤ/ロッドのいずれかに対して及ぼす影響を最小限にすることが重要である。
【0139】
デバイスの遠位端部に対するこのような力の作用をなくすために、ワイヤ/ロッドは全て制御スプール17030に接地される。
図170〜
図172、特に
図173に示すように、各パック制御ねじ17032は、回転運動を可能にするが縦方向運動を防止するパック接地カフ17033を、制御スプール17030の両側に有する。同様に、各駆動ワイヤ750は、回転運動を可能にするが縦方向運動を防止する駆動接地カフ751を、制御スプール17030の両側に有する。
【0140】
これらの制御ワイヤ/ロッドの全ては、それぞれの入れ子式のワイヤ制御カラム11510の遠位部11512で終端し、遠位部11512に縦方向に固定される。これらの入れ子式ワイヤ制御カラム11510、11512の各部分は剛性であるため、カラム11510の近位部の回転によって、遠位部11512の対応する回転が生じ、これにより、対応する制御ワイヤ750、17032の回転が生じる。遠位部11512は、例えば、ワイヤ制御カラム11510の近位部の、対応する内側の角ロッド形状の管腔内で摺動可能に移動可能な、外側の角ロッド形状を有することによって、ワイヤ制御カラム11510にキー止めされる。したがって、この構成において、任意のワイヤ/ロッドへの任意の縦方向の力は、ワイヤ/ロッドのそれぞれに及ぼされる力に応じて縦方向に近位又は遠位に移動する遠位部11512のそれぞれによって取り込まれ、制御スプール17030の遠位に与えられる縦方向の力は実質的には全くない。
【0141】
図174〜
図177は、
図167〜
図168に示す構成と同様の送達システム及びステントアセンブリ格子の例示的な実施形態の写真である。これらの図は、種々の回転図及び逆駆動スリーブ15570がジャッキねじ15520上に明らかに表れる強制拡張状態における格子を示す。
図178〜
図180は、送達システムのコネクタ制御サブアセンブリ17000の追加の図を示す。制御ワイヤ/ロッドの全てを囲む外側送達シース11040に加えて、駆動ワイヤ750及びパック制御ねじ17032のそれぞれについて別個の独立した管腔を提供する、
図178に示す可撓性の多管腔押出部17810も設けられる。
【0142】
図181〜
図194は、自己拡張型/強制拡張型の移植可能な心臓弁アセンブリの種々の異なる例示的な実施形態の写真である。
図181〜
図186は、拡張状態にある9つの格子セグメントを有し、弁小葉が開放状態にある心臓弁アセンブリを示す。本実施形態では、非移動ストラット15516上の外側格子固定パッド15560が外向きに屈曲して、格子を縦の砂時計形状に形成する。弁小葉18110は交連板18120により非移動ストラット15516に接続される。駆動ねじカプラ部14652の近位端部が
図186に示される。
【0143】
図187〜
図194は、拡張状態にある6つの格子セグメントを有し、弁小葉が開放状態にある心臓弁アセンブリを示す。
図188の図は、格子から取り外された弁小葉サブアセンブリ18800のみを示す。
図188には、
図189、
図190、及び
図208のステント格子内に設置されて示される交連コネクタ18810の例示的な実施形態が容易に見られる。この交連コネクタ18810により、単一面の弁サブアセンブリ18800を容易に接続することが可能になる。弁サブアセンブリ18800は、そのように使用されるときに、
図189及び
図190に見られるように、
図208に示す破線を略横切る。本明細書で説明される種々の実施形態の交連が、例えば、非移動ストラット又は弁サブアセンブリの下流端部に隣接した近位ジャッキストラットで、格子の非移動部分又は剛性部分に取り付けられる。
【0144】
図190〜
図192の例示的な実施形態では、弁小葉サブアセンブリ19000の上面が、非移動ストラット15516上の交連コネクタパドル15550の上端部に一致する。該非移動ストラット15516は非常に長く、近位ジャッキストラット15514の上端部と同一平面にはない。ここでは、近位ジャッキストラット15514の上端部の平面が、グラフト材料19010の下流端部に一致する。
【0145】
自己拡張及び強制拡張ステント格子の図示しない代替構成において、交連が、非移動ストラット19016の両側から離れて延びるアーム19040の外側列と、ステント格子の中央近くのアーム19042の第1の列との間の点19020で、非移動ストラット19016に固定される。このような構成では、弁小葉サブアセンブリ19000により加えられる荷重が、多くの支持領域まで広がることにより、アーム19040、19042に加わる応力及び歪みを低減させる。特に、このような構成では、力が4本のアーム19040、19042に広がるが、前述した構成では、力が2本の最外アーム19040によって主に担持される。これについての1つの理由は、各アームが移植の強制拡張部分により発生する中間の設置歪みを有することである。同一の領域が、弁小葉を支持することに関連するさらなる歪みを受ける。ステント格子が頻繁な使用周期に関連する長期の疲労に耐えるようにするために、交互の歪みを閾値よりも小さくすべきであり、力がより多くのアームに広がるこのプロセスによって閾値を維持することができる。
【0146】
図191は、送達システムの例示的な実施形態に接続され強制拡張された、心臓弁アセンブリの例示的な実施形態を示す。ここでは、グラフト材料の形状が、鋸歯パターンのような上流アームの形状に対応するものとして示される。
【0147】
図192〜
図194の図は、グラフト及び小葉サブアセンブリが格子に接続される様子の例示的な実施形態を示す。
図193〜
図194は、編組グラフト材料19310の編組角度が、自己拡張型/強制拡張型の移植可能な心臓弁のアーム部分の角度に密接に一致する様子を示す。このように、編組は、フレームの部分が折り畳み中に互いから離れるときに、縦方向に拡張することができる。実質的に同時に、グラフト材料及びステントは、直径が小さくなり、グラフトをステントに複数の縫い目でしっかりと取り付ける応力を低減させるために同様の角度でとどまる。これらの図は、グラフト材料19310がステント格子に縫い付けられる様子の例示的な一実施形態も示す。
【0148】
本明細書で開示された心臓弁アセンブリのためのグラフトの例示的な一実施形態は、中央マンドレル上で前後に編組形状に紡いだナノファイバポリウレタンを含む。
図195の図は、最初に置かれたとき、且つ伸張が与えられていないとき、換言すれば、グラフトがその自然状態にあるときの、そのように作製されたこのグラフトの顕微鏡図である。
図196及び
図197は、ナノファイバ間の接触点を示し、ナノファイバがともに付着する様子を示す拡大図である。グラフトの編組角度はステント格子の中央アームの角度に一致するため、格子が変形すると、編組が一致して変形する。これは、グラフトは、縦方向に伸張すると、直径が小さくなるため、編組構造のように動作することを意味する。
図198は、長さが100%延長されたときのグラフト材料を示す。
図199は、グラフト材料が、
図198で伸張された後にその自然状態に戻る様子を示す。編組形状は密集されているため、流体が通過しない。したがって、グラフト材料は、血管内での使用のために液密になっている。ある量のポリウレタンがこのグラフト材料の編組形状に添加される。材料全体を通して最小量が添加されるが、より多い量がグラフトの切取端部で使用される。該切取端部では、グラフトが弁アセンブリに設置されたときにほつれる危険があり得る。
【0149】
本明細書で説明されるグラフトサブアセンブリの種々の例示的な実施形態が、格子の内側のグラフト材料を示すことに留意されたい。グラフト材料を格子の外面に配置することも想定される。このような例示的な実施形態では、露出された駆動ねじが一側でグラフト材料により覆われて保護され、弁アセンブリが存在する場合には、他側で弁小葉により覆われて保護される。また、駆動ねじの孔を形成するキー穴(例えば、
図156〜160及び
図204〜
図209参照)が、グラフト材料を外面に配置することによって保護される。グラフト材料を外面に配置して駆動ねじを保護するための代替手段は、駆動ねじの周りに配置され得る図示しないカバー又はスリーブである。このようなカバーは、例えば、波状又は蛇腹状であるか、滑らかであるか、任意の他の変形物であり得る。
【0150】
格子が円周方向に拡大すると、サイズが固定された弁小葉は、小葉の下流端部の重なりのサイズを変化させる。この重なりのサイズを調節することが望ましいとされ得る。さらに、小葉がステント格子、グラフト材料、縫合部等を含むかなり硬い表面に接触することが多くなるほど、小葉長さは、望ましくない摩耗が生じ得るときに寿命に関する要因ともなる。したがって、そのような接触を最小にするか、又は防止する小葉の調整が望ましい。したがって、これらの実施形態により、小葉縁部の接合を確保しつつ望ましくない摩耗を防止しながら、オリフィス領域を最大化する小葉サイズを確保することができる。
【0151】
したがって、
図200は、心臓弁アセンブリ内の弁小葉サブアセンブリを調整するデバイスの例示的な実施形態を示す。本実施形態では、交連近くの弁小葉の端部がマンドレルに巻き付けられる。より大きい重なりが望ましい場合には、マンドレルを一方向に回転させ、より小さい重なりが望ましい場合には、マンドレルを他方向に回転させる。
【0152】
図201は、各交連が各小葉の個々の端部を巻き付けるための2つのマンドレルを有する、調整可能な弁小葉サブアセンブリの別の例示的な実施形態を示す。本実施形態では、各対のマンドレルの各マンドレルが、小葉を取り込み、小葉を緩めるために、反対方向に巻き付けなければならないものとして示される。
【0153】
図202及び
図203の図は、心臓弁アセンブリの調整可能な弁小葉サブアセンブリの別の例示的な実施形態を示し、ここでは、縦方向に移動する調整シム20300が、縦方向に(
図202の図の内外へ)移動するときに、弁小葉縁部の大部分を取り込み、又は大部分を緩めて、弁小葉の重なり部分を短く又は長くする。
【0154】
使用時に、本明細書で説明される例示的な調整可能な弁が、最少量の解放された小葉とともに展開される。この展開構成は、ある量の中央逆流を生じさせて、弁を最小展開直径よりも大きくなるように確実にサイズ決定する可能性がある。その後、例えば、経食道心エコー図を用いてモニタリングしながら、小葉が解放される(使い切られる)。十分な材料が解放されて小葉の完全な接合を生じさせると、中央逆流が終了するが、これはTEEドップラー評価により容易に確認され得る。
【0155】
図204は、自己拡張型/強制拡張型の移植可能なステントアセンブリ20400の別の例示的な実施形態である。ステントアセンブリの前述した格子と対照的に、本実施形態の遠位ジャッキストラット20412及び近位ジャッキストラット20414は、ステントアセンブリ20400の外面から機械加工されたワイヤEDMジャッキねじ孔を有する。
図205に示すように、第2の接続部14330は、ジャッキねじ14320の雄ねじにねじ嵌合するための雌ねじを含み、第2の接続部14330は、ステントアセンブリ20400の円周の周りで縦方向に千鳥状になっている。前の例示的な実施形態では、遠位ジャッキストラットの第1の接続部20615がT字形を有し、第2の接続部14330が、第1の接続部20615のT字形の外側に対応する内側形状を持つ切欠きを有するナットである。内面ではなく、ステントアセンブリ20400の外面から機械加工されたワイヤEDMジャッキ孔間の有利な違いについては、
図206、
図207A、及び
図207Bに関して説明することができる。特に、遠位ジャッキストラット20412の断面が正方形である場合、T字形が第2のコネクタ部14330(ジャッキナット)を受けるための近位端部に形成されるときに、3つの材料スパンがある。該スパンは、近位端部を遠位ジャッキストラットの残部に接続して、これらの間を支持する3つのカラム、特に、20610、20612、20614をもたらす。しかしながら、円形のステントアセンブリを、
図207に示すように最小可能直径まで収縮させることができるようにするために、遠位ジャッキストラットの外側断面は正方形ではなく台形である。したがって、遠位ジャッキストラット20412の孔が内面から機械加工され(
図156〜
図160及び
図207に示すように)、第2の接続部14330を受けるためにT字形が近位端部20615に形成されると、第2の接続部14330の内側の舌を受けるための溝の深さに応じて、第1のスパン及び第2のスパン20712が消失点まで縮小する。このような場合、第3のスパン20714のみが残るが、該第3のスパン20714は、このような小さい製造部において、近位端部20615が遠位ジャッキストラット20412の残部に対して変形する可能性があることを考慮したものである。この変形は不利であり、ジャッキねじ(複数可)14320の誤動作又は破損を生じさせ得る。比較して、
図206に示すようにジャッキ孔が外面から機械加工されるときには、T字形内の2つの外側スパン20610、20612は、台形の大きい側にあるため、とどまるのに十分な大きさであり、したがって、第2の接続部14330を受ける近位端部20615を支持する。
【0156】
図209は、
図204〜
図206のステントアセンブリの格子を使用する自己拡張型/強制拡張型の移植可能な弁アセンブリ20900の例示的な実施形態を示す。ここでは、弁サブアセンブリ20950及び弁グラフトサブアセンブリ20960の両方が縫合糸20970を使用して接続される。ここで、弁サブアセンブリ20950(
図209の左)の上流側は、格子アーム20902の上流の円周の最上流端部でのみ接続されない。加えて、格子の2本の別個のアーム20904をたどる縫合線20972が形成される。この縫合線20972により、弁グラフトサブアセンブリ20960及び弁サブアセンブリ20950の間に形成され得るポケット20962が、拡張期血流に対して最小化され閉鎖される。この縫合線20972は、
図210及び
図211の図において弁サブアセンブリ20950の内側に見られる。
【0157】
図209には、鋸歯遠位縁部20966に加えて弁グラフトサブアセンブリ20960の鋸歯近位縁部20964が示される。近位縁部20964を切り取ることにより、弁アセンブリ20900の移植後に冠動脈のいずれかを覆い隠す可能性が最小になる。また、遠位端にグラフト材料がないためグラフト材料の全体量が減少し、弁アセンブリの折り畳み能力を高め、送達シース内における回収の容易性を高める。
【0158】
前述したように、本出願は、本明細書に組み込まれている米国特許第8,252,036号、米国特許出願第12/822,291号、第13/339,236号、及び第13/544,379号の同時係属である。これらには、胸部、腹部、及び弁を含む大動脈移植片の種々の例示的な実施形態が記載される。本明細書で説明されるステント格子の例示的な実施形態の多くがステント又は弁置換術として説明されているが、これらの実施形態は、胸部大動脈及び腹部大動脈の上流端部、遠位端部、又はこれらの両端部のいずれに関するものであっても、胸部大動脈瘤及び腹部大動脈瘤の治療を含む胸部大動脈及び腹部大動脈を治療するためのステントグラフトに等しく適用可能である。したがって、本明細書で説明される例示的なステント格子を胸部及び腹部への適用に特定して組み込むことは、簡潔にするために繰り返さないが、全ての関連出願及び親出願に記載された各実施形態への適用として解釈されるべきである。
【0159】
図212〜
図217は、ステント/弁アセンブリを送達シース10040、10720、11040から外して拡張させるか、又はステント/弁アセンブリを縮小させて送達シース10040、10720、11040に再外装するプロセスを示す。ステント/弁アセンブリの再外装は、
図212から始まり
図217で終わる、これらの図全体を通した移行により示される。ステント/弁アセンブリの外装外しは、
図217から始まり
図212で終わる、逆の順序のこれらの図全体を通した移行により示される。これらの図では、明確にするために、ノーズコーン及びそのカテーテルは示されない。
【0160】
再外装プロセスから始めて、
図212は、送達システムの遠位端部に接続された、
図120、
図143、
図169、及び
図191の弁アセンブリと同様の弁アセンブリの例示的な実施形態を示し、弁アセンブリが、移植状態にある送達システムにより弁アセンブリを送達するために拡張されている。送達シース10040、10720、11040が遠位に延長されると、送達シース10040、10720、11040の遠位端部のシース進入デバイス21200が、接続解除コイル770上を摺動する。送達シース10040、10720、11040がさらに延長されたときに、
図213は、シース進入デバイス21200が格子接続解除器管12630、14340、16940を部分的に再外装する状態を示す。再外装プロセスを続けて、
図214は、近位ジャッキストラット12012、13314、14314、15514を備えた弁アセンブリの近位部分が再外装された中間再外装状態にある弁アセンブリを示す。ここで、送達シースへの近位ジャッキストラットの進入を容易にするために、近位ジャッキストラット12013、13314、14314、15514の近位端部の外側半径方向隅部を面取りしてもよいことに留意されたい。キー穴を形成するワイヤEDMプロセス中に、ワイヤEDMプロセスを使用して、本明細書で説明される駆動ねじ用のキー穴を形成する場合、近位ジャッキストラットの近位端部の外側半径方向隅部を同一の理由で面取りすることができる。さらに再外装プロセスにおいて、
図215は、ジャッキねじ12020、12620、14320、15520の露出部分の半分にわたって再外装された弁アセンブリを示す。
図216は、遠位ジャッキストラット12013、13313、14313、15513がシース進入デバイス21200内に部分的に再外装された、ほぼ完了した再外装プロセスを示す。再外装プロセスは、弁アセンブリが送達シース10040、10720、11040に完全に含まれる
図217で完了する。この時点で、システム全体を患者から取り外し、又は再位置付けした後、改善された移植部位で外装外しを行うことができる。
【0161】
図217に示すシース進入デバイス21200が、送達シース10040、10720、11040の外側円周よりも僅かに大きい面積の遠位端部を有する僅かに円錐形であることに留意されたい。最小外側円周を有する送達シースを設けることが最も望ましいため、この配向においてシステムが送達部位まで延長される場合、この形状は不利であることに留意されたい。シース進入デバイス21200の外側直径を最小化するために、シース進入デバイス21200の材料が、シース進入デバイス21200を熱収縮させることができるか、又は他の方法で折り畳むことができるように選択される。この外側円周直径を最小化するための1つの例示的なプロセスでは、
図218に示すように、シース進入デバイス21200は接続解除コイル770の周りで収縮する。したがって、シース進入デバイス21200の最大外側円周は、例えば18フレンチより大きくすることができるが、このように加工された後に、18フレンチオリフィス内に容易に適合することができる。
図219は、このプロセスが行われた後の、送達システムの全ての内部部品がないシース進入デバイス21200の遠位端部を示し、
図220は、前述したように送達システムによる移植片の後退後に、シース進入デバイス21200の遠位端部が完全に拡張された状態を示す。
【0162】
本発明の自己拡張型/強制拡張型の移植可能なステント/弁アセンブリの種々の実施形態の特有の態様は、膨張するバルーンの理想的な円形形状のみに拡張する従来技術のデバイスとは非常に異なる自然な幾何学形状により良好に一致可能であることを含む。
図221〜
図224は、
図191のステントアセンブリが不規則形状のモックアップ移植部位内で徐々に拡張する状態を示し、このモックアップ移植部位は、ステントアセンブリがその不規則形状からモックアップを移動しないように硬化される。ステントアセンブリが拡張するときにわかるように、モックアップ移植部位は移動せず、ステントアセンブリは、それが移植される特定の不規則な内部断面形状に自動的に適応する。
図224に明らかに示されるように、ステントアセンブリは、格子とモックアップ移植部位の内壁との間にほとんど又は全く空間なしに、不規則形状の移植部位内に移植される。したがって、本発明は、任意の形状、円周、周囲、直径、断面、又は他の2次元若しくは3次元の幾何学構成に一致するように使用され得る。
【0163】
図225のフロー図を参照して、本明細書で説明されるステント/弁アセンブリのいずれかを移植するためのプロセスの例示的な一実施形態について説明する。
図108〜
図118及び
図226〜
図230に示すもの等のハンドルは、ディスプレイ10814、23010と、ボタン等の種々のユーザインターフェースアクチュエータ10816、23011〜23017とを備える。以下の例示的な移植プロセスは、無地のオレンジ色の「中央」ボタン23011、2つの後屈ボタン(屈曲23012及び伸展23013)、拡張及び収縮ボタン23014、23015、並びに延長及び後退ボタン23016、23017を含む7個のユーザインターフェースアクチュエータがあることを想定する。加えて、
図225に示すプロセスフローステップは、前の数ステップが行われた後に移植手技の各段階で生じる例示的なディスプレイスクリーンである。まず、システムが乾燥したパッケージから開封される。システムに本来のサイズ(例えば、23mm)のステントアセンブリを予め装填することができ、システムはステント装填漏斗を備える。デバイスがオンになると、第1のスクリーンが「折り畳み準備完了」の状態を示し、「中央ボタンを保持して折り畳む」により折り畳み方をユーザに指示する。ボタンが保持されると、駆動ねじが移動してステントアセンブリを折り畳み、折り畳みが行われている間、ディスプレイ23010のスクリーンは「ボタンを放して中止する」を示す。ディスプレイ23010は、ステントアセンブリの折り畳みの進行を示すプログレスバーを同時に示すことができる。システムにより完全に折り畳まれると、ディスプレイ23010は、ユーザが「ステントを手動で折り畳む」べきであることを示し、「中央を保持して漏斗/シースを前進させる」を示すことにより、これが達成される様子を示す。シースの移動はゆっくりと始まり、次いで速く移動する。シース/漏斗が前進すると、ディスプレイ23010は「ボタンを放して中止する」を示す。ディスプレイ23010は、外装がどれだけ残っているかを示すプログレスバーを同時に示す。外装されると、ディスプレイは「外装完了、漏斗取外し」を示し、ユーザが送達シースの端部から外装漏斗を取り外す。ディスプレイ23010は、ユーザが「中央ボタンを保持して継続」した後に次のステップを行うことができることを示し、漏斗が取り外されたことを確認する。ディスプレイ23010は、次にユーザが「ステントを洗い流す」べきであることを示し、「中央ボタンを保持して継続」することにより、この洗い流しを確認する。この時点で、「デバイスは患者に対する準備完了」が表示され、ユーザに「中央ボタンを保持して継続」するよう指示する。
【0164】
次に、デバイスの遠位端部を移植部位に案内することができる。後屈が望ましい場合には、ディスプレイ23010は、左/右ボタンがプログレスバーに沿った後屈を示すことを示す。上/下ボタンはシース後退を制御する。次に、ディスプレイ23010は、ユーザが「ボタンを押し下げてデバイスをコミット」すべきであることを示し、移植の準備が完了していない場合には、ユーザが「中央ボタンを押して前のスクリーンに戻る」べきであることを示す。シースは、所望であれば逆方向への選択肢により、ステントアセンブリの第1の半部についてゆっくりと後退される。ディスプレイ23010は「シース後退中」を示し、ユーザに「ボタンを放して中止する」よう指示を与える。所望であれば、表示された、完全後退までのカウントダウンに沿った完全なシース後退のために、ボタンを保持することができる。デバイスは、駆動ねじに遊びを取り込み、ステントアセンブリを予め定義された位置及び/又は本来の位置に呈する。例えば、ステントアセンブリは直径15mmまで拡張され、プログレスバーは、ステントアセンブリと同一の直径である円により直径を示すのに伴って、ステントアセンブリの状態を示すことができる。実施されると、ディスプレイは「シースが完全に後退」を示し、ユーザは「中央ボタンを保持して継続する」べきである。
【0165】
ステントアセンブリは、移植する準備ができている。所望であれば、半径方向力とステントアセンブリの直径とが、プログレスバーに伴って表示され得る。直径は、ステントアセンブリの同一の直径である円により示すことができる。ボタンのいずれかを使用して、ユーザが所望する最大の半径方向力を制限することができ、ディスプレイ23010は、ステータスバーにより、半径方向力の制限指標を示すことができる。ソフトウェアは、ステント格子を拡張するのに必要な荷重及び駆動システムの摩擦荷重を説明して、組織に与えられている力の正確な表示を、例えば、ポンド/kgでユーザに伝えることができるようにしてもよい。荷重に対する組織の反応の時間依存性のため、ソフトウェアは、最初に荷重を満たした後、ある期間、組織に公知の目標力を加え続けることができる。組織が再形成されると、ステント格子は拡張し続け、目標力を格子の円周の最大限度まで加え続ける。ソフトウェアは組織の反応を追跡し、拡張変化率が閾値よりも低下すると、ステント格子の拡張を停止することができる。代替実施形態では、移植片の全ての拡張が、心臓収縮と同期して生じ、洞律動の特定部分に一致し得る。直径制御ボタン23014、23015を使用して、この例では15mmから始まる直径を制御する。ボタンを押す度に、例えば、直径をミリメートルで示すこと、及び/又は同一の直径の円に伴って、ステントアセンブリの0.5mmの増減を生じさせることができる。移植片から検出された公称半径方向力が安定した時点で、ディスプレイ23010はユーザに、最初の血管造影又は超音波(例えば)を行って、弁傍漏出が存在するか否かを確認すべきであることを示す。漏出が存在する場合、ユーザは、目標力レベルを、移植片が設計通りに取ることのできる最大レベルまで増加させることができ、さらに、弁傍漏出が封止され、又はステント格子の最大拡張が生じるまで、同一の変化検出率で再拡張を繰り返すことができる。再拡張が生じると、測定された半径方向力が、移植時に展開された場合に移植片の塞栓形成を防ぐのに十分であるか否かが、ユーザに知らされる。十分でない場合、ユーザに通知され、又は移植片の展開が防止される。移植の準備ができると、ボタンの1つが緑色に点灯(例えば、中央ボタン23011)して、ボタンを押すことにより移植片を送達システムから接続解除することを示す。接続解除を行うために、ユーザはボタンをある期間(例えば、5分)保持し、その間に、ボタンが点滅し、ハンドルは自動接続解除シーケンスが始まろうとしていることを示す音声を発する。最初に押されると、ディスプレイ21010は、数秒間のカウントダウンに伴って「接続解除中」を示して接続解除する。カウントダウンの終了時に、自動接続解除シーケンスが始まる。このシーケンスの1つのステップは、駆動ねじワイヤ内に作られた巻き上げを除去することである。これは、2つの方法のうちの一方で行うことができる。巻き上げ解放を行う第1の方法は、巻き上げを除去するには十分であるが、追加の逆巻き上げを形成したり、ねじを逆に駆動したりするには十分でない低レベルのトルクにより駆動モータを逆転させることである。或いは、最後の入力トルクがわかったことにより、そのトルクに関連した巻き上げを除去するのに必要な一定の巻き数を含むルックアップテーブルにアクセスすることができる。自動接続解除シーケンスの終了時に、接続解除ワイヤ770が駆動ねじカプラ部14652、14654から引き抜かれて、移植片の接続解除を完了する。
【0166】
接続解除されると、ディスプレイは「接続解除済み」を示し、ユーザに「中央ボタンを保持して継続する」ように指示する。任意の後屈を解放することができ、デバイスが送達システムの遠位部分を送達シース内へ「再外装する準備完了」したことがユーザに示され、このために、ユーザは「中央ボタンを保持して再外装」しなければならない。このボタンが押されると、ディスプレイ23010は「再外装」が行われていること、及びユーザが送達部品の再外装を「ボタンを放して中止」できることを示す。送達システムの露出部分が送達シース内に安全に位置すると、ディスプレイは「デバイス終了」を示し、したがって、送達シースが「患者から取り外す準備完了」となる。
【0167】
送達システム制御ハンドルの別の例示的な実施形態が、
図226〜
図230に示される。送達システム制御ハンドル22600のハウジングは、この例示的な実施形態では、上半部及び下半部を有するクラムシェルである。ハウジングの上半部は、電子制御回路、ディスプレイ、及びユーザ制御ボタン(
図229及び
図230参照)を含む電子要素の大部分を含む。ハウジングの下半部は、機械要素の大部分を含む。機械要素に関し、接地ベース22610がハウジングの下半部に固定接続される。これにより、機械部品の大部分についての接地が形成される。
【0168】
まず、後屈支持管22710が近位端部で接地ベース22610に固定される。後屈支持管22710は、全ての制御ワイヤ及びガイドワイヤが通る管腔を有する多管腔軸22630を囲む。この例示的な実施形態では、管腔の数は合計9つである。多管腔軸22630の周りの後屈支持管22710の遠位端部に固定して取り付けられた遠位後屈ニーは図示されない。ニーは円筒形で、一側部に沿ってスリットを有する。ニーの遠位端部には後屈ワイヤ22622の遠位端部も取り付けられる。後屈ワイヤ22622の近位端部は、後屈トロリー22624内に並進可能に取り付けられる。後屈トロリー22624が近位に並進すると、送達システムの遠位端部の後屈が生じる。後屈トロリー22624を使用せずに、送達システムの遠位端部の物理的な屈曲又は後屈を可能にすることが望ましい。したがって、後屈ワイヤ22622は、近位に自由に移動するがスロット内では遠位に移動するように抑制される、後屈トロリー22624のスロット内に接続された図示しないカラーを有する。したがって、送達シースの屈曲により後屈ワイヤ22622に張力が生じ、該ワイヤは後屈トロリー22624を通って近位に自由に移動する。例えば、従動ナット、カム、又は後屈軸22626が回転したときに後屈トロリー22624が縦方向に並進できるようにする他の同様の接続部による、後屈トロリー22624と後屈軸22626の回転との相互作用によって、後屈ガイドピン22625上での後屈トロリー22624の移動が生じる。後屈軸22626の回転は、後屈モータ22628により制御される。
【0169】
送達シース11040は、後屈支持管22710と同軸で、後屈支持管22710を囲む。送達シース11040の近位端部はシーストロリー22744に固定され、該シーストロリー22744は、シース駆動ねじ22748の回転により生じる運動に基づいて、シースガイドピン22746に沿って進む。シーストロリー22744の相互作用は、例えば、従動ナット、カム、又はシース駆動ねじ22748が回転するときにシーストロリー22744が縦方向に並進できるようにする他の同様の接続部による、シース駆動ねじ22748の回転とともに生じる。シース駆動ねじ22748の回転は、シースモータ22749により制御される。シースガイドピン22746が接地ベース22610に固定されるため、シーストロリー22744の並進により、制御ハンドル22600に対する送達シース11040の遠位並進又は近位並進を生じさせる。
【0170】
移植部位にあるときに、移植片の遠位送達部分全体及び移植片(例えば、
図105、
図107、及び
図169〜
図173に示すように)を縦方向に並進させることが望ましい。しかしながら、ユーザ制御をその縦方向配置にすることは単に望ましいわけではない。移植片が移植部位に近付くと、制御ハンドル22600を患者に対して固定し、最良の位置付けのために移植片を機械的に延長及び/又は後退させることが望ましい。しかしながら、ジャッキねじを回転させるための駆動ワイヤ750、及びパック17020を並進させるためにパック制御ねじ17032に接続された接続解除駆動ワイヤ、及びこれによる接続解除ワイヤ770は、ハンドル内から回転されなければならないため、これらの要素の並進は、それぞれのモータの並進でない場合、少なくともこのような回転を与える伝達装置の並進を必要とする。制御ハンドル22600は、モータとそれぞれの伝達装置との両方のこのような並進をもたらす。特に、並進接地22800は制御ハンドル22600に固定接続される。並進接地22800は、内部の並進駆動ねじ22810を案内するねじ付き孔を有する。並進駆動ねじ22810は、図示しない並進モータ(自己内蔵型モータ/伝達装置サブアセンブリ22820の下に位置する)の伝達装置の一端部に固定接続される。並進モータは、作動時に並進駆動ねじ22810を回転させ、制御ハンドル22600にも固定される。モータ/伝達装置サブアセンブリ22820は、並進駆動ねじ22810に並進可能に関連して、並進駆動ねじ22810が回転するときにモータ/伝達装置サブアセンブリ22820全体が縦方向に並進するようにする。例えば、モータ/伝達装置サブアセンブリ22820の下にはブラケットが取り付けられ、ブラケットは並進駆動ねじ22810を内部に受けるねじ付き孔を有して、並進駆動ねじ22810が回転するときに、ブラケットがモータ/伝達装置サブアセンブリ22820とともに並進するようにする。モータ/伝達装置サブアセンブリ22820内には、例えば、駆動ねじ(群又は個々)用の6つの駆動ワイヤ750のそれぞれを回転させるため、且つ例えば、2つの接続解除駆動ワイヤ22840、22842のそれぞれを回転させるためのモータ及び/又は伝達装置の全てがある。並進駆動ねじ22810の他端部には、多管腔軸22630の近位端部に固定された多管腔接地22830がある。モータ/伝達装置サブアセンブリ22820と同様に、多管腔接地22830は、並進駆動ねじ22810内に適合するように形成されたねじ付き孔を有する。このような構成では、並進駆動ねじ22810の回転は、多管腔接地22830及びモータ/伝達装置サブアセンブリ22820をともに同時に、且つ同期して移動させ、その間、両者を一定距離で分離させたままとする。このように、制御ハンドル22600及び送達シース11040に対する移植片の並進を、例えば、制御ハンドルの側部に位置する位置付けボタン23016、23017により行うことができる。このような位置付けは、特定のステップのない、アナログで滑らかなものとすることができ、又は、これらのボタン23016、23017の一方が押される度に所与の一定距離を移動するようにプログラムされ得る。
【0171】
本明細書で説明される弁アセンブリの例示的な実施形態は、最小の展開直径のためにサイズ決定され、形成される弁を有することを目指している。この弁は、内側弁よりもはるかいに大きい最終直径まで拡張させることができる、ステント格子/フレームの内側に固着される。弁の交連は、機械的リンク機構によってフレームに固定され、該機械的リンク機構は、フレームを拡張させること、及び弁を最小の逆流に対して適切なサイズに保つことを可能にする。弁の下部スカートは、可変直径の編組グラフト又は類似のデバイスの緩い接続を通してステントに取り付けられる。この構成は、ステントフレームが拡大し続けること、及びデバイス内で携持される弁よりも大きい様々な本来の輪の中へ適合させることを可能にする。
【0172】
前述した例示的な実施形態は、主に大動脈弁に関するものであるが、これらの実施形態はこれに限定されない。前述したように、本発明は、肺動脈弁、僧帽弁、及び三尖弁にも同様に適用することができる。加えて、本発明は、一部の実施形態が本明細書で開示される管状の解剖学的構造にも等しく使用することができる。
【0173】
管状構造又は中空構造に移植されるデバイスに関し、拡張(例えば、血管形成)、閉塞、壁の開存性(例えば、ステント、ステントグラフト)、又は物理的構造(例えば、置換弁)の置換のいずれについても、サイズの不一致が問題となることが、外科医、医師、医用生体工学従事者及び医療従事者に知られている。簡単に言うと、理想的でない解剖学的組織に一致するように対称なデバイスをサイズ決めすることが、医学分野における課題である。外科医に従来技術のデバイスを制御する方法がない場合、移植に欠陥が生じ、ある量の異常なデバイス漏出を認めなければならない。このような欠陥、不備、又は漏出のリアルタイムフィードバック(その要素は、プラットフォーム、送達システム、デバイス自体、又はこれらの組合せに組み込まれる)は、現在の手技に有利となるが、例えば、バルーン設置デバイス又は自己拡張デバイスについて単純には利用できない。開示された、他の管状構造又はオリフィスに等しく適用可能な実施形態にとって重要なのは、従来技術と対照的に本明細書で説明される自己拡張型及び強制拡張型の例示的な格子が、絶対的な制御性を有することにより、多くの手技、動作、及び/又は解剖学的組織についてのプラットフォームとなり得ることである。本明細書で説明されるように、種々のデバイスは、自己拡張型及び強制拡張型の例示的な格子が使用されるデバイスの全て又は特定の位置に作動可能な幾何学形状を有する。
【0174】
心臓の他の構造に関して、例えば、説明した実施形態は僧帽弁置換術又は修復術に適用可能である。僧帽弁輪は大動脈弁輪よりも柔軟である。また、僧帽弁輪は、房室(AV)溝及び繊維三角(大動脈輪及び房室輪の間の組織の厚い部位)に非常に近く、僧帽弁を処置するときにこれらが損傷を受けるおそれがある。また、僧帽弁は、サイズ決定及び半径方向力による影響を非常に受けやすい。移植片が小さすぎると、漏出及び塞栓を生じさせる。移植片が大きすぎると、弁座を破るだけでなく、左心室の全体の幾何学形状を変化させることによって心臓に損傷を与えるため、心臓循環について心臓の効率を低下させる。したがって、解剖学的組織に対する正確な取付け及び微調整が必要であり、これは開示された実施形態により容易に達成される。説明した実施形態の自己拡張型及び強制拡張型格子の調整可能性により、僧帽弁置換術又は修復術に関連する重要な課題である、正確な、同時に行われるサイズ決定及び封止が可能になる。加えて、本明細書で説明される自己拡張型及び強制拡張型格子を僧帽弁置換術のために修正して、本明細書で説明される円形の代わりにD字形にし、円周の部分が拡張可能(収縮可能)であり、別の部分が一定のまま(すなわち、D字形の平坦部)であるようにしてもよい。自己拡張型及び強制拡張型格子により正確なサイズ決定が行われ、正確な制御力を与えて損傷を低減させ、ほぼ完全な封止を形成する。僧帽弁修復術では、僧帽弁輪の調節が環状形成の土台となる。この例示的な実施形態では、デバイスを僧帽弁輪に直接、経皮的に、又は最少の侵襲で固定することができ、移植されたデバイスは、形状、直径、周囲、若しくは全体構成、若しくはこれらの組合せの全部又は一部を変化させて、本来の僧帽弁小葉の適切な接合を達成するように作動可能である。他の実施形態により、僧帽サブ弁装置の同時の、又は独立した作動が可能になる。さらに他の実施形態では、このデバイスは、冠静脈洞内、又は本来の僧帽弁輪の同様の作動を可能にする僧帽弁輪と同一面内の心外膜に配置することにより、僧帽弁修復術を行うことができる。したがって、自己拡張型及び強制拡張型格子の調整可能性は、サイズ決定及び半径方向力の両方の課題を解決する。他の注目すべき事項は、僧帽弁が、動作中の進入ベクトルから大きくずれた軸を有することである。したがって、デバイスは可動性が非常に高くなければならない。本明細書で説明される斜板の実施形態は、例えば、配置公差が非常に狭い場合でも、僧帽弁の置換を助ける。
【0175】
同様に、説明した実施形態は、三尖弁置換術又は修復術に適用可能である。僧帽弁について前述した特徴の全てが、三尖弁置換術又は修復術に等しく適用可能であるため、簡潔にするためにこれらの特徴を繰り返さない。最近では、三尖弁疾患が増加している。三尖弁疾患に重要なのは、患者が「高リスク」であり、すなわち、患者が症状を示すほどに疾患が進行しているときには非常に重症であることである。三尖弁に関し、三尖弁は心臓の伝導部位に近接している。現在、三尖弁疾患は、伝導部位を全く傷つけることがないように、分割リングにより修復される。僧帽弁と比較して、三尖弁の軸は大静脈から90度ずれている。したがって、大きな可動性が必要となる。与えることのできる半径方向力も、三尖弁置換術又は修復術では制限される。特に、与えることのできる最大半径方向力は、心臓の伝導システムが近接しているため制限される。したがって、解剖学的組織に対する正確な取付け及び微調整が必要であり、これは開示された実施形態により容易に達成される。実施形態の自己拡張型及び強制拡張型格子の調整可能性により、正確な、同時に行われるサイズ決定及び封止、三尖弁置換術又は修復術に関連する重要な課題が可能になる。自己拡張型及び強制拡張型格子により正確なサイズ決定が行われ、正確な制御力を与えて損傷を低減させ、ほぼ完全な封止を形成する。したがって、自己拡張型及び強制拡張型格子の調整可能性は、サイズ決定及び半径方向力の両方の課題を解決する。僧帽弁修復術又は置換術と同様に、例えば、斜板の実施形態を使用して、配置公差が非常に狭い場合でも、三尖弁の置換を助けることができる。
【0176】
説明した実施形態は、肺動脈弁置換術又は修復術にも適用可能である。実施形態の自己拡張型及び強制拡張型格子の調整可能性により、肺動脈弁に関する重要な利点が可能になる。その理由は、肺動脈弁疾患は先天性であることが多いため、一般に小児に発現するからである。例えば肺動脈閉鎖については、肺動脈弁が狭く筋性になる。したがって、外科医は弁を置換しなければならないだけでなく、肺動脈弁の管の一部又は全部も置換しなければならない。肺動脈弁疾患に関する最も重大な問題は、一般的な患者が最初の手術後に成長し続けることである。一般的に、各患者は、一生のうちに4〜6回の手術を受ける。その理由は、患者が成長するにつれて、より大きな弁を設ける必要があるからである。これらの各手術には、関連するリスクがあるが、複数回の手術はこのようなリスクを複雑にする。
【0177】
従来技術と対照的に、説明した自己拡張型及び強制拡張型格子の実施形態は、最初の弁移植後の手術を完全になくす。特に、2度目の後続手術のために患者に観血的手術を行う代わりに、本明細書で説明される調整可能な自己拡張型及び強制拡張型格子を、単純に、調整デバイスを移植片の構造プラットフォームの一部分(例えば、1つ又は複数のジャッキねじ)に再ドッキングして、患者の成長に対応して格子をさらに拡張させることによって、経皮的に拡大することができる。これは、後続手術の最も費用の掛かる部分を実質的になくすことによって費用を大きく削減するだけでなく、非侵襲的な拡張が、このような観血的手術により生じる損傷の可能性を大きく低下させる。
【0178】
本明細書で説明される自己拡張型及び強制拡張型格子の実施形態は、明確且つ簡潔にするために略円筒形である。しかしながら、実施形態はこの構成に限定されない。例えば、
図155に示すように、自己拡張型及び強制拡張型格子の外側形状の変化、ここでは、格子が砂時計形状であることにより、移植片の効果に、異なる手技依存の改良が生じる。砂時計形状の半部、先細、湾曲、及び他の幾何学形状を含む、移植片の位置に応じた幾何学形状を有する他の形状も、他の解剖学的位置に封止及び保持を形成するのに等しく適している。別の例示的な実施形態では、移植片23100が自己拡張型及び強制拡張型中央格子23102を有する。格子23102の開放端部の一方又は両方(ここでは両端部)は、中央格子23102から離れて外向きに拡張する、自己拡張型の円錐形ステント構造23104、23106を有する。図示した例示的な実施形態では、非移動ストラット23116並びに移動ストラットの2つの部分(遠位ジャッキストラット23113及び近位ジャッキストラット23114)を含む全ての端部が、移植片23100に対して縦方向に延びる。これらの延長端部は、外向きに湾曲して砂時計形状を形成する。移植片23100の遠位端部及び近位端部の所望の構成に応じて、延長部の任意の組合せが可能である。一部の例示的な構成としては、縦方向に延びる非移動ストラット23116のみの両端部、縦方向に延びる非移動ストラット23116の一端部のみ、縦方向に延びる遠位ジャッキストラット23113のみ、縦方向に延びる近位ジャッキストラット23114のみ、並びに縦方向に延びる遠位ジャッキストラット23113及びジャッキストラット23114の両方が挙げられる。図示した例示的な実施形態は、非移動ストラット23116の延長部23126よりも短い遠位ジャッキストラット23113及び近位ジャッキストラット23114の延長部23123、23124を示す。延長部23123、23124、23126の長さは、同一であっても、図示した構成と逆であってもよい。例えば、中央格子23102は、拡張されたときに縦方向に短縮されるため、遠位ジャッキストラット23113及び近位ジャッキストラット23114の延長部23123、23124の長さを非移動ストラット23116の延長部23126よりも長くして、移植のために所望のサイズまで円周方向に拡張されたときに、延長部23123、23124、23126の全ての端部が移植片23100の縦軸に垂直な単一の円周面に沿って実質的に位置合わせされるようにする。外科医は、患者の移植部位の特定の幾何学形状に対応する正確な移植直径/周囲/形状を知ることができないかもしれないが、手術前測定(例えば、経食道心エコー図、CTスキャン、MRI、心内心電図、核医学検査、又はX線透視検査)により、予め測定された患者の幾何学形状まで拡張されたときに所与の円周の周りに実質的に位置合わせされる延長部23123、23124、23126を有する移植片23100を選択するのに十分な情報を得ることができる。したがって、手術前に、外科医は所望の移植片の直径を測定して、1組の異なるサイズの移植片23100から1つの移植片23100を選択する。したがって、測定された直径に対する中央格子23102の僅かに大きい又は小さい拡張は、延長部23123、23124、23126の端部が同一の円周面にないことを意味するに過ぎない。移植部位の幾何学形状が不規則であるため、単一面の端部のこのような理想的な構成を完全に対称なデバイスによって達成することは困難であると想定される。
【0179】
遠位端部23104及び近位端部23106の延長部23123、23124、23126の間には、隣接する対の延長部23123〜23126、23124〜23126を任意の所望の方法で接続する中間アーム又はウェブ23128がある。ここでは、中間ウェブ23128が、延長部23123、23124、23126のほぼ中間点及び延長部23123、23124、23126のほぼ端点で、隣接する対の延長部23123〜23126、23124〜23126を円周方向に接続する。しかしながら、これは例示的な一実施形態に過ぎず、任意の幾何学形状、任意の角度、及び任意の長さを有する、より多い又は少ないウェブ23128を使用することができる。例えば、ウェブ23128は、ステント格子23102のアームの角度に従うことができる。
【0180】
図232及び
図233はそれぞれ、心臓弁23201及び血管23301に完全に移植される前の移植片23100を示す。
図232では、中央格子23102が部分的に拡張されて、患者の弁23201の罹患した小葉を折り畳み始めるが、遠位端部23104及び近位端部23106は、弁23201の両側の壁にまだ接触していない。対照的に、
図233では、中央格子23102が部分的に拡張されるが、罹患した血管23301の壁にまだ接触していない。しかしながら、
図233の移植片の遠位端部23104及び近位端部23106は、既に血管壁に接触している。この構成では、中央格子23102の接続が行われる前に血管23301の壁に対して端部が接続することにより、移植片23100の往復を防止するが、中央格子23102は、血管23301の直径23302にほぼ等しいか、直径23302よりも小さく又は大きくなり得る所望の移植円周まで拡張し続ける。
【0181】
中央格子23102の、又は中央格子23102に取り付けられた端部23104、23106は、中央格子23102と一体又は中央格子23102に接続(例えば、融着)されたニチノール等の形状記憶材料から作製され得る。これらの端部23104、23106を種々の形状に構成してもよい。
図231では、各端部23104、23016が、指数関数的に増加する拡張コーンとして示される。以下で一部を説明する代替形状としては、移植片23400の遠位端部23402等のバーベル形状、又は移植片23500の遠位端部23504等の球形状が挙げられる。自己拡張型及び強制拡張型移植片の2つの端部は、特定の移植片の要件に応じて、同一でも異なっていてもよい。それぞれの場合において、これらの延長部は、行われる特定の外科手技に合う所与の最終記憶形状を有する。他の自己拡張型記憶形状デバイスのような送達シースに捕らえられると、端部は半径方向内向きに圧縮して、送達カテーテルへの装填を可能にする。送達カテーテルからの解放が可能になると、端部は所定の記憶形状まで拡張する(移植片の自己拡張及び強制拡張部分がまだ強制拡張されておらず、自己拡張端部(複数可)を完全に自己拡張できる場合に、部分的に抑制され得る)。
【0182】
砂時計形状は、解剖学的組織内での往復を防止するための急な保持が望ましい、種々の外科的な適用に特に適している。この形状は心臓の全ての弁の置換に有利であるだけでなく、手技治療、例えば、心房中隔欠損(ASD)、心室中隔欠損(VSD)、動脈管開存症(PDA)、心室動脈瘤、卵円孔開存症(PFO)、動静脈瘻、弁傍漏出、及び左心耳(LAA)結紮において、並びに血管の塞栓形成及び血管形成の実施において有利でもある。これらの手技及び状態のそれぞれは、解剖学的組織の幾何学形状を確立する自己拡張の広がり、及び広がった端部間の腰部を正確に調整する自己拡張型及び強制拡張型中央プラットフォームを有することを利点とする。本明細書で説明される砂時計形状を種々の理由でこれらの手技に使用可能であるが、本明細書において限定されるものとしては説明されず、任意の移植片形状を、本明細書で説明される例示的な外科手技のいずれかに等しく適用可能である。
【0183】
実施される手技に応じて、移植片を異なるポリマー又は材料の母材若しくはメッシュで覆うことができる。被覆は、細胞内成長とともに経時的に封止するための半多孔性であっても、及び/又は移植時若しくは移植直前に封止するために非多孔性の部分を有していてもよい。全体にわたる非多孔性被覆も考えられる。被覆は外側、内側、又は両側にあってもよく、遠位側、中央格子、近位側、及び管腔内の縦方向位置にある移植片の中央オリフィス内を含む、移植片のいずれかの箇所に位置して、管腔を閉塞し管腔を通る流れを防止することができる。例えば、所望の効果に応じて、閉塞仕切りを中央オリフィスの断面内、特に、腰部内に配置してもよい。使用される材料が、波状又はひだ状にならないように膨張性であることが有利であり得るが、特定の状況では非膨張性であってもよい。
【0184】
心房中隔欠損(ASD)は、心臓の2つの区画である左心房及び右心房の間の血流を可能にするある形の先天性心臓欠陥である。通常、右心房及び左心房は心房中隔23610により分離されている。この中隔に欠陥があるか、又はこの中隔がない場合、酸素を豊富に含む血液が心臓の左側から直接流れて、心臓の右側の酸素の少ない血液と混合し、またその逆も生じ得る。ASDの生命にかかわるおそれのある別の結果は、血塊がASDを通過することができ、血塊が無害であり時間とともに溶解し得る肺に進むのではなく、このような血塊が脳に進み、脳卒中を発生させ、場合によっては死に至ることである。
【0185】
胎児発育中に、心房中隔が発達して、左心房と右心房とに分かれる。しかしながら、初期の胎児発育中、卵円孔と呼ばれる中隔の孔により、右心房からの血液が当然、左心房に入ることができる。この開口により、機能しない胎児の肺を血液が迂回することができる一方、胎児は酸素を胎盤から得る。胎児発育中に、一次中隔と呼ばれる組織の層が卵円孔上で弁として作用する。出生後、肺が開いて作動し始めると、心臓の右側の圧力が低下し、卵円孔が完全に閉鎖する。成人の約25%において、卵円孔が完全には封止していない。このような場合、肺循環システムにおける圧力上昇(咳をしたときの一時的な肺高血圧症等)によって、卵円孔が開いたままとなり得る。これは、一種のASDである卵円孔開存性(PFO)として知られる。
【0186】
現在ASDを治療するための1つのデバイスは、H字形である。ASDオリフィスに挿入されると、デバイスが拡張して、欠陥の両側に1枚ずつの2枚の対向する板により中隔の両側を遮断する。しかしながら、これらの板は欠陥よりもはるかに大きい。これは、デバイスが心房内に大きな質量を配置することにより心房容積が小さくなるため、不利である。さらに、2つの板の円筒形中央接続部は、欠陥を埋めるようにサイズ決定されていないため、封止がASDにわたって完全なものでなければ、血液は依然としてASDを横切ることができる。欠陥の封止を確実にするために、これらの板が大きな重なりを必要とすることも不利である。換言すれば、板はASDオリフィス直径よりも大きい。
【0187】
本明細書で説明される実施形態の砂時計形状の自己拡張型及び強制拡張型移植片により、従来技術のデバイス及び治療を超える重要な利点がもたらされる。第1に、過度の、及び/又は制御不可能な外向きの力を欠陥の壁縁部に加えることなく、正確に作動可能な腰部を、欠陥のサイズに一致するように拡張させることができる。第2に、移植片は、血液の交差を防止するための、内部の中央にある固体塊の仕切り又は板を備え、この仕切りは、耐久性に必要なだけの薄さであり、いずれかの心房に体積を全く加えない。仕切りの材料は、ヒト組織であってもよく、又は他の哺乳類の組織又は天然若しくは合成生地であってもよい。仕切りは、移植片が欠陥にしばらく置かれた後に自然な内皮形成壁を形成するように、半多孔性であってもよい。移植片は両側で砂時計形状に広がって、移動を防止する。
図236は、ASDのある心臓を示し、
図237は、この欠陥がこのような自己拡張型及び強制拡張型移植片23700により修復された状態を示す。一部の状況では、封止が壊れるおそれがあり、後で再調整及び/又は再位置付けが必要となり得る。
【0188】
自己拡張型及び強制拡張型デバイスの移植は低侵襲性であるため、ASDの治療により頻繁に使用することができる。その理由は、上大静脈への接近が観血的手術ではなく血管内手技により行われるからである。例えば、ASDは、流れを右心房から脳へ向けるため、片頭痛の原因の1つであると考えられている。自己拡張型及び強制拡張型移植片はこのような症状を治療することができる。VSDはASDほど頻繁には起こらないが、VSDは前述したASDと同一の方法で治療することができる。
【0189】
動脈管は、出生直後に閉じる正常な胎児の血管である。動脈管開存症(PDA)は心臓の先天性疾患であり、新生児の動脈管が出生後に閉じることができない。PDAでは、血管が閉じることができないため、心臓に近い最も重要な動脈の2つ、大動脈及び肺動脈の間の血液の伝達が不規則になる。すなわち、PDAによって、大動脈(より高い圧力を有する)から肺動脈への流れを可能にすることにより、左心臓からの酸素を含む血液の一部分が肺に戻る。砂時計形状の自己拡張型及び強制拡張型デバイスを動脈管内に移植して、移植片の管腔内の仕切りを用いて接続部を閉鎖することができる。
図232、
図233、又は
図237に関して、内部仕切りの1つの例示的な構成を説明することができる。ジャッキねじ23113の一側(例えば、遠位側)の中央格子23102の内部管腔が、格子23102に伴って拡張可能な材料で覆われる。1枚の材料が、遠位ストラット23113及び非移動ストラット23116の大部分又は全てに接続される。移植片の周り及び内部の材料が半多孔性であれば、移植片の周りで自然な内部成長が起こり、移植片を完全に覆い、心房壁の一部を形成する。
【0190】
動静脈瘻は、動脈及び静脈の間の異常な接続又は通路である。動静脈瘻は、先天性のもの、血液透析治療により外科的に形成されたもの、又は、動脈瘤の外傷若しくは侵食等の病態過程によりかかるものであり得る。脳又は脊髄を含む体内のいずれかの部位で生じ得るこれらの通路は、必要な場合に酸素を完全に循環させ送達する状態から血液を分流させる短絡のように作用する。砂時計形状の自己拡張型及び強制拡張型デバイスを動静脈瘻内に移植して、移植片の管腔内の仕切りを用いて接続部を閉鎖することができる。
図232、
図233、又は
図237に示す構成は、外側又は内側の周りで覆われ、管腔内の内部仕切りを有し、2つの血管の間の動静脈瘻に移植される、自己拡張型及び強制拡張型デバイスの例となり得る。移植片の周り及び内部の材料が半多孔性であれば、移植片の周りで自然な内部成長が起こり、移植片を完全に覆い、新しい中間血管壁を形成する。
【0191】
円筒形自己拡張型及び強制拡張型デバイスを血管及び他の同様の形状の解剖学的組織で使用可能であるが、状況によっては、砂時計形状の自己拡張型及び強制拡張型デバイスを代わりに使用することが望ましいことがある。このような1つの分野として、血管の塞栓形成及び血管形成が挙げられる。塞栓形成は、1つ若しくは複数の奇形(異常)の血管又は脈管を閉塞又は遮断する、最小限の侵襲による治療である。カテーテル塞栓形成手技において、薬剤又は合成材料がカテーテルを通して血管内に入れられて、その部位への血流を防止する。例えば、異常な出血を制御又は防止するために、カテーテル塞栓形成が行われる。この出血としては、負傷、腫瘍、又は潰瘍若しくは憩室疾患等の消化管病変により生じる出血が挙げられる。塞栓形成は、一般的に、何らかの原因の消化管出血における第1選択の治療である。自動車事故の負傷による腹部又は骨盤内への出血の制御は、この治療に特に適している。カテーテル塞栓形成は、特に、脳腫瘍等、腫瘍の除去が困難であるときに、血液を腫瘍に供給する血管を閉塞又は閉鎖するように実施される。塞栓形成後、腫瘍は縮小し得るか、又は成長し続けるが、より速度が遅くなり得るため、化学療法又は手術がより有効な選択肢となる。外科医が特定の解剖学的組織に介入し、カテーテルを使用して静脈/動脈に接近し、静脈/動脈を意図的に閉鎖する多くの手技が存在する。例えば、脾臓又は肝臓の刺し傷等の外傷の状況がある。肝臓に関して、肝臓の左葉への流れが閉塞されたときに、肝臓の右葉は耐えることができる。患者が喀血した場合、塞栓形成を肺動脈で使用することができる。これらの各状況において、砂時計形状の自己拡張型及び強制拡張型デバイスを、例えば、
図233に示すように配置することができる。周囲円筒に沿った外側被覆又は内側被覆と、移植時にデバイスの中央管腔を閉鎖する適切に配置された内部仕切りとにより、解剖学的組織を確実且つ除去可能に閉塞することができる。
【0192】
本発明の設計を、左心耳等の他の部位で使用してもよい。LAAを結紮するための現在の手技においては、WATCHMAN(登録商標)と呼ばれるデバイスが使用される。このようなデバイスには大きな欠点がある。移植前に、外科医はLAAの内部容積を測定する必要があるが、LAAが非常に柔軟で軟質の構造であるため、測定は非常に難しい。したがって、事前のサイズ決定が困難である。LAAは一般的に、サイズ決定中に圧力を加えられない。したがって、LAAが後にデバイスにより生じる圧力を受けたときに、移植片の正確な最終直径を見出すことに関して問題が生じる。現在の治療技術はある複数のサイズで設けられており、そのうちの1つを手術のために選択する必要がある。現在のデバイスは、容積及び形状の不一致のため設置が難しい。デバイスが小さすぎると、移植後にデバイス周りに空間が生じ、この空間(複数可)が望ましくない血塊形成に十分なものとなる。不十分な容積の不一致により、LAAに存在する血塊が除去され、このような血塊は直ちに大動脈に進入するため危険である。他方、サイズ決定されたデバイスが大きすぎると、移植によって急性の外傷性断裂を引き起こし、緊急手術が必要になるか、死に至るおそれがある。加えて、
図238及び
図239に示す従来技術のデバイスが順調に移植されても、そのデバイスがLAA内に力を加えすぎると、デバイスが壁を侵食して、最終的に断裂を生じさせ、否定的な結果となる。LAAは心耳に沿って厚さが実質的に変化し、一部の部位は非常に薄いため外科医が壁を通して右を見ることができる。したがって、移植片が壁のその部分に結合したときに断裂のおそれがある。
【0193】
外科医がデバイスを移植してLAAを治療したら、空間をできるだけ多く満たしつつ、血液が出入りし、及び/又は凝固できる容積を残さないことが望ましい。LAA内の空間を閉鎖し、オリフィスを同様に封止することができれば、これにより、血塊の除去の可能性がなくなる。したがって、視覚化(例えば、連続X線透視検査又は心エコー図による)を使用して、全体の循環からLAAの完全な閉塞/分離が行われるまでデバイスを断続的に拡張でき、閉塞/分離が行われたときに、外科医がデバイスの拡張を停止すると有利である。しかしながら、現在のデバイスは実質的に円形で、LAAを容積測定的に満たすだけであり、心房心耳接合部を封止することを意図したものではない。したがって、現在のデバイスは、容積を占め、且つオリフィスを封止することはできない。加えて、現在のデバイスは、全て自己拡張型であり、送達カテーテルから取り外される前に収縮されたままであるか、又は送達カテーテルが取り外されたときに一度に完全に拡張するため、断続的に拡張することができない。
【0194】
従来技術のこれらの欠点の全てが、本明細書で説明される自己拡張型及び強制拡張型デバイスにより解決される。その理由は、これらのデバイスが、LAAの容積を満たし、同時に、心房心耳接合部に封止を形成するからである。
図240は、LAAを治療するためのデバイス24000の例示的な一実施形態を示す。前述したように、自己拡張型及び強制拡張型格子24002はデバイス24000の中央部分を形成する。球状の自己拡張型延長部24004が、デバイス24000の遠位端部から遠位に延びる。球状延長部24004の反対側には自己拡張型バーベル延長部24006がある。これら2つの延長部24004、24006はともに動作して、デバイス24000が移植されるときに容積を満たす。LAAの封止は、デバイス24000の管腔内の1つ又は複数の仕切りの配置によって行われる。例えば、閉塞仕切りが破線24040の格子24002内に配置されると、格子24002が心房心耳接合部24022内で拡張され、バーベル延長部がLAA入口で自己拡張するときに、LAA内部が左心房から遮断される。別の可能性としては、仕切りがバーベル延長部の壁に沿ってバーベル延長部内へ近位に外側先端まで延びる。同様に、仕切りは延長部24004内へ遠位に延びることができる。内部カテーテルが仕切りを通過する必要がある場合、カテーテルを引き抜いた後に封止する仕切りと弁が一体になり、移植後に材料が自己治癒して閉じる。仕切りは、デバイスの管腔内に拡張して、デバイスの移植に管腔を閉塞する別個に移植されたデバイスであってもよい。
【0195】
デバイス24000を用いてLAAを結紮するための例示的な手技は、ガイドワイヤを左心房24010に入れることから始まる。次いで、ガイドワイヤがLAAにねじ込まれる。デバイス24000は、遠位端がLAA空洞24020に進入するまでガイドワイヤ上で駆動される。その自然な状態で、LAAは柔軟で約90度〜約180度屈曲する。デバイス24000はLAA空洞24020内に十分に挿入されて、遠位球状延長部24004を空洞24020内に配置し、中央格子24002を心房心耳接合部24022のLAAオリフィス内に配置し、バーベル延長部24006を心房心耳接合部24022のすぐ近位に配置する。このような構成では、
図240に示すように、拡張時に、デバイス24000がLAAを容積測定的に満たすとともに、心房心耳接合部24022に封止を形成することができる。送達カテーテル24030はデバイス24000から後退されて、デバイス24000の自己拡張を、例えば、
図240に示す状態であり得る予め設定された状態にすることができる。中央格子24002は、心房心耳接合部24022のオリフィスの直径よりも小さい自己拡張直径を有して設定される。遠位球状延長部24004は、この時点で部分的に自己拡張される。その理由は、中央格子24002が完全に拡張していないと、球状延長部24004が完全に自己拡張できないからである。或いは、球状延長部24004は、中央格子24002が自己拡張及びまだ強制拡張ではない状態にあるときに完全な自己拡張に予め設定され得る。同様に、近位バーベル延長部24006は、中央格子24002の構成により僅かに小さく保持されることによって、部分的に自己拡張することができる。同様に、バーベル延長部24006の代替手段により、中央格子24002がその自己拡張直径にあるときに完全な自己拡張が可能になり得る。その後、外科医は、視覚化の下で、球状延長部24004がLAA空洞24020内に着座するまで、球状延長部24004をさらにLAA空洞24020内に位置付けする。また、外科医は、視覚化の下で、デバイス24000を偏揺れ方向(
図240の平面)に移動させて、バーベル延長部24004の半径方向面を心房心耳接合部24022の面に接近させ、位置合わせする。この時点で、デバイス24000はLAA空洞24020内で安定する。位置合わせが確認されると、中央格子24002の拡張が行われる。球状延長部20404の拡張が、調整可能な中央格子24002の、心房心耳接合部24022のオリフィスに対する関係を示すことに留意されたい。中央格子24002が拡張すると、球状延長部24004がLAA空洞24020の隣接する壁内に拡張してこれを満たし、LAA空洞24020の遠位端部を近位端部から封鎖する。再び視覚化の下で、外面が心房心耳接合部24022のオリフィスに接触するまで中央格子24002が拡張され、その接触時に、バーベル延長部24006が外向きに拡張されて、心房心耳接合部24022のできるだけ多くの部分に接触することにより、LAA空洞24020を左心房24010から封鎖する。バーベル延長部24006が中央格子24002の最大拡張直径よりも大きい直径を有するように形成されるため、バーベル延長部24006は心房心耳接合部24022で壁に接触して密な封止を形成する。デバイス24000が送達カテーテル24030から解放されることにより、手術が完了する。このような移植構成によって、心房心耳接合部24022又はその内部に円周方向接触を有することにより、LAAオリフィス24022でデバイスの塞栓形成を、数日間行うことが可能になる。
【0196】
デバイス24000は
図240に被覆なしで示されるが、外面及び/又は内面の一部又は全部が覆われて、全体的に捕らえられた容積を形成する。デバイス24000を半多孔性材料で覆って、LAAを完全に満たす内部成長及び内皮形成を促すことができる。或いは、デバイス24000を非多孔性材料で完全に覆うことができ、又は一部を半多孔性にし、一部を非多孔性にすることができる。
図234に示すバーベル状端部と
図235に示す球状端部との組合せにより、
図240に示す自己拡張型及び強制拡張型デバイス24000は、LAAを結紮するのに理想的なものとなる。
【0197】
前述したように、LAAは、それ自体の上に折り重なる湾曲を自然に形成する。LAAが心房24012の隣接する外壁に押し付けられ、LAA空洞24020を左心房24010から封鎖するのに十分な時間、そこで保持されると、LAAが自然に閉じる。しかしながら、この結果を確実にする時間は数日かけて測定される。本明細書で説明される自己拡張型及び強制拡張型デバイスを使用して、このような手技を実施することができる。特に、LAAの外面及び心房の外面24012に手術により接近すると、自己拡張型及び強制拡張型デバイスが心房の反対のLAAの側24024に対して膨張され得ることにより、LAAを外面24012に向かって
図240の矢印で示される方向に押す。このように、自己拡張型及び強制拡張型デバイスは、閉じて折り重なった心耳を静かにゆっくりと押し、且つLAAが内皮形成により封鎖している間、そこにとどまる枕として作用する。LAAの柔軟性のため、及びLAAが自然に形成する角度のため、デバイスはLAAオリフィス24022をこのように容易に閉鎖する。
【0198】
デバイス24000を使用して心室動脈瘤の修復術を行うこともできる。心室瘤は、心臓発作後に起こり得る多くの合併症の1つである。心室瘤は、通常、血液で満たされた泡になるまで膨張した、心室壁の弱くなった組織の一区画から発生する。このような心室瘤24100は、例えば、
図241に示される。これは、次に、心臓から出る通路を遮断し、身体への血流を大きく阻害するおそれがある。心室瘤は生命にかかわるものであり得る。このような心室瘤の治療は、心室瘤を供給する動脈を遮断するか、又は手術の代わりとして、動脈瘤嚢自体を閉鎖することによって行うことができる。デバイス24000を心室瘤24100の動脈瘤嚢に挿入することができ、心室瘤24100内で拡張させて、心室瘤24100を満たして閉鎖することができる。
【0199】
本明細書で説明される例示的な実施形態のステント格子の再位置付け可能な制御された拡張が役立つ別の血管手技は、大腿動脈バイパス手術の分野である。大腿動脈の一部分が部分的に又は完全に閉塞したときに、受ける血流が少なくなった脚の部分に動脈血を供給する1つの方法は、閉塞の周りにシャントを形成することである。これを行う場合、このようなシャントは、閉塞上流の大腿動脈の位置への一端部の縫合と、閉塞下流の大腿動脈の位置へのシャントの他端部の縫合とを必要とする。本明細書で説明されるステント格子の1つを有するステントグラフトをグラフト材料の各端部で使用して、ステントグラフトを大腿動脈に縫合する必要なく、以下で説明する他の利点を有してこのようなシャントを形成することができる。
図242(脚の動静脈循環を示す)に関し、ステントグラフトが、動脈の閉塞よりも長く、大腿動脈の上流着地点から下流着地点まで横切るのに十分な長さを有するグラフト材料を用いて準備される。第1の進入点は膝窩動脈になり、進入カテーテルは閉塞のすぐ下で大腿動脈内に通じる。その後、進入カテーテルは、大腿動脈から、伏在静脈又は大腿の皮下脂肪内へ通される。前者の場合には、進入カテーテルが、伏在静脈の上方へ向けられた後、伏在静脈から出て、鼠径部近くの閉塞上流の点で大腿動脈に進入する。後者の場合には、進入カテーテルが、大腿の皮下脂肪を通って大腿動脈に沿って(他の血管に接近することなく)向けられた後、鼠径部近くの閉塞上流の点で大腿動脈に戻る。ガイドワイヤがこのように配置された状態で、本明細書における種々の例示的な実施形態の送達システムを、遠位移植片が上流移植部位に位置するまで(例えば、X線透視検査により)ガイドワイヤに沿って案内することができる。そこで、(管腔内又は外側の)グラフト材料により囲まれたステント格子は、必要な直径(約8〜10mm)まで拡張されて、血管周囲漏出について確認される。(本明細書で説明されるように測定可能な)過度の外向きの圧力がなく、漏出がない状態で着座されると、上流ステント格子は送達システムから接続解除され、上流の移植が完了する。上流の移植中のいずれかの時点で、所望であれば、ステント格子を拡張、収縮、再拡張、及び再位置付けすることができる。送達シースは、グラフト材料上でさらに後退され、この後退が生じるときに、グラフト管腔は動脈血で満たされる。再び視覚化の下で、ステントグラフト下流端のステント格子が、大腿動脈又は閉塞のすぐ下流の上膝窩動脈に位置付けされる。下流移植中のいずれかの時点で、所望であれば、有利な配向が行われるまで、ステント格子を拡張、収縮、再拡張、及び再位置付けすることができる。下流ステント格子は必要な直径まで拡張されて、公称圧力について、且つ血管周囲漏出がないことが確認される。漏出がないことが確認されると、下流ステント格子が送達システムから接続解除され、シャントを完成させ、且つ閉塞上方から閉塞下方への動脈流を可能にする。
【0200】
この例示的な実施形態では、少なくとも2つのステント格子間の距離により、送達システムが、前述したものよりも長くなっている。さらに、ステント格子の1つが中間点で送達シース内へ装填され、送達シースは、上流ステント格子に到達するまで実質的に波状になったりしわになったりすることなく、グラフト材料上に延長される。上流ステント格子の装填は、本明細書で説明されたものと同様に行われ、ノーズコーンが、上流ステント格子に隣接する遠位端でドッキングされる。この手技のステント格子(及びグラフト)は、大動脈又は心臓について説明したステント格子よりもはるかに直径が小さいため、各ステント格子は同数の拡張デバイス(例えば、ジャッキアセンブリ)を必要としない。特に、1、2、又は3個のジャッキアセンブリのみが、設置直径8〜10mmのステント格子に必要である。したがって、このような小さいステントグラフトに必要な管腔及び駆動ワイヤの実際の数は、本明細書で説明したものより少なくてもよく、多管腔及び送達シースを、この手技についてはるかに小さい直径にすることができる。したがって、制御機能の全てが本明細書で説明されるものと同様であるが、数が少なくなっており、制御ワイヤの半分が、下流ステント格子に至る装填された送達シース内の中間点まで延び、制御ワイヤの他の半分が、
図169に示すものと同様に、上流ステント格子に至る送達シースの遠位端部まで延びている。
【0201】
この例示的な実施形態は、脆弱な動脈内への制御可能な拡張を行うだけでなく、封止された上流格子及び下流格子が動脈を確実に封止するため、縫合の必要性をなくす。この手技は、ステント部分を膨張させるためのバルーンの使用の必要性を完全になくすというさらなる利点を有する。膨張は通常、このような動脈位置に損傷を与える。
【0202】
本発明のプロセス及びシステムの種々の個々の特徴について、本明細書では、例示的な一実施形態においてのみ説明できることに留意されたい。単一の例示的な実施形態に関する本明細書の説明の特定の選択肢は、特定の特徴が、それが説明される実施形態にしか適用可能でないという限定として理解すべきではない。本明細書で説明される全ての特徴は、本明細書で説明される他の例示的な実施形態のいずれか又は全てに、いずれかの組合せ、グループ化、又は配置において、等しく適用可能であり、追加され、又は交換可能である。特に、特定の特徴を示し、定義し、又は説明するための、本明細書における単一の参照符号の使用は、別の図面又は説明における別の特徴に関連させることができず、これと同等とみなすことができないことを意味する。さらに、2つ以上の参照符号が図面で使用されている場合、これをそれらの実施形態又は特徴のみに限定されるものと解釈すべきではなく、参照符号は同様の特徴に等しく適用可能であるか、又は参照符号が全く使用されないか、又は別の参照符号が省略される。
【0203】
前述の説明及び添付図面は、本発明の原理、例示的な実施形態、及び操作モードを例示する。しかしながら、本発明は、上で論じられる特定の実施形態に限定されるものと解釈するべきではない。上で論じられる実施形態の追加的な変形例が当業者によって認識され、上で説明される実施形態は、限定するものではなく実例としてみなされるべきである。故に、これらの実施形態に対する変形は、以下の特許請求の範囲によって定義される本発明の範囲を逸脱することなく、当業者によって行うことができることを認識するべきである。